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Abstract

Multiresolution techniques for (mesh-based) surface processing have been developed and
successfully used in surface progressive transmission, compression and other applications. A
triangular mesh allows

√
3, dyadic and

√
7 refinements. The

√
3-refinement is the most ap-

pealing one for multiresolution data processing since it has the slowest progression through
scale and provides more resolution levels within a limited capacity. The

√
3 refinement has

been used for surface subdivision and for discrete global grid systems
Recently lifting scheme-based biorthogonal bivariate wavelets with high symmetry have

been constructed for surface multiresolution processing. If biorthogonal wavelets (with either
dyadic or

√
3 refinement) have certain smoothness, they will have big supports. In other

words, the corresponding multiscale algorithms have large templates; and this is undesirable
for surface processing. On the other hand, frames provide a flexibility for the construction
of system generators (called framelets) with high symmetry and smaller supports. In this
paper we study highly symmetric

√
3-refinement wavelet bi-frames for surface processing. We

design the frame algorithms based on the vanishing moments and smoothness of the framelets.
The frame algorithms obtained in this paper are given by templates so that one can easily
implement them. We also present interpolatory

√
3 subdivision-based frame algorithms. In

addition, we provide frame ternary multiresolution algorithms for boundary vertices on an
open surface.
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1 Introduction

The subject of multiresolution (multiscale) analysis has been a popular area of research for more
than two decades. Multiresolution techniques for (mesh-based) surface processing have been devel-
oped and successfully used in surface progressive transmission, compression and other applications
[32, 44, 27, 45]. A triangular mesh allows

√
3, dyadic and

√
7 refinements [13, 3]. The dyadic

refinement is shown in the middle of Fig. 1, where the nodes with circles # form the coarse mesh.
The right part of Fig. 1 shows the

√
3 refinement with the nodes of circles # forming the coarse

mesh of
√
3 refinement. The

√
3-refinement is the most appealing refinement for multiresolution
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data processing since it has the slowest progression through scale and provides more resolution
levels within a limited capacity. In CAGD, the

√
3 subdivision, whose topological rule is the√

3 refinement, has been studied by researchers, see e.g. [28, 29, 25, 26, 34, 16, 6, 7]. The
√
3

refinement has been used for discrete global grid systems [40] and for The PYXIS Digital Earth
Reference Model [36].

V e V f

Figure 1: Left: Triangular mesh; Middle: Dyadic refinement coarse mesh with nodes # v; Right:
√
3-

refinement coarse lattice with nodes # v

While some work on dyadic wavelets for surface processing has been carried out, see e.g.
[31, 32, 42, 41, 1, 2, 46, 33, 23, 24], there is less work on

√
3-refinement wavelets. The authors

of [4] construct
√
3-refinement complex pre-wavelets (semi-orthogonal wavelets) on the hexagonal

lattice with the scaling functions being the elementary polyharmonic hexagonal B-splines. Since
the wavelets in [4] have infinite support, they are not suitable for surface processing. The au-
thors of [47] construct compactly supported biorthogonal

√
3-refinement wavelets. A “discrete

inner product” related to the discrete filters is used in [47], which may result in the basis func-
tions and wavelets that are not in L2(R2). Orthogonal and biorthogonal

√
3-refinement wavelets

with the conventional L2 inner product have been studied in [22]. [24] shows that biorthogonal√
3-refinement wavelets in [22] have the symmetry required for surface processing and that the cor-

responding multiresolution algorithms can be represented as templates. If biorthogonal wavelets
(with either dyadic or

√
3 refinement) have certain smoothness, they will have big supports.

Namely, the multiresolution algorithms have large templates. This is not a desirable property
for surface processing. On the other hand, the analysis and construction of wavelet (or affine)
frames have been studied, see e.g. [5], [9], [18], [38], [39] and reference therein. A frame system
provides a flexibility for the construction of framelets with high symmetry and smaller supports
than biorthogonal wavelets. The main goal of this paper is to construct wavelet frames with high
symmetry for surface

√
3 multiresolution processing.

Let A be a matrix (called a dilation matrix) that maps the triangular mesh onto its coarse
mesh on the right of Fig. 1:

A =

[
2 −1
1 1

]
. (1)

For a function g on R2, denote gj,k(x) = 3j/2g(Ajx − k). Functions ψ(1), ψ(2), · · · , ψ(L) on R2,
where L ≥ 2, are called wavelet framelets (or wavelet frame generators), just called framelets for

short in this paper, provided that {ψ(1)
j,k(x), ψ

(2)
j,k(x), · · · , ψ

(L)
j,k (x)}j∈Z,k∈Z2 is a frame in the sense
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that there are two positive constants B and C such that

B∥g∥22 ≤
L∑

ℓ=1

∑
j∈Z,k∈Z2

|⟨g, ψ(ℓ)
j,k⟩|

2 ≤ C∥g∥22, ∀g ∈ L2(R2),

where ⟨·, ·⟩ and ∥ · ∥2 := ⟨·, ·⟩
1
2 denote the inner product and the norm of L2(R2).

The construction of affine frames is related to frame filter banks and scaling functions. More
precisely, for a sequence {pk}k∈Z2 of real numbers with finitely many pk nonzero, let p(ω) denote
the corresponding finite impulse response (FIR) filter (here a factor 1/3 is multiplied):

p(ω) =
1

3

∑
k∈Z2

pke
−ikω.

p(ω) is also called the symbol of {pk}k∈Z2 .

For a pair of FIR frame filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)}, let ϕ and ϕ̃ be
the associated refinable (or scaling) functions (with dilation matrix A) satisfying the refinement
equations

ϕ(x) =
∑
k

pkϕ(Ax− k), ϕ̃(x) =
∑
k

p̃kϕ̃(Ax− k).

Let ψ(ℓ), ψ̃(ℓ), ℓ = 1, · · · , L, be the functions defined by

ψ(ℓ)(x) =
∑
k

q
(ℓ)
k ϕ(Ax− k), ψ̃(ℓ)(x) =

∑
k

q̃
(ℓ)
k ϕ̃(Ax− k).

We say that ψ(ℓ), ψ̃(ℓ), ℓ = 1, · · · , L, generate bi-frames of L2(R2) or dual wavelet frames of

L2(R2) if {ψ(1)
j,k(x), · · · , ψ

(L)
j,k (x)}j∈Z,k∈Z2 and {ψ̃(1)

j,k(x), · · · , ψ̃
(L)
j,k (x)}j∈Z,k∈Z2 are frames of L2(R2)

and that for any f ∈ L2(R2), f can be written as (in L2-norm)

f =
∑

1≤ℓ≤L

∑
j∈Z,k∈Z2

⟨f, ψ̃(ℓ)
j,k⟩ψ

(ℓ)
j,k.

In this case, p, p̃ are called lowpass filters, and q(ℓ), q̃(ℓ), 1 ≤ ℓ ≤ L, highpass filters.
Assume a pair of FIR frame filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} is biorthog-

onal (with dilation matrix A), namely,

p(ω)p̃(ω + 2πA−Tηj) +

L∑
ℓ=1

q(ℓ)(ω)q̃(ℓ)(ω + 2πA−Tηj) =

{
1, j = 0,

0, j = 1, 2,

where ηj , j = 0, 1, 2 are the representatives of the group Z2/(ATZ2):

η0 = (0, 0), η1 = (1, 0), η2 = (−1, 0). (2)

Then ψ(ℓ), ψ̃(ℓ), ℓ = 1, · · · , L, generate bi-frames of L2(R2) provided that ϕ, ϕ̃ ∈ L2(R2) with

ϕ̂(0, 0)
̂̃
ϕ(0, 0) ̸= 0, and that p(0, 0) = p̃(0, 0) = 1, p(2πA−Tηj) = p̃(2πA−Tηj) = q(ℓ)(0, 0) =

q̃(ℓ)(0, 0) = 0 for j = 1, 2 (see [39] and also [10, 12]).
A pair of frame filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} provides a frame mul-

tiresolution algorithm for regular meshes. More precisely, for an input regular mesh C = {c0k}

3



with regular vertices c0k (namely, the valence of each c0k is 6), the multiresolution decomposition
(analysis) algorithm with dilation matrix A is

cjn =
1

3

∑
k∈Z2

pk−Anc
j−1
k , d

(ℓ,j)
n =

1

3

∑
k∈Z2

q
(ℓ)
k−Anc

j−1
k , (3)

with ℓ = 1, · · · , L,n ∈ Z2, where j is the level of decomposition with j = 1, 2, · · · , J for some
positive integer J . The multiresolution reconstruction (synthesis) algorithm is given by

ĉj−1
k =

∑
n∈Z2

p̃k−Anĉ
j
n +

∑
1≤ℓ≤L

∑
n∈Z2

q̃
(ℓ)
k−And

(ℓ,j)
n , k ∈ Z2 (4)

for j = J, J−2, · · · , 1, where ĉJn = cJn. When {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} are biorthog-
onal, then ĉjk = cjk, 1 ≤ j ≤ J . {p, q(1), · · · , q(L)} ({p̃, q̃(1), · · · , q̃(L)} resp.) is called the analysis

(synthesis resp.) frame filter bank; {cjk} and {d(ℓ,j)k } are called the “approximation” and the “de-
tail” of C. In this paper, we will consider frames with 3 framelets. Recall that a

√
3-refinement

biorthogonal system has 2 analysis or synthesis wavelets. Thus, compared with biorthogonal
systems, our frames have only one more generator.

