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Abstract

In this paper we investigate the construction of dyadic affine (wavelet) bi-frames for
triangular-mesh surface multiresolution processing. We introduce 6-fold symmetric bi-frames
with 4 framelets (frame generators). 6-fold symmetric bi-frames yield frame decomposition
and reconstruction algorithms (for regular vertices) with high symmetry, which is required for
the design of the corresponding frame multiresolution algorithms for extraordinary vertices on
the triangular mesh. Compared with biorthogonal wavelets, the constructed bi-frames have
better smoothness and smaller supports. In addition, we also provide frame multiresolution
algorithms for extraordinary vertices. All the frame algorithms considered in this paper are
given by templates (stencils) so that they are implementable. Furthermore, we present some
preliminary experimental results on surface processing with frame algorithms constructed in
this paper.
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1 Introduction

This paper studies the biorthogonal affine (or wavelet) frames for triangular mesh-based surface
multiresolution (multiscale) processing. When a filter bank is used for mesh-based surface mul-
tiresolution processing, several issues need to be considered. Firstly, the filters including both
lowpass and highpass filters must have high symmetry. This is due to the fact that unlike an
image, a set of 2-D data, a surface to be processed is an object in 3-D space and the algorithms
for surface processing need to have a high symmetry. Secondly, the filters should have few nonzero
coefficients. If the reconstruction (synthesis) filters have too many nonzero coefficients, undesired
artifacts may be present in the reconstructed surfaces. Last but not least, the algorithms includ-
ing those with highpass filters should be given by templates (stencils) so that the algorithms can
be easily implemented.

Linear spline and butterfly scheme related semi-orthogonal wavelets for surface multiresolution
processing have been studied in [38, 39], Doo’s subdivision-scheme based wavelets for quadrilat-
eral surfaces were considered in [45], and spherical wavelets were introduced in [46]. Recently
∗The authors are with the Department of Mathematics and Computer Science, University of Missouri–St. Louis,

St. Louis, MO 63121, USA.
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with the idea of the lifting scheme [15, 48], biorthogonal wavelets with high symmetry for surface
multiresolution processing have been constructed in [2, 3, 31, 32, 49, 50]. If the biorthogonal
wavelets have certain smoothness, they will have big supports. In other words, the correspond-
ing multiscale algorithms have large templates, and this is not desirable for surface processing.
Loop’s scheme-based biorthogonal wavelets have been considered in [34] with the biorthogonal
dual wavelets constructed in [26]. However the corresponding highpass filters do not have de-
sirable symmetry for surface processing with extraordinary vertices. This undesirable property
will cause the problem to design the associated algorithms for extraordinary vertices (see [34] for
detailed discussion).

Compared with (bi)orthogonal wavelet systems, the elements in a frame system may be linearly
dependent; namely, frames can be redundant. The property of redundancy not only results in
framelets with high symmetry and smaller supports than wavelets, but also provides high sparsity
of frame transform coefficients. Such sparsity is a key property for many applications. In addition,
frames work better in a noisy environment [13]. Thus, frames have been successfully used in noise
removal [47], image recovery [9, 10], image inpainting/restoration [5, 6, 7], and signal classification
[13], and medical image analysis [40].

The construction of multivariate wavelet frames has been studied in some papers, see e.g.,
[24, 29, 35, 43, 44]. Few of them address the symmetry of the framelets. When frames are applied
for surface multiresolution processing, it is required that framelets have high symmetry and small
supports. To the authors′ best knowledge, [11, 12, 20, 21] may be the only articles available in
the literature which yield framelets with the desirable symmetry. The lowpass filter p(ω) for
the framelets constructed in [20, 21] is the product of an interpolation filter and a trigonometric
polynomial, which results in big supports of the corresponding scaling functions and framelets.
While the method in [11, 12] does yield (tight) framelets with desirable symmetry and small
supports, in general it leads to many numbers of framelets.

In this paper, we study bi-frames with 4 framelets for triangular (mesh-based) surface multires-
olution processing. Recall that a biorthogonal system needs 3 analysis or synthesis wavelets. Thus,
compared with biorthogonal systems, our frames have just one more generator. Our construc-
tion is based on symmetric templates of frame algorithms which lead to framelets with desirable
symmetry. In addition, we will start with symmetric templates of small size (as small as possi-
ble) with the templates given by some parameters. Then we select the parameters such that the
resulting framelets have optimal smoothness and/or vanishing moments. If the templates with a
particular size cannot yield framelets with desirable smoothness and/or vanishing moments, then
we consider templates with a bigger size. Thus the constructed symmetric bi-frames are optimal
in the sense that with templates of particular (small) sizes, they achieve the highest smoothness
and/or vanishing moment orders.

The rest of paper is outlined as follows. We give some background on wavelet frames and
notations in §2. In §3, we show that frame multiresolution analysis and synthesis algorithms
can be represented as templates by associating the outputs appropriately with the nodes of the
original regular triangular mesh with which the input data is associated (sampled). Based on
symmetric templates, we construct symmetric bi-frames with a 2-step algorithm and a 3-step
algorithm in §4 and §5 respectively. In §6, we consider the butterfly scheme-based bi-frames, and
in §7 we construct bi-frames based on a 4-step algorithm. In the last section, §8, we provide frame
multiresolution algorithms for extraordinary vertices and present some preliminary experimental
results with the framelets used for surface multiresolution decomposition and reconstruction.
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2 Background and notations

A system G ⊂ L2(IR2) is called a frame of L2(IR2) if there are two positive constants B and C
such that

B‖f‖22 ≤
∑

g∈G
|〈f, g〉|2 ≤ C‖f‖22, ∀f ∈ L2(IR2),

where 〈·, ·〉 and ‖ · ‖2 := 〈·, ·〉 1
2 denote the inner product and the norm of L2(IR2). When B =

C, G is called a tight frame. The reader refers to [1], [8], [14], [16], [23], [27], [41], [42] for
discussions on frames. In this paper, we consider affine (or wavelet) frames which are generated
by the dilations and shifts of a set of functions. More precisely, for a function f on IR2, denote
fj,k(x) = 2jf(2jx − k). Functions ψ(1), ψ(2), · · · , ψ(L) on IR2, where L ≥ 3, are called affine (or
wavelet) framelets, or affine frame generators, just called framelets for short in this paper, if G =
{ψ(1)

j,k, ψ
(2)
j,k, · · · , ψ(L)

j,k }j∈Z,k∈Z2 is a frame. In this case, G is called an affine (or a wavelet) frame. We

say that ψ(`), ψ̃(`), ` = 1, · · · , L, generate a wavelet bi-frame (a bi-frame for short) of L2(IR2)
or a dual wavelet frame of L2(IR2) if {ψ(1)

j,k, · · · , ψ(L)
j,k }j∈Z,k∈Z2 and {ψ̃(1)

j,k, · · · , ψ̃(L)
j,k }j∈Z,k∈Z2 are

frames of L2(IR2) and that for any f ∈ L2(IR2), f can be written as (in L2-norm)

f =
∑

1≤`≤L

∑

j∈Z,k∈Z2

〈f, ψ̃(`)
j,k〉ψ(`)

j,k.

For a sequence {pk}k∈Z2 of real numbers with finitely many pk nonzero, let p(ω) denote the
finite impulse response (FIR) filter with its impulse response coefficients pk (here a factor 1/4 is
multiplied):

p(ω) =
1
4

∑

k∈Z2

pke
−ik!.

p(ω) is also called the symbol of {pk}k∈Z2 . A pair of FIR filter sets {p, q(1), · · · , q(L)} and
{p̃, q̃(1), · · · , q̃(L)} is said to be biorthogonal or to form a perfect reconstruction (PR) frame
filter bank if

p(ω)p̃(ω + πηj) +
L∑

`=1

q(`)(ω)q̃(`)(ω + πηj) =
{

1, j = 0,
0, 1 ≤ j ≤ 3,

where
η0 = (0, 0), η1 = (−1,−1), η2 = (1, 0), η3 = (0, 1). (1)

Let φ and φ̃ be the refinable (or scaling) functions satisfying the following refinement equations

φ̂(ω) = p(
ω

2
)φ̂(
ω

2
), ˆ̃
φ(ω) = p̃(

ω

2
)ˆ̃
φ(
ω

2
)

for some FIR filters p(ω) and p̃(ω) respectively. Throughout this paper, f̂ denotes the Fourier
transform of a function f on IR2: f̂(ω) =

∫
IR2 f(x)e−ix·!dx, where x · ω = x1ω1 + x2ω2. Let

ψ(`), ψ̃(`), ` = 1, · · · , L, be the functions defined by

ψ̂(`)(ω) = q(`)(
ω

2
)φ̂(
ω

2
), ˆ̃
ψ

(`)

(ω) = q̃(`)ω

2
)ˆ̃
φ(
ω

2
),

for some FIR filters q(`)(ω), q̃(`)(ω). The Mixed Unitary Extension Principle (MUEP) of [42]
implies (see also [17, 20]) that if {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} form a PR FIR filter bank,
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φ, φ̃ ∈ L2(IR2) with φ̂(0, 0)̂̃φ(0, 0) 6= 0, and that p(0, 0) = p̃(0, 0) = 1, q(`)(0, 0) = q̃(`)(0, 0) = 0,
then ψ(`), ψ̃(`), ` = 1, · · · , L, generate a bi-frame of L2(IR2).

