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Abstract

This paper is to construct tight wavelet frame systems containing a set of canonical filters by
applying the unitary extension principle of [20]. A set of filters are canonical if the filters in this set
are generated by flipping, adding a conjugation with a proper sign adjusting from one filter. The
simplest way to construct wavelets of s-variables is to use the 2s−1 canonical filters generated by the
refinement mask of a box spline. However, almost all wavelets (except Haar or the tensor product of
Haar) defined by the canonical filters associated with box splines do not form a tight wavelet frame
system. We consider how to build a filter bank by adding filters to a canonical filter set generated
from the refinement mask of a box spline in low dimension, so that the wavelet system generated by
this filter bank forms a tight frame system. We first prove that for a given low dimension box spline
of s-variables, one needs at least additional 2s filters to be added to the canonical filters from the
refinement mask (that leads to the total number of highpass filters in the filter bank to be 2s+1−1) to
have a tight wavelet frame system. We then provide several methods with many interesting examples
of constructing tight wavelet systems with the minimal number of framelets that contain canonical
filters generated by the refinement masks of box splines. The supports of the resulting framelets are
not bigger than that of the corresponding box spline whose refinement mask is used to generate the
first 2s − 1 canonical filters in the filter bank. In many of our examples, the tight frame filter bank
has the double-canonical property, meaning it is generated by adding another set of canonical filters
generated from a highpass filter to the canonical filters generated by the refinement mask to make a
tight frame system.

Key words and phrases: Wavelet tight frame, symmetry, B-spline, box spline, canonical filters,
semi-canonical tight frame filter bank, double-canonical tight frame filter bank.

1 Introduction

This paper is on the construction of wavelet tight frame systems with canonical filters in low dimension
by applying the unitary extension principle (UEP) of [20]. As a consequence, we can extend some
wavelet Riesz basis systems derived from splines in [11, 12, 13] to wavelet tight frame systems by adding
a few new frame generators (framelets). This improves the conditional number of spline wavelet Riesz
systems to one and changes a Riesz system to a self dual tight frame system. As indicated by applications
in image restorations, the redundancy introduced by changing a Riesz system to a tight frame system
is desirable in many applications (see e.g. [9, 23] for details).

1



Recall that a set X = {gj : j ∈ Z} ⊂ L2(Rs) is called a frame of L2(Rs) if

A‖f‖2L2(Rs) ≤
∑
j∈Z
|〈f, gj〉|2 ≤ B‖f‖2L2(Rs), ∀f ∈ L2(Rs),

where 〈·, ·〉 is the inner product of L2(Rs). We call X a tight frame if it is a frame with A = B = 1. If
for some functions ψ(`), 1 ≤ ` ≤ L on Rs, X(Ψ) = {2j/2ψ(`)(2j · −k) : j ∈ Z, k ∈ Zs, 1 ≤ ` ≤ L} is a
frame of L2(Rs), then X(Ψ) is called a wavelet frame (or an affine frame) and ψ(`), 1 ≤ ` ≤ L are called
framelets or frame generators. Wavelet frames have been studied in many articles, see e.g. [5, 6, 20, 21]
for theories of frames, and wavelet frames, especially, frames generated by extension principles. We
also refer [23] for a short survey on the wavelet tight frame theory and applications, and [9] for a more
detailed note. Comparing to the (bi)orthogonal wavelets, redundant systems like wavelet frames, give a
flexibility in image restorations and are more desirable in various applications in image process (see e.g.
[3, 9, 23]). Some new applications of tight wavelet frames can be also found in [14, 24]. Furthermore,
the connections of wavelet frame based, especially spline tight wavelet frames based, approach for image
restoration to PDE based methods are established in [1] for the total variational method and extension,
in [7] for the nonlinear diffusion partial differential equation based methods, and in [2] for variational
models on the space of piecewise smooth functions.

To apply the unitary extension principle of [20] to construct wavelet tight frame system, we start
with the concept of a refinable function. Let p = {pk}k∈Zs be a sequence of real numbers pk with∑

k pk = 2s. A distribution φ on Rs is called a refinable function (distribution) associated with p if φ
satisfies the refinement equation

φ(x) = 2s
∑
k∈Zs

pkφ(2x− k), x ∈ Rs.

In the Fourier domain, the above refinement equation can be written as

φ̂(ω) = p(
ω

2
)φ̂(

ω

2
), ω ∈ Rs,

where
p(ω) =

∑
k∈Zs

pke
−ikω, ω ∈ Rs,

with kω =
∑s

j=1 kjωj denoting the dot product of k and ω. p and p(ω) are called the refinement mask
and the two-scale symbol of φ. p(ω) is also called a lowpass filter. When p = {pk}k∈Zs has finitely many
of pk nonzero, we say p to have a compact support and call p(ω) a finite impulse response (FIR) filter.

The UEP in [20] says that if p, q(1), · · · , q(L) satisfy, with q(0) = p,

L∑
`=0

q(`)(ω) q(`)(ω + πηk) = δ(k), 0 ≤ k < 2s, ω ∈ Rs, (1.1)

where δ is the Delta sequence and {ηk, 0 ≤ k < 2s} is a representation of Zs/(2Zs), then X(Ψ) with
ψ(`), 1 ≤ ` ≤ L, defined by ψ̂(`)(ω) = q(`)(ω2 )φ̂(ω2 ), is a tight frame of L2(Rs), provided that the refinable

function φ associated with p has certain smoothness. If {p, q(1), · · · , q(L)} satisfies (1.1), then we call it
a tight frame filter bank.

