
Bi-frames with 4-fold Axial Symmetry for Quadrilateral

Surface Multiresolution Processing

Qingtang Jiang ∗

Abstract

When bivariate filter banks and wavelets are used for surface multiresolution processing, it
is required that the decomposition and reconstruction algorithms for regular vertices derived
from them have high symmetry. This symmetry requirement makes it possible to design the
corresponding multiresolution algorithms for extraordinary vertices. Recently lifting-scheme
based biorthogonal bivariate wavelets with high symmetry have been constructed for surface
multiresolution processing. If biorthogonal wavelets have certain smoothness, then the analysis
or synthesis scaling function, or both have big supports in general. In particular, when the
synthesis lowpass filter is a commonly used scheme such as Loop’s scheme or Catmull-Clark’s
scheme, the corresponding analysis lowpass filter has a big support and the corresponding
analysis scaling function and wavelets have poor smoothness. Big supports of scaling functions,
or in other words, big templates of multiresolution algorithms are undesirable for surface
processing. On the other hand, frame provides a flexibility for the construction of “basis”
systems. This paper concerns the construction of wavelet (or affine) bi-frames with high
symmetry.

In this paper we study the construction of wavelet bi-frames with 4-fold symmetry for
quadrilateral surface multiresolution processing, with both the dyadic and

√
2 refinements

considered. The constructed bi-frames have 4 framelets (or frame generators) for the dyadic
refinement, and 2 framelets for the

√
2 refinement. Namely, with either the dyadic or

√
2

refinement, a frame system constructed in this paper has one more generator only than a
wavelet system. The constructed bi-frames have better smoothness and smaller supports than
biorthogonal wavelets. Furthermore, all the frame algorithms considered in this paper are
given by templates so that one can easily implement them.

AMS 2000 Math Subject Classification: 42C40, 65T60, 68U07, 65D17

1 Introduction

Multiresolution resolution surface processing has been studied in [30, 31, 37, 25]. One of key
issues is the construction of wavelets. Since the surface (mesh) to be processed is an object in
3-D space and the mesh in general consists of not only regular vertices but also extraordinary
vertices, it requires that wavelets and the corresponding multiresolution algorithms have high
symmetry. Researchers have made efforts to construct such wavelets or/and multiresolution algo-
rithms. For example, Doo’s subdivision scheme based wavelets for quadrilateral (quad) surfaces
are constructed in [36]. Recently with the idea of lifting scheme [38, 10], biorthogonal wavelets
with high symmetry for surface multiresolution processing have been constructed in [1, 2, 41, 42].
∗Q. Jiang is with the Department of Mathematics and Computer Science, University of Missouri–St. Louis, St.

Louis, MO 63121, USA.
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The smoothness and approximation property of highly symmetric wavelets (for regular vertices)
have been analyzed in [21, 22] and new symmetric wavelets are also constructed there.

If the biorthogonal wavelets have certain smoothness, then they will have big supports, namely,
the multiresolution algorithms have big sizes of templates. Compared with (bi)orthogonal wavelet
systems, the elements in a frame system may be linearly dependent, namely, frames can be
redundant, which provides a flexibility for the construction of framelets with high symmetry and
smaller supports than biorthogonal wavelets.

Let A be a dilation matrix, a 2 by 2 integer matrix with each of its two eigenvalues λ satisfying
|λ| > 1. For a function f on IR2, denote fj,k(x) = | detA|j/2f(Ajx − k). We call functions
ψ(1), ψ(2), · · · , ψ(L) on IR2, where L ≥ | detA| − 1, wavelet (or affine) framelets, or wavelet
frame generators, just called framelets in this paper for short, if {ψ(1)

j,k, ψ
(2)
j,k, · · · , ψ(L)

j,k }j∈Z,k∈Z2

is a wavelet frame of L2(IR2), namely, there are two positive constants B and C such that

B‖f‖22 ≤
L∑

`=1

∑

j∈Z,k∈Z2

|〈f, ψ(`)
j,k〉|2 ≤ C‖f‖22, ∀f ∈ L2(IR2),

where 〈·, ·〉 and ‖ · ‖2 := 〈·, ·〉 1
2 denote the inner product and the norm of L2(IR2). We say that

ψ(`), ψ̃(`), ` = 1, · · · , L, generate biorthogonal wavelet frames (bi-frames for short) of L2(IR2)
or dual wavelet frames of L2(IR2) if {ψ(1)

j,k, · · · , ψ(L)
j,k }j∈Z,k∈Z2 and {ψ̃(1)

j,k, · · · , ψ̃(L)
j,k }j∈Z,k∈Z2 are

frames of L2(IR2) and that for any f ∈ L2(IR2), f can be written as (in L2-norm)

f =
∑

1≤`≤L

∑

j∈Z,k∈Z2

〈f, ψ̃(`)
j,k〉ψ(`)

j,k.

The reader refers to [7] and references therein for the properties on frames.
Let A be a dilation matrix. For a sequence {pk}k∈Z2 of real numbers with finitely many pk

nonzero, let p(ω) denote the corresponding finite impulse response (FIR) filter (also called symbol
of {pk}k∈Z2):

p(ω) =
1

| detA|
∑

k∈Z2

pke
−ikω.

A pair of FIR filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)}, each is called a frame filter
bank in this paper, is said to be biorthogonal (with dilation matrix A) if

p(ω)p̃(ω + 2π(A−1)Tηj) +
L∑

`=1

q(`)(ω)q̃(`)(ω + 2π(A−1)Tηj) =

{
1, j = 0,
0, 1 ≤ j < |detA|,

where ηj , 0 ≤ j < | detA| are the representatives of the group Z2/(ATZ2) with η0 = (0, 0).
Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(2)} be frame filter banks. Suppose φ and φ̃ are the

associated refinable (or scaling) functions (with dilation matrix A) which satisfy the refinement
equations

φ(x) =
∑

k

pkφ(Ax− k), φ̃(x) =
∑

k

p̃kφ̃(Ax− k).

Let ψ(`), ψ̃(`), ` = 1, · · · , L, be the functions defined by

ψ(x) =
∑

k

q
(`)
k φ(Ax− k), ψ̃(x) =

∑

k

q̃
(`)
k φ̃(Ax− k).
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Then the Mixed Unitary Extension Principle of [33] states that if {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · ,
q̃(L)} are biorthogonal, φ, φ̃ ∈ L2(IR2) with φ̂(0, 0)̂̃φ(0, 0) 6= 0, and that p(0, 0) = p̃(0, 0) = 1,
p(2π(A−1)Tηj)= p̃(2π(A−1)Tηj) = q(`)(0, 0) = q̃(`)(0, 0) = 0 for 1 ≤ j < | detA|, 1 ≤ ` ≤ L, then
ψ(`), ψ̃(`), ` = 1, · · · , L, generate bi-frames of L2(IR2).

Figure 1: Left: Quad mesh; Middle: Coarse mesh of dyadic refinement; Right: Coarse mesh of
√

2
refinement

In this paper we consider frames for quad mesh (surface) multiresolution processing. The quad
mesh near a regular vertex (with valence 4) can be represented locally as a 2-D mesh shown on the
left of Fig. 1. The quad surface subdivision allows not only the dyadic refinement but also other
refinements such as

√
2 and

√
5 refinements, see [9, 17, 29, 39, 40]. The dyadic refinement is the

most commonly used refinement for multiresolution data processing and for surface subdivision.
The nodes with circles © in the middle of Fig. 1 form the coarse quad mesh of the dyadic
refinement. From a finer mesh to its coarse mesh of the dyadic refinement, the nodes are reduced
by a factor 1

4 .
The right part of Fig. 1 shows the

√
2 refinement with the nodes of circles © forming the

coarse quad mesh of the
√

2 refinement. The nodes on the
√

2-refinement coarse mesh are reduced
by a factor 1

2 . Compared with the dyadic refinement, the
√

2 refinement generates more resolution
levels within a prescribed number of quads.

The construction of
√

2-refinement wavelets (also called quincunx wavelets) are studied in some
papers, see e.g. [26], [27] and [16], and the

√
2 subdivision has been investigated in [29, 39, 40].

In this paper we study the construction of dyadic and
√

2 refinement bi-frames with high
symmetry. For the dyadic refinement, the dilation matrix A is 2I2, where I2 is the 2 by 2 identity
matrix, while for the

√
2 refinement, we can choose A to be one of the following matrices

A1 =

[
1 −1
1 1

]
, A2 =

[
1 1
1 −1

]
. (1)

In this paper, we construct dyadic bi-frames with 4 framelets and
√

2-refinement bi-frames
with 2 framelets. Namely, a dyadic frame filter bank {p, q(1), · · · , q(4)} has four highpass filters,
and a

√
2 frame filter bank {p, q(1), q(2)} has two highpass filters.

The construction of multivariate wavelet frames has been studied in some papers, see e.g.,
[13, 28, 34, 35, 5, 6, 11, 12]. Compared with the framelets in these papers, our framelets pos-
sess simultaneously the properties of high symmetry, small support and few generators (just one
more generator than biorthogonal wavelets). Furthermore, our construction starts with symmet-
ric templates of small sizes with the templates given by some parameters, then we select the
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parameters such that the constructed framelets gain (numerically) optimal smoothness and/or
vanishing moments.

For quad surface processing, biorthogonal wavelets are required to have 4-fold symmetry, see
[22]. In the following we introduce the 4-fold symmetry of framelets.

3

T1

T0

T2
T

Figure 2: 4 symmetric axes (lines)

Definition 1. Let Tk, 0 ≤ k ≤ 3 be the axes in Fig. 2. A dyadic refinement frame filter bank
{p, q(1), · · · , q(4)} is said to have 4-fold axial (or line) symmetry if (i) its lowpass filter p(ω) and
first highpass filter q(1)(ω) are symmetric around Tk, 0 ≤ k ≤ 3, (ii) e−i(ω1+ω2)q(2)(ω) is symmetric
around the axes Tk, 0 ≤ k ≤ 3, (iii) eiω1q(3)(ω) is symmetric around the axes T1 and T3, and (iv)
q(4)(ω) is the reflection of q(3)(ω) around the line ω1 = ω2, i.e., q(4)(ω1, ω2) = q(3)(ω2, ω1).

Definition 2. Let Tk, 0 ≤ k ≤ 3 be the axes in Fig. 2. A
√

2-refinement frame filter bank
{p, q(1), q(2)} is said to have 4-fold axial (or line) symmetry if (i) its lowpass filter p(ω) and
first highpass filter q(1)(ω) are symmetric around Tk, 0 ≤ k ≤ 3, (ii) e−iω1q(2)(ω) is symmetric
around the axes Tk, 0 ≤ k ≤ 3.