The above analysis and synthesis algorithms are for regular vertices only. However, an input
triangular mesh to be processed has in general an arbitrary topology, namely, it consists of not
only regular vertices but also extraordinary vertices with valences ̸= 6. Thus we need to design
corresponding algorithms for extraordinary vertices. On the other hand, the multiresolution
algorithms should be given by templates so that they are easy to implement. Our procedure to
design multiresolution algorithms for surfaces with an arbitrary topology will be as follows. (i)
Firstly, we construct frame algorithms for regular vertices with the algorithms given by symmetric
templates. (ii) After that, we design algorithm templates for extraordinary vertices with the
algorithms in (i) applied to regular vertices.

The algorithm templates in Step (i) are given by some parameters. We should choose the
parameters such that the resulting framelets have certain nice properties such as high approxi-
mation order, smoothness, and vanishing moments. These properties are determined by filters.
Thus we need to address the issue of how to find the filter banks corresponding to algorithms
given by templates.

The rest of paper is outlined as follows. In §2, we show how to find the filter banks corre-
sponding to algorithms given by templates. In §3, we construct symmetric bi-frames with a 3-step
algorithm based on symmetric templates. Interpolatory

√
3 subdivision-based frame algorithms

and framelets are constructed in §4. In §5, we address the treatment of boundary vertices. In the
last section, §6, one experimental result with the framelets used for surface denoising is provided
and the future work in this research direction is presented.

2 6-fold line symmetric
√
3 bi-frames and associated templates

As mentioned above it is desirable that we can represent multiresolution algorithms as templates

so that we can easily implement them. When “detail” d
(ℓ,j)
k is set to zero, (4) is reduced to

ĉj−1
k =

∑
n∈Z2

p̃k−Anĉ
j
n, j = J, J − 2, · · · .
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This is a
√
3-subdivision algorithm with subdivision mask {p̃k}k starting with the control net

with vertices ĉJk. (See [43, 48] and references therein about surface subdivision.) It is hard to
implement this subdivision algorithm if it is given by the above formula, and we need to represent
it as templates. For example, when nonzero pk are

p0,0 =
2
3 , p1,0 = p1,1 = p0,1 = p−1,0 = p−1,−1 = p0,−1 =

1
3

p2,1 = p1,2 = p1,−1 = p−2,−1 = p−1,−2 = p−1,1 =
1
18 ,

we have Kobbelt’s
√
3-subdivision scheme (for regular vertices)[28], which can be represented as

templates in Fig. 2, where ṽ, ṽj denotes old vertices in the coarse mesh, f is the inserted new
vertex in the finer mesh, and v is the updated vertex (in the finer mesh) of ṽ with

f =
1

3
(ṽ0 + ṽ1 + ṽ2), v =

2

3
ṽ +

1

18

5∑
j=0

ṽj .

f
~
2

v~1

v~0

v

2

v~

v~5

v~4

v~1

v~0

v~3

v~

Figure 2: Kobbelt’s subdivision scheme: Templates for new inserted vertex f (left) and for updating old

regular vertex ṽ (right)

Similarly, for a given pair of filter banks, we cannot implement its multiresolution algorithm
given by (3) and (4). Thus we need to represent the algorithm (3) and (4) as templates. Vice
versa, if the algorithm is given by templates in terms of some parameters, we need to find the

corresponding filter banks (equivalently, pk, q
(ℓ)
k , p̃k, q̃

(ℓ)
k in (3) and (4)) so that we can select

suitable parameters based on the property of the framelets.

−1−2

−1−1

00 10

11

12 22

21

20

1−10−1

0−2

−10

−11 01

02

−20

−2−1

−2−2

v11

v10f (2)
10

v00

v01

v−10

v−1−1

f (1)
00

f (1)
0−1

f (1)
−1−1

f (1)
−10

f (1)
01

f (1)
11f (2)

11

f (2)
01

f (2)
−10

f (2)
−1−1

f (2)
0−1

f (2)
00

f (1)
10

v0−1

Figure 3: Left: Indices for nodes of M0; Right: type V nodes with #, type F nodes with △ and ∇

In this section we show how to find a pair of frame filter banks corresponding to decomposition
and reconstruction algorithms for regular vertices given by templates. The key is to associate
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both lowpass and highpass outputs appropriately with the nodes of M0, where M0 is the infinite
regular triangular mesh on the left of Fig. 1 with which an input regular mesh C = {ck}k∈Z2 is
represented. To this regard, we first label the nodes of M0 with indices in Z2 shown on the left
of Fig. 3. Next, we separate the nodes of M0 into different groups. More precisely, let A be the
dilation matrix defined by (1). Denote Ak = (2k1 − k2, k1 + k2) for k = (k1, k2) ∈ Z2. Then Ak
with k ∈ Z2 are the indices for the nodes of the coarse mesh on the right of Fig. 1. We call the
nodes with indices Ak type V nodes, and the others type F nodes. Furthermore, we then separate
type F nodes into two groups with indices Ak+ (1, 0) and Ak− (1, 0) respectively, where k ∈ Z2.
Denote

vk = cAk, f
(1)
k = cAk+(1,0), f

(2)
k = cAk−(1,0), k ∈ Z2. (5)

We call vk,k ∈ Z2 type V vertices, and both f
(1)
k and f

(2)
k type F vertices. See the right of

Fig. 3 for the nodes with which these vertices associated, where the big circles # denote type V
nodes, △ and ∇ denote two groups of type F nodes. Next we rewrite the

√
3 frame decomposition

algorithm.

Since the same pk, q
(ℓ)
k , p̃k, q̃

(ℓ)
k are used in all levels of decomposition and reconstruction, we

just need to consider 1-level of decomposition and reconstruction when we derive the corresponding

templates. Let {c1k}k and {d(1,1)k }k, {d
(2,1)
k }k, {d

(3,1)
k }k be the “approximation” and “detail” after

the 1-level decomposition algorithm given by (3) with L = 3. Denote

ṽk = c1k, g̃k = d
(1,1)
k , f̃

(1)
k = d

(2,1)
k , f̃

(2)
k = d

(3,1)
k .

Then the 1-level decomposition algorithm can be formulated as{
ṽk = 1

3

∑
k′∈Z2 pk′−Akck′ , g̃k = 1

3

∑
k′∈Z2 q

(1)
k′−Akck′ ,

f̃
(1)
k = 1

3

∑
k′∈Z2 q

(2)
k′−Akck′ , f̃

(2)
k = 1

3

∑
k′∈Z2 q

(3)
k′−Akck′

(6)

for k ∈ Z2; and the reconstruction algorithm (after 1-level decomposition) is

ck =
∑
k′

{
p̃k−Ak′ ṽk′ + q̃

(1)
k−Ak′ g̃k′ + q̃

(2)
k−Ak′ f̃

(1)
k′ + q̃

(3)
k−Ak′ f̃

(2)
k′

}
. (7)

Considering ck in (7) with k in three different cases: Aj, Aj+(1, 0), Aj− (1, 0), and using the

notations for vk, f
(1)
k , f

(2)
k in (5), we can write the reconstruction algorithm (7) as

vk =
∑

n∈Z2

{
p̃Anṽk−n + q̃

(1)
Ang̃k−n + q̃

(2)
Anf̃

(1)
k−n + q̃

(3)
Anf̃

(2)
k−n

}
,

f
(1)
k =

∑
n∈Z2

{
p̃An+(1,0)ṽk−n + q̃

(1)
An+(1,0)g̃k−n + q̃

(2)
An+(1,0)f̃

(1)
k−n + q̃

(3)
An+(1,0)f̃

(2)
k−n

}
,

f
(2)
k =

∑
n∈Z2

{
p̃An−(1,0)ṽk−n + q̃

(1)
An−(1,0)g̃k−n + q̃

(2)
An−(1,0)f̃

(1)
k−n + q̃

(3)
An−(1,0)f̃

(2)
k−n

}
.