In the univariate case, i.e. s = 1, for an FIR filter p(ω), let q(1)(ω) be the FIR filter defined by

q(1)(ω) = e−iωp(ω + π), ω ∈ R. (1.2)
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Then
p(ω) q(1)(ω) + p(ω + π) q(1)(ω + π) = 0, ω ∈ R, (1.3)

and it is well known that ψ(1) defined by

ψ̂(1)(ω) = q(1)(
ω

2
)φ̂(

ω

2
)

is an orthonormal wavelet for L2(R) provided that the integer shifts of the refinable function φ associated
with p form an orthonormal system.

For s = 2 or 3, let {ηk : 0 ≤ k < 2s} with η0 = 0, be a representation of Zs/(2Zs), and let ρ be a
map: Zs/(2Zs)→ Zs/(2Zs) such that

ρ(0) = 0 and
(
ρ(η1) + ρ(η2)

)
(η1 + η2) is odd for any η1 6= η2, η1, η2 ∈ Zs/(2Zs). (1.4)

Such a map ρ was defined in [18, 19] and will be given again in the next section. With this map and
suppose that p is symmetric around c (which must be in 1

2Z
s), that is,

p(ω)
(

= p(−ω)
)

= ei2cωp(ω),

define

q(`)(ω) =

{
eiρ(η`)ωp(ω + πη`), if 2cη` is even;

eiρ(η`)ωp(ω + πη`), if 2cη` is odd,
(1.5)

for 1 ≤ ` < 2s. Let φ be the refinable function associated with p, and ψ(`), 1 ≤ ` < 2s, be the functions
defined by

ψ̂(`)(ω) = q(`)(
ω

2
)φ̂(

ω

2
), 1 ≤ ` < 2s. (1.6)

Applying the UEP of [20], one can prove that if p(ω) is a QMF, i.e.,
∑

0≤k<2s |p(ω+πηk)|2 = 1, ω ∈ Rs,
and symmetric for s = 2, 3, then the wavelet system X(Ψ) = {2j/2ψ(`)(2j · −k) : j ∈ Z, k ∈ Zs, 1 ≤ ` <
2s} forms a tight frame of L2(Rs). This result is still valid, when φ and p do not have finite supports.
Furthermore, if φ and its shifts form an orthonormal system, then X(Ψ) is an orthonormal basis of
L2(Rs) (see e.g. [18, 19, 20]).

It is well known that in order to apply the UEP to derive wavelet tight frame from a given refinable
function, the corresponding refinement mask must satisfy∑

0≤k<2s

|p(ω + πηk)|2 ≤ 1, ω ∈ Rs. (1.7)

For many good refinable functions φ such as B-splines and box splines, their refinement masks are not
QMFs but do satisfy this inequality. We assume that the refinement masks considered in this paper
always satisfy (1.7) and they are not a QMF.

For a refinable spline φ, the wavelets ψ(`) defined by (1.6) with q(`) given by (1.5) have been used in
several applications, due to the fact that many refinable splines have nice properties including symmetry,
high order of smoothness, good approximation orders and short supports. Furthermore, wavelet masks
q(`) are directly related to the refinement mask p. For example, φ = B222 (the C2 3-directional box
spline) and the related ψ(`) defined by (1.6) have been used in surface multiresolution processing in
[16]. For the case s = 2, when q(`), ` = 1, 2, 3 are used for hexagonal image multiresolution processing,
q(`), ` = 1, 2, 3 are the ideal highpass filters to separate high frequency components of an image in 3
different directions of the hexagonal array (see [15]) and they were called the idealized highpass filters
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associated with p. Here, for a given filter p, we call the filters defined by (1.2) for s = 1 and by (1.5)
for s = 2, 3 the canonical filters (associated with p).

For a given refinable function φ with the refinement mask p, let ψ(`) be defined by the canonical
highpass filters q(`) in (1.2)/(1.5), it is not clear whether the wavelet system X(Ψ) forms an orthonormal
basis, or a Riesz basis or a frame of L2(Rs) in general. As shown in an example given in [10], the wavelet
system X(Ψ) may not form Riesz basis of L2(Rs), even when φ and its integer shifts form a Riesz basis.
However, when φ is a spline, this problem is carefully studied in [12, 13] and most recently in [11]. It
was shown in [12], for an arbitrary given refinable univariate B-spline φ with the refinement mask p , let
the wavelet ψ be defined by the mask q given in (1.2), then the wavelet system X(ψ) form a Riesz basis
in L2(R). For a given box spline φ in bivariate or trivariate with the refinement mask p, ψ(`), 1 ≤ ` < 2s

defined by (1.6) do generate a Riesz basis of L2(Rs), namely, X(Ψ) is a Riesz basis of L2(Rs) in many
cases. In addition, the Sobolev Riesz basis property of X(Ψ) for s = 1, 2, 3 have also been studied in
[11, 13].

This paper is to consider the following problems: for a given (non-orthogonal) φ on Rs with the
refinement mask p, whose shifts may not necessary form a Riesz basis, with p being symmetric for
s = 2, 3, let ψ(`) be defined by the canonical highpass filters q(`) in (1.2)/(1.5), is it possible to add
wavelets (conventionally called wavelet framelets) given by some FIR filters q(`), ` = 2s, 2s+1, · · · into the
system so that it can form a tight wavelet frame in L2(Rs) by applying UEP, and what is the minimum
number of wavelets which are needed to add and how? We say a frame filter bank {p, q(1), · · · , q(L)}
(with L ≥ 2s) a semi-canonical frame filter bank if the first 2s − 1 highpass filters q(1), · · · , q(2s−1) are
given by (1.2) for s = 1 and by (1.5) for s = 2, 3. We say the corresponding frame system to be a
semi-canonical frame system.