Given a frame filter bank {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)}, the multiresolution decom-
position algorithm for input data C = {c0

k} is

cj+1
n =

1
4

∑

k∈Z2

pk−2nc
j
k, d

(`,j+1)
n =

1
4

∑

k∈Z2

q
(`)
k−2nc

j
k, (2)

with ` = 1, · · · , L,n ∈ Z2 for j = 0, 1, · · · , J−1, and the multiresolution reconstruction algorithm
is given by

c̃jk =
∑

n∈Z2

p̃k−2nc̃
j+1
n +

∑

1≤`≤L

∑

n∈Z2

q̃
(`)
k−2nd

(`,j+1)
n (3)

with k ∈ Z2 for j = J − 1, J − 2, · · · , 0, where c̃Jn = cJn. {p, q(1), · · · , q(L)} is called the analysis
frame filter set and {p̃, q̃(1), · · · , q̃(L)} the synthesis frame filter set; and p, p̃ are called
lowpass filters and q(`), q̃(`), 1 ≤ ` ≤ L highpass (frame) filters. When {p, q(1), · · · , q(L)} and
{p̃, q̃(1), · · · , q̃(L)} are biorthogonal, then c̃jk = cjk, 0 ≤ j ≤ J − 1. {cjk}, {d(`,j)

k } are called the
“approximation” (or “lowpass output”) and the “details” (or “highpass outputs”) of C. When
d

(`,j)
n = 0 for 1 ≤ ` ≤ L, 0 ≤ j ≤ J − 1,n ∈ Z2, then (3) is reduced to J steps of subdivision

algorithm with subdivision mask {p̃k}k and initial control net {c̃Jn}n:

c̃jk =
∑

n∈Z2

p̃k−2nc̃
j+1
n , j = J − 1, J − 2, · · · , 0.

In this paper, we study bi-frames with 4 frame generators. For an FIR frame filter set
{p, q(1), q(2), q(3), q(4)}, with notation q(0)(ω) = p(ω), write q(`)(ω), 0 ≤ ` ≤ 4 as

q(`)(ω) =
1
2

(
q

(`)
0 (2ω) + q

(`)
1 (2ω)ei(ω1+ω2) + q

(`)
2 (2ω)e−iω1 + q

(`)
3 (2ω)e−iω2

)
,

where q(`)
k (ω), 0 ≤ k ≤ 3 are trigonometric polynomials. We define the polyphase matrix of the

frame filter set {p, q(1), · · · , q(4)} to be the 5× 4 matrix V (ω) given by

V (ω) =
[
q

(`)
k (ω)

]
0≤`≤4,0≤k≤3

. (4)

Clearly,

[p(ω), q(1)(ω), · · · , q(4)(ω)]T =
1
2
V (2ω)I0(ω),

where I0(ω) is defined by
I0(ω) = [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T . (5)

Furthermore, we can easily find that two sets of frame filters {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}
are biorthogonal if and only if

V (ω)∗ Ṽ (ω) = I4, ω ∈ IR2,

where V (ω) and Ṽ (ω) are their polyphase matrices defined by (4). Throughout this paper, M∗

denotes the complex conjugate and transpose of a matrix M .
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An FIR filter p(ω),ω = (ω1, ω2) is said to have sum rule orderK if it satisfies that p(0, 0) = 1
and

∂α1+α2p(ω)
∂ωα1

1 ∂ωα2
2

∣∣∣
!=(π,π)

= 0,
∂α1+α2p(ω)
∂ωα1

1 ∂ωα2
2

∣∣∣
!=(π,0)

= 0,
∂α1+α2p(ω)
∂ωα1

1 ∂ωα2
2

∣∣∣
!=(0,π)

= 0, (6)

for all (α1, α2) ∈ Z2
+ with α1 + α2 < K. Under some condition, sum rule order is equivalent to

the approximation order of the associated scaling function φ, see [28].
For an FIR (highpass) filter q(ω), we say it has the vanishing moments of order N if

∂α1+α2q(ω)
∂ωα1

1 ∂ωα2
2

∣∣∣
!=(0,0)

= 0,

for all (α1, α2) ∈ Z2
+ with α1 + α2 < N . Clearly, if q(ω) has vanishing moment order N and

ψ is the compactly supported function defined by ψ̂(ω) = q(!2 )φ̂(!2 ), where φ is a compactly
supported function in L2(IR2), then ψ has the vanishing moments of order N :

∫

IR2
ψ(x1, x2)xα1

1 xα2
2 dx1dx2 = 0, α1 + α2 < N, α1, α2 ∈ Z+.

Most importantly, one can show that if q(ω) has vanishing moment order N , then when it is used
as an analysis highpass filter, it annihilates discrete polynomials of total degree less than N . In
other words, if the input ck = P (k), where P is a polynomial with total degree < N , then the
(highpass) output with filter q(ω) is zero:

dn =
1
4

∑

k∈Z2

qk−2nP (k) = 0, n ∈ Z2.

It is important in many applications such as data sparse representation that highpass filters
annihilate discrete polynomials. In addition, it has been shown in [17] that the approximation
power of the frame truncation operator of a biorthogonal frame filter bank depends on not only
the sum rule order of the synthesis lowpass filter p̃(ω) but also the vanishing moment orders of
the highpass filters.

When we construct bi-frames, we choose the parameters such that the synthesis scaling func-
tion φ̃ is smoother than the analysis scaling function φ, the synthesis lowpass filter p̃(ω) has a
higher sum rule order than the analysis lowpass filter p(ω), and that the analysis highpass filters
q(`)(ω) have higher vanishing moments (if it is possible).

3 6-fold symmetry dyadic bi-frames and associated templates

In this section, we show how frame multiresolution analysis and synthesis algorithms for regular
vertices can be represented as templates. This is the key step for our approach of template-based
frame construction. We also discuss the symmetry of frame filter banks in this section.

To describe multiresolution analysis and synthesis algorithms by means of templates, we con-
sider a regular infinite mesh C = {ck}k∈Z2 that can be be represented as the regular triangular
mesh, denote by M0, as shown on the left of Fig. 1. The indices for the nodes of M0 are also
indicated in this picture. The middle of Fig. 1 shows the dyadic refinement, where the nodes with
circles © form the coarse mesh. The lowpass output after a one-level decomposition is a lower
resolution of C that could be considered as a “subsampling” of C on the vertices of the coarse
mesh.
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Figure 1: Left: Indices for nodes and initial data; Middle: Coarse mesh; Right: Initial data separated into
4 groups: {vk}, {e(1)

k }, {e(2)
k }, {e(3)

k }

The key to describe multiresolution algorithms by means of templates is to associate the
outputs appropriately with the nodes of M0 with which the input data is associated (sampled).
To this purpose, first, as in [32], we separate the nodes of M0 into different groups. More
precisely, let Z2 denote the indices for the nodes of M0 as shown on the left of Fig. 1. The
nodes are separated into two groups with one consisting of the nodes with indices (2k1, 2k2) for
the coarse mesh and the other group consisting of the remaining nodes with indices of Z2\(2Z2).
We call the nodes of the first group type V nodes (or vertex nodes), and those in the second
group type E nodes (or edge nodes). We then further separate the type E nodes into three
groups with labels in:

{2k− (1, 1)}k∈Z2 , {2k + (1, 0)}k∈Z2 , {2k + (0, 1)}k∈Z2 .

See the right part of Fig. 1, where �, 4 and ∇ denote these three groups of type E nodes
respectively (recall that the big circles © denote type V nodes).

For a regular mesh C = {ck}k∈Z2 with vertices ck, since the multiresolution algorithm is applied
to each component of ck, we assume ck to be real numbers when we derive the corresponding
templates for the algorithm. Let {c1

k}k be the “approximation” and {d(1,`)
k }k, 1 ≤ ` ≤ 4 be

the “details” after the decomposition algorithm (2) with L = 4 and an analysis frame filter set
{p, q(1), · · · , q(4)} is applied to c0

k = ck. Observe that {c2k}k∈Z2 is the set of data associated
with type V nodes, {c2k−(1,1)}k∈Z2 , {c2k+(1,0)}k∈Z2 and {c2k+(0,1)}k∈Z2 are three sets of the data
associated with the above three groups of type E nodes. Denote

vk = c2k, e
(1)
k = c2k−(1,1), e

(2)
k = c2k+(1,0), e

(3)
k = c2k+(0,1), k ∈ Z2. (7)

Refer to the right picture of Fig. 1 for these four groups of data. We call type V vertices for vk

and type E vertices for any of e(`)
k , ` = 1, 2, 3.

We also denote

ṽk = c1
k, g̃k = d

(1,1)
k , ẽ

(1)
k = d

(2,1)
k , ẽ

(2)
k = d

(3,1)
k , ẽ

(3)
k = d

(4,1)
k .

Then, the decomposition algorithm (2) can be written as
{
ṽk = 1

4

∑
k′∈Z2 pk′−2kck′ , g̃k = 1

4

∑
k′∈Z2 q

(1)
k′−2kck′ ,

ẽ
(1)
k = 1

4

∑
k′∈Z2 q

(2)
k′−2kck′ , ẽ

(2)
k = 1

4

∑
k′∈Z2 q

(3)
k′−2kck′ , ẽ

(3)
k = 1

4

∑
k′∈Z2 q

(4)
k′−2kck′

(8)
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for k ∈ Z2, and the reconstruction algorithm (3) is

ck =
∑

k′∈Z2

{p̃k−2k′ ṽk′ + q̃
(1)
k−2k′ g̃k′ + q̃

(2)
k−2k′ ẽ

(1)
k′ + q̃

(3)
k−2k′ ẽ

(2)
k′ + q̃

(4)
k−2k′ ẽ

(3)
k′ }, k ∈ Z2.