In this paper we construct 4-fold symmetric dyadic and
√

2 refinement biorthogonal FIR frame
filter banks and the associated framelets. The work on 4-fold symmetric dyadic bi-frames and that
on 4-fold symmetric

√
2-refinement bi-frames are carried out in §2 and §3 respectively. In each of

these two sections, first we show that frame multiresolution analysis and synthesis algorithms can
be represented as templates by associating the outputs appropriately with the nodes of Z2, with
which the original quad mesh is represented. Then we construct symmetric bi-frames with 3- and
4-step algorithms based on symmetric templates. In this paper we consider bi-frames for regular
vertices only. The corresponding frame multiresolution algorithms for extraordinary vertices will
be presented elsewhere. Symmetric 1-D bi-frames are considered in [23] with the corresponding
frame multiresolution algorithms also given by iterative templates. Those 1-D frame algorithms
can be used as boundary algorithms for multiresolution processing of open surfaces.

As in [22], here we also use bold-faced letters such as k,x to denote elements of Z2 and IR2.
For k and x in IR2, they will be written as row vectors

k = (k1, k2), x = (x1, x2).

When we consider Ak and Ax, where A is a 2 × 2 matrix, k and x should be understood as
column vectors [k1, k2]T and [x1, x2]T . We also use the following notations. For a positive integer
n, In denotes the n× n identity matrix; for a matrix M , M∗ denotes its complex conjugate and
transpose; and for a nonsingular matrix B, we use B−T to denote (B−1)T .
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2 Dyadic bi-frames with 4-fold symmetry

In this section we study dyadic bi-frames with 4-fold symmetry. This section consists of three
subsections. In the first subsection, we show how frame multiresolution analysis and synthesis
algorithms can be represented as templates and discuss the symmetry of frame filter banks.
We construct 4-fold symmetric bi-frames with 3- and 4-step algorithms in the second and third
subsections.

2.1 4-fold symmetric dyadic bi-frames and associated templates

As mentioned above, for dyadic frames, the dilation matrix A is 2I2. For A = 2I2, we may choose
the representatives ηj , 0 ≤ j ≤ 3 of Z2/(ATZ2) to be

η0 = (0, 0), η1 = (−1,−1), η2 = (1, 0), η3 = (0, 1). (2)

For an FIR dyadic frame filter bank {p, q(1), q(2), q(3), q(4)}, with notation q(0)(ω) = p(ω),
write q(`)(ω), 0 ≤ ` ≤ 4 as

q(`)(ω) =
1
2

(
q

(`)
0 (2ω) + q

(`)
1 (2ω)ei(ω1+ω2) + q

(`)
2 (2ω)e−iω1 + q

(`)
3 (2ω)e−iω2

)
,

where q(`)
k (ω), 0 ≤ k ≤ 3 are trigonometric polynomials. Then the polyphase matrix of frame

filter bank {p, q(1), · · · , q(4)} is the 5× 4 matrix V (ω) defined by

V (ω) =
[
q

(`)
k (ω)

]
0≤`≤4,0≤k≤3

. (3)

From

[p(ω), q(1)(ω), · · · , q(4)(ω)]T =
1
2
V (2ω)I00(ω),

where I00(ω) is defined by

I00(ω) = [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

one can easily find that two frame filter banks {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are biorthog-
onal if and only if their polyphase matrices V (ω) and Ṽ (ω) satisfy

V (ω)∗ Ṽ (ω) = I4, ω ∈ IR2.

The multiresolution decomposition algorithm with a dyadic analysis frame filter bank
{p, q(1), · · · , q(4)} for input data or a regular quad mesh C = {c0

k} is

cj+1
n =

1
4

∑

k∈Z2

pk−2nc
j
k, d

(`,j+1)
n =

1
4

∑

k∈Z2

q
(`)
k−2nc

j
k, (4)

with ` = 1, · · · , 4,n ∈ Z2 for j = 0, 1, · · · , J−1, where J is a positive integer. If {p̃, q̃(1), · · · , q̃(4)} is
biorthogonal to {p, q(1), · · · , q(4)}, then c0

k can be recovered by the multiresolution reconstruction
algorithm:

cjk =
∑

n∈Z2

p̃k−2nc
j+1
n +

∑

1≤`≤4

∑

n∈Z2

q̃
(`)
k−2nd

(`,j+1)
n (5)
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with k ∈ Z2 for j = J − 1, J − 2, · · · , 0. {p̃, q̃(1), · · · , q̃(4)} is called the synthesis frame filter
bank, and {cjk} and {d(`,j)

k } are called respectively the “approximation” and the “details” of C.
{cjk} and {d(`,j)

k } are also called respectively lowpass and highpass outputs of C, and p, p̃ and
q(`), q̃(`), 1 ≤ ` ≤ 4 lowpass and highpass filters.

Next, we show that decomposition and reconstruction algorithms can be represented as tem-
plates by associating appropriately lowpass and highpass outputs to the nodes of Z2 with which a
regular quad mesh is represented. First, as in [22], we separate the nodes of Z2 into four groups.

We call the nodes of Z2 with labels (2k1, 2k2) type V nodes (or vertex nodes). Thus all
type V nodes, which have indices of 2Z2 = {(2k1, 2k2), (k1, k2) ∈ Z2}, form the coarse mesh of the
dyadic refinement. Next, we separate Z2\(2Z2) into type F nodes (or face nodes) with indices in
{2k−(1, 1)}k∈Z2 and type E nodes (or edge nodes) with indices in {2k+(1, 0), 2k+(0, 1)}k∈Z2 .
The type E nodes are further separated into two groups with indices in {2k + (1, 0)}k∈Z2 and
{2k + (0, 1)}k∈Z2 respectively. See the left of Fig. 3, where the big circles, squares, 4 and ∇
denote type V nodes, type F nodes, and two groups of type E nodes respectively.

Let C = {ck}k∈Z2 be the data sampled on Z2 or a regular quad mesh with vertices ck. Then
{c2k}k∈Z2 is the set of data/vertices associated with type V nodes, {c2k−(1,1)}k∈Z2 is the set of
data/vertices associated with type F nodes, and {c2k+(1,0)}k∈Z2 and {c2k+(0,1)}k∈Z2 are the sets
of data/vertices associated with the above two groups of type E nodes. Denote

vk = c2k, fk = c2k−(1,1), e
(2)
k = c2k+(1,0), e

(3)
k = c2k+(0,1), k ∈ Z2. (6)

Refer to the middle picture of Fig. 3 for these four groups of data/vertices.
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Figure 3: Left: Type V nodes, type F nodes, and two types of type E nodes; Middle: Original data/vertices
associated with four groups of nodes; Right: “Approximation” and “details” associated with four groups of
nodes

Let c1
k and d(`,1)

k , 1 ≤ ` ≤ 4 be the lowpass and highpass outputs with initial input C = {ck}k∈Z2

after the decomposition algorithm with lowpass and highpass filters p and q(`). Denote

ṽk = c1
k, g̃k = d

(1,1)
k , f̃k = d

(2,1)
k , ẽ

(2)
k = d

(3,1)
k , ẽ

(3)
k = d

(4,1)
k .

Then, the decomposition algorithm (4) is
{
ṽk = 1

4

∑
k′∈Z2 pk′−2kck′ , g̃k = 1

4

∑
k′∈Z2 q

(1)
k′−2kck′ ,

f̃k = 1
4

∑
k′∈Z2 q

(2)
k′−2kck′ , ẽ

(2)
k = 1

4

∑
k′∈Z2 q

(3)
k′−2kck′ , ẽ

(3)
k = 1

4

∑
k′∈Z2 q

(4)
k′−2kck′

(7)
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for k ∈ Z2, and the reconstruction algorithm (5) is

ck =
∑

k′∈Z2

{p̃k−2k′ ṽk′ + q̃
(1)
k−2k′ g̃k′ + q̃

(2)
k−2k′ f̃k′ + q̃

(3)
k−2k′ ẽ

(2)
k′ + q̃

(4)
k−2k′ ẽ

(3)
k′ }, k ∈ Z2. (8)

When k is respectively 2j, 2j−(1, 1), 2j+(1, 0), and 2j+(0, 1), then accordingly, ck is vj, fj, e
(2)
j , e

(3)
j

as defined in (6). Thus the reconstruction algorithm (8) can be further written as

vk =
∑

n∈Z2{p̃2nṽk−n + q̃
(1)
2n g̃k−n + q̃

(2)
2n f̃k−n + q̃

(3)
2n ẽ

(2)
k−n + q̃

(4)
2n ẽ

(3)
k−n},

fk =
∑

n∈Z2{p̃2n−(1,1)ṽk−n + q̃
(1)
2n−(1,1)g̃k−n + q̃

(2)
2n−(1,1)f̃k−n + q̃

(3)
2n−(1,1)ẽ

(2)
k−n + q̃

(4)
2n−(1,1)ẽ

(3)
k−n},

e
(2)
k =

∑
n∈Z2{p̃2n+(1,0)ṽk−n + q̃

(1)
2n+(1,0)g̃k−n + q̃

(2)
2n+(1,0)f̃k−n + q̃

(3)
2n+(1,0)ẽ

(2)
k−n + q̃

(4)
2n+(1,0)ẽ

(3)
k−n},

e
(3)
k =

∑
n∈Z2{p̃2n+(0,1)ṽk−n + q̃

(1)
2n+(0,1)g̃k−n + q̃

(2)
2n+(0,1)f̃k−n + q̃

(3)
2n+(0,1)ẽ

(2)
k−n + q̃

(4)
2n+(0,1)ẽ

(3)
k−n}.

(9)

Next, we associate both the lowpass output ṽk and the first highpass output g̃k with type V
nodes with labels 2k, and the second highpass output f̃k with type F nodes with labels 2k− (1, 1)
, and third and fourth highpass output ẽ(2)

k , ẽ
(3)
k with type E nodes with labels 2k + (1, 0) and

2k + (0, 1) respectively. In this way, both analysis and synthesis algorithms can be represented as
templates.