We will show that for 1 ≤ s ≤ 3, if {p, q(1), · · · , q(L)} of s-variable FIR filters with a symmetric FIR
lowpass filter p for s = 2, 3 is a semi-canonical tight frame filter bank, then it has at least 2s+1 − 1
highpass filters (including the canonical highpass filters), namely L ≥ 2s+1−1. This coincides the result
in [15] for the case that s = 2 and p has the symmetric center c = (0, 0). We will also consider the
construction of semi-canonical tight frame filter banks with exact 2s+1 − 1 highpass filters. In the case
s = 1, for an FIR filter p satisfying (1.7), there always exists an FIR filter q(2) such that with q(1) given
by (1.2) and with q(3) defined by

q(3)(ω) = e−iωq(2)(ω + π), (1.8)

{p, q(1), q(2), q(3)} is a semi-canonical frame filter bank associated with p with the minimal number of
highpass filters. Such a filter bank will be called a double-canonical tight frame filter bank since q(3)

is generated by q(2) as the canonical filter associated with q(2). For s = 2, 3, two sets of constructive
conditions for the existences of semi-canonical frame filter banks with exact 2s+1 − 1 highpass filters
are provided. One set of the constructive conditions lead to double-canonical frame filter banks in the
sense that the last 2s − 1 highpass filters q(`), 2s < ` ≤ 2s+1 − 1 are given in terms of q(2

s) by a similar
formula to (1.5):

q(2
s+k)(ω) = e±iρ(ηk)ωq(2

s)(ω + πηk), or

q(2
s+k)(ω) = e±iρ(ηk)ωq(2s)(ω + πηk),

k = 1, · · · , 2s − 1. (1.9)

2 Semi-canonical tight frames

In this section, we show that for a given FIR lowpass filter p of s-variables which satisfies (1.7), one
needs at least additional 2s filters to be added to the canonical filters generated by p to have a tight
frame filter bank. Thus a semi-canonical tight frame filter bank has at least 2s+1 − 1 highpass filters.
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First, let us look at the map ρ from Zs/(2Zs)→ Zs/(2Zs) which satisfies (1.4). We may choose ηk
and ρ(ηk) as follows: for s = 2,

η0 = (0, 0), η1 = (1, 0), η2 = (1, 1), η3 = (0, 1);

ρ(η0) = (0, 0), ρ(η1) = (1, 1), ρ(η2) = (1, 0), ρ(η3) = (0, 1);
(2.1)

and for s = 3,

η0 = (0, 0, 0), η1 = (1, 0, 0), η2 = (1, 1, 0), η3 = (0, 1, 0),

η4 = (0, 0, 1), η5 = (1, 0, 1), η6 = (1, 1, 1), η7 = (0, 1, 1);

ρ(η0) = (0, 0, 0), ρ(η1) = (1, 1, 0), ρ(η2) = (1, 0, 0), ρ(η3) = (0, 1, 1),

ρ(η4) = (1, 0, 1), ρ(η5) = (0, 0, 1), ρ(η6) = (1, 1, 1), ρ(η7) = (0, 1, 0).

(2.2)

Note that there is no such a map ρ for the case s > 3. See the detailed discussions in [18].
For s = 2, 3, suppose the scaling function φ(x) on Rs is symmetric around c ∈ Rs. Then the lowpass

filter p is symmetric around c and as shown in [19], c must be in 1
2Z

s. By making suitable integer shifts
for p (and φ), we may assume c = (c1, · · · , cs) with cj = 0 or cj = 1

2 . The following fundamental result
for the construction of low-dimensional symmetric orthogonal wavelets was established in [19].

Theorem 2.1. [19] For a symmetric p(ω), ω ∈ Rs with s = 2 or s = 3, let q(`)(ω), 1 ≤ ` < 2s, be the
canonical filters defined by (1.5). Then, with q(0) = p,

2s−1∑
k=0

q(`)(ω + πηk) q
(`′)(ω + πηk) = 0, for any ` 6= `′, 0 ≤ `, `′ < 2s, ω ∈ Rs. (2.3)

In this paper, for s = 2, 3, we will use the canonical highpass filter q(`), 1 ≤ ` < 2s, defined by

q(`)(ω) =

{
eiρ(η`)ωp(ω + πη`), if 2cη` is even;

e−iρ(η`)ωp(ω + πη`), if 2cη` is odd.
(2.4)

Observe that the only difference between the definitions of the canonical highpass filters given by (1.5)
and (2.4) is the factor e−iρ(η`)ω for such ` that 2cη` is odd. Since e−i2ρ(η`)(ω+πηk) = e−i2ρ(η`)ω for any
0 ≤ k < 2s, q(`)(ω), 1 ≤ ` < 2s, defined by (2.4), also satisfy (2.3).

Remark 2.1. For s = 2, 3, let q(`), 1 ≤ ` < 2s be the canonical highpass defined by (2.4). By following
the proof of Theorem 2.1 in [19], one can show that if p(ω) is antisymmetric, then (2.3) still holds. �

Let h(ω), ω ∈ Rs be an FIR filter, a trigonometric polynomial of s-variables. Write

h(ω) = 2−s/2
2s−1∑
k=0

e−iηkωhk(2ω), (2.5)

where h0(ω), · · · , h2s−1(ω) are trigonometric polynomials, and we call them polyphase filters associated
with h(ω). For an FIR filter bank {p(ω), q(1)(ω), · · · , q(L)(ω)}, with q(0) = p, let Mq(0),··· ,q(L)(ω) be its
modulation matrix (of the size L× 2s) defined by

Mq(0),··· ,q(L)(ω) =
[
q(`)(ω + πηj)

]
1≤`≤L, 0≤j<2s

=


q(0)(ω) q(0)(ω + πη1) · · · q(0)(ω + πη2s−1)

q(1)(ω) q(1)(ω + πη1) · · · q(1)(ω + πη2s−1)
...