Considering ck in the above equation with k in four different cases: (2j1, 2j2), (2j1 − 1, 2j2 − 1),
(2j1 + 1, 2j2), (2j1, 2j2 + 1), and with the definitions of vk, e

(1)
k , e

(2)
k , e

(3)
k given in (7), one can

further write the reconstruction algorithm (3) as




vk =
∑

n∈Z2{p̃2nṽk−n + q̃
(1)
2n g̃k−n + q̃

(2)
2n ẽ

(1)
k−n + q̃

(3)
2n ẽ

(2)
k−n + q̃

(4)
2n ẽ

(3)
k−n},

e
(1)
k =

∑
n∈Z2{p̃2n−(1,1)ṽk−n + q̃

(1)
2n−(1,1)g̃k−n + q̃

(2)
2n−(1,1)ẽ

(1)
k−n + q̃

(3)
2n−(1,1)ẽ

(2)
k−n + q̃

(4)
2n−(1,1)ẽ

(3)
k−n},

e
(2)
k =

∑
n∈Z2{p̃2n+(1,0)ṽk−n + q̃

(1)
2n+(1,0)g̃k−n + q̃

(2)
2n+(1,0)ẽ

(1)
k−n + q̃

(3)
2n+(1,0)ẽ

(2)
k−n + q̃

(4)
2n+(1,0)ẽ

(3)
k−n},

e
(3)
k =

∑
n∈Z2{p̃2n+(0,1)ṽk−n + q̃

(1)
2n+(0,1)g̃k−n + q̃

(2)
2n+(0,1)ẽ

(1)
k−n + q̃

(3)
2n+(0,1)ẽ

(2)
k−n + q̃

(4)
2n+(0,1)ẽ

(3)
k−n}.

(9)

Next, we associate the outputs ṽk, g̃k, ẽ
(`)
k , ` = 1, 2, 3 with the nodes of M0. We associate

both the “approximation” {ṽk}k∈Z2 and the first highpass output g̃k with type V nodes with
labels (2k1, 2k2), and associate the second, third and fourth highpass outputs ẽ(1)

k , ẽ
(2)
k , ẽ

(3)
k with

the type E nodes with labels (k1− 1, k2− 1), (k1 + 1, k2) and (k1, k2 + 1) respectively. In this way,
both analysis and synthesis algorithms can be represented as templates.

Observe that when the “details” g̃k, ẽ
(j)
k , ` = 1, 2, 3,k ∈ Z2 are set to be zero, then (9) is

reduced to the subdivision algorithm:

vk =
∑

n∈Z2

p̃2nṽk−n, e
(1)
k =

∑

n∈Z2

p̃2n−(1,1)ṽk−n, e
(2)
k =

∑

n∈Z2

p̃2n+(1,0)ṽk−n, e
(3)
k =

∑

n∈Z2

p̃2n+(0,1)ṽk−n,

from which the subdivision templates are derived.
Like subdivision templates, when analysis and synthesis algorithms templates are used for

surface processing, they must have certain symmetry. First the templates to obtain ẽ(1)
k , ẽ

(2)
k and

ẽ
(3)
k must be the same since all ẽ(1)

k , ẽ
(2)
k and ẽ

(3)
k are associated with type E vertices and they

should be treated equally. For the same reason, the templates to recover e(1)
k , e

(2)
k and e

(3)
k by (9)

should be identical. Furthermore, the templates to obtain ṽk and g̃k by (8), and that to recover
vk by (9) must be rotational and reflective invariant with respect to the coarse mesh. In addition,
the template to obtain ẽ

(1)
k (now we know it is the same template to obtain ẽ

(2)
k and ẽ

(3)
k ) and

the template to recover e(1)
k (the same template to recover e(2)

k and e
(3)
k ) have certain symmetry.

Following the definition of the 6-fold line symmetry of biorthogonal wavelet filter banks in [32],
we define below the 6-fold symmetry for a frame filter bank which results in templates with the
desired symmetry mentioned above.

Definition 1. A (dyadic) frame filter set {p, q(1), · · · , q(4)} is said to have 6-fold axial (line)
symmetry or a full set of symmetries if (i) coefficients pk and q(1)

k of its lowpass filter p(ω)
and first highpass filter q(1)(ω) are symmetric around axes S0, · · · , S5 on the left of Fig. 2; (ii)
the coefficients q(2)

k of its second highpass filter is symmetric around the axes S0, S
′′
3 on the right

of Fig. 2; and (iii) q(3)
k , q

(4)
k of other two highpass filters q(3)(ω) and q(4)(ω) are the 2π

3 and 4π
3

rotations of q(2)
k .

In Fig. 2, the multi-indices k = (k1, k2) are the indices for the coefficients pk, q
(`)
k , 1 ≤ ` ≤ 4.

On the right of Fig. 2, type V nodes with labels 2k are indicated by ©. From the definition
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Figure 2: Left: Symmetry lines for lowpass filter and 1st frame highpass filter; Right: Symmetry lines for
2nd frame highpass filter

of 6-fold symmetry, we know q
(3)
k and q

(4)
k also have two symmetric axes with symmetric centers

(1, 0) and (0, 1) respectively.
The 6-fold symmetry of a frame filter set {p, q(1), · · · , q(4)} can be characterized by the sym-

metry of its polyphase matrix V (ω).

Proposition 1. A frame filter set {p, q(1), · · · , q(4)} has 6-fold axial symmetry if and only if its
polyphase matrix V (ω) defined in (4) satisfies

V (L0ω) = S01V (ω)S02, V (R−T1 ω) = S1(ω)V (ω)S2(ω), (10)

where

R1 =
[

0 1
−1 1

]
, L0 =

[
0 1
1 0

]
, S01 =

[
I3 0
0 L0

]
, S02 =

[
I2 0
0 L0

]
,

S1(ω) =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 eiω2

0 0 e−i(ω1+ω2) 0 0
0 0 0 eiω1 0



, S2(ω) =




1 0 0 0
0 0 ei(ω1+ω2) 0
0 0 0 e−iω1

0 e−iω2 0 0


 .

The proof of Proposition 1 is similar to that for the characterization of a 6-fold symmetry
of dyadic wavelet filter set given in [32]. Compared with a 6-fold symmetric wavelet filter set in
[32], our 6-fold symmetric frame filter set has one extra highpass filter q(1)(ω) which has the same
symmetry as the lowpass filter p(ω).

Since the algorithms to obtain ẽ(1)
k , ẽ

(2)
k , ẽ

(3)
k are the same, and those to recover type E vertices

e
(1)
k , e

(2)
k , e

(3)
k are also identical, we may simply let e denote type E vertices, and use ẽ to denote the

second to fourth outputs after the decomposition algorithm. Thus, the decomposition algorithm is
to decompose the original data {v}∪{e} into {ṽ}, {g̃} and {ẽ}, and the reconstruction algorithm
recovers {v} ∪ {e} from {ṽ}, {g̃} and {ẽ}, see Fig. 3. In the following sections when we describe
multiresolution algorithms, we simply use v, e and ṽ, g̃, ẽ.
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Decomposition Alg.

v e e~
v~g~

Reconstruction Alg. 

Figure 3: Decomposition and reconstruction algorithms

To construct 6-fold symmetric bi-frames, we start with symmetric templates of decomposition
and reconstruction algorithms. Using the lifting scheme idea [15, 48], the algorithm templates
are given by several iterative steps with each step given by a template. In the next 4 sections
we consider the algorithms given by 2, 3 and 4 steps of iterations. With the templates and
decomposition and reconstruction algorithms (8)(9), we then obtain the corresponding bi-frame
filter bank which is given by some parameters. Finally, we select the parameters based upon the
smoothness and vanishing moments of the framelets.

4 2-step bi-frame multiresolution algorithm

−d−d

−d
−d −d

−d

e5

e2 1e

e3 0e

e4

v

−c

~
3

v~0
g~0

g~
2 v~2

v~1

g~1

g~3 v

e

−c

−a −a

−h

−j

−j

−h

.

Figure 4: Left: Template to obtain lowpass output ṽ in Decomposition Alg. Step 1 (template to obtain
first highpass output g̃ is similar with −d replaced by −n); Right: Decomposition Alg. Step 2

In this section we consider a 2-step frame algorithm. For given triangular mesh C (or equiva-
lently, for given {v} and {e}), the multiresolution decomposition algorithm is given by (11) and
(12) and shown in Fig. 4, where b, d, n, a, c, h, j are constants to be determined. Namely, first
we obtain lowpass output ṽ and the first highpass output g̃, both associated with type V nodes
of M0, with ṽ, g̃ given by formulas in (11). Then, based on ṽ, g̃ obtained, we obtain other three
highpass outputs {ẽ} (= {ẽ(1)

k }∪{ẽ(2)
k }∪{ẽ(3)

k }) associated with type E nodes ofM0 with ẽ given
in (12). The algorithm is very simple and efficient.
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2-step Decomposition Algorithm:

Step 1.