(8)

If we associate both the “approximation” ṽk and the first highpass output g̃k with type V

nodes with labels Ak, and associate the second and third highpass outputs f̃
(1)
k , f̃

(2)
k with type F

nodes with labels Ak + (1, 0) and Ak − (1, 0) respectively, then the analysis algorithm (6) and
synthesis algorithm (8) can be represented as templates. Vice versa, with such association of

outputs with nodes, for given templates of algorithms, we can find corresponding pk, q
(ℓ)
k in (6)

and p̃k, q̃
(ℓ)
k in (8), namely we can obtain the corresponding filter banks.

When algorithm templates are used for surface processing, they must have certain symmetry
so that we can design the corresponding algorithms for extraordinary vertices. The templates
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to obtain f̃
(1)
k , f̃

(2)
k must be the same and the templates to recover f

(1)
k , f

(2)
k should be identical.

In addition, the templates to obtain ṽk and g̃k by (6), and that to recover vk by (4) have to be
rotational and reflective invariant with respect to the coarse mesh. Furthermore, the template

to obtain f̃
(1)
k and that to recover f

(1)
k are also rotational and reflective invariant with respect to

the coarse mesh.
√
3 frame filter banks with the 6-fold (axial) line symmetry (defined below) will

result in templates with such desired symmetry.

−2−1

5
S4

S3

S2

S1

S0

−1−1

10

11

12 22

20

1−10−1

0−2

−10

−11 01

02

−20

−2−2 −1−2

00

21

S

21

2

S0"

S4"

−1−1

10

11

12 22

20

1−10−1

0−2

−10

−11 01

02

−20

−2−2 −1−2

−2−1

00 S

Figure 4: Left: Symmetry lines for lowpass filter and 1st frame highpass filter; Right: Symmetry lines for

2nd frame highpass filter

Definition 1. Let Sj , 0 ≤ j ≤ 5 be the axes in the left part of Fig. 4. A
√
3 frame filter bank

{p, q(1), q(2), q(3)} is said to have 6-fold axial (line) symmetry or a full set of symmetries if

(i) coefficients pk and q
(1)
k of its lowpass filter p(ω) and first highpass filter q(1)(ω) are symmetric

around axes S0, · · · , S5, (ii) the coefficients q
(2)
k of its second highpass filter are symmetric around

the axes S′′
0 , S2, S

′′
4 on the right of Fig. 4, and (iii) q

(3)
k is the π rotation around (0, 0) of q

(2)
k , i.e.,

q
(3)
k = q

(2)
−k.

The 6-fold symmetry of a
√
3 frame filter bank {p, q(1), q(2), q(3)} can be characterized by the

symmetry of its polyphase matrix V (ω) which is a 4× 3 matrix defined as

V (ω) =
[
q
(ℓ)
k (ω)

]
0≤ℓ≤3,0≤k≤2

, (9)

where, with q(0)(ω) = p(ω), q
(ℓ)
k (ω), 0 ≤ ℓ ≤ 3, 0 ≤ k ≤ 3 are trigonometric polynomials defined

by

q(ℓ)(ω) =
1√
3

(
q
(ℓ)
0 (ATω) + q

(ℓ)
1 (ATω)e−iω1 + q

(ℓ)
2 (ATω)eiω1

)
.

Proposition 1. A
√
3 frame filter bank {p, q(1), q(2), q(3)} has 6-fold axial symmetry if and only

if its polyphase matrix V (ω) (with dilation matrix A) satisfies

V (L0ω) = J01V (ω)J02, V (R−T
1 ω) = N1(ω)V (ω)N2(ω), (10)

7



where

L0 =

[
0 1
1 0

]
, R1 =

[
0 1
−1 1

]
, J01 =

[
I2 0
0 L0

]
, J02 =

[
1 0
0 L0

]
,

N1(ω) =


1 0 0 0
0 1 0 0
0 0 0 e−iω1

0 0 eiω1 0

 , N2(ω) =

 1 0 0
0 0 e−iω1

0 eiω1 0

 .
One can give the proof of Proposition 1 by following the similar proof in [24] for the charac-

terization of six-fold symmetry of
√
3 wavelet filter banks and by using the fact that

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1√
3
V (ATω)I0(ω),

where I0(ω) is defined by

I0(ω) = [1, e−iω1 , eiω1 ]T , ω = (ω1, ω2) ∈ R2. (11)

Since the pair f̃
(1)
k , f̃

(2)
k , and the pair f

(1)
k , f

(2)
k are treated equally, and the templates to obtain

f̃
(1)
k , f̃

(2)
k are the same, and those to recover f

(1)
k , f

(2)
k are identical, we may use v, f and ṽ, g̃, f̃ to

describe the multiresolution algorithms. Therefore, the decomposition algorithm decomposes the
original data {v}∪{f} into {ṽ}, {g̃} and {f̃}, and the reconstruction algorithm recovers {v}∪{f}
from {ṽ}, {g̃} and {f̃}, see Fig. 5.

Decomposition Alg.

v f v~g~
~
f

Reconstruction Alg. 

Figure 5:
√
3 frame decomposition and reconstruction algorithms

For an input (fine) triangular surface, we assume it has a
√
3-refinement connectivity. Namely,

vertices of the surface can be separated into two groups, with one group consisting of type V
vertices and the other consisting of type F such that the type V vertices form a coarse triangular
mesh and each coarse triangle “contains” one type F vertex. Methods to resample a triangular
mesh with the resulting mesh having the 1-to-4 subdivision connectivity have been developed in
[11, 15, 30, 35, 14]. For

√
3-refinement, the software (called TriReme) developed by Guskov with

the modified method in [14] can produce a mesh with
√
3-refinement connectivity with guaranteed

errors. The resulting mesh may have extraordinary vertices. When a mesh with an arbitrary
topology and

√
3-connectivity is used as the input mesh for multiresolution processing, we also

use v, f and ṽ, g̃, f̃ to describe the multiresolution algorithms, where {v} is the set of type V
vertices forming the coarse mesh, {f} is the set of type F vertices, {ṽ} is the “approximation”,
and {g̃}, {f̃} are the “details” with ṽ, g̃ attached to type V vertex v, and f̃ attached to type F
vertex f .

8



3
√
3-refinement frame multiresolution algorithms

In this section we study a 3-step frame multiresolution algorithm. The 3-step algorithm is given
by (12)-(17) with templates shown in Figs. 6 and 7, where k is the valence of a type V vertex v,
b(k), d(k), n(k), a, h, w(k), n1(k), t are constants to be determined with b(k), d(k), n(k), w(k), n1(k)
depending on k. More precisely, for the decomposition algorithm, first we replace each type V
vertex v by v′′, g′′ given by (12). Then, based on v′′, g′′ obtained, we replace all type F vertices f
by f̃ given in formula (13). Finally, based on f̃ obtained, all v′′, g′′ in the first step are updated
by ṽ and g̃ given in formula (14). The reconstruction algorithm is the reverse algorithm of the
decomposition algorithm. Namely, firstly, we replace the lowpass output ṽ and “detail” g̃ both
associated with a type V vertex by v′′ and g′′ respectively given by formula (15). Secondly, based
on v′′, g′′ obtained, we replace other “detail” f̃ by f given in (16). Finally, based on f obtained in
Step 2, all v′′, g′′ in Step 1 are replaced by v with the formula in (17). The decomposition algorithm
to obtain “approximation” {ṽ} and “detail” {g̃} and {f̃}, and the reconstruction algorithm to
recover {v, f} from {ṽ}, {g̃} and {f̃} are simple and efficient.

2

3

f k−2

f k−1

0f

f1
f

f

f k−3

v

−a
v"v"0
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Figure 6: Left: Template to obtain v′′ or g′′ in Decomposition Alg. Step 1; Middle: Decomposition Alg.