...
...

...

q(L)(ω) q(L)(ω + πη1) · · · q(L)(ω + πη2s−1)

 . (2.6)
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Let q
(`)
0 (ω), · · · , q(`)2s−1(ω) be the polyphase filters associated with q(`)(ω). Then Mq(0),··· ,q(L) can be

written as
Mq(0),··· ,q(L)(ω) = Wq(0),··· ,q(L)(2ω)U(ω),

where
U(ω) = 2−s/2

[
e−iηk(ω+πηj)

]
0≤k<2s, 0≤j<2s

,

and

Wq(0),··· ,q(L)(ω) =
[
q
(`)
k (ω)

]
1≤`≤L, 0≤j<2s

=


q
(0)
0 (ω) q

(0)
1 (ω) · · · q

(0)
2s−1(ω)

q
(1)
0 (ω) q

(1)
1 (ω) · · · q

(1)
2s−1(ω)

...
...

...
...

q
(L)
0 (ω) q

(L)
1 (ω) · · · q

(L)
2s−1(ω)

 . (2.7)

The matrix Wq(0),··· ,q(L)(ω) is called the polyphase matrix of {q(0)(ω), · · · , q(L)(ω)}.
Observe that {p(ω), q(1)(ω), · · · , q(L)(ω)} is a tight frame filter bank, that is, its filters satisfy (1.1),

if and only if its modulation matrix Mq(0),··· ,q(L) satisfies

Mq(0),··· ,q(L)(ω)∗ Mq(0),··· ,q(L)(ω) = I2s , ω ∈ Rs.

This, together with the fact that U(ω) is a unitary matrix, leads to that {p(ω), q(1)(ω), · · · , q(L)(ω)} is
a tight frame filter bank if and only if its polyphase matrix Wq(0),··· ,q(L)(ω) satisfies

Wq(0),··· ,q(L)(ω)∗ Wq(0),··· ,q(L)(ω) = I2s , ω ∈ Rs. (2.8)

As mentioning in the introduction, throughout this paper, we assume the lowpass filter p always
satisfies (1.7). This condition holds for the refinement mask p of B-splines and 2-D and 3-D box splines
with high symmetry as shown in [13] and [11]. Next we show that a semi-canonical tight frame filter
bank has at least 2s+1 − 1 highpass filters.

Theorem 2.2. Let p be an FIR lowpass filter of s-variables. Suppose p satisfies (1.7) and it is not
a QMF. In addition, p is symmetric around c for s = 2, 3. If {p(ω), q(1)(ω), · · · , q(L)(ω)} is a semi-
canonical FIR tight frame filter bank with the first 2s − 1 highpass filters q(1)(ω), · · · , q2s−1(ω) defined
by (1.2)/ (2.4), then L ≥ 2s+1 − 1.

From Theorem 2.2, we know that a semi-canonical tight frame filter bank has at least 3, 7, 15
highpass filters for the 1-D, 2-D and 3-D cases, respectively.

Proof of Theorem 2.2 Let Wq(0),··· ,q(2s−1)(ω) (with q(0) = p) and Wq(2
s),··· ,q(L)(ω) be the polyphase

matrices of {q(0), · · · , q(2s−1)} and {q(2s), · · · , q(L)}, respectively, as defined by (2.7). LetMq(0),··· ,q(2s−1)(ω)

be the modulation matrix of {q(0), · · · , q(2s−1)} as defined by (2.6). Then (1.3) and (2.3) lead to that

Mq(0),··· ,q(2s−1)(ω) Mq(0),··· ,q(2s−1)(ω)∗ =
( ∑
0≤k<2s

∣∣p(ω + πηk)
∣∣2)I2s , ω ∈ Rs.
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Since
∑

0≤k<2s

∣∣p(ω + πηk)
∣∣2 is an analytic function of ω, it is not zero for a.e ω ∈ Rs. Thus

Mq(0),··· ,q(2s−1)(ω) is nonsingular for a.e ω ∈ Rs. Therefore, we have from the above equation that

Mq(0),··· ,q(2s−1)(ω)∗ Mq(0),··· ,q(2s−1)(ω) =
( ∑
0≤k<2s

∣∣p(ω + πηk)
∣∣2)I2s , ω ∈ Rs.

This and Mq(0),··· ,q(2s−1)(ω) = Wq(0),··· ,q(2s−1)(2ω)U(ω) imply

Wq(0),··· ,q(2s−1)(2ω)∗ Wq(0),··· ,q(2s−1)(2ω) =
( ∑
0≤k<2s

∣∣p(ω + πηk)
∣∣2)I2s , ω ∈ Rs.

In addition, by (2.8), that is,[Wq(0),··· ,q(2s−1)(ω)

Wq(2
s),··· ,q(L)(ω)

]∗ [Wq(0),··· ,q(2s−1)(ω)

Wq(2
s),··· ,q(L)(ω)

]
= I2s , ω ∈ Rs,

we have

Wq(0),··· ,q(2s−1)(ω)∗ Wq(0),··· ,q(2s−1)(ω) +Wq(2
s),··· ,q(L)(ω)∗ Wq(2

s),··· ,q(L)(ω)∗ = I2s , ω ∈ Rs.

Thus,

Wq(2
s),··· ,q(L)(2ω)∗ Wq(2

s),··· ,q(L)(2ω) =
(
1−

∑
0≤k<2s

∣∣p(ω + πηk)
∣∣2)I2s , ω ∈ Rs. (2.9)

Since p is not a QMF,

rank
(
Wq(2

s),··· ,q(L)(ω)
)

= rank
(
Wq(2

s),··· ,q(L)(ω)∗ Wq(2
s),··· ,q(L)(ω)

)
= 2s, a.e. ω ∈ Rs.