If we set “details” g̃k, f̃k, ẽ
(1)
k , ẽ

(2)
k to be zero, then (9) is reduced to the subdivision algorithm:

vk =
∑

n∈Z2

p̃2nṽk−n, fk =
∑

n∈Z2

p̃2n−(1,1)ṽk−n, e
(2)
k =

∑

n∈Z2

p̃2n+(1,0)ṽk−n, e
(3)
k =

∑

n∈Z2

p̃2n+(0,1)ṽk−n,

which can be represented as the subdivision templates. For example, if p̃ is the filter for C2

bi-spline supported on [−2, 2]2:

p̃(ω) =
e2i(ω1+ω2)

256
(1 + e−iω1)4(1 + e−iω2)4, (10)

then the subdivision templates are shown in Fig. 4. This subdivision scheme is called the Catmull-
Clark scheme [4] (for regular vertices).
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1/64 1/64
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3/32

3/8

1/16 1/16

3/8

1/16

Figure 4: Catmull-Clark scheme

As the subdivision templates, when analysis and synthesis algorithm templates are used for
surface processing, these templates must have certain symmetry. Firstly, because both ẽ

(2)
k and

ẽ
(3)
k associate with type E vertices and they should be treated equally, the templates to obtain ẽ(2)

k

and ẽ(3)
k must be same. With the same reason, the templates to recover e(2)

k and e(3)
k by (9) should

also be the same. Secondly, the templates to obtain ṽk, g̃k and f̃k by (7), and that to recover
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to vk and fk by (9) must rotational and reflective invariant. Thirdly, the template to obtain ẽ(2)
k

and ẽ
(3)
k and the template to recover e(2)

k and e
(3)
k have certain symmetry. The 4-fold symmetric

biorthogonal frame filter banks result in templates with such desired symmetry.

Reconstruction Alg. 

ev

f

e

g~

~f

v~

~e

~e

Decomposition Alg.

Figure 5: Decomposition and reconstruction algorithms

Since in this paper we consider such algorithms that the templates to obtain ẽ(2)
k , ẽ

(3)
k are the

same, and those to recover e(2)
k , e

(3)
k are also identical, in the following we may simply let e denote

the original data associated with type E nodes, and use ẽ to denote the third and fourth highpass
outputs after the decomposition algorithm. Thus, the decomposition algorithm is to decompose
the original data {v} ∪ {f} ∪ {e} into {ṽ}, {g̃}, {f̃} and {ẽ}, and the reconstruction algorithm
to recover {v} ∪ {f} ∪ {e} from {ṽ}, {g̃} {f̃} and {ẽ}, see Fig. 5. Therefore, we may simply use
v, f, e and ṽ, g̃, f̃ , ẽ describe frame algorithms. For a dyadic multiresolution algorithm with 4-fold
symmetric frame filter banks, the decomposition algorithm (reconstruction algorithm resp.) can
be represented as four templates (three templates resp.).

In the following we provide a characterization of the 4-fold symmetry of a frame filter bank
{p, q(1), · · · , q(4)}. As mentioned above, in this paper to construct bi-frames, we start with sym-
metric templates. We can use the characterization of symmetry to verify that symmetric templates
do yield frame filter banks with 4-fold symmetry. This characterization will also be useful if one
uses a different approach to construct bi-frames with 4-fold axial symmetry.

Proposition 1. A dyadic frame filter bank {p, q(1), · · · , q(4)} has 4-fold axial symmetry if and
only if its polyphase matrix V (ω) satisfies

V (J0ω) = M01V (ω)M02, V (O1ω) = M1(ω)V (ω)M2(ω), (11)

where

O1 =

[
0 1
−1 0

]
, J0 =

[
0 1
1 0

]
, M01 =

[
I3 0
0 J0

]
, M02 =

[
I2 0
0 J0

]
, (12)

M1(ω) =




1 0 0 0 0
0 1 0 0 0
0 0 e−iω1 0 0
0 0 0 0 1
0 0 0 eiω1 0



, M2(ω) =




1 0 0 0
0 eiω1 0 0
0 0 0 e−iω1

0 0 1 0


 .

A similar characterization of the 4-fold symmetry of dyadic wavelet filter banks is provided
in [22]. We say a wavelet filter bank {p, q(2), q(3), q(4)} to have 4-fold symmetry if p, q(2), q(3), q(4)
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satisfy the conditions in Definition 1 (ignore the condition for q(1)). Compared with a 4-fold
symmetric wavelet filter bank, a 4-fold symmetric frame filter bank has only one extra highpass
filter q(1)(ω) which has the same symmetry as the lowpass filter p(ω). Thus, one can give the
proof of Proposition 1 similarly to that for the characterization of the 4-fold symmetry of dyadic
wavelet filter banks given in [22]. The details are omitted here.

Assume that two FIR frame filter banks {p0, q
(1)
0 , · · · , q(4)

0 } and {p, q(1), · · · , q(4)} are related
by [p, q(1), · · · , q(4)]T (ω) = B(2ω)[p0, q

(1)
0 , · · · , q(4)

0 ]T (ω), where B(ω) is a 4 × 4 trigonometric
polynomial matrix. Then their polyphase matrices, denoted as V0(ω) and V (ω), satisfy

V (ω) = B(ω)V0(ω).

From Proposition 1, we know if {p0, q
(1)
0 , · · · , q(4)

0 } has 4-fold symmetry, then {p, q(1), · · · , q(4)} has
4-fold symmetry if and only if B(ω) satisfies

B(J0ω) = M01B(ω)M01, B(O1ω) = M1(ω)B(ω)M1(ω)−1.

This observation enables us to construct a 4-fold symmetric frame filter bank from another one
by choosing a B(ω) satisfying the above condition.

To construct 4-fold symmetric bi-frames, we start with symmetric templates of decomposition
and reconstruction algorithms. The algorithm templates are given by several iterative steps
with each step given by a template. With the templates and decomposition and reconstruction
algorithms (7)(9), we then obtain the corresponding bi-frame filter banks which are given by some
parameters. Then we select the parameters based on the smoothness and vanishing moments of
framelets.

For the smoothness of framelets, which is determined by the smoothness of the corresponding
scaling functions, in this paper we consider the Sobolev smoothness. We say a function f on
IR2 to be in the Sobolev space W s for some s > 0 if its Fourier transform f̂ satisfies

∫
IR2(1 +

|ω|2)s|f̂(ω)|2dω < ∞. The Sobolev smoothness of a scaling function φ can be given by the
eigenvalues of the transition operator matrix associated with the corresponding lowpass filter p,
see [19, 20].

To construct a smooth wavelet basis, the corresponding scaling function φ must have certain
approximation power, which can be described by the sum rule order of the associated subdivision
mask p(ω), see e.g. [18]. For the dyadic refinement, we say p(ω) to have sum rule order K if
it satisfies that p(0, 0) = 1 and

∂α1+α2

∂ωα1
1 ∂ωα2

2

p(ω1, ω2)
∣∣∣∣
(ω1,ω2)=π�j

= 0, 1 ≤ j ≤ 3,

for all (α1, α2) ∈ Z2
+ with α1 + α2 < K, where ηj , 1 ≤ j ≤ 3 are defined by (2).

For an FIR (highpass) filter q(ω), we say it has the vanishing moments of order J if

∂α1+α2

∂ωα1
1 ∂ωα2

2

q(ω1, ω2)
∣∣∣∣
(ω1,ω2)=(0,0)

= 0,

for all (α1, α2) ∈ Z2
+ with α1 + α2 < J . It is important in signal/image processing and other

applications that highpass filters have vanishing moments.
When we construct bi-frames, in general we choose the parameters such that the synthesis

scaling function φ̃ is smoother than the analysis scaling function φ, the synthesis lowpass filter

9



p̃(ω) has a higher sum rule order than the analysis lowpass filter p(ω), and that the analysis
highpass filters q(`)(ω) have higher vanishing moments. In case we can choose the parameters
such that φ̃ is a compactly supported bi-spline or box-spline with certain smoothness, then we
will first consider such choices of the parameters.

2.2 3-step dyadic bi-frame multiresolution algorithm

v
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Figure 6: Top-left: Template to obtain v′′, g′′ in Decomposition Alg. Step 1; Top-right: Decomposition
Alg. Step 2; Bottom-left: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3 (template to
obtain first highpass output g̃ is similar with v′′ replaced by g′′)

This subsection is about a 3-step dyadic multiresolution algorithm. The decomposition al-
gorithm is given by (13)-(15) and shown in Fig. 6, where b, d, s, n,m, a, c, h, j, k, r, d1, s1, n1,m1

are some constants. Namely, first we replace all v associated with type V nodes of 2Z2 by v′′, g′′

given by (13). Then, with v′′, g′′ obtained, we replace all f associated with type F nodes and all
e associated with type E nodes by f̃ and ẽ respectively with the formulas in (14). Finally, based
on f̃ , ẽ obtained, all v′′, g′′ in Step 1 are updated by ṽ and g̃ given in (15).

3-step Decomposition Algorithm:

Step 1.

{
v′′ = 1

b{v − d(e0 + e1 + e2 + e3)− s(f0 + f1 + f2 + f3)},
g′′ = v − n(e0 + e1 + e2 + e3)−m(f0 + f1 + f2 + f3)

(13)

Step 2.

{
ẽ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3 + v′′4 + v′′5)− h(g′′0 + g′′1)− j(g′′2 + g′′3 + g′′4 + g′′5)
f̃ = f − k(v′′6 + v′′7 + v′′8 + v′′9)− r(g′′6 + g′′7 + g′′8 + g′′9)

(14)
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Step 3.

{
ṽ = v′′ − d1(ẽ0 + ẽ1 + ẽ2 + ẽ3)− s1(f̃0 + f̃1 + f̃2 + f̃3),
g̃ = g′′ − n1(ẽ0 + ẽ1 + ẽ2 + ẽ3)−m1(f̃0 + f̃1 + f̃2 + f̃3).

(15)

~
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Figure 7: Top-right: Template to obtain v′′ in Reconstruction Alg. Step 1 (template to obtain g′′ is similar
with ṽ replaced by g̃); Bottom-left: Reconstruction Alg. Step 2; Bottom-right: Reconstruction Alg. Step 3

The reconstruction algorithm of this 3-step algorithm is the reverse algorithm of the decom-
position algorithm. It is given by (16)-(18) and shown in Fig. 7, where b, d, s, n,m, a, c, h, j,
k, r, d1, s1, n1,m1 are the same constants in the decomposition algorithm and t ∈ IR. More pre-
cisely, first we replace the lowpass output ṽ and the first highpass output g̃, both associated with
type V nodes of 2Z2, by v′′ and g′′ respectively given by the formulas in (16). After that, with
v′′, g′′ obtained, we replace all f̃ and ẽ by f and e respectively with the formulas in (17). This
step recovers the original data (vertices) associated with type F and type E nodes of Z2\(2Z2).
Finally, based on f, e obtained in Step 2, all v′′, g′′ in Step 1 are replaced by v with the resulting v
given by formula (18). The final step recovers the original data (vertices) associated with type V
nodes of 2Z2.