Step 2; Right: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3 (Template to obtain 1st

highpass output g̃ is similar with v′′ replaced by g′′)
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Template to obtain type V vertices v in Reconstruction Alg. Step 3
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√
3-refinement Decomposition Algorithm:

Step 1. v′′ =
1

b(k)

{
v − d(k)

k−1∑
j=0

fj
}
, g′′ = v − n(k)

k−1∑
j=0

fj , (12)

Step 2. f̃ = f − a(v′′0 + v′′1 + v′′2)− h(g′′0 + g′′1 + g′′2) (13)

Step 3. ṽ = v′′ − w(k)
k−1∑
j=0

f̃j , g̃ = g′′ − n1(k)
k−1∑
j=0

f̃j . (14)

√
3-refinement Reconstruction Algorithm:

Step 1. v′′ = ṽ + w(k)
∑k−1

j=0 f̃j , g
′′ = g̃ + n1(k)

∑k−1
j=0 f̃j (15)

Step 2. f = f̃ + a(v′′0 + v′′1 + v′′2) + h(g′′0 + g′′1 + g′′2) (16)

Step 3. v = t
{
b(k)v′′ + d(k)

∑k−1
j=0 fj

}
+ (1− t)

{
g′′ + n(k)

∑k−1
j=0 fj

}
. (17)

The above templates are for 1-level decomposition and reconstruction. For more than 1
level decomposition and reconstruction, one merely applies the decomposition templates to the
“approximation” to get further “approximation” and more “details”, and then uses the templates
of reconstruction on the further “approximation” and all “details” for reconstruction.

Next, we study how to select the parameters. To this regard, we first consider the algorithms
for regular vertices. Denote

b = b(6), d = d(6), n = n(6), w = w(6), n1 = n1(6).

With the formulas in (6) and (8), one can obtain that the filter banks {p, q(1), q(2), q(3)} and
{p̃, q̃(1), q̃(2), q̃(3)} corresponding to the algorithms (12)-(17) with k = 6. The filter banks are
provided in Appendix A. With the filter banks, we can easily obtain their polyphase matri-
ces V (ω) and Ṽ (ω) to be

√
3B2(ω)B1(ω)B0(ω) and 1√

3
B̃2(ω)B̃1(ω)B̃0(ω) respectively (see Ap-

pendix A for Bj , B̃j , j = 0, 1, 2). It is easy to verify B0(ω)∗B̃0(ω) = I3, Bj(ω)∗B̃j(ω) = I4,ω ∈
R2 for j = 1, 2. Thus, V (ω)∗Ṽ (ω) = I3,ω ∈ R2, which implies that {p, q(1), q(2), q(3)} and
{p̃, q̃(1), q̃(2), q̃(3)} are biorthogonal. In addition, one can show that V (ω) and Ṽ (ω) satisfy (10).
Hence, {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are 6-fold axial symmetric.

With filter banks available, we then select the parameters such that the resulting framelets
have some nice properties such as high sum rule orders, smoothness, and vanishing moments. An
FIR filter p(ω) is said to have sum rule order K (with a dilation matrix A) if it satisfies that
p(0, 0) = 1 and

Dα1
1 Dα2

2 p(ω)|ω=( 2πi
3

, 2πi
3

) = 0, Dα1
1 Dα2

2 p(ω)|ω=( 4πi
3

, 4πi
3

) = 0, (18)

for all (α1, α2) ∈ Z2
+ with α1 +α2 < K, where D1 and D2 denote the partial derivatives with the

first and second variables of p(ω) respectively. Sum rule order implies the approximation order
of the associated scaling function ϕ [19].

For an FIR (highpass) filter q(ω), we say it has the vanishing moments of order J if

Dα1
1 Dα2

2 q(ω)|ω=(0,0) = 0,

10



for all (α1, α2) ∈ Z2
+ with α1 + α2 < J . One can prove that if q(ω) has vanishing moment order

J , then when it is used as an analysis highpass filter, it annihilates discrete polynomials of total
degree less than J . Annihilation of discrete polynomials is an important property of highpass
filters in many applications such as image/surface sparse representation.

The smoothness of the synthesis framelets is determined by the scaling function ϕ̃ (also called
the subdivision basis function). The visual quality of the reconstructed surface depends on the
smoothness of ϕ̃. In this paper we use Sobolev smoothness. We say g(x) on R2 to be in the
Sobolev space W s for some s > 0 provided that

∫
R2(1 + |ω|2)s|ĝ(ω)|2dω < ∞, where ĝ is the

Fourier transform of g. The reader is referred to [21, 20, 25] for the estimate and computation of
the Sobolev smoothness of a refinable function.

In the following, when we construct bi-frames, we choose the parameters such that the synthesis
scaling function ϕ̃ is smoother than the analysis scaling function ϕ, the synthesis lowpass filter
p̃(ω) has a higher sum rule order than the analysis lowpass filter p(ω), and that the analysis
highpass filters q(ℓ)(ω) have higher orders of vanishing moments.

Now let us return back to the filter banks for algorithms (12)-(17) with k = 6. Solving the
system of equations for sum rule order 3 of p̃, sum rule order 2 of p, and for vanishing moment
order 2 of q(ℓ), q̃(ℓ), 1 ≤ ℓ ≤ 3, we have

a = 1
3 , n = 1

6 , w = − 5
36 , d = 1

6 − b
6 , h = 2

15 − 1
15b , t =

1
2b .

With x = e−iω1 , y = e−iω2 , the resulting p̃ is

p̃(ω) = 1
3

{
2
3 + 1

3(x+ y + 1
xy + 1

x + 1
y + xy) + 1

18(x
2y + xy2 + x

y + y
x + 1

x2y
+ 1

xy2
)
}
. (19)

The resulting p̃ is the Kobbelt’s
√
3-subdivision scheme in [28] with the corresponding ϕ̃ ∈

W 2.93604. p(ω) depends on b. If b = 2, then p(ω) has sum rule order 3 with ϕ ∈ W 1.80016.
If we choose b = 55

27 , then the resulting ϕ is in W 1.85267. For n1, we choose n1 = 5b
36(2b−1) so that

the resulting q(1) has vanishing moment order 4. In this paper we choose b = 2. In the following
we list the other corresponding parameters:

a = 1
3 , n = 1

6 , w = − 5
36 , d = −1

6 , h = 1
10 , t =

1
4 , n1 =

5
54 . (20)

We also provide the corresponding filters in Appendix B. The lowpass filters p(ω) and p̃(ω)
in the above pair of bi-frame filter banks are supported on [−2, 2]2 with p̃(ω) being the filter for
Kobbelt’s scheme. Thus, we call the resulting frameletsKobbelt’s scheme-based bi-framelets,
and we use Kobbelt-F2,2 to denote this pair of bi-frame filter banks.

After we determine the parameters for regular vertices, we consider algorithms for extraordi-
nary vertices. Here we provide a Kobbelt’s scheme-based algorithm. More precisely, Kobbelt-F2,2

constructed above will be applied to regular vertices and the reconstruction algorithm designed
below for extraordinary vertices will be reduced to Kobbelt’s scheme when the “detail” is set to
be zero. To this regard, we first rewrite Kobbelt’s scheme for extraordinary vertices.

Let {ṽ} denote the set of vertices in a coarse mesh. Let {f} be the set of new inserted vertices
in the finer mesh after one

√
3 subdivision iteration, and {v} be the set of vertices replacing old

vertices ṽ. Then Kobbelt’s scheme can be written as (refer to [47]){
f = 1

3(ṽ0 + ṽ1 + ṽ2), (∀f)
v = θ(k)ṽ + 1

k

(
1− θ(k)

)∑k−1
j=0 fj ,

(21)

11
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Figure 8: Kobbelt’s subdivision scheme

where f denotes a new vertex inserted inside a triangle of the coarse mesh with vertices ṽs, s =
0, 1, 2, v is the vertex in the finer mesh which replaces ṽ (see Fig. 8), k is the valence of v, and

θ(k) =
1

3
(1 + cos

2π

k
). (22)

When the “detail” is set to zero: g̃ = 0, f̃ = 0, the reconstruction algorithm (15)-(17) is a
subdivision algorithm: {

f = a(ṽ0 + ṽ1 + ṽ2), (∀f)
v = tb(k)ṽ +

{
td(k) + (1− t)n(k)

}∑k−1
j=0 fj ,

(23)

Comparing (23) with (21), a = 1
3 (note that we already selected a = 1

3 in (20)), and tb(k) =
θ(k), td(k)+(1−t)n(k) = (1−θ(k))/k. In addition, we should choose the parameters such that the
“detail” of constant input with decomposition algorithm (12)-(14) are annihilated: g̃ = 0, f̃ = 0.
If n(k) = 1/k and d(k) = (1− b(k))/k, the “detail”-annihilation property is satisfied. With t = 1

4
given in (20), we reach b(k) = 4θ(k), n(k) = 1/k and d(k) =

(
1 − b(k)

)
/k. For w(k), n1(k), we

may simply choose w(k) = −5/(6k), n1(k) = 5/(9k). With such choices of w(k), n1(k), the above
algorithm with k = 6 coincides with Kobbelt-F2,2. To summarize, we choose{

a = 1
3 , h = 1

10 , b(k) =
4
3 + 4

3 cos(
2π
k ), d(k) = 1

k

(
1− b(k)

)
n(k) = 1

k , w(k) = − 5
6k , n1(k) =

5
9k , t =

1
4 .