Therefore,
L− 2s + 1 = #of rows of Wq(2

s),··· ,q(L) ≥ rank
(
Wq(2

s),··· ,q(L)

)
= 2s,

or L ≥ 2s+1 − 1, as desired. �

Remark 2.2. Note that there is no restriction on s in the proof of Theorem 2.2. Thus Theorem 2.2
would hold for s > 3 if there are q(1), · · · , q(2s−1) such that (2.3) holds. �

3 Construction of minimal semi-canonical tight frame filter banks

In this section we consider the construction of semi-canonical tight frame filter banks with the mini-
mal number of highpass filters. That is for a given p which is symmetric for s = 2, 3, we construct
q(2

s), · · · , q(2s+1−1) such that {p, q(1), · · · , q(2s+1−1)} is a tight frame filter bank with the first 2s−1 high-
pass filters q(1), · · · , q(2s−1) being the canonical highpass filters given by (1.2)/(2.4). We also consider
the construction of semi-canonical tight frame filter banks with double-canonical property. Recall that
we say a tight frame filter bank {p, q(1), · · · , q(2s+1−1)} to be double-canonical if the first 2s−1 highpass
filters q(1), · · · , q(2s−1) are given by (1.2)/(2.4) and the last 2s − 1 highpass filters q(2

s+1), · · · , q(2s+1−1)

are generated from a highpass filter q(2
s) by (1.8)/(1.9). Note that a double-canonical tight frame filter

bank is a semi-canonical tight frame filter bank with the minimal number of highpass filters.

To construct semi-canonical tight frame filter banks with the minimal number of highpass filters,
we need only to construct such q(2

s), · · · , q(2s+1−1) that their polyphase matrix satisfies (2.9) (with
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L = 2s+1 − 1). In other words, the main point is to find 2s × 2s matrix W (ω) of trigonometric
polynomials such that

W (2ω)∗ W (2ω) =
(
1−

∑
0≤k<2s

∣∣p(ω + πηk)
∣∣2)I2s , ω ∈ Rs. (3.1)

In case we find such a W (ω), then q(2
s), q(2

s+1), · · · , q(2s+1−1), defined by
q(2

s)(ω)

q(2
s+1)(ω)

...

q(2
s+1−1)(ω)

 = 2−s/2W (2ω)


e−iη0ω

e−iη1ω

...
e−iη2s−1ω

 , (3.2)

together with p, q(1), q(2), · · · , q(2s−1), form a semi-canonical tight frame filter bank with the minimal
number of highpass filters. In the first subsection of this section we will provide a constructive method
to construct q(2

s), · · · , q(2s+1−1) for the cases s = 1, s = 2 and s = 3. In the second subsection, we
present a constructive method to construct symmetric double-canonical tight frame filter banks. We
will present the highpass filters obtained by our approaches for the lowpass filters to be the two-scale
symbols of the B-spline and box splines.

Let {vj}nj=1 ⊂ Zs be a set of vectors in Zs (s = 2 or s = 3) with multiplicity mj for each vj . Denote

v = b
n∑
j=1

mjvj/2c,

where for x ∈ R, bxc denotes the largest integer not greater than x, and for u = (u1, · · · , us) ∈ Zs, bu/2c
denotes (bu1/2c, · · · , bus/2c) ∈ Zs. The (centralized) box spline φ associated with {vj}nj=1 is given by

φ̂(ω) =
n∏
j=1

(1− e−ivjω

ivjω

)mj

eivω.

φ is refinable with the two-scale symbol given by

p(ω) =
n∏
j=1

(1 + e−ivjω

2

)mj

eivω.

For s = 2, we let Bm1m2m3 denote the 3-directional box spline of

v1 = [1, 0], v2 = [0, 1], v3 = [1, 1]

with multiplicity mj for vj . The two-scale symbol of Bm1m2m3 is

p(ω) =
(1 + e−iω1

2

)m1
(1 + e−iω2

2

)m2
(1 + e−i(ω1+ω2)

2

)m3ei(b
m1+m3

2
cω1+bm2+m3

2
cω2).

We use Bm1m2m3m4 to denote the 4-directional box spline of

v1 = [1, 0], v2 = [0, 1], v3 = [1, 1], v4 = [1,−1]
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with multiplicity mj for vj . The two-scale symbol of Bm1m2m3m4 is

p(ω) =(1 + e−iω1

2

)m1
(1 + e−iω2

2

)m2
(1 + e−i(ω1+ω2)

2

)m3
(1 + e−i(ω1−ω2)

2

)m3ei(b
m1+m3+m4

2
cω1+bm2+m3−m4

2
cω2).

Before we move on to the first subsection, we first show that for an FIR filter bank p(ω), R(ω)
defined by

R(ω) = 1−
∑

0≤k<2s

∣∣p(ω
2

+ πηk)
∣∣2,

is a trigonometric polynomial though p(ω2 + πηk) may not. Indeed, let p0(ω), · · · , p2s−1(ω) be the
polyphase filters associated with p(ω) defined by (2.5). With[

p(ω2 ) p(ω2 + πη1) · · · p(ω2 + πη2s−1)
]

=
[
p0(ω) p1(ω) · · · p2s−1(ω)

]
U(
ω

2
)

and the unitariness of U(ω2 ), we have∑
0≤k<2s

∣∣p(ω
2

+ πηk)
∣∣2 =

∑
0≤k<2s

∣∣pk(ω)
∣∣2.

Thus R(ω) is a trigonometric polynomial.