3-step Reconstruction Algorithm:

Step 1.

{
v′′ = ṽ + d1(ẽ0 + ẽ1 + ẽ2 + ẽ3) + s1(f̃0 + f̃1 + f̃2 + f̃3),
g′′ = g̃ + n1(ẽ0 + ẽ1 + ẽ2 + ẽ3) +m1(f̃0 + f̃1 + f̃2 + f̃3)

(16)

Step 2.

{
e = ẽ+ a(v′′0 + v′′1) + c(v′′2 + v′′3 + v′′4 + v′′5) + h(g′′0 + g′′1) + j(g′′2 + g′′3 + g′′4 + g′′5)
f = f̃ + k(v′′6 + v′′7 + v′′8 + v′′9) + r(g′′6 + g′′7 + g′′8 + g′′9).

(17)

11



Step 3.
v = t{bv′′ + d(e0 + e1 + e2 + e3) + s(f0 + f1 + f2 + f3)}+

(1− t){g′′ + n(e0 + e1 + e2 + e3) +m(f0 + f1 + f2 + f3)}. (18)

To obtain the filters corresponding to this 3-step algorithm, let us first consider the case
when d1 = s1 = n1 = m1 = 0. In this case, the 3-step algorithm is a 2-step algorithm with the
decomposition algorithm given by (13)(14) (with ṽ = v′′, g̃ = g′′) and the reconstruction algorithm
given by (17)(18) (with v′′ = ṽ, g′′ = g̃).

With the formulas in (7) and (9), one can obtain that the filter banks {p, q(1), · · · , q(4)} and
{p̃, q̃(1), · · · , q̃(4)} corresponding to this 2-step algorithm are

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= E1(2ω)E0(2ω)I00(ω),

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
Ẽ1(2ω)Ẽ0(2ω)I00(ω),

where

E0(ω) =




1
b − sb (1 + x)(1 + y) −db (1 + 1

x ) −db (1 + 1
y )

1 −m(1 + x)(1 + y) −n(1 + 1
x ) −n(1 + 1

y )
0 1 0 0
0 0 1 0
0 0 0 1



, (19)

E1(ω) =




1 0 0 0 0
0 1 0 0 0

−k(1 + 1
x )(1 + 1

y ) −r(1 + 1
x )(1 + 1

y ) 1 0 0
−(1 + x)(a+ cy + c

y ) −(1 + x)(h+ jy + j
y ) 0 1 0

−(1 + y)(a+ cx+ c
x ) −(1 + y)(h+ jx+ j

x ) 0 0 1



, (20)

Ẽ0(ω) =




tb 0 0 0
1− t 0 0 0

(ts+ (1− t)n)(1 + 1
x )(1 + 1

y ) 1 0 0
(td+ (1− t)n)(1 + x) 0 1 0
(td+ (1− t)n)(1 + y) 0 0 1



, (21)

Ẽ1(ω) =




1 0 k(1 + x)(1 + y) (1 + 1
x )(a+ cy + c

y ) (1 + 1
y )(a+ cx+ c

x )
0 1 r(1 + x)(1 + y) (1 + 1

x )(h+ jy + j
y ) (1 + 1

y )(h+ jx+ j
x )

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



. (22)

Through this paper, we use the notations:

x = e−iω1 , y = e−iω2 .

Observe that the polyphase matrices V (ω) and Ṽ (ω) of {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}
are 2E1(ω)E0(ω) and 1

2Ẽ1(ω)Ẽ0(ω) respectively. One can easily show that E0(ω)∗ Ẽ0(ω) =
I4, E1(ω)∗ Ẽ1(ω) = I5,ω ∈ IR2. Thus, V (ω)∗ Ṽ (ω) = I4,ω ∈ IR2, and hence, {p, q(1), · · · , q(4)}
and {p̃, q̃(1), · · · , q̃(4)} are indeed biorthogonal. Furthermore, one can also easily show that V (ω)
and Ṽ (ω) satisfy (11). Thus both {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are 4-fold symmetric.

Solving the system of equations for sum rule order 1 of p̃ and p, and for vanishing moment
order 1 of q(`), q̃(`), 1 ≤ ` ≤ 4, we have

b = 4, d = −1
2
, s = −1

4
, k =

1
4
, a =

1
2
− 2c, m =

1
4
− n, t = 1.
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The resulting p(ω) = 1
16xy (1 + x)2(1 + y)2. Thus, the corresponding φ is the tensor product

of continuous linear splines supported on [−1, 1]. The resulting p̃(ω) depends on c. If c = −1
8

we have the (numerically) best Sobolev smooth φ̃ with φ̃ ∈ W 0.44076. To construct smoother
framelets we need consider algorithms with more iterative steps such as the 3-step algorithm.

Before we discuss the 3-step algorithm, here we remark that if we choose

b = 4, d = −1
2
, s = −1

4
, m =

1
4
− n, a =

3
8
, c =

1
16
, k =

1
4
, t =

1− 2n
7− 2n

, (23)

then p and p̃ have sum rule orders 2 and 4, and q(`), 1 ≤ ` ≤ 4 have vanishing moment order 2
with p(ω) = 1

16xy (1 + x)2(1 + y)2. Furthermore, if n = 3
10 , then the resulting p̃ is the filter given

by (10); while if n = 1
2 , the resulting p̃ is

p̃(ω) =
1
64

(1 + x)2(1 + y)2(
1
x

+
1
y

)(1 +
1
xy

). (24)

Thus the corresponding φ̃ in the former case is the C2 cubic bi-spline supported on [−2, 2]2, and
φ̃ in the latter case is the C2 box-spline with direction set (refer to [3] for box-splines)

Θ =

[
1 −1 0 0 −1 1
0 0 1 1 −1 −1

]
.

The filter p̃ in (10) results in Catmull-Clark subdivision scheme [4] as mentioned above, while
the subdivision scheme derived from the filter p̃ in (24) is used in [32]. However, in either case,
we cannot choose the remaining parameters j, h, r such that all q̃(`), 1 ≤ ` ≤ 4 have vanishing
moments. In Appendix A, we provide the resulting filters with n = 3

10 , j = 0, h = 15
8 , r = 15

16 and
that with n = 1

2 , j = h = r = 0. When n = 3
10 , h = 15

8 − 2j, r = 15
16 , q(2), q(3), q(4) have vanishing

moment order 4.
Next let us consider the 3-step algorithm. With the formulas in (7) and (9), and the filters

for the 2-step algorithm discussed above, one can obtain the filter banks {p, q(1), · · · , q(4)} and
{p̃, q̃(1), · · · , q̃(4)} corresponding to (13)-(18) to be

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= E2(2ω)E1(2ω)E0(2ω)I00(ω),

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
Ẽ2(2ω)Ẽ1(2ω)Ẽ0(2ω)I00(ω),

where E0(ω), E1(ω), Ẽ0(ω), Ẽ1(ω) are defined by (19)-(22), and

E2(ω) =




1 0 −s1(1 + x)(1 + y) −d1(1 + 1
x) −d1(1 + 1

y )
0 1 −m1(1 + x)(1 + y) −n1(1 + 1

x) −n1(1 + 1
y )

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, (25)

and Ẽ2(ω) =
(
E2(ω)−1

)∗
:

Ẽ2(ω) =




1 0 0 0 0
0 1 0 0 0

s1(1 + 1
x)(1 + 1

y ) m1(1 + 1
x)(1 + 1

y ) 1 0 0
d1(1 + x) n1(1 + x) 0 1 0
d1(1 + y) n1(1 + y) 0 0 1



. (26)
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In the following we choose the parameters such that the resulting φ̃ is C2 box-spline and C2

cubic bi-spline with p̃ given by (24) and (10) respectively and that all q(`), q̃(`), 1 ≤ ` ≤ 4 have
vanishing moments.

If
a = 3

8 , k = 1
4 , c = 1

16 , d1 = − 3
16 , s1 = − 3

64 , d = b+ n− 4nb, m = 1
4 − n,

s = 1
4 − n− 5

4b+ 4nb, r = 1
12b(1− 4b− 48bj − 24h− b), t = 1

4b ,
(27)

then the resulting p̃ is the filter given by (10), p has sum rule order 2, q(`), q̃(`), 1 ≤ ` ≤ 4 have
vanishing moment order 2. The resulting p depends on b, n, h, j. Next we choose these parameters
based on the smoothness of φ. We can choose them such that φ is in W 1.27204, the (numerically)
best smoothness order φ can gain. If

b = 10, n =
3
4
, h = 1, j =

9
32
, (28)

then φ ∈ W 1.2373. If n = 1
2 , then all q(`), 1 ≤ ` ≤ 4 have vanishing moment order 4. However,

in this case, we cannot choose other parameters such that φ is in L2(IR2). In the following we
provide the parameters d,m, s, r, t in (27) when b, n, h, j are given by (28):

d = −31
32
, m = − 1

32
, s = −41

32
, r = −213

40
, t =

1
40
.

If

a = 3
8 , k = 1

4 , c = 1
16 , n = 1

2 , m = d1 = −1
4 , t = 0, h = −1

8 − 2j, s = 1
4 − 1

4b− d, (29)

then the resulting p̃ is the filter given by (24), p has sum rule order 2, q(`), q̃(`), 1 ≤ ` ≤ 4 have
vanishing moment order 2. The resulting p depends on b, d, j. We can choose them such that
φ is in W 1.25875, the (numerically) best smoothness order φ can gain. If b = 6, d = −5

8 , j = 1
32 ,

then φ ∈ W 1.25492. If d = 1
2 − b, then all q(`), 1 ≤ ` ≤ 4 have vanishing moment order 4. In this

case, p depends on b, j. However, we cannot choose b, j such that φ is in L2(IR2). We provide in
Appendix B the coefficients of resulting filters with b = 6, d = −5

8 , j = 1
32 , r = n1 = m1 = 0 and

other parameters given in (29).
The scaling functions φ constructed above are supported on [−3, 3]2. From Example 2 in

[22], we know if φ̃ is the C2 bi-spline associated with p̃(ω) given by (10), then it is impossible to
construct 4-fold symmetric biorthogonal wavelets with the analysis scaling function φ in L2(IR2)
and supported on [−5, 5]2. Thus, the frame system does provide the flexibility for the construction
of compactly supported biorthogonal system generators.