(24)

3.1 2-step
√
3-refinement frame multiresolution algorithms

When w(k) = n1(k) = 0 in (14) and (15), the above 3-step algorithm is reduced to a 2-step
algorithm with the analysis algorithm given by (12) (13) (with ṽ = v′′, g̃ = g′′) and the synthesis
algorithm given by (16) (17) (with v′′ = ṽ, g′′ = g̃). For the regular vertices, with b = b(6), d =
d(6), n = n(6), one can find the corresponding filter banks, also denoted by {p, q(1), q(2), q(3)} and
{p̃, q̃(1), q̃(2), q̃(3)}, are given by (48) in Appendix A with B2(ω) = B̃2(ω) = I4.

Solving the system of equations for sum rule order 3 of p̃, sum rule order 2 of p, and for
vanishing moment order 2 of q(1) and vanishing moment order 3 of q(2) and q(3), we have

b = 3, a =
1

3
, n =

1

6
, d = −1

3
, h =

5

9
, t =

1

6
. (25)

The resulting lowpass filter p̃ is given by (19) and

p(ω) =
1

3

{
1 +

1

3
(x+ y +

1

xy
+

1

x
+

1

y
+ xy)

}
, (26)
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with the corresponding ϕ in W 1.65713. Observe that the lowpass filter p(ω) is supported on
[−1, 1]2 with p̃(ω) being the filter for Kobbelt’s scheme. We use Kobbelt-F1,2 to denote this pair
of bi-frame filter banks. The corresponding highpass filters are provided in Appendix C.

For the parameters b(k), d(k), n(k) for extraordinary vertices, as above, when the “details” in
the 2-step reconstruction algorithm are set to 0, then the reconstruction algorithm is reduced to
(23). If we choose a = 1

3 (observe that we already selected a = 1
3 in (25)), tb(k) = θ(k), td(k) +

(1− t)n(k) = (1− θ(k))/k, then this has reached Kobbelt’s subdivision scheme again. To assure
that decomposition algorithm (12)-(13) annihilates constant input, we choose n(k) = 1/k and
d(k) = (1− b(k))/k. To summarize, we choose{

a = 1
3 , h = 5

9 , t =
1
6 , b(k) = 2 + 2 cos(2πk ),

d(k) = 1
k (1− b(k)), n(k) = 1

k .
(27)

4 Interpolatory
√
3-subdivision-based frame multiresolution al-

gorithms

In this section we study interpolatory
√
3-subdivision-based frame multiresolution algorithms

such that the reconstruction algorithm is reduced to an interpolatory subdivision algorithm when
the “detail” is set to zero. Thus the vertices of “approximation” lie on the reconstructed mesh
after the synthesis algorithm even though during this process, some “detail” coefficients may be
discarded.

The interpolatory scheme-based algorithm studied here is similar to the 3-step algorithm
in §3 except that in Step 2, we need a larger template for f surrounded by regular type V
vertices and a special template f near an extraordinary type V vertex. Here we assume that
any two extraordinary vertices in the mesh to be decomposed are not adjacent. The decom-
position algorithm is given by (28)-(30), and shown in Fig. 9, where a, h, r, s, b(k), d(k), n(k),
α(k), β(k), γ(k), α1(k), β1(k), γ1(k), w(k), n1(k) are constants to be determined. Namely, firstly,
each type V vertex v is replaced by v′′, g′′ with the formulas in (28). Secondly, based on v′′, g′′

obtained, we replace all type F vertices f by f̃ . If f is surrounded by three regular type V vertices
(see the top-right of Fig. 9), then f̃ is given by (29)(i). Otherwise, if f is adjacent an extraordinary
vertex v with valence k, then f̃ is given by the formula in (29)(ii). Finally, based on f̃ obtained,
all v′′, g′′ in the first step are updated by ṽ and g̃ given by the formula in (30). The reconstruction
algorithm given by (31)-(33) is the reverse algorithm of the decomposition algorithm.

Interpolatory Scheme-based Decomposition Algorithm:

Step 1.v′′ =
1

b(k)

{
v − d(k)

k−1∑
j=0

fj
}
, g′′ = v − n(k)

k−1∑
j=0

fj (28)

Step 2.


(i) if f is surrounded by 3 regular type V vertices:

f̃ = f − a
∑2

j=0 v
′′
j − r

∑5
j=3 v

′′
j − h

∑2
j=0 g

′′
j − s

∑5
j=3 g

′′
j ,

(ii) if f is adjacent an extraordinary type V vertex:

f̃ = f + a(v′′0 + v′′1 + v′′2) + h(g′′0 + g′′1 + g′′2)

(29)

Step 3.
f̃ = f − α(k)v′′ − β(k)(v′′0 + v′′1)− γ(k)(v′′2 + v′′3)

−α1(k)g
′′ − β1(k)(g

′′
0 + g′′1)− γ1(k)(g

′′
2 + g′′3)

(30)
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Figure 9: Top-left: Template to obtain v′′ and g′′ in Decomposition Alg. Step 1; Top-right: Template in

Decomposition Alg. Step 2 to obtain f̃ when f is surrounded by three regular vertices v0, v1, v2; Bottom-

left: Template in Decomposition Alg. Step 2 to obtain f̃ when f is adjacent an extraordinary vertex v;

Bottom-right: Template in Decomposition Alg. Step 3 to obtain “approximation” ṽ (Template to obtain

“detail” g̃ is similar with v′′ replaced by g′′)

Interpolatory Scheme-based Reconstruction Algorithm:

Step 1. v′′ = ṽ + w(k)

k−1∑
j=0

fj , g
′′ = g̃ + n1(k)

k−1∑
j=0

fj (31)

Step 2.



(i) if f̃ is surrounded by 3 regular type V vertices:

f = f̃ + a
∑2

j=0 v
′′
j + r

∑5
j=3 v

′′
j + h

∑2
j=0 g

′′
j + s

∑5
j=3 g

′′
j ,

(ii) if f̃ is adjancent an extraordinary type V vertex:

f = f̃ + α(k)v′′ + β(k)(v′′0 + v′′1) + γ(k)(v′′2 + v′′3)

+α1(k)g
′′ + β1(k)(g

′′
0 + g′′1) + γ1(k)(g

′′
2 + g′′3)

(32)

Step 3. v = t
{
b(k)v′′ + d(k)

∑k−1
j=0 fj

}
+ (1− t)

{
g′′ + n(k)

∑k−1
j=0 fj

}
. (33)

Again, when g̃ = 0, f̃ = 0, then the above reconstruction algorithm is a subdivision algorithm:
f = a

∑2
j=0 ṽj + r

∑5
j=3 ṽj (if f is surrounded by 3 regular vertices ṽ0, ṽ1, ṽ2

or f = α(k)ṽ + β(k)(ṽ0 + ṽ1) + γ(k)(ṽ2 + ṽ3) (if f is adjacent an extraordinary vertex ṽ)

v = tb(k)ṽ +
{
td(k) + (1− t)n(k)

}∑k−1
j=0 fj .