3.1 Semi-canonical tight frame filter banks

In this subsection we consider the construction of semi-canonical tight frame filter banks with the
minimal number of highpass filters. For a given FIR p, we will provide a constructive method to construct
q(2

s), · · · , q(2s+1−1) such that they, together with p and the canonical filters q(1), q(2), · · · , q(2s−1), form
a tight frame filter bank. All the three cases s = 1, s = 2 and s = 3 are considered.

First let us look at the case s = 1. By assumption

|p(ω)|2 + |p(ω + π)|2 ≤ 1, (3.3)

we know R(ω) = 1 − |p(ω/2)|2 − |p(ω/2 + π)|2 is a nonnegative trigonometric polynomial. By the
Fejér-Riesz lemma, there is a trigonometric polynomial g1(ω) such that R(ω) = |g1(ω)|2. Choose

W (ω) = diag{g1(ω), g1(ω)}.

Then W (ω) satisfies (3.1) with s = 1, and q(2)(ω) and q(3)(ω) given by (3.2) with s = 1 are

q(2)(ω) =

√
2

2
g1(2ω), q(3)(ω) =

√
2

2
e−iωg1(2ω) = e−iωq(2)(ω + π). (3.4)

If we choose,
W (ω) = diag{g1(ω), g1(ω)},

then

q(2)(ω) =

√
2

2
g1(2ω), q(3)(ω) = e−iωq(2)(ω + π). (3.5)

Thus, in the 1-D case, for an FIR lowpass filter, there always exists an associated double-canonical tight
frame filter bank.
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Theorem 3.1. Let p(ω), ω ∈ R be an FIR filter satisfying (3.3). Then there is an FIR filter q(2)(ω)
such that p(ω), q(2)(ω) and their associated canonical filters q(1)(ω) and q(3)(ω) defined by (1.2) and
(3.4)/ (3.5) form a double-canonical tight frame filter bank.

Example 3.1. Let p(ω) = 1
4e
iω(1 + e−iω)2 be the two-scale symbol of the continuous linear B-spline

B2(x) supported on [−1, 1]. Then R(ω) = 1−|p(ω/2)|2−|p(ω/2+π)|2 can be written as R(ω) = |g1(ω)|2
with

g1(ω) =

√
2

4
(1− e−iω).

Thus the corresponding double-canonical highpass filters are

q(1)(ω) = −1

4
(1− e−iω)2, q(2)(ω) =

1

4
(1− e−i2ω), q(3)(ω) =

1

4
(e−iω − eiω).

�

Example 3.2. Let p(ω) = 1
16e

i2ω(1 + e−iω)4 be the two-scale symbol of the C2 cubic B-spline B4(x)

supported on [−2, 2]. q(1)(ω) defined by (1.2) is

q(1)(ω) = e−iωp(ω + π) =
1

16
eiω(1− e−iω)4.

Then R(ω) = 1− |p(ω/2)|2 − |p(ω/2 + π)|2 = |g1(ω)|2, where

g1(ω) = a−1e
iω + a1 + a1e

−iω,

with

a−1 =
1

4
−
√

14

16
, a0 =

√
14

8
, a1 = −1

4
−
√

14

16
.

Thus the corresponding highpass filters q(2)(ω) and q(3)(ω) are

q(2)(ω) =

√
2

2

(
a−1e

i2ω + a0 + a1e
−i2ω),

q(3)(ω) = e−iωq(2)(ω + π) =

√
2

2

(
a−1e

−i3ω + a0e
−iω + a1e

iω
)
.

�

Next, we consider the cases s = 2, 3. In this and the next subsection, for the simplicity of presenta-
tion, we will use the notations

z1 = e−iω1 , z2 = e−iω2 , z3 = e−iω3 .

Also for a 2-D FIR filter h(ω) =
∑

k1,k2∈Z hk1,k2e
−i(k1ω1+k2ω2), we use the following matrix to display

its (nonzero) coefficients with a box � to highlight the coefficient h0,0 with index (0, 0):

h(ω) =̂



...
...

...
...

...
...

...
· · · h−2,1 h−1,1 h0,1 h1,1 h2,1 · · ·

· · · h−2,0 h−1,0 h0,0 h1,0 h2,0 · · ·

· · · h−2,−1 h−1,−1 h0,−1 h1,−1 h2,−1 · · ·
...

...
...

...
...

...
...


.

10



In addition, zero coefficients are in general not displayed in the above matrix.
To construct semi-canonical tight frame filter banks with the minimal number of highpass filters,

the following approach was considered in [15].

Theorem 3.2. Let p be a symmetric 2-D FIR lowpass filter and q(1), q(2), q(3) be the highpass filters
defined by (2.4) with s = 2. Suppose R(ω) = 1−

∑3
j=0 |p(ω/2 + πηj)|2 can be written as

R(ω) = |g1(ω)|2 + |g2(ω)|2 + |g3(ω)|2, ω ∈ R2, (3.6)

for some trigonometric polynomials gk(ω). Let q(4), · · · , q(7) be the FIR filters defined by

[q(4)(ω), · · · , q(7)(ω)]T =
1

2
W (2ω)[1, e−iω1 , e−i(ω1+ω2), e−iω2 ]T , (3.7)

where

W (ω) =


0 g1(ω) ei(ω1+ω2)g2(ω) g3(ω)

−g1(ω) 0 −ei(ω1+ω2)g3(ω) g2(ω)

−g2(ω) g3(ω) 0 −g1(ω)

−g3(ω) −g2(ω) ei(ω1+ω2)g1(ω) 0

 . (3.8)

Then {p, q(1), · · · , q(7)} is a tight frame filter bank.