{
ṽ = 1

b

{
v − d(e0 + e1 + e2 + e3 + e4 + e5)

}
,

g̃ = v − n(e0 + e1 + e2 + e3 + e4 + e5)
(11)

Step 2. ẽ = e− a(ṽ0 + ṽ1)− c(ṽ2 + ṽ3)− h(g̃0 + g̃1)− j(g̃2 + g̃3). (12)

c

~
3

v~0
g~0

g~
2 v~2

v~1

g~1

g~3

e~

v

j

h

a a

h

j c

.

e5

e2 1e

e3 0e

e4

g~ v~

Figure 5: Left: Reconstruction Alg. Step 1; Right: Reconstruction Alg. Step 2

The multiresolution reconstruction algorithm is given by (13) and (14) and shown in Fig. 5,
where b, d, n, a, c, h, j are the same constants in the decomposition algorithm and t ∈ IR. The
reconstruction algorithm is the reverse algorithm of the decomposition algorithm. More precisely,
first we replace ẽ by e given in (13). After that, based on e obtained in Step 1, ṽ, g̃ are replaced
by v given by formula (14). Again, the reconstruction algorithm from ṽ, g̃, ẽ to v, e is very simple
and efficient.

2-step Reconstruction Algorithm:

Step 1. e = ẽ+ a(ṽ0 + ṽ1) + c(ṽ2 + ṽ3) + h(g̃0 + g̃1) + j(g̃2 + g̃3) (13)

Step 2.
v = t

{
bṽ + d(e0 + e1 + e2 + e3 + e4 + e5)

}
+

(1− t)
{
g̃ + n(e0 + e1 + e2 + e3 + e4 + e5)

}
.

(14)

With the formulas in (8) and (9), and by careful calculations (the reader refers to [30] for some
detailed discussion on how to obtain 1-D filters associated with some specific given templates), one
can obtain the filter bank {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} corresponding to this (2-step)
algorithm to be

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= D1(2ω)D0(2ω)I0(ω),

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
D̃1(2ω)D̃0(2ω)I0(ω),

10



where I0(ω) is defined by (5), and

D0(ω) =




1
b −d

b (1 + xy) −d
b (1 + 1

x) −d
b (1 + 1

y )
1 −n(1 + xy) −n(1 + 1

x) −n(1 + 1
y )

0 1 0 0
0 0 1 0
0 0 0 1



, (15)

D1(ω) =




1 0 0 0 0
0 1 0 0 0

−a(1 + 1
xy )− c( 1

x + 1
y ) −h(1 + 1

xy )− j( 1
x + 1

y ) 1 0 0
−a(1 + x)− c(xy + 1

y ) −h(1 + x)− j(xy + 1
y ) 0 1 0

−a(1 + y)− c(xy + 1
x) −h(1 + y)− j(xy + 1

x) 0 0 1



, (16)

D̃0(ω) =




tb 0 0 0
1− t 0 0 0

(td+ (1− t)n)(1 + 1
xy ) 1 0 0

td+ (1− t)n)(1 + x) 0 1 0
td+ (1− t)n)(1 + y) 0 0 1



, (17)

D̃1(ω) =




1 0 a(1 + xy) + c(x+ y) a(1 + 1
x) + c( 1

xy + y) a(1 + 1
y ) + c( 1

xy + x)
0 1 h(1 + xy) + j(x+ y) h(1 + 1

x) + j( 1
xy + y) h(1 + 1

y ) + j( 1
xy + x)

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.(18)

Here and throughout this paper, we use x, y to denote e−iω1 , e−iω2 respectively:

x = e−iω1 , y = e−iω2 . (19)

Observe that the polyphase matrices V (ω) and Ṽ (ω) of {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}
are 2D1(ω)D0(ω) and 1

2D̃1(ω)D̃0(ω) respectively. One can easily show that D0(ω)∗ D̃0(ω) =
I4, D1(ω)∗ D̃1(ω) = I5,ω ∈ IR2. Thus, V (ω)∗ Ṽ (ω) = I4,ω ∈ IR2, and hence, {p, q(1), · · · , q(4)}
and {p̃, q̃(1), · · · , q̃(4)} are indeed biorthogonal. Furthermore, one can also easily show that V (ω)
and Ṽ (ω) satisfy (10). Thus both {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are 6-fold symmetric.

Solving the system of equations for sum rule order 3 of p̃ and sum rule order 1 of p, we have

d = −1
2
, b = 4, n =

1
6
, a =

3
8
, c =

1
8
, t =

1
10
. (20)

The resulting p and p̃, which actually have sum rule orders 4 and 2 respectively because of their
symmetry, are

p(ω) = 1
8e
i(ω1+ω2)(1 + e−iω1)(1 + e−iω2)(1 + e−i(ω1+ω2)),

p̃(ω) = 1
64e

i2(ω1+ω2)(1 + e−iω1)2(1 + e−iω2)2(1 + e−i(ω1+ω2))2.
(21)

The scaling functions φ and φ̃ corresponding to these two lowpass filters are respectively the
continuous linear box-spline B111 and C2 box-spline B222 associated with the direction sets (refer
to [4] for box-splines) [

1 0 −1
0 1 −1

]
,

[
1 1 0 0 −1 −1
0 0 1 1 −1 −1

]
.
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p̃ in (21) is the filter (also called mask) for Loop’s scheme [37], one of the most commonly used
subdivision schemes. Thus we are particularly interested in the choices of the parameters given
in (20). However, we cannot choose other parameters such that the resulting q̃(`), 1 ≤ ` ≤ 4 have
1 vanishing moment. The corresponding q(1), q(2), q(3), q(4) automatically have vanishing moment
order 2 with q(2), q(3), q(4) depending on h, j. Furthermore, if h = 9

8 − j, then q(2), q(3), q(4)

have vanishing moment order 4. Though for such choices of parameters, the vanishing moment
condition of q̃(`) for MUEP is not satisfied, in the following we provide the corresponding filters
because of the simplicity of the algorithm. For the value of j, we choose j = 3

32 so that q(2), q(3), q(4)

have fewer nonzero coefficients. The resulting highpass filters (with h = 33/32, j = 3/32) are

q(1)(ω) = 1− 1
6(x+ y + xy + 1

x + 1
y + 1

xy ),
q(2)(ω) = 1

8

{
10
xy + 1

y + 1
x + 1

x2y
+ 1

xy2 − 9− 9
x2y2 − 1

x2 − 1
y2 + x+ y + xy + 1

x3y2 + 1
x2y3 + 1

x3y3

}
,

q(3)(ω) = 1
8

{
10x+ 1

y + xy + x2y + x
y − 9− 9x2 − 1

y2 − x2y2 + 1
xy + y + 1

x + x3y + x2

y + x3
}
,

q(4)(ω) = 1
8

{
10y + 1

x + xy + xy2 + y
x − 9− 9y2 − 1

x2 − x2y2 + 1
xy + x+ 1

y + xy3 + y2

x + y3
}
,

q̃(1)(ω) = 3
128

{
81
5 + 11(x+ y + xy + 1

x + 1
y + 1

xy ) + x2y + xy2 + 1
x2y

+ 1
xy2 + x

y + y
x

+13
10(x2 + y2 + x2y2 + 1

x2 + 1
y2 + 1

x2y2 )
}
,

q̃(2)(ω) = 1
4xy + 1

40(1 + 1
x2y2 ), q̃(3)(ω) = x

4 + 1
40(1 + x2), q̃(4)(ω) = y

4 + 1
40(1 + y2).

(Again, x, y are given by (19).) Observe that the lowpass filters p(ω) and p̃(ω) in the above PR
frame filter bank are supported on [−1, 1]2 and [−2, 2]2 respectively with p̃(ω) being the filter for
Loop’s scheme. We use Loop-F1,2 to denote this PR frame filter bank.

Next we consider other choices of parameters such that each of the highpass filters has at least
one vanishing moment. Solving the system of equations for sum rule order 1 of p and p̃, and for
vanishing moment order 1 of q(`), q̃(`), 1 ≤ ` ≤ 4, we have

b = 4, d = −1
2
, n =

1
6
, a =

1
2
− c, t = 1.

In this case the resulting q(`), q̃(`), 1 ≤ ` ≤ 4 have 2 vanishing moments, and p and p̃ have sum rule
order 2 with p given by (21) and p̃ depending on c. If c = −1

4 , we have the Sobolev (numerically)
smoothest φ̃ that is in W 0.44076. In this case if j = h = 0, then q̃(1)(ω) = 0. Thus the frame filter
bank is reduced to be a biorthogonal wavelet filter bank. In this paper, W s (s > 0) denotes the
Sobolev space consisting of f on IR2 with

∫
IR2(1 + |ω|2)s|f̂(ω)|2dω <∞. The reader refers to [33]

for computing the Sobolev smoothness of a refinable function φ(x).
From the above discussion, we know that to obtain framelets with a higher smoothness order

and/or higher vanishing moment orders, we need to consider algorithms with more iterative steps.
In the next section we consider a 3-step algorithm.