Furthermore, if tb(k) = 1, td(k) + (1− t)n(k) = 0, namely,

t = 1/b(k), d(k) =
(
b(k)− 1

)
n(k), (34)

then we have an interpolatory scheme.
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To choose the parameters, again, we first consider the regular case. If we choose a = 4/9, r =
−1/9, then we reach an interpolatory scheme for regular vertices studied in [25] with resulting p̃
having sum rule order 3 and ϕ̃ ∈ W 1.8959. It was shown numerically in [25] that ϕ̃ is in C1(R2).
To simplify the presentation of the paper, we call this scheme JO’s interpolatory scheme. Next
we choose other parameters such that ϕ has certain smoothness (at least it is in L2(R2)), and
the framelets have some vanishing moments. To do this, we first obtain the corresponding filter
banks. With the notation, b = b(6), d = d(6), n = n(6), w = w(6), n1 = n1(6), the corresponding
frame filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are provided in Appendix D. With filter
banks available and the interpolating condition (34), we then select the parameters based on the
smoothness and the vanishing moments of framelets. Here we choose

[b, d, n, a, r, h, s, w, n1, t] = [4, −1
2 ,

1
6 ,

4
9 ,−

1
9 ,−

13
72 ,

1
18 , −

1
9 ,

4
27 ,

1
4 ]. (35)

The resulting p̃ is the lowpass filter for JO’s scheme, p has sum rule order 3 with ϕ ∈ W 2.62904,
q̃(ℓ), 1 ≤ ℓ ≤ 3, q(2), q(3) have vanishing moment order 2 and q(1) has vanishing moment order 3. In
this case the coefficients pk and p̃k′ of p(ω) and p̃(ω) are zero when k /∈ [−4, 4]2 and k′ /∈ [−2, 2]2

respectively. We use JO-F4,2 to denote this pair of frame filter banks.
After determining the parameters for regular vertices, we consider those for extraordinary

vertices. The key is to select suitable α(k), β(k), γ(k) for the subdivision algorithm for extraor-
dinary vertices. In general α(k), β(k), γ(k) are chosen to assure C1-continuity of the subdivision
limiting surface. [37] provides a sufficient condition for C1-continuity based on the characteristic
map introduced there. More precisely, if the eigenvalues λ0, λ1, λ2, · · · of the subdivision matrix
satisfy, λ0 = 1, 1 > |λ1| = |λ2| > |λj |, j = 3, 4, · · · , and that the characteristic map is regular and

injective, then the limiting surface is C1. If the scaling function ϕ̃ is not a spline function, it is
hard to verify the regularity and injectiveness of the characteristic map. In this paper, we choose
α(k), β(k), γ(k) to be the values given in (36) below such that eigenvalues of the subdivision ma-
trix satisfy the above conditions. The eigenvalue analysis of the subdivision matrix is provided in
Appendix E.

α(k) =
11

12
− 1

2
cos

2π

k
, β(k) =

1

12
+

1

4
cos

2π

k
, γ(k) = − 1

24
. (36)

For α1(k), β1(k), γ1(k), we may simply set them to be zero or be α(k), β(k), γ(k) respectively.
After we choose α(k), β(k), γ(k) and α1(k), β1(k), γ1(k), then based on the parameters for regular
vertices and the annihilation of the “detail” with constant input, we choose other parameters as

b(k) = 4, d(k) = −3

k
, n(k) =

1

k
, w(k) = − 3

2k
, n1(k) =

8

9k
. (37)

Again, the above templates are for 1-level decomposition and reconstruction. For more than
1 level decomposition and reconstruction, we apply the decomposition templates repeatedly to
get further “approximation” and more “details”, and then use the reconstruction templates for
reconstruction. If we apply the decomposition algorithm J times, the input mesh is required to
have J-level

√
3 connectivity. Any two type V extraordinary vertices in the input mesh and in

the j-th level “approximation” mesh are not adjacent for 0 ≤ j ≤ J − 2. Thus we can apply
the decomposition algorithm (28)-(30) to these meshes. However, extraordinary vertices in the
(J−1)-th level “approximation” mesh may be adjacent. In this case, we simply use (29) to define
f̃ in Step 2 of the J-th decomposition whether f is surrounded by 3 regular type V vertices or
not (accordingly, (32) is used in Step 2 of J-level reconstruction).
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5 Multiresolution algorithms for boundary vertices

For open surfaces, we also need to consider the algorithms for boundary vertices. The treatment of
boundary vertices for

√
3-refinement is slightly different from that with the dyadic refinement. For√

3 subdivision, [28, 29] keep boundary vertices unchanged in odd-level subdivision iterations and
apply 1-D ternary (3-dilation) subdivision schemes in even-level subdivision iterations. This idea
was used in [47] to design decomposition/reconstruction algorithms for boundary vertices. Here as
in [47], boundary vertices are unchanged in odd-level surface decompositions, while a 1-D ternary
(3-dilation) frame decomposition algorithm constructed below is applied to boundary vertices in
odd-level surface decompositions. More precisely, assume the boundary of an open surface is
represented locally as in Fig. 10 (here we represent the case that all vertices are regular), where
the boundary consists of vertices {h,W}, {V,U,W} forms a 1-level

√
3-refinement coarse mesh

(with dashed lines), and {U,W} forms the 2-level
√
3-refinement (equivalent to the ternary or

1-to-9 split) coarse mesh (with solid lines). The operations of a 2-level multiresolution algorithm

are carried out as in (38) and (39), where the arrow “→” means “is replaced by”; {Ṽ , Ũ , W̃}
and {h̃, f̃ , h̃} are the “approximation” and “detail” after 1-level

√
3 decomposition; { ˜̃U, ˜̃W} (with˜̃

W = W̃ ) and { ˜̃V , ˜̃g} are the “approximation” and “detail” after 2-level
√
3 decomposition.

h

fVV

V

V VV

f

f

f
V

V

U U

U UU

hh h hW WW h

Figure 10: 1-level
√
3-refinement coarse mesh (consisting of dashed lines) with nodes #V,U,W and 2-level√

3-refinement coarse mesh (consisting of thick solid lines) with nodes big squares U,W

1-level decomposition:

interior vertices: V,U → Ṽ , Ũ , g̃; f → f̃ ,

boundary vertices: W → W̃ , g̃; h→ h̃.
(38)

2-level decomposition:

interior vertices: Ũ → ˜̃
U, ˜̃g; Ṽ → ˜̃

V ,

boundary vertices: no operation
˜̃
W = W̃ .

(39)

For boundary vertices, a 1-D ternary (3-dilation) frame decomposition algorithm is operated in
the 1-level decomposition, and no operation is carried in the 2-level decomposition. Observe that
in the 2-level decomposition for interior vertices, Ũ are considered as type V vertices and Ṽ are

considered as type F vertices. The output
˜̃
U associated with Ũ (actually associated with U) form
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the 2-level “approximation”. For more than a two-level decomposition, we repeat the above pro-
cedure with boundary vertices operated on by a 1-D ternary frame decomposition algorithm in the
odd-level decomposition and no decomposition operation in the even-level decomposition. The
reconstruction is the reverse operation of the decomposition. For example, for 2-level reconstruc-
tion, there is no reconstruction operation to boundary vertices in the first level reconstruction

(namely just set W̃ =
˜̃
W ), and a 1-D ternary frame reconstruction algorithm is applied in the

second level reconstruction (namely, to recover W,h from W̃ , g̃, h̃). Next, we design 1-D ternary
frame multiresolution algorithms for boundary vertices.

The 1-D ternary frame decomposition algorithm and reconstruction algorithm are given in
(40)-(45) and shown in Figs. 11 and 12 respectively. Here we still use v, f to denote the vertices
on the boundary, and use the same letters for the parameters of 1-D frame algorithms.

1-D Ternary Frame Decomposition Algorithm for Boundary Vertices:

Step 1. v′′ = 1
b

{
v − d(f0 + f1)

}
, g′′ = v − n(f0 + f1) (40)

Step 2. f̃ = f − av′′0 − a1v
′′
1 − rv′′2 − hg′′0 − h1g

′′
1 − sg′′2 (41)

Step 3. ṽ = v′′ − d1(f̃0 + f̃1), g̃ = g′′ − n1(f̃0 + f̃1). (42)

1-D Ternary Frame Reconstruction Algorithm for Boundary Vertices:

Step 1. v′′ = ṽ + d1(f̃0 + f̃1), g
′′ = f̃ + n1(f̃0 + f̃1) (43)

Step 2. f = f̃ + av′′0 + a1v
′′
1 + rv′′2 + hg′′0 + h1g

′′
1 + sg′′2 (44)

Step 3. v = t
{
bv′′ + d(f0 + f1)

}
+ (1− t)

{
v′′ + n(f0 + f1)

}
. (45)

g"

−n1−n1

−d1 −d1

0f f1

0f f1

v"v"0 v"1

g"1
g"0

−a1

−h1g"
2

v"2
~f0

~f1

~f0
~f1

v"

v

−n −n

v

−d −d

−a

−h

−r

−s

f

Figure 11: Left: Decomposition Step 1; Middle: Decomposition Step 2; Right: Decomposition Step 3

v"

v"v"0 v"1

g"1
g"0g"

2

v"2~f0
~f1

g~~f0
~f1

1d

n 1n 1

v~ ~f
a1

h1 0f f1

1d

ar

s h

Figure 12: Left: Reconstruction Step 1; Middle: Reconstruction Step 2; Right: Reconstruction Step 3