2.3 4-step dyadic bi-frame multiresolution algorithm

In this subsection we discuss a 4-step multiresolution algorithm. The decomposition algorithm
is given by (30)-(33) and shown in Fig. 8, and the multiresolution reconstruction algorithm is
given by (34)-(37) and shown in Fig. 9, where b, d, s, n,m, a, c, h, j, k, r, d1, s1, n1,m1, a1, c1, h1, j1,
k1, r1, t are constants to be determined.

4-step Decomposition Algorithm:

Step 1.

{
v′′ = 1

b{v − d(e0 + e1 + e2 + e3)− s(f0 + f1 + f2 + f3)},
g′′ = v − n(e0 + e1 + e2 + e3)−m(f0 + f1 + f2 + f3)

(30)
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Figure 8: Top-left: Template to obtain v′′, g′′ in Decomposition Alg. Step 1; Top-right: Decomposition
Alg. Step 2; Bottom-left: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3 (template to
obtain first highpass output g̃ is similar with v′′ replaced by g′′); Bottom-right: Decomposition Alg. Step 4

Step 2.

{
e′′ = e− a(v′′0 + v′′1)− c(v′′2 + v′′3 + v′′4 + v′′5)− h(g′′0 + g′′1)− j(g′′2 + g′′3 + g′′4 + g′′5)
f ′′ = f − k(v′′6 + v′′7 + v′′8 + v′′9)− r(g′′6 + g′′7 + g′′8 + g′′9)

(31)

Step 3.

{
ṽ = v′′ − d1(e′′0 + e′′1 + e′′2 + e′′3)− s1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ),
g̃ = g′′ − n1(e′′0 + e′′1 + e′′2 + e′′3)−m1(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

(32)

Step 4.

{
ẽ = e′′ − a1(ṽ0 + ṽ1)− c1(ṽ2 + ṽ3 + ṽ4 + ṽ5)− h1(g̃0 + g̃1)− j1(g̃2 + g̃3 + g̃4 + g̃5)
f̃ = f ′′ − k1(ṽ6 + ṽ7 + ṽ8 + ṽ9)− r1(g̃6 + g̃7 + g̃8 + g̃9).

(33)

4-step Reconstruction Algorithm:

Step 1.

{
e′′ = ẽ+ a1(ṽ0 + ṽ1) + c1(ṽ2 + ṽ3 + ṽ4 + ṽ5) + h1(g̃0 + g̃1) + j1(g̃2 + g̃3 + g̃4 + g̃5)
f ′′ = f̃ + k1(ṽ6 + ṽ7 + ṽ8 + ṽ9) + r1(g̃6 + g̃7 + g̃8 + g̃9)

(34)
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Figure 9: Top-left: Reconstruction Alg. Step 1; Top-right: Template to obtain v′′ in Reconstruction Alg.
Step 2 (template to obtain g′′ is similar with ṽ replaced by g̃); Bottom-left: Reconstruction Alg. Step 3;
Bottom-right: Reconstruction Alg. Step 4

Step 2.

{
v′′ = ṽ + d1(e′′0 + e′′1 + e′′2 + e′′3) + s1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ),
g′′ = g̃ + n1(e′′0 + e′′1 + e′′2 + e′′3) +m1(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

(35)

Step 3.

{
e = e′′ + a(v′′0 + v′′1) + c(v′′2 + v′′3 + v′′4 + v′′5) + h(g′′0 + g′′1) + j(g′′2 + g′′3 + g′′4 + g′′5)
f = f ′′ + k(v′′6 + v′′7 + v′′8 + v′′9) + r(g′′6 + g′′7 + g′′8 + g′′9)

(36)

Step 4.
v = t{bv′′ + d(e0 + e1 + e2 + e3) + s(f0 + f1 + f2 + f3)}+

(1− t){g′′ + n(e0 + e1 + e2 + e3) +m(f0 + f1 + f2 + f3)}. (37)

With the formulas in (7) and (9), and the filters for the 3-step algorithm given in the above
subsection, we obtain the filter banks {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} corresponding to the
algorithms (30)-(37) to be

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T
= E3(2ω)E2(2ω)E1(2ω)E0(2ω)I00(ω),

[
p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)

]T
=

1
4
Ẽ3(2ω)Ẽ2(2ω)Ẽ1(2ω)Ẽ0(2ω)I00(ω),
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where E0(ω), E1(ω), Ẽ0(ω), Ẽ1(ω), E2(ω), Ẽ2(ω) are defined by (19)-(22), (25) and (26) and

E3(ω) =




1 0 0 0 0
0 1 0 0 0

−k1(1 + 1
x )(1 + 1

y ) −r1(1 + 1
x )(1 + 1

y ) 1 0 0
−(1 + x)(a1 + c1y + c1

y ) −(1 + x)(h1 + j1y + j1
y ) 0 1 0

−(1 + y)(a1 + c1x+ c1
x ) −(1 + y)(h1 + j1x+ j1

x ) 0 0 1



,

and Ẽ3(ω) =
(
E3(ω)−1

)∗
:

Ẽ3(ω) =




1 0 k1(1 + x)(1 + y) (1 + 1
x )(a1 + c1y + c1

y ) (1 + 1
y )(a1 + c1x+ c1

x )
0 1 r1(1 + x)(1 + y) (1 + 1

x )(h1 + j1y + j1
y ) (1 + 1

y )(h1 + j1x+ j1
x )

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

For this 4-step algorithm, we can choose the parameters such that φ is a C4 bi-spline with φ in
L2(IR2). For example,

[b, d, s, n,m, a, c, h, j, k, r, d1, s1, n1,m1, a1, c1, k1, h1, j1, r1, t] =

[
107
128

,
1
64
,− 47

256
,
1
4
,− 1

16
,

1
12
,

1
24
,
7
6
,

1
12
, 1,−3,− 3

16
,− 3

64
, 0,− 1

64
,− 1

12
,− 1

24
,−1, 0, 0, 0, 0],

then the resulting p̃(ω) is

p̃(ω) =
1

4096x4y4
(1 + x)4(1 + x2)2(1 + y)4(1 + y2)2,

p has sum rule order 2, and q(`), q̃(`), 1 ≤ ` ≤ 4 have vanishing moment order 2. Thus the
corresponding φ̃ is a C4 bi-spline supported on [−4, 4]2. In this case φ ∈W 0.44915.

We may choose other parameters such that φ has a higher smoothness order (but φ̃ is not a
spline). For example, we can select a set of parameters such that φ ∈W 1.26798, φ̃ ∈W 3.99999, and
another set of parameters with φ ∈W 1.70745, φ̃ ∈W 3.33270, both with the resulting p and p̃ having
sum rule of orders 2 and 4 respectively, and q(`), q̃(`), 1 ≤ ` ≤ 4 having vanishing moment order 2.
Here we would not provide the selected parameters.

In the above two subsections we consider 3-step and 4-step algorithms. If we use algorithms
with more iterative steps, or use templates with bigger sizes, then we can construct symmetric
framelets with higher smoothness and/or vanishing moment orders. Here we will not discuss more
algorithms.

3
√

2-refinement bi-frames with 2-fold symmetry

In this section we study 4-fold symmetric
√

2-refinement bi-frames. The 4-fold symmetry and the
templates of

√
2-refinement frame filter banks are discussed in §3.1, and symmetric bi-frames with

3- and 4-step algorithms are constructed in §3.2 and §3.3 respectively.
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3.1
√

2-refinement bi-frame multiresolution algorithms and associated tem-
plates

Let A = A1 in (1) be the dilation matrix for
√

2 refinement. (Since the lowpass p(ω) has 4-fold
symmetry, dilation matrices A1 and A2 yield the same scaling function, see [15].) For this A, we
choose the representatives η0,η1 of Z2/(ATZ2) to be

η0 = (0, 0), η1 = (1, 0).

For an FIR
√

2 frame filter bank {p, q(1), q(2)}, with notation q(0)(ω) = p(ω), write q(`)(ω), 0 ≤
` ≤ 2 as

q(`)(ω) =
1√
2

(
q

(`)
0 (ATω) + q

(`)
1 (ATω)e−iω1

)
,

where q(`)
k (ω), k = 0, 1 are trigonometric polynomials. Then we define the polyphase matrix V (ω)

of a
√

2 frame filter bank {p, q(1), q(2)} to be

V (ω) =



p0(ω) p1(ω)
q

(1)
0 (ω) q

(1)
1 (ω)

q
(2)
0 (ω) q

(2)
1 (ω)


 . (38)

We have

[p(ω), q(1)(ω), q(2)(ω)]T =
1√
2
V (ATω)I0(ω),

where I0(ω) defined by
I0(ω) = [1, e−iω1 ]T , ω = (ω1, ω2) ∈ IR2.

Again, two
√

2-refinement frame filter banks {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are biorthogonal
if and only if

V (ω)∗ Ṽ (ω) = I2, ω ∈ IR2,

where V (ω) and Ṽ (ω) are their polyphase matrices defined by (38).
For a

√
2 frame filter bank {p, q(1), q(2)}, the multiresolution decomposition with dilation

matrix A for input data or a regular quad mesh C = {c0
k} is

cj+1
n =

1
2

∑

k∈Z2

pk−Anc
j
k, d

(`,j+1)
n =

1
2

∑

k∈Z2

qk−Anc
j
k, n ∈ Z2, ` = 1, 2, n ∈ Z2 (39)

for j = 0, 1, · · · , J−1. If {p̃, q̃(1), q̃(2)} is biorthogonal to {p, q(1), q(2)}, then the initial data/vertices
c0
k can be recovered by the multiresolution reconstruction algorithm:

cjk =
∑

n∈Z2

p̃k−Anc
j+1
n +

2∑

`=1

∑

n∈Z2

q̃
(`)
k−And

(`,j+1)
n , k ∈ Z2, j = 1− J, · · · ,−1, 0. (40)

Analogously, {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are respectively called the analysis frame filter bank
and the synthesis frame filter bank, {cjk} and {d(`,j)

k } are respectively called the “approximation”
and the “details”, or the lowpass and highpass outputs.
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Figure 10: Left: Type V nodes and type F nodes; Middle: Original data/vertices associated with type V
nodes and type F nodes; Right: “Approximation” ṽ and “details” g̃, f̃ associated with type V nodes and
type F nodes

Next, we show that
√

2 frame decomposition and reconstruction algorithms can be represented
as templates by associating appropriately lowpass and highpass outputs to the nodes of Z2. To
this regard, we first separate the nodes of Z2 into two groups as in [22].