5 3-step bi-frame multiresolution algorithm

In this section we consider a 3-step bi-frame multiresolution algorithm. The decomposition algo-
rithm is given by (22)-(24) and shown in Fig. 6, where b, d, n, a, c, h, j, w, n1 are constants to be
determined. Namely, first we replace all v associated with type V nodes of M0 by v′′, g′′ given
by formula (22). Then, based on v′′, g′′ obtained, we replace all e associated with type E nodes

12
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Figure 6: Left: Template to obtain v′′ in Decomposition Alg. Step 1 (template to obtain g′′ is similar with
−d replaced by −n); Middle: Decomposition Alg. Step 2; Right: Template to obtain lowpass output ṽ in
Decomposition Alg. Step 3 (template to obtain first highpass output g̃ is similar with v′′ and −w replaced
by g′′ and −n1 resp.)

of M0 by ẽ given in formula (23). After that, based on ẽ obtained in Step 2, all v′′, g′′ in Step 1
are updated by ṽ and g̃ given in formula (24).

3-step Dyadic Frame Decomposition Algorithm:

Step 1.

{
v′′ = 1

b

{
v − d(e0 + e1 + e2 + e3 + e4 + e5)

}
,

g′′ = v − n(e0 + e1 + e2 + e3 + e4 + e5)
(22)

Step 2. ẽ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3)− h(g′′0 + g′′1)− j(g′′2 + g′′3) (23)

Step 3.
{
ṽ = v′′ − w(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5),
g̃ = g′′ − n1(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5).

(24)

w
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w
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v"v"0
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v"1

g"
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e~
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cj

v"

e5

e2 1e

e3 0e

e4

g~ v~

Figure 7: Left: Template to obtain v′′ in Reconstruction Alg. Step 1 (template to obtain g′′ is similar with
ṽ and w replaced by g̃ and n1 resp.); Middle: Reconstruction Alg. Step 2; Right: Reconstruction Alg. Step
3

The multiresolution reconstruction algorithm is given by (25)-(27) and shown in Fig. 7, where
b, d, n, a, c, h, j, w, n1 are the same constants in the multiresolution decomposition algorithm and
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t ∈ IR. More precisely, first we replace the lowpass output ṽ and the first highpass output g̃ both
associated with type V nodes ofM0 by v′′ and g′′ respectively given by formula (25). After that,
based on v′′, g′′ obtained, we obtain e with formula in (26). Finally, based on e obtained in Step
2, all v′′, g′′ in Step 1 are replaced by v with formula (27).

3-step Dyadic Frame Reconstruction Algorithm:

Step 1.
{
v′′ = ṽ + w(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5),
g′′ = g̃ + n1(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5)

(25)

Step 2. e = ẽ+ a(v′′0 + v′′1) + c(v′′2 + v′′3) + h(g′′0 + g′′1) + j(g′′2 + g′′3) (26)

Step 3.
v = t

{
bv′′ + d(e0 + e1 + e2 + e3 + e4 + e5)

}
+

(1− t)
{
g′′ + n(e0 + e1 + e2 + e3 + e4 + e5)

}
.

(27)

For the 3-step algorithm (22)-(27), with the formulas in (8) and (9), and the filters for
the 2-step algorithm given above, one can obtain its corresponding filter bank, also denoted
by {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(3)}, to be

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= D2(2ω)D1(2ω)D0(2ω)I0(ω), (28)

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
D̃2(2ω)D̃1(2ω)D̃0(2ω)I0(ω), (29)

where I0(ω) is defined by (5), D0(ω), D1(ω), D̃0(ω) and D̃1(ω) are defined by (15), (16), (17)
and (18) respectively, and

D2(ω) =




1 0 −w(1 + xy) −w(1 + 1
x) −w(1 + 1

y )
0 1 −n1(1 + xy) −n1(1 + 1

x) −n1(1 + 1
y )

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, (30)

and D̃2(ω) =
(
D2(ω)−1

)∗
:

D̃2(ω) =




1 0 0 0 0
0 1 0 0 0

w(1 + 1
xy ) n1(1 + 1

xy ) 1 0 0
w(1 + x) n1(1 + x) 0 1 0
w(1 + y) n1(1 + y) 0 0 1



, (31)

where ω = (ω1, ω2), x = e−iω1 , y = e−iω2 , as defined in (19).
One can easily verify that this pair of frame filter sets are biorthogonal and that they have

6-fold symmetry by looking at their polyphase matrices.
After solving the system of equations for sum rule order 3 of p̃, sum rule order 2 of p, and for

vanishing moment order 2 of q(1) and vanishing moment order 4 for q(`), ` = 2, 3, 4, we have that

c =
1
8
, a =

3
8
, n =

1
6
, d =

1 + 20w
2(60w − 1)

, b =
4

1− 60w
, h =

15
2
w +

9
8
− j, t =

1
10
− 6w.
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The resulting p̃ is the filter given in (21). Thus the corresponding scaling φ̃ is the C2 cubic box
spline B222.

If w = − 3
20 , then q̃(`), 1 ≤ ` ≤ 4 have vanishing moment order 2. In this case we can choose

j such that φ has certain smoothness. For example, if j = −23
16 , then φ ∈ W 1.07362. For the

parameter n1, we may just set n1 = 0. In the following we provide the corresponding filters with
the choice of w = − 3

20 , j = −23
16 , n1 = 0 (hence, d = 1

10 , b = 2
5 , h = 23

16 , t = 1):

p(ω) = 19
320

{
944
19 − 55

19(x+ y + xy + 1
x + 1

y + 1
xy ) + 2(x2y + xy2 + 1

x2y
+ 1

xy2 + x
y + y

x)

−144
19 (x2 + y2 + x2y2 + 1

x2 + 1
y2 + 1

x2y2 ) + x3 + y3 + 1
x3 + 1

y3

+xy3 + x3y + x2y3 + x3y2 + x3y3 + 1
x3y3 + 1

x3y2 + 1
x2y3 + 1

x3y
+ 1

xy3 + x2

y + x
y2 + y2

x + y
x2

}
,

q(1)(ω) = 1− 1
6(x+ y + xy + 1

x + 1
y + 1

xy ),

q(2)(ω) = 1
48xy

{
34 + 6(x+ y + 1

x + 1
y ) + 24(xy + 1

xy )− 84(xy + y
x)

−7(x2y2 + x2y + xy2 + 1
x2y2 + 1

x2y
+ 1

xy2 ) + 13(x2 + y2 + 1
x2 + 1

y2 + x2

y + x
y2 + y2

x + y
x2 )
}
,

q(3)(ω) = q(2)(−ω1 − ω2, ω2), q(4)(ω) = q(2)(−ω1 − ω2, ω1),

p̃(ω) = 1
64x2y2 (1 + x)2(1 + y)2(1 + xy)2,

q̃(1)(ω) = 23
64

{
− 3

5 − (x+ y + xy + 1
x + 1

y + 1
xy ) + (x2y + xy2 + 1

x2y
+ 1

xy2 + x
y + y

x)

+ 1
10(x2 + y2 + x2y2 + 1

x2 + 1
y2 + 1

x2y2 )
}
,

q̃(2)(ω) = 3
640xy

{
142
3 − 4(x+ y + 1

x + 1
y )− 1

6(xy + 1
xy )− (xy + y

x)

−3(x2y2 + x2y + xy2 + 1
x2y2 + 1

x2y
+ 1

xy2 )− (x2 + y2 + 1
x2 + 1

y2 + x3y2 + x2y3 + 1
x3y2 + 1

x2y3 )

−1
2(x3y3 + x3y + xy3 + 1

x3y3 + 1
x3y

+ 1
xy3 )

}
,

q̃(3)(ω) = q̃(2)(−ω1 − ω2, ω2), q̃(4)(ω) = q̃(2)(−ω1 − ω2, ω1),

where x, y are defined by (19). Observe that p(ω) and p̃(ω) in the above bi-frame filter bank
are supported on [−3, 3]2 and [−2, 2]2 respectively with p̃(ω) being the filter for Loop’s scheme.
We call the resulting framelets Loop’s scheme-based bi-framelets, and we use Loop-F3,2 to
denote this frame filter bank.

Remark 1. The resulting φ ∈W 1.07362 of Loop-F3,2 is not quite smooth. It seems that the frame
system does not result in compactly supported framelets with nice smoothness and small supports.
Actually, compared with the biorthogonal wavelet system, it does. It is indicated in [32] that it
is impossible to construct such biorthogonal wavelets that they have the same supports as these
resulting framelets and that their associated synthesis scaling function φ̃ is the C2 cubic spline
B222 and the analysis scaling function φ is in L2(IR2). In particular, φ of the biorthogonal wavelets
constructed in [2] is not in L2(IR2).

Finally, in this section, we also mention that if w = 1
5 , j = −3

4 (hence, the corresponding
d = 5

22 , b = − 4
11 , h = 27

8 , t = −11
10), then the resulting p is

p(ω) =
1
64

(1 + e−iω1)(1 + e−iω2)(1 + ei(ω1+ω2))(1 + e−i2ω1)(1 + e−i2ω2)(1 + ei2(ω1+ω2)). (32)
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Thus, the corresponding φ is the C2 box-spline associated with the direction set

Θ1 =
[

1 0 −1 2 0 −2
0 1 −1 0 2 −2

]
. (33)

In this case, q(1), q̃(2), q̃(3), q̃(4) depend on n1. If n1 = − 1
15 , q̃(`), ` = 2, 3, 4 have vanishing moment

order 2. However q̃(1), which is independent of n1, has no vanishing moment.
To obtain a smoother φ or higher vanishing moment order q(`), we need to consider algorithms

with more iterative steps.