We can find as in §3 and §4 the corresponding ternary (3-dilation) bi-frame analysis and syn-
thesis filter banks, which are also denoted by {p(ω), q(1)(ω), q(2)(ω), q(3)(ω)} and {p̃(ω), q̃(1)(ω),
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q̃(2)(ω), q̃(3)(ω)}, ω ∈ R. The filter banks are provided in Appendix F. Then based on the smooth-
ness and the vanishing moments of the framelets, we select suitable parameters. Here we choose

[b, d, n, a, a1, r, h, h1, s, d1, n1, t] = [3,−1, 12 ,
16
27 ,

10
27 ,

1
27 ,−

4
9 ,

1
9 , 0,−

5
11 ,

3
22 ,

1
11 ]. (46)

The corresponding ϕ̃(x) is the C2 cubic spline supported on [-2, 2], ϕ(x) ∈ W 0.30438(R), q(1) has
vanishing moment order 4, q(2), q(3) and q̃(1) have vanishing moment order 2, and q̃(2), q̃(3) have
vanishing moment order 1. The resulting lowpass synthesis filter p̃(ω) is the 1-D ternary scheme
used in [28]. The above 1-D ternary algorithm can be used for boundary vertices when Kobbelt’s
scheme-based frame algorithm in §3 is applied for interior vertices.

For interpolatory scheme-based algorithms in §4, we need to design 1-D interpolatory ternary
scheme-based multiresolution algorithms for boundary vertices. The 1-D algorithm is still given
by (40)-(45), but we choose different parameters such that the reconstruction algorithm is reduced
to an interpolatory ternary subdivision scheme when the “detail” is set to zero. The parameters
are chosen to be

[b, d, n, a, a1, r, h, h1, s, w, n1, t] = [3,−1, 12 ,
4
5 ,

4
15 ,−

1
15 ,−

4
9 ,

1
9 , 0,−

1
3 ,

5
18 ,

1
3 ]. (47)

The resulting p̃ and p have sum rule order 2 with ϕ̃ ∈ W 1.73248(R) and ϕ ∈ W 0.44662(R), q(1) has
vanishing moment order 4, q(2), q(3) and q̃(1) have vanishing moment order 2, and q̃(2), q̃(3) have
vanishing moment order 1.

When the “detail” is set to zero, then the above reconstruction algorithm is an interpolatory
3-point ternary C1 scheme:

f =
4

5
ṽ0 +

4

15
ṽ1 −

1

15
ṽ2, v = ṽ,

where ṽj are the vertices in the coarse polygon. An interpolatory 4-point C2 ternary subdivision
scheme is provided in [17]. Here we construct an interpolatory scheme with a smaller template.

When JO’s scheme-based algorithm in §4 is applied to a type F vertex f near the boundary,
we will use (29)(ii) to define f̃ (accordingly, (32)(ii) is used in Step 2 to reconstruct f).

6 One experimental result and future work

Our highly symmetric frame algorithms can be applied immediately for some applications such
as surface sparse representation, noise removal, compression, progressive transmission, etc. To
this regard, it is required that the input surfaces have a semi-regular structure (a subdivision
connectivity). One could use MAPS or other methods (see for example [30, 14]) to get a surface
that has a subdivision connectivity and closely approximates (with guaranteed errors) the original
(non semi-regular) surface. Here we use TriReme developed by Guskov.

Here we show the result of applying the 3-step
√
3 algorithm of Kobbelt-F2,2 (with parameters

given by (24)) with two levels of decomposition of a semi-regular surface mesh to noise removal.
The original, noisy and denoised images of the fandisk and threehole surfaces are shown in Figs.
13 and 14. The noisy surfaces were produced by adding Gaussian noise normal to the original
semi-regular surface at each vertices. The added Gaussian noise is modeled as a measurement
noise with a mean of zero and a standard deviation equal to a known measurement error. The
measurement error was calculated as a percentage of the diagonal length of the box that contains
the surface. For our application we chose a measurement error of 0.06% for the fandisk and
threehole semi-regular surface meshes. For each surface, multiplying the number of vertices times
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the square of the measurement error gives us the best estimate of the total noise energy added
to the surface. Note that since our algorithm uses a frame decomposition and reconstruction
the amount of noise energy that needs to be removed from the highpass coefficients will be
more than what was added to the surface mesh. Our 3-step

√
3 algorithm with two levels of

decomposition and reconstruction requires that an amount of noise energy to be removed is equal
to approximately 150% of the total noise energy added to the semi-regular surface mesh.

Figure 13: Left: Original fandisk mesh; Middle: Noisy mesh; Right: Denoised mesh

Our procedure of denoising consists of two parts. First we decompose the surface and set to
zero those lowest valued highpass coefficients whose energies sum to 150% of the total added noise
energy. Second, we use a de-speckle routine to remove the remaining speckle type noise (refer to
[49]). For the first part of the procedure this means we need to remove specific percentages of the
total noise energy from the high pass coefficients at each level of decomposition. We were able
to determine these percentages by calculating the highpass coefficient energies for the original
noiseless and noisy surface meshes. We found that these percentages were very closely the same
for different surfaces and with different measurement errors.

Upon completion of the first part of our procedure the reconstructed surface exhibits a noise
with a highly speckled nature. After the second part of our procedure, application of a despeckle
routine, the only remaining noise is faint one-ring neighborhood plateau artifacts.

Figure 14: Left: Original threehole mesh; Middle: Noisy mesh; Right: Denoised mesh

In this paper we mainly show how to construct framelets with stencils for the implementation
by the idea of lifting scheme and how the coefficients can be determined from standard require-
ments such as vanishing moments, smoothness and sum rule orders. Here we just show the surface
denoising result with one bi-frame algorithm. In our future work, we will consider the selection of
the coefficients based on the condition number of the frame transform. We will incorporate more
advanced image denoising techniques with our bi-frame algorithms for surface denoising. We will
also explore other surface multiresolution applications and study the issue that which algorithm
among different algorithms Kobbelt-F1,2, Kobbelt-F2,2 and JO-F4,2 should be used to a particular
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Bi-frame Approx. or Symmetry Sum rule order Smoothness Vanishing
filters interpolatory moment order

Kobbelt-F1,2 Approx. p, p̃, q(1), q̃(1): p: order 2 ϕ ∈W 1.6571 q(1): order 2

p̃ is 6-fold line sym. p̃: order 3 ϕ̃ ∈W 2.9360 q(2), q(3): order 3

Kobbelt’s q(2), q(3), q̃(2)q̃(3): q̃(1), q̃(2), q̃(3):
filter in [28] 3-fold line sym. order 0

Kobbelt-F2,2 Approx. p, p̃, q(1), q̃(1): p: order 3 ϕ ∈W 1.8001 q(1): order 4

p̃ is 6-fold line sym. p̃: order 3 ϕ̃ ∈W 2.9360 q(2), q(3): order 2

Kobbelt’s q(2), q(3), q̃(2)q̃(3): q̃(1), q̃(2), q̃(3):
filter in [28] 3-fold line sym. order 2

JO-F4,2 Interpolatory p, p̃, q(1), q̃(1): p: order 2 ϕ ∈W 2.6290 q(1): order 3

p̃ is 6-fold line sym. p̃: order 3 ϕ̃ ∈W 1.8959 q(2), q(3): order 2

from [25] q(2), q(3), q̃(2)q̃(3): q̃(1), q̃(2), q̃(3):
3-fold line sym. order 2

Table 1: Properties of Kobbelt-F1,2, Kobbelt-F2,2 and JO-F4,2 bi-frame filter banks

application. For the convenience to the reader and for our future study, we summarize in Table
1 the properties of the bi-frame filters of these algorithms. Note that Kobbelt-F1,2 and Kobbelt-

F2,2 have the same ϕ̃ for reconstruction with ϕ̃ having a high smooth order. Compared with
Kobbelt-F2,2, Kobbelt-F1,2 has simpler algorithms and smaller templates, but its corresponding
q̃(1), q̃(2), q̃(3) for reconstruction have no vanishing moments. JO-F4,2 is interpolatory, but it has

bigger templates and a lower smoothness order ϕ̃ for reconstruction.

Appendices

In the following appendices, x = e−iω1 , y = e−iω2 .