Suppose a regular quad mesh is represented as the quad mesh with the square lattice Z2.
Then AZ2 = {Ak = (k1 − k2, k1 + k2), (k1, k2) ∈ Z2} is the set of the labels for the vertices of
the coarse mesh. The nodes with labels Ak are called type V nodes (or vertex nodes) for the√

2 refinement, and the other nodes with labels AZ2 + (1, 0) are called type F nodes (or face
nodes). See the left picture of Fig. 10 for these two groups of nodes, where big circles © denote
type V nodes.

Let C = {ck}k∈Z2 be the initial data (mesh). Thus, {cAk}k∈Z2 is the set of data (vertices)
associated with type V nodes, {cAk+(1,0)}k∈Z2 is the set of data (vertices) associated with type F
nodes. Denote

vk = cAk, fk = cAk+(1,0), k ∈ Z2. (41)

See the middle picture of Fig. 10 for these two groups of data/vertices.
Let {c1

k}k and {d(1,1)
k }k, {d(2,1)

k }k be the lowpass and highpass outputs with an analysis frame
filter bank {p, q(1), q(2)}. Denote

ṽk = c1
k, g̃k = d

(1,1)
k , f̃k = d

(2,1)
k .

Then, the decomposition algorithm can be written as

ṽk = 1
2

∑
k′∈Z2 pk′−Akck′ , g̃k = 1

2

∑
k′∈Z2 q

(1)
k′−Akck′ , f̃k = 1

2

∑
k′∈Z2 q

(2)
k′−Akck′ , k ∈ Z2, (42)

and the reconstruction algorithm with a synthesis filter bank {p̃, q̃(1), q̃(2)} is

ck =
∑

k′∈Z2

{p̃k−Ak′ ṽk′ + q̃
(1)
k−Ak′ g̃k′ + q̃

(2)
k−Ak′ f̃k′}. (43)

Considering ck in (43) with k in two different cases: Aj, Aj + (1, 0), and using the definitions
for vk, fk in (41), we can write the reconstruction algorithm (43) as

vk =
∑

n∈Z2{p̃Anṽk−n + q̃
(1)
Ang̃k−n + q̃

(2)
Anf̃k−n},

fk =
∑

n∈Z2{p̃An+(1,0)ṽk−n + q̃
(1)
An+(1,0)g̃k−n + q̃

(2)
An+(1,0)f̃k−n}.

(44)
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Next we associate both the “approximation” {ṽk}k∈Z2 and the first highpass output g̃k with
type V nodes with labels Ak, and associate the second highpass output f̃k with type F nodes
with labels Ak + (1, 0), see the right picture of Fig. 10 for these three groups of data/vertices. In
this way, we can represent both analysis and synthesis algorithms as templates.

Again when these algorithm templates are used for surface processing, they must have certain
symmetry. The templates to obtain ṽk, g̃k and f̃k by (42), and those to recover vk, fk by (44)
must rotational and reflective invariant.

√
2 frame filter banks with 4-fold symmetry yield the

templates with the desired symmetry.
In the following we provide a characterization of the 4-fold symmetry of

√
2 frame filter banks.

We can use this characterization to check that symmetric templates result in
√

2 frame filter banks
with 4-fold symmetry.

Proposition 2. A
√

2 frame filter bank {p, q(1), q(2)} has 4-fold axial symmetry if and only if its
polyphase matrix V (ω) satisfies

V (J0ω) = diag(1, 1, ei(ω1−ω2))V (ω)diag(1, ei(ω2−ω1)),
V (O1ω) = diag(1, 1, e−iω2)V (ω)diag(1, eiω2),

(45)

where J0, O1 are the matrices defined by (12).

The proof can be carried out similarly to that for the characterization of the 4-fold symmetry
of
√

2 wavelet filters in [22]. The details are omitted here.

Reconstruction Alg. 

v f g~
v~ ~f

Decomposition Alg.

Figure 11:
√

2-refinement decomposition and reconstruction algorithms

From the above discussion, we know a
√

2 decomposition algorithm is to decompose the original
data {v} ∪ {e} into {ṽ}, {g̃} and {ẽ}, and the reconstruction algorithm to recover {v} ∪ {e} from
{ṽ}, {g̃} and {ẽ}, see Fig. 11. For a

√
2 frame multiresolution algorithm, the decomposition

algorithm (reconstruction algorithm resp.) can be represented as three templates (two templates
resp.).

To construct 4-fold symmetric bi-frames, again, we start with symmetric templates of decom-
position and reconstruction algorithms. With the templates and decomposition and reconstruction
algorithms (42)(44), we then obtain the corresponding

√
2 bi-frame filter banks which are given

by some parameters. Then we select the parameters based on sum rule order of the lowpass filters,
the smoothness and vanishing moments of framelets. For a

√
2 lowpass filter p(ω), we say it has

sum rule order K (with A = A1) if it satisfies that p(0, 0) = 1 and

∂α1+α2

∂ωα1
1 ∂ωα2

2

p(ω1, ω2)

∣∣∣∣∣
(ω1,ω2)=(π,π)

= 0, ∀(α1, α2) ∈ Z2
+, α1 + α2 < K.
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3.2 3-step
√

2-refinement bi-frame multiresolution algorithm

v 0f

f1

f2

f3
f 0v"

3v"

1v"

2v"

3
g"

1g"

2g" 0g"

v"

~
f1

~
f 0

~
f 3

~
f 2

Figure 12: Left: Template to obtain v′′, g′′ in Decomposition Alg. Step 1; Middle: Decomposition Alg.
Step 2; Right: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3 (template to obtain first
highpass output g̃ is similar with v′′ replaced by g′′)

In this subsection we discuss a 3-step
√

2 multiresolution algorithm. The decomposition al-
gorithm is to obtain ṽ, g̃ and f̃ with certain rules, and the reconstruction algorithm is to recover
v and e from ṽ, g̃ and f̃ . More precisely, the decomposition algorithm is given by (46)-(48) and
shown in Fig. 12, where b, d, n, a, h, d1, n1 are constants to be determined. Namely, first we re-
place all v associated with type V nodes of AZ2 by v′′, g′′ given by formulas in (46). Then, with
v′′, g′′ obtained, we replace all f associated with type F nodes in Z2\(AZ2) by f̃ given in formula
(47). Finally, based on f̃ obtained in Step 2, all v′′, g′′ in Step 1 are updated by ṽ and g̃ with the
formulas in (48).

3-step
√

2-refinement Decomposition Algorithm:

Step 1.

{
v′′ = 1

b{v − d(f0 + f1 + f2 + f3)},
g′′ = v − n(f0 + f1 + f2 + f3)

(46)

Step 2. f̃ = f − a(v′′0 + v′′1 + v′′2 + v′′3)− h(g′′0 + g′′1 + g′′2 + g′′3) (47)

Step 3.

{
ṽ = v′′ − d1(f̃0 + f̃1 + f̃2 + f̃3),
g̃ = g′′ − n1(f̃0 + f̃1 + f̃2 + f̃3).

(48)

The multiresolution reconstruction algorithm is given by (49)-(51) and shown in Fig. 13,
where b, d, n, a, h, d1, n1 are the same constants in the multiresolution decomposition algorithm
and t ∈ IR. More precisely, first we replace the lowpass output ṽ and the first highpass output g̃
both associated with type V nodes of AZ2 by v′′ and g′′ respectively given by formulas in (49).
After that, with v′′, g′′ obtained, we replace all f̃ by f given in (50). Finally, based on f obtained
in Step 2, all v′′, g′′ in Step 1 are replaced v given by (51).

3-step
√

2-refinement Reconstruction Algorithm:

Step 1.

{
v′′ = ṽ + d1(f̃0 + f̃1 + f̃2 + f̃3),
g′′ = g̃ + n1(f̃0 + f̃1 + f̃2 + f̃3)

(49)

Step 2. f = f̃ + a(v′′0 + v′′1 + v′′2 + v′′3) + h(g′′0 + g′′1 + g′′2 + g′′3) (50)
Step 3. v = t{bv′′ + d(f0 + f1 + f2 + f3)}+ (1− t){g′′ + n(f0 + f1 + f2 + f3)}. (51)

21



~
f1

~
f 0

~
f 3

~
f 2 v~

0v"

3v"

1v"

2v"

3
g"

1g"

2g" 0g"

~
f

g" 0f

f1

f2

f3

v"

Figure 13: Left: Template to obtain v′′ in Reconstruction Alg. Step 1 (template to obtain g′′ is similar
with ṽ replaced by g̃); Middle: Reconstruction Alg. Step 2; Right: Reconstruction Alg. Step 3

To obtain the filters corresponding to this 3-step algorithm, we first consider the case with
d1 = n1 = 0. In this case, the 3-step algorithm is reduced to be a 2-step algorithm with the
analysis algorithm given by (46)(47) (with ṽ = v′′, g̃ = g′′) and the synthesis algorithm given
by (50)(51) (with v′′ = ṽ, g′′ = g̃). With the formulas in (42) and (44), one can obtain the
corresponding filter banks {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} to be

[
p(ω), q(1)(ω), q(2)(ω)

]T
= C1(ATω)C0(ATω)I0(ω),

[
p̃(ω), q̃(1)(ω), q̃(2)(ω)

]T
=

1
2
C̃1(ATω)C̃0(ATω)I0(ω),

where, with x = e−iω1 , y = e−iω2 , C0(ω), C1(ω) and C̃0(ω), C̃1(ω) are given by

C0(ω) =




1
b −db (1 + 1

x )(1 + y)
1 −n(1 + 1

x )(1 + y)
0 1


 , C1(ω) =




1 0 0
0 1 0

−a(1 + x)(1 + 1
y ) −h(1 + x)(1 + 1

y ) 1


 (52)

C̃0(ω) =




tb 0
1− t 0

(td+ (1− t)n)(1 + x)(1 + 1
y ) 1


 , C̃1(ω) =




1 0 a(1 + 1
x )(1 + y)

0 1 h(1 + 1
x )(1 + y)

0 0 1


 . (53)

Observe that the polyphase matrices V (ω) and Ṽ (ω) for {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are√
2C1(ω)C0(ω) and 1√

2
C̃1(ω)C̃0(ω) respectively. One can easily show that C0(ω)∗ C̃0(ω) =

I2, C1(ω)∗ C̃1(ω) = I3,ω ∈ IR2, which implies V (ω)∗ Ṽ (ω) = I2. Thus, {p, q(1), q(2)} and
{p̃, q̃(1), q̃(2)} are indeed biorthogonal. Furthermore, one can easily check that V (ω), Ṽ (ω) satisfy
(45). Thus these two filter banks have 4-fold symmetry.