6 Butterfly scheme-based bi-frames

In this section, we consider bi-frames with the synthesis lowpass filter being the symbol of the
butterfly interpolatory scheme [19]. The decomposition algorithm of the butterfly scheme-based
bi-frames is given by (22)(34)(24), and the reconstruction is presented by (25)(35)(27), where
b, d, n, a, c, r, h, j, w, n1, t are some constants. Observe that the difference between the 3-step frame
algorithm and the butterfly scheme-based frame algorithm is that the latter has bigger templates
in Step 2 of its decomposition and reconstruction algorithms. Refer to Fig. 8 for Step 2 of the
decomposition and reconstruction algorithms.

Step 2 of Butterfly Scheme-based Frame Decomposition Algorithm:
Step 2. ẽ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3)− r(v′′4 + v′′5 + v′′6 + v′′7)

−h(g′′0 + g′′1)− j(g′′2 + g′′3)− s(g′′4 + g′′5 + g′′6 + g′′7),
(34)

Step 2 of Butterfly Scheme-based Frame Reconstruction Algorithm:
Step 2. e = ẽ+ a(v′′0 + v′′1) + c(v′′2 + v′′3) + r(v′′4 + v′′5 + v′′6 + v′′7)

+h(g′′0 + g′′1) + j(g′′2 + g′′3) + s(g′′4 + g′′5 + g′′6 + g′′7).
(35)
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One can get the corresponding filters to be given by (28) and (29) with D1(ω) and D̃1(ω)
replaced accordingly by

D1(ω) =



1 0 0 0 0
0 1 0 0 0

−a(1 + 1
xy )− c( 1

x + 1
y )− r(x+ y + 1

x2y + 1
xy2 ) −h(1 + 1

xy )− j( 1
x + 1

y )− s(x+ y + 1
x2y + 1

xy2 ) 1 0 0
−a(1 + x)− c(xy + 1

y )− r( 1
xy + y + x2y + x

y ) −h(1 + x)− j(xy + 1
y )− s( 1

xy + y + x2y + x
y ) 0 1 0

−a(1 + y)− c(xy + 1
x )− r( 1

xy + x+ xy2 + y
x ) −h(1 + y)− j(xy + 1

x )− s( 1
xy + x+ xy2 + y

x ) 0 0 1



,

D̃1(ω) =
(
D1(ω)−1

)∗
=




1 0 a(1 + xy) + c(x+ y) + r( 1
x + 1

y + x2y + xy2)
0 1 h(1 + xy) + j(x+ y) + s( 1

x + 1
y + x2y + xy2)

0 0 1
0 0 0
0 0 0

a(1 + 1
x ) + c( 1

xy + y) + r(xy + 1
y + 1

x2y + y
x ) a(1 + 1

y ) + c( 1
xy + x) + r(xy + 1

x + 1
xy2 + x

y )
h(1 + 1

x ) + j( 1
xy + y) + s(xy + 1

y + 1
x2y + y

x ) h(1 + 1
y ) + j( 1

xy + x) + s(xy + 1
x + 1

xy2 + x
y )

0 0
1 0
0 1



.

If t = 1
b , d = (1 − b)n, then the subdivision scheme corresponding to the resulting p̃(ω) is

interpolatory; namely p̃0,0 = 1, p̃2k = 0 for k ∈ Z2\{0}. In addition, if

a =
1
2
, c =

1
8
, r = − 1

16
,

then the corresponding subdivision scheme is the butterfly interpolatory scheme in [19] with
φ̃ ∈W 2.44076. Furthermore, if

b = 1, n =
1
6
, w = −1

8
, h = −j − 2s,

then the resulting p(ω) has sum rule order 2, q(1)(ω), q̃(`)(ω), 1 ≤ ` ≤ 4 have vanishing moment
order 2, and q(`)(ω), ` = 2, 3, 4 have vanishing moment order 4. We can choose j, s such that p(ω)
has certain smoothness. For example, if j = −0.45519128680281, s = 0.03436808229118, then the
resulting φ is in W 1.27077; if j = − 7

16 , s = 1
32 , then φ ∈ W 1.26809; and if j = −21

64 , s = 0, then
φ ∈ W 1.18774. In the following, we provide the corresponding filters with j = −21

64 , s = 0, n1 = 0
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and other parameters given above:

p(ω) = 1
256

{
97 + 163

4 (x+ y + xy + 1
x + 1

y + 1
xy )− 7

2(x2y + xy2 + 1
x2y

+ 1
xy2 + x

y + y
x)

−19
2 (x2 + y2 + x2y2 + 1

x2 + 1
y2 + 1

x2y2 )− 7
4(x3y3 + 1

x3 + 1
y3 + xy3 + x3y + x2y3

+x3y2 + y3 + x3 + 1
x3y3 + 1

x3y2 + 1
x2y3 + 1

x3y
+ 1

xy3 + x2

y + x
y2 + y2

x + y
x2 )

+4(x2y4 + x4y2 + 1
x2y4 + 1

x4y2 + y2

x2 + x2

y2 )
}
,

q(1)(ω) = 1− 1
6(x+ y + xy + 1

x + 1
y + 1

xy ),

q(2)(ω) = 1
128xy

{
142− 106(xy + 1

xy ) + 26(xy + y
x) + 7(x2y2 + x2y + xy2 + 1

x2y2 + 1
x2y

+ 1
xy2 )

−7(x2 + y2 + 1
x2 + 1

y2 + x2

y + x
y2 + y2

x + y
x2 ) + 8(x3y + xy3 + 1

xy3 + 1
x3y

)
}
,

q(3)(ω) = q(2)(−ω1 − ω2, ω2), q(4)(ω) = q(2)(−ω1 − ω2, ω1),

p̃(ω) = 1
4

{
1 + 1

2(x+ y + xy + 1
x + 1

y + 1
xy ) + 1

8(x2y + xy2 + 1
x2y

+ 1
xy2 + x

y + y
x)

− 1
16(xy3 + x3y + x2y3 + x3y2 + 1

x3y2 + 1
x2y3 + 1

x3y
+ 1

xy3 + x2

y + x
y2 + y2

x + y
x2 )
}
,

q̃(1)(ω) = 21
256

{
x+ y + xy + 1

x + 1
y + 1

xy − (x2y + xy2 + 1
x2y

+ 1
xy2 + x

y + y
x)
}
,

q̃(2)(ω) = 1
256xy

{
56− 5(x+ y + 1

x + 1
y )− 8(xy + 1

xy )− 1
2(x2 + y2 + 1

x2 + 1
y2 )− 4(x2y2 + 1

x2y2 )

−7
2(x2y + xy2 + 1

x2y
+ 1

xy2 ) + 1
2(x

2

y + x
y2 + y2

x + y
x2 )− 1

x2y3 − 1
x3y2 − x3y2 − x2y3

+1
2( 1
x4y3 + 1

x3y4 + 1
x2y4 + 1

x4y2 + 1
y3 + 1

x3 + x3y4 + x4y3 + x4y2 + x2y4 + y3 + x3)
}
,

q̃(3)(ω) = q̃(2)(−ω1 − ω2, ω2), q̃(4)(ω) = q̃(2)(−ω1 − ω2, ω1),

where x, y are defined by (19).

Remark 2. The butterfly scheme-based spherical wavelets were constructed in [46]. These wavelets
will results in butterfly scheme-based multiresolution algorithms for surface processing. However,
they can be used for a surface with regular vertices and extraordinary vertices of valence 5 only. In
addition, those multiresolution algorithms are non-stationary; namely the algorithms are different
from one scale to the next finer one. If we set h, j, s to zero in the above algorithms (22)(34)(24),
and (25)(35)(27), then we will obtain butterfly scheme-based wavelets. More precisely, the wavelet
decomposition and reconstruction algorithms are given by (36)(37) and (38)(39) respectively:

2-step Butterfly Scheme-based Wavelet Decomposition Algorithm:

Step 1. ẽ = e− 1
2(v0 + v1)− 1

8(v2 + v3) + 1
16(v4 + v5 + v6 + v7), (36)

Step 2. ṽ = v − w(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5); (37)

2-step Butterfly Scheme-based Wavelet Reconstruction Algorithm:

Step 1. v = ṽ + w(ẽ0 + ẽ1 + ẽ2 + ẽ3 + ẽ4 + ẽ5), (38)
Step 2. e = ẽ+ 1

2(v0 + v1) + 1
8(v2 + v3)− 1

16(v4 + v5 + v6 + v7). (39)
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Clearly, when all details ẽ in (38)(39) are set to zero, the reconstruction algorithm (38)(39) is
reduced to the butterfly subdivision scheme:

v = ṽ, e =
1
2

(ṽ0 + ṽ1) +
1
8

(ṽ2 + ṽ3)− 1
16

(ṽ4 + ṽ5 + ṽ6 + ṽ7).

When w = −1
8 , the resulting φ is in W 0.03512, p has sum order 2 while p̃ is the mask for the

butterfly scheme. Thus we have the butterfly scheme-based biorthogonal wavelets.