One can easily verify that W (ω) defined by (3.8) satisfies (3.1) with s = 2. Thus q(4), · · · , q(7), whose
polyphase matrix is W (ω), together with p, q(1), q(2), q(3), form a semi-canonical tight frame filter bank.
Multiplying the factor ei(ω1+ω2) in the third column of W (ω) is for the purpose that resulting q(j) may
have smaller supports.

Let

p(ω) =
1

8z1z2
(1 + z1)(1 + z2)(1 + z1z2) =

1

8
(2 + z1 + z1z2 + z2 + z−11 + z−11 z−12 + z−12 )

be the refinement mask (two-scale symbol) of the Courant element B111 on the 3-directional mesh of
Z2. Then q(1), q(2), q(3) defined by (2.4) with s = 2 are

q(1)(ω) =
1

8z1z2
(2− z1 − z1z2 + z2 − z−11 − z

−1
1 z−12 + z−12 ),

q(2)(ω) =
1

8z1
(2− z1 + z1z2 − z2 − z−11 + z−11 z−12 − z

−1
2 ),

q(3)(ω) =
1

8z2
(2 + z1 − z1z2 − z2 + z−11 − z

−1
1 z−12 − z

−1
2 ).

One can obtain that (refer to [15])

1−
3∑
j=0

|p(ω + πηj)|2 =

3∑
k=1

|gk(2ω)|2,

with

g1(ω) =
1

4
(1− z−11 ), g2(ω) =

1

4
(1− z1z2), g3(ω) =

1

4
(1− z−12 ).
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The filters q(4), · · · , q(7) defined by (3.7) are

q(4)(ω) =
1

8
(z−11 z−12 − z1z2 + z1 − z−11 + z2 − z−12 ),

q(5)(ω) =
1

8
(z−21 − 1 + z−11 z2 − z−11 z−12 + z2 − z−21 z−12 ),

q(6)(ω) =
1

8
(z21z

2
2 − 1 + z1 − z1z22 − z2 + z21z2),

q(7)(ω) =
1

8
(z−22 − 1 + z−11 z−12 − z1z

−1
2 − z1 + z−11 z−22 ).

Next we generalize Theorem 3.2 from the 2-D case to the 3-D case.

Theorem 3.3. Let p be a symmetric 3-D FIR lowpass filter and q(1), · · · , q(7) be the highpass filters
defined by (2.4) with s = 3, where ηj and ρ(ηj) are defined by (2.2). Suppose R(ω) = 1−

∑7
j=0 |p(ω/2+

πηj)|2 can be written as

R(ω) =
6∑

k=1

|gk(ω)|2, ω ∈ R2, (3.9)

for some trigonometric polynomials gk(ω). Let q(8), · · · , q(15) be the FIR filters defined by

[q(8)(ω), · · · , q(15)(ω)]T =

√
2

4
W (2ω)[1, e−iη1ω1 , · · · , e−iη7ω]T , (3.10)

where

W (ω) = diag
{

0 g1(ω) g2(ω) g3(ω)

−g1(ω) 0 −g3(ω) g2(ω)

−g2(ω) g3(ω) 0 −g1(ω)

−g3(ω) −g2(ω) g1(ω) 0

 ,


0 g4(ω) g5(ω) g6(ω)

−g4(ω) 0 −g6(ω) g5(ω)

−g5(ω) g6(ω) 0 −g4(ω)

−g6(ω) −g5(ω) g4(ω) 0

}. (3.11)

Then {p, q(1), · · · , q(15)} is a tight frame filter bank.

It is easy to verify that W (ω) defined by (3.11) satisfies (3.1) for s = 3. Thus q(8), · · · , q(15),
defined by (3.11), together with p, q(1), · · · , q(7), form a semi-canonical tight frame filter bank. One
could multiply columns of W (ω) with ei(s1ω1+s2ω2+s3ω3) for some suitable integers s1, s2, s3 to make
q(`), 8 ≤ ` ≤ 15 have smaller supports.

The 1-D double-canonical tight frame banks given by Theorem 3.1 may not have a symmetric
property as shown in Example 3.2. For s = 2, 3, the highpass filters obtained by the approach in
Theorems 3.2 and 3.3 may not have the double-canonical property, see e.g. Example 3 in [15], where
the two-scale symbol of the 2-D cubic C2 box spline B222 was discussed. In the next subsection, we
consider the construction of symmetric/antisymmetric double-canonical tight frame banks.

3.2 Symmetric/antisymmetric double-canonical tight frames

In this subsection, we present a constructive method to construct symmetric double-canonical tight
frame filter banks. Recall that a double-canonical tight frame filter bank is a semi-canonical tight frame
filter bank with the minimal number of highpass filters. In all examples provided below, the supports of
the constructed framelets are not bigger than that of the corresponding B-splines and box spline whose
refinement mask is used to generate the first 2s − 1 canonical filters in the filter bank.

First we consider the 1-D case. The next theorem leads to a symmetric/antisymmetric double-
canonical tight frame filter bank {p, q(1), q(2), q(3)}.
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Theorem 3.4. Let p be a symmetric 1-D lowpass filter. Let q(1) be the canonical filter associated with
p defined by (1.2). Suppose R(ω) = 1− |p(ω/2)|2 − |p(ω/2 + π)|2 can be written as

R(ω) = |h0(ω)|2 + |h1(ω)|2

where h0(ω) and h1(ω) are trigonometric polynomials satisfying

h0(−ω) = s0h0(ω), h1(−ω) = s0e
−iωh1(ω), (3.12)

or
h1(−ω) = s0h0(ω), (3.13)

where s0 = 1 or s0 = −1. Let q(2) be the FIR filters defined by

q(2)(ω) =

√
2

2
h0(2ω) +

√
2

2
e−iωh1(2ω),

and q(3) be the canonical filter associated with q(2) defined by (1.8). Then {p(ω), q(1)(ω), q(2)(ω), q(3)(ω)}
is a double-canonical FIR tight frame filter bank with symmetric/antisymmetric highpass filters.