Solving the system of equations for sum rule order 3 of p̃ and sum rule order 1 of p, we have

b = 2, d = −1
4
, n = a = t =

1
4
.

The resulting p, p̃, q(1) and q̃(2) are

p(ω) =
1
8

(4 + e−iω1 + eiω1 + e−iω2 + eiω2), q(1)(ω) =
1
4

(4− e−iω1 − eiω1 − e−iω2 − eiω2),

p̃(ω) =
1
64

(4 + e−iω1 + eiω1 + e−iω2 + eiω2)2, q̃(2)(ω) =
1
16
e−iω1(8 + e−iω1 + eiω1 + e−iω2 + eiω2),
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while q(2), q̃(1) depend on the remaining parameter h. The resulting p and p̃ are are actually have
sum rule orders 4 and 2 respectively with resulting φ and φ̃ are in W 1.57764 and W 3.91803 respec-
tively. The corresponding q(1), q(2) automatically have vanishing moment order 2. Furthermore,
if h = 3

8 , then q(2) has vanishing moment order 4. In the following we provide q(2), q̃(1) with h = 0
and h = 3

8 . When h = 0,

q(2)(ω) =
1
32
e−iω1(4− e−iω1 − eiω1 − e−iω2 − eiω2)(8 + e−iω1 + eiω1 + e−iω2 + eiω2),

q̃(1)(ω) =
3
8

;

and when h = 3
8 ,

q(2)(ω) =
1
16
e−iω1(4− e−iω1 − eiω1 − e−iω2 − eiω2)2,

q̃(1)(ω)(=
3
2
p̃(ω)) =

3
128

(4 + e−iω1 + eiω1 + e−iω2 + eiω2)2.

Observe that the above resulting q̃(1)(ω), q̃(2)(ω) has no vanishing moment. Solving the system
of equations for sum rule order 1 of p and p̃ and for vanishing moment order 1 of q(`), q̃(`), ` = 1, 2,
we have

b = 2, d = −1
4
, n = a =

1
4
, t = 1.

The resulting φ is in W 1.57764. However, the resulting φ̃ is not in L2(IR2). Thus, to construct
framelets both having vanishing moment, we need to consider algorithms with more iterative
steps.

Next, let us consider the 3-step algorithm. With the formulas in (42) and (44), and the filters
for the 2-step algorithm discussed above, one can obtain that the filter banks {p, q(1), q(2)} and
{p̃, q̃(1), q̃(2)} corresponding to (46)-(51) are

[
p(ω), q(1)(ω), q(2)(ω)

]T
= C2(ATω)C1(ATω)C0(ATω)I00(ω),

[
p̃(ω), q̃(1)(ω), q̃(2)(ω)

]T
=

1
2
C2(ATω)C̃1(ATω)C̃0(ATω)I0(ω),

where C0(ω), C1(ω) and C̃0(ω), C̃1(ω) are defined by (52) and (53) respectively, and

C2(ω) =




1 0 −d1(1 + 1
x)(1 + y)

0 1 −n1(1 + 1
x)(1 + y)

0 0 1


 , (54)

and C̃2(ω) =
(
C2(ω)−1

)∗
:

C̃2(ω) =




1 0 0
0 1 0

d1(1 + x)(1 + 1
y ) n1(1 + x)(1 + 1

y ) 1


 . (55)

Solving the system of equations for sum rule orders 2 and 4 for p and p̃ respectively, and
vanishing moment order 2 for q(`), q̃(`), ` = 1, 2, we have

n =
1
4
, a =

1
4
, d =

1
4
− b

4
, h =

1
12b
− 1

6
, d1 = − 3

16
, t =

1
2b
.
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The resulting p̃ is the filter given below with corresponding φ̃ ∈W 3.91803:

p̃(ω) =
1
64

(4 + e−iω1 + eiω1 + e−iω2 + eiω2)2. (56)

The resulting p depends on b. Furthermore if n1 = 3b
16(2b−1) , then q(1) has vanishing moment order

4. If b = 4
3 , then p has sum rule order 4 with resulting φ ∈ W 1.19688. We can also choose other

b such that φ is smoother. It seems the bigger b is, the smoother φ. For example, if b = 8 then
φ ∈ W 1.57796 and if b = 16, then φ ∈ W 1.70047. Next we provide other filters with the choices of
b = 8, n1(= 3b

16(2b−1)) = 1
10 :

p(ω) =
9

256
(4 + x+ y +

1
x

+
1
y

)
{
− 10

9
+

8
3

(x+ y +
1
x

+
1
y

)

−xy − 1
xy
− x

y
− y

x
− 1

2
(x2 + y2 +

1
x2

+
1
y2

)
}
,

q(1)(ω) =
1

320
{20 + 3(x+ y +

1
x

+
1
y

)}(4− x− y − 1
x
− 1
y

)2,

q(2)(ω) =
x

32
{8 + 3(x+ y +

1
x

+
1
y

)}(4− x− y − 1
x
− 1
y

),

q̃(1)(ω) =
5

512
(12 + x+ y +

1
x

+
1
y

)(4− x− y − 1
x
− 1
y

),

q̃(2)(ω) =
x

256
(8 + x+ y +

1
x

+
1
y

)(4 + x+ y +
1
x

+
1
y

)(4− x− y − 1
x
− 1
y

).

The coefficients of the resulting filters are also provided in Appendix C.

3.3 4-step
√

2-refinement bi-frame multiresolution algorithm

In this subsection, we consider a 4-step
√

2-refinement algorithm. The decomposition algorithm
is given by (57)-(60) and shown in Fig. 14, and the reconstruction algorithm is given by (61)-(64)
and shown in Fig. 15, where b, d, n, a, h, d1, n1, a1, h1, t are some constants.

4-step
√

2-refinement Decomposition Algorithm:

Step 1.

{
v′′ = 1

b{v − d(f0 + f1 + f2 + f3)},
g′′ = v − n(f0 + f1 + f2 + f3)

(57)

Step 2. f ′′ = f − a(v′′0 + v′′1 + v′′2 + v′′3)− h(g′′0 + g′′1 + g′′2 + g′′3) (58)

Step 3.

{
ṽ = v′′ − d1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ),
g̃ = g′′ − n1(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

(59)

Step 4. f̃ = f ′′ − a1(ṽ0 + ṽ1 + ṽ2 + ṽ3)− h1(g̃0 + g̃1 + g̃2 + g̃3). (60)

4-step
√

2-refinement Reconstruction Algorithm:

Step 1. f ′′ = f̃ + a1(ṽ0 + ṽ1 + ṽ2 + ṽ3) + h1(g̃0 + g̃1 + g̃2 + g̃3) (61)

Step 2.

{
v′′ = ṽ + d1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ),
g′′ = g̃ + n1(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

(62)

Step 3. f = f ′′ + a(v′′0 + v′′1 + v′′2 + v′′3) + h(g′′0 + g′′1 + g′′2 + g′′3) (63)
Step 4. v = t{bv′′ + d(f0 + f1 + f2 + f3)}+ (1− t){g′′ + n(f0 + f1 + f2 + f3)}. (64)
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Figure 14: Top-left: Template to obtain v′′, g′′ in Decomposition Alg. Step 1; Top-right: Decomposition
Alg. Step 2; Bottom-left: Template to obtain lowpass output ṽ in Decomposition Alg. Step 3 (template to
obtain first highpass output g̃ is similar with v′′ replaced by g′′); Bottom-right: Decomposition Alg. Step 4

With the formulas in (42) and (44), and the filter banks for the 3-step algorithm obtained in
§3.2, we obtain the filter banks {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} corresponding to the algorithms
(57)-(64):

[
p(ω), q(1)(ω), q(2)(ω)

]T
= C3(ATω)C2(ATω)C1(ATω)C0(ATω)I0(ω),

[
p̃(ω), q̃(1)(ω), q̃(2)(ω)

]T
=

1
2
C̃3(ATω)C̃2(ATω)C̃1(ATω)C̃0(ATω)I0(ω),

where C0(ω), C1(ω), C̃0(ω), C̃1(ω), C2(ω), C̃2(ω) are defined by (52), (53), (54) and (55) respec-
tively, and

C3(ω) =




1 0 0
0 1 0

−a1(1 + x)(1 + 1
y ) −h1(1 + x)(1 + 1

y ) 1


 ,

and C̃3(ω) =
(
C3(ω)−1

)∗
:

C̃3(ω) =




1 0 a1(1 + 1
x )(1 + y)

0 1 h1(1 + 1
x )(1 + y)

0 0 1


 .

For this 4-step algorithm, we can choose the parameters such that both φ and φ̃ are smooth.
For example, if

b = 8, d =
17
20
, n =

1
20
, a =

5
32
, h = − 35

256
, d1 = −1

5
, n1 =

8
65
, a1 =

13
32
, t =

1
8
,
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Figure 15: Top-left: Reconstruction Alg. Step 1; Top-right: Template to obtain v′′ in Reconstruction Alg.
Step 2 (template to obtain g′′ is similar with ṽ replaced by g̃); Bottom-left: Reconstruction Alg. Step 3;
Bottom-right: Reconstruction Alg. Step 4

then both p and p̃ have sum rule order 6, and q(`), q̃(`), ` = 1, 2 have vanishing moment order 2.
The corresponding φ and φ̃ are in W 5.99082 and W 3.07544 respectively. Furthermore, if h1 = 455

768 ,
then q(2) has vanishing moment order 4.

For this 4-step algorithm, we can also choose the parameters such that both q(`), ` = 1, 2, have
vanishing moment order 4, q̃(`), ` = 1, 2, have vanishing moment order 2, and p and p̃ have sum
rule orders of 2 and 4 respectively. But the resulting φ, φ̃ cannot have nice smoothness. Here we
do not provide the selected parameters.

To construct 4-fold symmetric
√

2 framelets with higher smoothness and/or vanishing moment
orders, we need to use algorithms with more iterative steps or templates with bigger sizes.