Appendix A

With b = b(6), d = d(6), n = n(6), w = w(6), n1 = n1(6), the
√
3 frame filter banks {p, q(1), q(2), q(3)}

and {p̃, q̃(1), q̃(2), q̃(3)} corresponding to the algorithms (12)-(17) with k = 6 are{[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T
= B2(A

Tω)B1(A
Tω)B0(A

Tω)I0(ω),[
p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)

]T
= 1

3B̃2(A
Tω)B̃1(A

Tω)B̃0(A
Tω)I0(ω),

(48)
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where I0(ω) is define by (11), and

B2(ω) =


1 0 −wY2 −wY1
0 1 −n1Y2 −n1Y1
0 0 1 0
0 0 0 1

 , (49)

B1(ω) =


1 0 0 0
0 1 0 0

−aY1 −hY1 1 0
−aY2 −hY2 0 1

 , (50)

B0(ω) =


1
b −d

bY2 −d
bY1

1 −nY2 −nY1
0 1 0
0 0 1

 , (51)

B̃2(ω) =


1 0 0 0
0 1 0 0
wY1 n1Y1 1 0
wY2 n1Y2 0 1

 , (52)

B̃1(ω) =


1 0 aY2 aY1
0 1 hY2 hY1
0 0 1 0
0 0 0 1

 , (53)

B̃0(ω) =


tb 0 0

1− t 0 0
(td+ (1− t)n)Y1 1 0
(td+ (1− t)n)Y3 0 1

 , (54)

where
Y1 = 1 + x+ 1/y, Y2 = 1 + 1/x+ y. (55)

Appendix B

The filters of Kobbelt-F2,2 with b = 2 and other parameters given by (20) are

p(ω) =
1

81

{
36 + 13(x+ y + xy +

1

x
+

1

y
+

1

xy
)− 3

2
(x2y + xy2 +

1

x2y
+

1

xy2
+
x

y
+
y

x
)

−2(x2 + y2 + x2y2 +
1

x2
+

1

y2
+

1

x2y2
)

−(x3y2 + x3y + x2y3 + xy3 +
1

x3y2
+

1

x3y
+

1

x2y3
+

1

xy3
+
x2

y
+

x

y2
+
y2

x
+

y

x2
)

}
,

q(1)(ω) =
1

243

{
252− 53(x+ y + xy +

1

x
+

1

y
+

1

xy
) + 3(x2y + xy2 +

1

x2y
+

1

xy2
+
x

y
+
y

x
)

+4(x2 + y2 + x2y2 +
1

x2
+

1

y2
+

1

x2y2
)

+2(x3y2 + x3y + x2y3 + xy3 +
1

x3y2
+

1

x3y
+

1

x2y3
+

1

xy3
+
x2

y
+

x

y2
+
y2

x
+

y

x2
)

}
,
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q(2)(ω) =
1

45

{
39x− 3(1 + x2y +

x

y
)− 4(

1

y
+ xy + x2)

−2(
1

x
+

x

y2
+ x3y2 + y +

1

xy
+

1

y2
+
x2

y
+ x2y2 + x3y)

}
,

q̃(1)(ω) =
1

30

{
7− (x+ y + xy +

1

x
+

1

y
+

1

xy
)− 1

6
(x2y + xy2 +

1

x2y
+

1

xy2
+
x

y
+
y

x
)

}
,

q̃(2)(ω) =
1

54

{
15x+

2

3
(1 + x2y +

x

y
)− 2(

1

y
+ xy + x2)− (

1

x
+

x

y2
+ x3y2 + y +

1

xy
+

1

y2
+
x2

y
+ x2y2 + x3y)

−1

3
(x3 +

1

xy2
+ xy2)− 1

6
(x4y2 + x3y3 +

x2

y2
+
y

x
+

1

x2y
+

1

y3
)

}
,

and p̃(ω) is given by (19), q(3)(ω) = q(2)(−ω), q̃(3)(ω) = q̃(2)(−ω).

Appendix C

The highpass filters of Kobbelt-F1,2 with lowpass filters p̃(ω) and p(ω) given by (19) and (26)
respectively are

q(1)(ω) =
1

6

{
6− (x+ y + xy +

1

x
+

1

y
+

1

xy
)

}
,

q(2)(ω) =
1

18

{
21x− 12(1 + x2y +

x

y
) + 2(

1

y
+ xy + x2)

+(
1

x
+

x

y2
+ x3y2 + y +

1

xy
+

1

y2
+
x2

y
+ x2y2 + x3y)

}
,

q̃(1)(ω) =
5

3
p̃(ω), q̃(2)(ω) =

1

36

{
12x+ (1 + x2y +

x

y
)

}
,

and q(3)(ω) = q(2)(−ω), q̃(3)(ω) = q̃(2)(−ω).

Appendix D

The
√
3 frame filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} corresponding to the algorithms

(28)-(33) with k = 6 are given by (48) with B2(ω), B0(ω), B̃2(ω), B̃0(ω) defined by (49), (51),
(52), (54) respectively, and B1(ω) and B̃1(ω) given by

B1(ω) =


1 0 0 0
0 1 0 0

−aY1 − rY3 −hY1 − sY3 1 0
−aY2 − rY4 −hY2 − sY4 0 1

 ,

B̃1(ω) =


1 0 aY2 + rY4 aY1 + rY3
0 1 hY2 + sY4 hY1 + sY3
0 0 1 0
0 0 0 1

 ,
where Y1, Y2 are defined by (55) and

Y3 = xy + 1/(xy) + x/y, Y4 = xy + 1/(xy) + y/x.
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Appendix E. Eigenvalue analysis of subdivision matrix S in §4

Denote α = α(k), β = β(k), γ = γ(k). Using suitable labels of the vertices (refer to [50, 8]), one
can obtain that the subdivision matrix S is

1 0 0 0 0 · · · 0 0
α β β γ 0 · · · 0 γ
α γ β β γ · · · 0 0
α 0 γ β β · · · 0 0
...

...
...

...
... · · ·

...
...

α β γ 0 0 · · · γ β


.

Applying the discrete Fourier transform to the k × k sub-matrix of S (resulted from the removal
of the first row and column of S), one can obtain that the eigenvalues of S are

1, e−
mπ
k

ih(
2πm

k
), m = 0, 1, 2, · · · , k − 1,

where

h(t) = 2β cos
t

2
+ 2γ cos

3t

2
.

Next we choose β, α such that |h(t)| obtains the maxima on [0, 2π] at t = 2π
k ,

2π(k−1)
k . Refer to

[34] for similar discussion. Observe that h(2π − t) = −h(t). Thus let us focus h(t) on [0, π]. One
can obtain

h′(t) = −β sin t
2
− 3γ sin

3t

2
= − sin

t

2
(β + 3γ + 6γ cos t).

Thus if we choose β, γ such that β = −3γ − 6γ cos 2π
k , then h′(2πk ) = 0. Furthermore, if γ < 0,

then h(t) is strictly increasing and decreasing on [0, 2πk ] and [2πk , π] respectively. In this paper we
choose γ = − 1

24 . The other parameter α is chosen as α = 1 − 2β − 2γ so that [1, 1, · · · , 1]T is a
right 1-eigenvector of S. With such choices of α, β, γ, the leading eigenvalues λ0, λ1, λ2, λ3, · · ·
of S satisfy λ0 = 1, 1 > |λ1| = |λ2| (=h(2πk )), and |λ3| < |λ1|.

Appendix F

The 1-D ternary frame filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} corresponding to mul-
tiresolution algorithm (40)-(45) are given by[

p(ω), q(1)(ω), q(2)(ω), q(3)(ω)
]T

= D2(3ω)D1(3ω)D0(3ω)[1, z,
1
z ]

T ,[
p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)

]T
= 1

3D̃2(3ω)D̃1(3ω)D̃0(3ω)[1, z,
1
z ]

T ,
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where z = e−iω, and

D2(ω) =


1 0 −d1 −d1
0 1 −n1 −n1
0 0 1 0
0 0 0 1

 , D1(ω) =


1 0 0 0
0 1 0 0

−a− a1z − r
z −h− h1z − s

z 1 0

−a− a1
z − rz −h− h1

z − sz 0 1

 ,

D0(ω) =


1
b −d

b −d
b

1 −n −n
0 1 0
0 0 1

 , D̃2(ω) =


1 0 0 0
0 1 0 0
d1 n1 1 0
d1 n1 0 1

 ,

D̃1(ω) =


1 0 a+ a1

z + rz a+ a1z +
r
z

0 1 h+ h1
z + sz h+ h1z +

s
z

0 0 1 0
0 0 0 1

 , D̃0(ω) =


tb 0 0

1− t 0 0
td+ (1− t)n 1 0
td+ (1− t)n 0 1

 .
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