7 4-step bi-frame multiresolution algorithm
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Figure 9: Top-left: Template to obtain v′′ in Decomposition Alg. Step 1 (template to obtain g′′ is similar
with −d replaced by −n); Top-right: Decomposition Alg. Step 2; Bottom-left: Template to obtain lowpass
output ṽ in Decomposition Alg. Step 3 (template to obtain first highpass output g̃ is similar with v′′ and
−w replaced by g′′ and −n1 resp.); Bottom-right: Decomposition Alg. Step 4

In this section, we discuss a 4-step frame algorithm. The decomposition algorithm and re-
construction algorithm are given by (40)-(43) and (44)-(47), and shown in Figs. 9 and 10, where
b, d, n, a, c, h, j, w, n1, a1, c1, h1, j1, t are constants to be determined.
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4-step Dyadic Frame Decomposition Algorithm:

Step 1.

{
v′′ = 1

b

{
v − d(e0 + e1 + e2 + e3 + e4 + e5)

}
,

g′′ = v − n(e0 + e1 + e2 + e3 + e4 + e5)
(40)

Step 2. e′′ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3)− h(g′′0 + g′′1)− j(g′′2 + g′′3) (41)

Step 3.
{
ṽ = v′′ − w(e′′0 + e′′1 + e′′2 + e′′3 + e′′4 + e′′5),
g̃ = g′′ − n1(e′′0 + e′′1 + e′′2 + e′′3 + e′′4 + e′′5)

(42)

Step 4. ẽ = e′′ − a1(ṽ0 + ṽ1)− c1(ṽ2 + ṽ3)− h1(g̃0 + g̃1)− j1(g̃2 + g̃3). (43)
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Reconstruction Alg. Step 3; Bottom-right: Reconstruction Alg. Step 4
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4-step Dyadic Frame Reconstruction Algorithm:

Step 1. e′′ = ẽ+ a1(ṽ0 + ṽ1) + c1(ṽ2 + ṽ3) + h1(g̃0 + g̃1) + j1(g̃2 + g̃3) (44)

Step 2.
{
v′′ = ṽ + w(e′′0 + e′′1 + e′′2 + e′′3 + e′′4 + e′′5),
g′′ = g̃ + n1(e′′0 + e′′1 + e′′2 + e′′3 + e′′4 + e′′5)

(45)

Step 3. e = e′′ + a(v′′0 + v′′1) + c(v′′2 + v′′3) + h(g′′0 + g′′1) + j(g′′2 + g′′3) (46)

Step 4.
v = t

{
bv′′ + d(e0 + e1 + e2 + e3 + e4 + e5)

}
+

(1− t)
{
g′′ + n(e0 + e1 + e2 + e3 + e4 + e5)

}
.

(47)

With the formulas in (8) and (9), and using the filter bank for the 3-step algorithm in §5, one
can obtain the filter bank {p, q(1), · · · , q(4)}, {p̃, q̃(1), · · · , q̃(3)} corresponding to the algorithms
(40)-(47):

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= D3(2ω)D2(2ω)D1(2ω)D0(2ω)I0(ω),

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
D̃3(2ω)D̃2(2ω)D̃1(2ω)D̃0(2ω)I0(ω),

where I0(ω) is defined by (5), D0(ω), D1(ω), D̃0(ω), D̃1(ω), D2(ω), and D̃2(ω) are defined by
(15), (16), (17), (18), (30) and (31) respectively, and

D3(ω) =




1 0 0 0 0
0 1 0 0 0

−a1(1 + 1
xy )− c1( 1

x + 1
y ) −h1(1 + 1

xy )− j1( 1
x + 1

y ) 1 0 0
−a1(1 + x)− c1(xy + 1

y ) −h1(1 + x)− j1(xy + 1
y ) 0 1 0

−a1(1 + y)− c1(xy + 1
x ) −h1(1 + y)− j1(xy + 1

x ) 0 0 1



, (48)

and D̃3(ω) =
(
D3(ω)−1

)∗
:

D̃3(ω) =




1 0 a1(1 + xy) + c1(x+ y) a1(1 + 1
x ) + c1( 1

xy + y) a1(1 + 1
y ) + c1( 1

xy + x)
0 1 h1(1 + xy) + j1(x+ y) h1(1 + 1

x ) + j1( 1
xy + y) a1(1 + 1

y ) + c1( 1
xy + x)

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



. (49)

For this 4-step algorithm, we can choose parameters such that q(`), q̃(`), 1 ≤ ` ≤ 4 have
vanishing moment order 2 with φ, φ̃ in C2. With

t =
132w3n+ 24w2n− 18n1w

2 − 120w3n1 − 22w3 + n2
1 − 5n2

1w − 4w2

n2
1(1− 5w)

, a1 = −24wn− 3n1 + 15n1w − 4w
24n1w

,

c1 =
12wn− 3n1 + 15n1w − 2w

24n1w
, d = n+

40w2 − 3w − 1− 2n+ 10wn
2t(1− 5w)

, b =
n1

w
+

22w2 + 4w − n1 + 5wn1

tw(1− 5w)
,

h =
2d+ 32w + 1
192w(d− n)

, c =
16wb− b− 16n+ 16d− 2nb

192w(d− n)
, a =

32n− 32d− 32wb− b− 2nb
192w(d− n)

, j =
1 + 2d− 16w
192w(d− n)

,

the resulting p(ω) is given by (32), p̃(ω) has sum rule order 4, and q(`)(ω), q̃(`), 1 ≤ ` ≤ 4 have
vanishing moment order 2. Thus the corresponding scaling φ is the C2 box-spline associated with
the direction set Θ1 in (33). p̃(ω) depends on w, n, n1. If we choose

w = −0.15407716460528, n = −0.56146830232430, n1 = 0.54008429124822,

21



then the resulting φ̃ ∈W 3.19626, while if

w = − 5
32
, n = − 9

16
, n1 =

71
128

, (50)

then φ̃ ∈W 3.05267. Below we also provide other corresponding parameters when w, n, n1 are given
by (50):

[b, d, a, c, h, j, a1, c1, t] = [
244879
348216

,
24553
126624

,
269429
296780

,− 7181
15620

,
45739
287337

,− 2591
15123

,− 941
8520

,
6541
8520

,
87054
95779

].

For h1 and j1, one may just choose h1 = j1 = 0.
We can also select other numbers for the parameters such that q(`), 1 ≤ ` ≤ 4 have vanishing

moment order 4 (p is not the filter given by (32)), but the resulting φ, φ̃ cannot have nice smooth-
ness. For example, we can select the parameters such that p and p̃ have sum rule orders 2 and
4, q(`), 1 ≤ ` ≤ 4 and q̃(`), 1 ≤ ` ≤ 4 have vanishing moment orders 4 and 2, respectively, and
φ ∈ W 0.00049, φ̃ ∈ W 1.84163. We are unable to obtain φ̃ ∈ W 2 with φ ∈ L2(IR2), q(`), 1 ≤ ` ≤ 4
and q̃(`), 1 ≤ ` ≤ 4 having vanishing moment orders 4 and 2, respectively.

If we drop the conditions for the vanishing moment of q̃(`), 1 ≤ ` ≤ 4, then we can choose the
parameters such that q(`), 1 ≤ ` ≤ 4 have vanishing moment order 4 and both φ and φ̃ are C2.
For example, if

[b, d, n, a, c, h, j, w, n1, a1, c1, t] = [
11
8
,

71
616

,
1601
7854

,
3297
1564

,
385
782

,−10269
4048

,
105
368

,
17
154

,
2
63
,− 993

1496
,

117
1496

, 1],

then q(`), 1 ≤ ` ≤ 4 have vanishing moment order 4, φ̃ ∈ W 3.19573 and φ is the C2 box-spline
associated with the direction set Θ1 in (33).

8 Multiresolution algorithms for extraordinary vertices and bound-
ary vertices

To apply the above constructed PR FIR frame filter banks to a (high-resolution) triangular mesh
with extraordinary vertices, we need to design the algorithms for extraordinary vertices. A vertex
in a triangular mesh is called an extraordinary vertex if its valence is not 6. (The valence of a
vertex v is the number of the edges that meet at v.) In this section we mainly consider Loop’s
scheme-based frame filter banks. First, we recall that Loop’s scheme for an extraordinary vertex
ṽ with valence k can be written as (refer to [2])

e = 3
8(ṽ0 + ṽ1) + 1

8(ṽ2 + ṽ3), (∀e)
v = β(k)ṽ + γ(k)

∑k−1
j=0 ej ,

where e denotes an edge vertex (new inserted vertex) in the finer mesh, ṽs, s = 0, 1, 2, 3 are four
old vertices in the coarse mesh surrounding e, and v is the vertex in the finer mesh which replaces
ṽ, and

β(k) =
8
5

(3
8

+
1
4

cos
2π
k

)2
, γ(k) =

1
k

(
1− β(k)

)
. (51)

Next we provide a 2-step algorithms for extraordinary vertices with Loop-F1,2 used for regular
vertices. The decomposition and reconstruction algorithm are given in (52)(53) and (54)(55),
where k is the valence of the extraordinary vertex v, and e0, e1, · · · , ek−1 are k (edge) vertices
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Figure 11: Left: Template to obtain ṽ or g̃ in 2-step Decomposition Alg. Step 1; Right: Decomposition
Alg. Step 2

surrounding v. See Fig. 11 for the templates of the decomposition algorithm. The parameters
a, c, h, j, t are the same numbers in Loop-F1,2, and b(k), d(k), n(k) are numbers to be determined.