Appendix A

1. Resulting symmetric frame filter banks for 2-step algorithm in §2.2 with n = 3
10 , j = 0, h =

15
8 , r = 15

16 and other parameters given by (23):

p(ω) =
1

16xy
(1 + x)2(1 + y)2, q(1)(ω) = 1− 3

10
(x+

1
x

+ y +
1
y

) +
1
20

(xy +
1
xy

+
x

y
+
y

x
),

q(2)(ω) =
1
xy

{
3
4

+
1
2

(x+ y +
1
x

+
1
y

)− (xy +
1
xy

+
x

y
+
y

x
)− 1

8
(x2 + y2 +

1
x2

+
1
y2

)

+
1
4

(x2y + xy2 +
1
xy2

+
1
x2y

+
x2

y
+
y2

x
+

x

y2
+

y

x2
)− 1

16
(x2y2 +

1
x2y2

+
x2

y2
+
y2

x2
)
}
,
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q(3)(ω) =
x

64

{
130− 126(x+

1
x

)− 31
2

(y +
1
y

) +
65
2

(xy +
1
xy

+
x

y
+
y

x
) + 33(x2 +

1
x2

)

−31
4

(x2y +
1
x2y

+
x2

y
+

y

x2
)− y2 − 1

y2
− xy2 − 1

xy2
− x

y2
− y2

x

−1
2

(y3 +
1
y3

+ x2y2 +
1

x2y2
+
y2

x2
+
x2

y2
+

x

y3
+
y3

x
+ xy3 +

1
xy3

)− 1
4

(x2y3 +
1

x2y3
+
x2

y3
+
y3

x2
)
}
,

q(4)(ω) = q(3)(ω2, ω1);

p̃(ω) =
1

256x2y2
(1 + x)4(1 + y)4,

q̃(1)(ω) =
15
64

{
11
4

+ 2(x+
1
x

+ y +
1
y

) + xy +
1
xy

+
x

y
+
y

x

+
3
8

(x2 +
1
x2

+ y2 +
1
y2

)− 1
16

(x2y2 +
1

x2y2
+
x2

y2
+
y2

x2
)
}
,

q̃(2)(ω) =
1

4xy
− 1

64
(1 + x2 +

1
y2

+
1

x2y2
), q̃(3)(ω) =

x

4
+

1
16

(1 + x2), q̃(4)(ω) =
y

4
+

1
16

(1 + y2).

2. Resulting symmetric frame filter banks for 2-step algorithm in §2.2 with n = 1
2 , j = h =

r = 0 and other parameters given by (23):

p(ω) =
1

16xy
(1 + x)2(1 + y)2, q(1)(ω) =

1
4xy

(1− x)2(1− y)2,

q(2)(ω) =
1
xy

{
15
16
− 1

16
(x+ y +

1
x

+
1
y

+ xy +
1
xy

+
x

y
+
y

x
)− 1

64
(x2y2 +

1
x2y2

+
x2

y2
+
y2

x2
)

− 1
32

(x2 + y2 +
1
x2

+
1
y2

+ x2y + xy2 +
1
x2y

+
1
xy2

+
x2

y
+

y

x2
+

x

y2
+
y2

x
)
}
,

q(3)(ω) =
x

64

{
58− 6(x+

1
x

)− 7
2

(y +
1
y

+ xy +
1
xy

+
x

y
+
y

x
)− 3(x2 +

1
x2

)

−(y2 +
1
y2

+ xy2 +
1
xy2

+
x

y2
+
y2

x
)− 7

4
(x2y +

1
x2y

+
x2

y
+

y

x2
)

−1
2

(x2y2 +
1

x2y2
+
x2

y2
+
y2

x2
+ y3 +

1
y3

+ xy3 +
1
xy3

+
x

y3
+
y3

x
)− 1

4
(x2y3 +

1
x2y3

+
x2

y3
+
y3

x2
)
}
,

q(4)(ω) = q(3)(ω2, ω1);

p̃(ω) =
1
64

(1 + x)2(1 + y)2(
1
x

+
1
y

)(1 +
1
xy

), q̃(1)(ω) =
1
4
, q̃(2)(ω) =

1
4xy
− 1

16
(1 +

1
x2

+
1
y2

+
1

x2y2
),

q̃(3)(ω) =
x

4
+

1
8

(1 + x2), q̃(4)(ω) =
y

4
+

1
8

(1 + y2).

27



Appendix B

Coefficients of 4-fold symmetric frame filter banks in §2.2 with φ ∈ W 1.25492 and φ̃ being C2

box-spline:




p−3,−3 · · · p−3,3

...
...

...
· · · p0,0 · · ·
...

...
...

p3,−3 · · · p3,3




= 1
96




− 11
4

7
4 − 19

4 −11 − 19
4

7
4 − 11

4
7
4 −8 − 37

4 4 − 37
4 −8 7

4
− 19

4 − 37
4

145
4 74 145

4 − 37
4 − 19

4
−11 4 74 112 74 4 −11
− 19

4 − 37
4

145
4 74 145

4 − 37
4 − 19

4
7
4 −8 − 37

4 4 − 37
4 −8 7

4
− 11

4
7
4 − 19

4 −11 − 19
4

7
4 − 11

4




,



q

(1)
−1,−1 q

(1)
−1,0 q

(1)
−1,1

q
(1)
0,−1 q(1)

0,0 q
(1)
0,1

q
(1)
1,−1 q

(1)
1,0 q

(1)
1,1


 =




1 −2 1
−2 4 −2
1 −2 1


 ,




q
(2)
−3,−3 · · · q

(2)
−3,1

. . . . . . . . .

· · · q(2)
−1,−1 · · ·

. . . . . . . . .

q
(2)
1,−3 · · · q

(2)
1,1




= − 5
48




1 1 2 1 1
1 8

5 2 8
5 1

2 2 −172
5 2 2

1 8
5 2 8

5 1
1 1 2 1 1



,




q
(3)
−2,−3 · · · q

(3)
−2,3

...
...

...
· · · q(3)

1,0 · · ·
...

...
...

q
(3)
4,−3 · · · q

(3)
4,3




= 1
192




0 0 0 0 0 0 0
−11 7 −5 −102 −5 7 −11

7 −32 −95 96 −95 −32 7
−22 14 −10 564 −10 14 −22

7 −32 −95 96 −95 −32 7
−11 7 −5 −102 −5 7 −11

0 0 0 0 0 0 0




,

q
(4)
k1,k2

= q
(3)
k2,k1

, (k1, k2) ∈ Z2;

and 


p̃−2,−2 · · · p̃−2,2

. . . . . . . . .
· · · p̃0,0 · · ·
. . . . . . . . .
p̃2,−2 · · · p̃2,2




= 1
16




0 1 2 1 0
1 4 6 4 1
2 6 8 6 2
1 4 6 4 1
0 1 2 1 0



,




q̃
(1)
−2,−2 · · · q̃

(1)
−2,2

. . . . . . . . .

· · · q(1)
0,0 · · ·

. . . . . . . . .

q̃
(1)
2,−2 · · · q̃

(1)
2,2




= 1
32




1 1 −2 1 1
1 0 −6 0 1
−2 −6 20 −6 −2
1 0 −6 0 1
1 1 −2 1 1



,
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q̃

(2)
−2,−2 q̃

(2)
−2,−1 q̃

(2)
−2,0

q̃
(2)
−1,−2 q̃(2)

−1,−1 q̃
(2)
−1,0

q̃
(2)
0,−2 q̃

(2)
0,−1 q̃

(2)
0,0


 = 1

4



−1 0 −1
0 4 0
−1 0 −1


 ,




q̃
(3)
−2,−3 · · · q̃

(3)
−2,3

...
...

...
· · · q̃(3)

1,0 · · ·
...

...
...

q̃
(3)
4,−3 · · · q̃

(3)
4,3




= − 1
32




0 0 1
2 1 1

2 0 0
0 1

2 2 3 2 1
2 0

0 1 7
2 −11 7

2 1 0
0 1 4 −26 4 1 0
0 1 7

2 −11 7
2 1 0

0 1
2 2 3 2 1

2 0
0 0 1

2 1 1
2 0 0




,

q̃
(4)
k1,k2

= q̃
(3)
k2,k1

, (k1, k2) ∈ Z2.

Appendix C

Coefficients of 4-fold symmetric
√

2 frame filter banks in §3.2 with φ ∈W 1.57796 and φ̃ ∈W 3.91803:




p−3,−3 · · · p−3,3

...
...

...
· · · p0,0 · · ·
...

...
...

p3,−3 · · · p3,3




= 1
256




0 0 0 −9 0 0 0
0 0 −27 12 −27 0 0
0 −27 24 127 24 −27 0
−9 12 127 112 127 12 −9
0 −27 24 127 24 −27 0
0 0 −27 12 −27 0 0
0 0 0 −9 0 0 0




,




q
(1)
−3,−3 · · · q

(1)
−3,3

...
...

...
· · · q(1)

0,0 · · ·
...

...
...

q
(1)
3,−3 · · · q

(1)
3,3




= 1
160




0 0 0 3 0 0 0
0 0 9 −4 9 0 0
0 9 −8 −85 −8 9 0
3 −4 −85 304 −85 −4 3
0 9 −8 −85 −8 9 0
0 0 9 −4 9 0 0
0 0 0 3 0 0 0




,




q
(2)
−1,−2 · · · q

(2)
−1,2

. . . . . . . . .

· · · q(2)
1,0 · · ·

. . . . . . . . .

q
(2)
3,−2 · · · q

(2)
3,2




= 1
16




0 0 −3 0 0
0 −6 4 −6 0
−3 4 20 4 −3
0 −6 4 −6 0
0 0 −3 0 0



,

and 


p̃−2,−2 · · · p̃−2,2

. . . . . . . . .
· · · p̃0,0 · · ·
. . . . . . . . .
p̃2,−2 · · · p̃2,2




= 1
32




0 0 1 0 0
0 2 8 2 0
1 8 20 8 1
0 2 8 2 0
0 0 1 0 0



,




q̃
(1)
−2,−2 · · · q̃

(1)
−2,2

. . . . . . . . .

· · · q(1)
0,0 · · ·

. . . . . . . . .

q̃
(1)
2,−2 · · · q̃

(1)
2,2




= − 5
256




0 0 1 0 0
0 2 8 2 0
1 8 −44 8 1
0 2 8 2 0
0 0 1 0 0



,
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q̃
(2)
−2,−3 · · · q̃

(2)
−2,3

...
...

...
· · · q̃(2)

1,0 · · ·
...

...
...

q̃
(2)
4,−3 · · · q̃

(2)
4,3




= − 1
128




0 0 0 1 0 0 0
0 0 3 8 3 0 0
0 3 16 −7 16 3 0
1 8 −7 −96 −7 8 1
0 3 16 −7 16 3 0
0 0 3 8 3 0 0
0 0 0 1 0 0 0




.
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[3] C. de Boor, K. Höllig, and S.D. Riemenschneider, Box Splines, Springer-Verlag, New York,
1993.

[4] E. Catmull and J. Clark, Recursively generated B-spline surfaced on arbitrary topological
meshes, Comput. Aided Design, 10 (1978), 350–355.
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