2-step Dyadic Frame Decomposition Algorithm for Extraordinary Vertices:

Step 1.ṽ =
1
b(k)

{
v − d(k)

k−1∑

j=0

ej

}
, g̃ = v − n(k)

k−1∑

j=0

ej (52)

Step 2. ẽ = e− a(ṽ0 + ṽ1)− c(ṽ2 + ṽ3)− h(g̃0 + g̃1)− j(g̃2 + g̃3). (53)

2-step Dyadic Frame Reconstruction Algorithm for Extraordinary Vertices:

Step 1. e = ẽ+ a(ṽ0 + ṽ1) + c(ṽ2 + ṽ3) + h(g̃0 + g̃1) + j(g̃2 + g̃3) (54)

Step 2. v = t
{
b(k)ṽ + d(k)

∑k−1
j=0 ej

}
+ (1− t)

{
g̃ + n(k)

∑k−1
j=0 ej

}
. (55)

Setting the “details” g̃ = 0, ẽ = 0, we reduce the reconstruction algorithm (54)(55) to the
subdivision algorithm:

e = a(ṽ0 + ṽ1) + c(ṽ2 + ṽ3), v = tb(k)ṽ +
{
td(k) + (1− t)n(k)

} k−1∑

j=0

ej . (56)

When a = 3/8, c = 1/8, tb(k) = β(k), td(k)+(1− t)n(k) = γ(k), this subdivision scheme is Loop’s
scheme. For n(k), we choose n(k) = 1

k so that highpass outputs are zero if the input v ≡ 1, e ≡ 1.
To summarize, the parameters selected are

a =
3
8
, c =

1
8
, h =

33
32
, j =

3
32
, t =

1
10
, b(k) = 10β(k), d(k) =

1
k

(
1− b(k)

)
, n(k) =

1
k
. (57)

Clearly, when k = 6, the above algorithm is the 2-step algorithm with Loop-F1,2.
Corresponding to the 3-step algorithm (22)-(27) in §5, the algorithm for extraordinary vertices

is given by (58)-(63) (refer to Fig. 12 for decomposition algorithm templates), where a, c, h, j, t
are the same numbers in (22)-(27).
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Figure 12: Left: Template to obtain v′′ or g′′ in Decomposition Alg. Step 1; Middle: Decomposition Alg.
Step 2; Right: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3

3-step Dyadic Frame Decomposition Algorithm for Extraordinary Vertices:

Step 1.v′′ =
1
b(k)

{
v − d(k)

k−1∑

j=0

ej

}
, g′′ = v − n(k)

k−1∑

j=0

ej (58)

Step 2. ẽ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3)− h(g′′0 + g′′1)− j(g′′2 + g′′3) (59)

Step 3.ṽ = v′′ − w(k)
k−1∑

j=0

ẽj , g̃ = g′′ − n1(k)
k−1∑

j=0

ẽj . (60)

3-step Dyadic Frame Reconstruction Algorithm for Extraordinary Vertices:

Step 1. v′′ = ṽ + w(k)
∑k−1

j=0 ẽj , g
′′ = g̃ + n1(k)

∑k−1
j=0 ẽj (61)

Step 2. e = ẽ+ a(v′′0 + v′′1) + c(v′′2 + v′′3) + h(g′′0 + g′′1) + j(g′′2 + g′′3) (62)

Step 3. v = t
{
b(k)v′′ + d(k)

k−1∑

j=0

ej

}
+ (1− t)

{
g′′ + n(k)

k−1∑

j=0

ej

}
. (63)

When “details” ẽ, g̃ in (61)(62) are set to zero, the above reconstruction (61)-(63) is reduced to
the subdivision algorithm (56). Again, when a = 3/8, c = 1/8, tb(k) = β(k), td(k) + (1− t)n(k) =
γ(k), this subdivision scheme is Loop’s scheme. For n(k), we choose n(k) = 1

k so that the
resulting analysis highpass frame filters annihilate the constant. For w(k), n1(k), we may simply
select w(k) = 6w

k , n1(k) = 6n1
k , where w, n1 are the numbers for the regular vertices. In the

following we list the selected parameters with Loop-F3,2 used for regular vertices:

a = 3
8 , c = 1

8 , , h = 23
16 , j = −23

16 , n1 = 0, t = 1,
b(k) = β(k), d(k) = 1

k

(
1− b(k)

)
, n(k) = 1

k , w(k) = − 9
10k , n1(k) = 0.

(64)

When the input (high-resolution) surface is an open mesh, we also need multiresolution al-
gorithms for (interior) boundary vertices. Symmetric 1-D bi-frames are considered in [30] with
the corresponding frame multiresolution algorithms also given by iterative templates. Those 1-D
frame algorithms can be used as boundary algorithms. Here we are going to use the following
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1-D frame algorithms from [30] for boundary vertices.

3-step Frame Decomposition Algorithm for Boundary Vertices:

Step 1. v′′ = 1
b

{
v − d(e−1 + e0)

}
, f ′′ = v − n(e−1 + e0) (65)

Step 2. ẽ = e− u(v′′0 + v′′1)− w(f ′′0 + f ′′1 ) (66)

Step 3. ṽ = v′′ − d1(ẽ−1 + ẽ0), f̃ = f ′′ − n1(ẽ−1 + ẽ0), (67)

3-step Frame Reconstruction Algorithm for Boundary Vertices:

Step 1. v′′ = ṽ + d1(ẽ−1 + ẽ0), f ′′ = f̃ + n1(ẽ−1 + ẽ0) (68)
Step 2. e = ẽ+ u(v′′0 + v′′1) + w(f ′′0 + f ′′1 ) (69)

Step 3. v = t
{
bv′′ + d(e−1 + e0)

}
+ (1− t)

{
v′′ + n(e−1 + e0)

}
, (70)

where
[b, d, n, u, w, d1, n1, t] = [

4
3
, −1

6
,

1
2
,

1
2
, − 5

24
, −3

8
,

3
10
,

3
8

].

Refer to Fig. 13 and Fig. 14 for these boundary algorithms. The corresponding φ̃(x) is the C2

cubic B-spline supported on [-2, 2], and φ(x) ∈W 1.82037(IR).
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Figure 13: Left: Decomposition Step 1; Middle: Decomposition Step 2; Right: Decomposition Step 3
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Figure 14: Left: Reconstruction Step 1; Middle: Reconstruction Step 2; Right: Reconstruction Step 3

If d1 = n1 = 0, then the above 1-D frame algorithm is a 2-step algorithm. If we choose

[b, d, n, u, w, d1, n1, t] = [2, −1
2
,

1
2
,

1
2
,

3
4
, 0, 0,

1
4

],

then the corresponding φ̃(x) is the C2 cubic B-spline supported on [-2, 2], and φ(x) is the contin-
uous linear B-spline supported on [-1, 1].

Our highly symmetric frame algorithms can be applied immediately for some applications such
as mesh-based surface sparse representation, noise removal, compression, progressive transmission,
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Figure 15: From left to right: Low resolution to high resolution surfaces

etc. Here we just show some preliminary results. To apply multiresolution algorithms to a
mesh-based surface, it is required that the input mesh should have a semi-regular structure (a
subdivision connectivity). One could use MAPs or other methods (see for example [25, 36]) to get
a surface that has a subdivision connectivity and closely approximates (with guaranteed errors)
to the original (non semi-regular) surface. Lowpass outputs (“approximations”) with different
decomposition levels of a high resolution surface can be used for surface progressive transmission.
In Fig. 15 we show 3- 2-, and 1-level approximations (from the left) of a high resolution surface
(on the right) with the above Loop-F1,2 frame algorithm. The frame algorithms can also be used
for surface sparse representation. On top-left of Fig. 16 is a cortical surface. The top-middle
and top-right are the reconstructed surfaces when we use 10% and 5% lowpass and highpass
coefficients after the original surface is decomposed by the above Loop-F1,2 frame algorithm. (We
use all coefficients of 3-level lowpass output and 8.44% and 3.44% coefficients of highpass outputs
respectively.) The bottom (from left) of Fig. 16 are the approximations after 1-, 2- and 3-level
decompositions.

The frame algorithms could be used for surface noise removal. We show denoised surfaces in
the left column of Fig. 17, where the original surfaces and the surfaces with noise are in the right
and middle columns respectively. We have applied a few iterated steps of soft threshold denoising
(see [18]) using the above Loop-F1,2 frame algorithm. The de-speckle procedure (refer to [51])
was also applied. Here we remark that the total variation-based surface denoising model has
been developed in [22] (the reader refers to [22] for other methods for surface denoising). Surface
denoising is significantly different than 2-D image denoising. For surface denoising, [22] applied
the important work of geometers who were interested in extending certain classical theorems from
smooth to polyhedral manifolds. When frame algorithms are applied for surface denoising, and
other applications, the wide variety of methods and techniques of 2-D image multiscale processing
could be used. In addition, the frame multiscale algorithm is fast.

Acknowledgment. The authors thank two anonymous referees for their valuable suggestions
and comments. The models used in Fig. 15 and Fig. 17 were provided by Igor Guskov (originally
from Headus and Cyberware respectively) and the cortical surface courtesy INRIA Gamma team
Research Database.
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[11] M. Charina and J. Stöckler, Tight wavelet frames for subdivision, J. Comput. Appl. Math.,
221 (2008), 293–301.
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