Proof. By the fact that
q(2)(ω)q(3)(ω) + q(2)(ω + π)q(3)(ω + π) = 0,

we know the modulation matrix Mq(2), q(3)(ω) of q(2)(ω) and q(3)(ω) satisfies

Mq(2), q(3)(ω)∗ Mq(2), q(3)(ω) =
(
|q(2)(ω)|2 + |q(2)(ω + π)|2

)
I2 =

(
|h0(2ω)|2 + |h1(2ω)|2

)
I2 = R(2ω)I2.

Hence, the modulation matrix Mq(0),··· , q(3)(ω) (with q(0) = p) of p, q(1), q(2), q(3) satisfies

Mq(0),··· , q(3)(ω)∗ Mq(0),··· , q(3)(ω) = Mq(0), q(1)(ω)∗ Mq(0), q(1)(ω) +Mq(2), q(3)(ω)∗ Mq(2), q(3)(ω)

=
(
|p(ω)|2 + |p(ω + π)|2

)
I2 +R(2ω)I2 = I2.

This shows that p, q(1), q(2), q(3) form a tight frame filter bank.
Clearly, q(1) is symmetric/antisymmetric. It is straightforward to verify that q(2) is symmet-

ric/antisymmetric around 0 (when h0, h1 satisfy (3.12)) or around 1/2 (when h0, h1 satisfy (3.13)). Thus
q(3) is also symmetric/antisymmetric. Therefore, all highpass filters are symmetric/antisymmetric, as
desired. �

Remark 3.1. If h0 and h1 in Theorem 3.4 satisfy (3.12), then q(2) is symmetric/antisymmetric (depend-
ing s0 = 1 or s0 = −1) around 0; and if h0 and h1 satisfy (3.13), then q(2) is symmetric/antisymmetric
around 1

2 . If h0 and h1 satisfy (3.13), then |h1(ω)| = |h0(ω)| and hence,

|h0(ω)|2 = |h1(ω)|2 =
1

2
R(ω) =

1

2
|g1(ω)|2,

where g1(ω) is the “square-root” of R(ω) obtained by the Fejér-Riesz lemma. So in this case h0(ω)

and h1(ω) are essentially h0(ω) =
√
2
2 g1(ω) and h1(ω) = ±

√
2
2 g1(−ω). This is exactly what [4] and [8]

proposed to construct symmetric/antisymmetric tight frames with 3 generators:

h0(ω) = h1(−ω) =

√
2

2
g1(ω) (3.14)
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in [8], and

h0(ω) =

√
2

2
g1(ω), h1(ω) =

√
2

2
e−iNωg1(−ω) (3.15)

in [4], where N is an integer. When h0, h1 are given by (3.14), the corresponding highpass filters, denoted
by q̃(2) and q̃(3), are

q̃(2)(ω) =
1

2

(
g1(2ω) + e−iωg1(−2ω)

)
, q̃(3)(ω) = e−iωq(2)(ω + π) =

1

2

(
− g1(2ω) + g1(−2ω)e−iω

)
. (3.16)

If R(ω) can be written as R(ω) = |h0(ω)|2 + |h1(ω)|2 with h0 and h1 satisfying (3.12) and |h0(ω)| 6=
|h1(ω)|, then symmetric/antisymmetric highpass filters q(2), q(3) may have smaller supports than the
highpass filters such as q̃(2), q̃(3) in (3.16) constructed by [4] and [8] with h0, h1 given by (3.14) or
(3.15). As shown in the following examples, R(ω) corresponding to some B-splines can be decomposed as
|h0(ω)|2+ |h1(ω)|2 with symmetric and different h0 and h1 (in modulus) and the resulting highpass filters
have smaller supports. In addition, such a decomposition can be generalized to the high dimensional
case. Note that [17] showed that R(ω1, ω2) corresponding to some type of 2-D box splines can always be
decomposed as a finite sum of the squares of some 2-D trigonometric polynomials hj(ω1, ω2). �

Example 3.3. Let p(ω) = 1
16e

i2ω(1 + e−iω)4 be the two-scale symbol of the C2 cubic B-spline B4(x)
considered in Example 3.2. By a direct calculation, we have

R(ω) = 1− |p(ω/2)|2 − |p(ω/2 + π)|2 =
1

64
(29− 28 cosω − cos 2ω).

Thus,

R(ω) =
1

64
(1− cos 2ω) +

28

64
(1− cosω) =

1

32
sin2 ω +

7

16
sin2 ω

2

=
1

32

∣∣e−iω − eiω
2

∣∣2 +
7

16

∣∣1− eiω
2

∣∣2.
Hence R(ω) can be written as R(ω) = |h0(ω)|2 + |h1(ω)|2 with

h0(ω) = s1

√
2

16
(e−iω − eiω), h1(ω) = s2

√
14

8
(1− eiω),

where s1 = ±1 or s2 = ±1. Thus the corresponding q(2), q(3) given in Theorem 3.4 are

q(2)(ω) = s2

√
7

8
(e−iω − eiω) + s1

1

16
(e−i2ω − ei2ω),

q(3)(ω) = e−iωq(2)(ω + π) = s2

√
7

8
(e−i2ω − 1) + s1

1

16
(eiω − e−i3ω).

Observe that both q(2) and q(3) are antisymmetric and they have the same filter lengths as p. �

Example 3.4. Let p(ω) = 1
32e

i2ω(1 + e−iω)5 be the two-scale symbol of the C3 quartic B-spline B5(x)

supported on [−2, 3]. In this case q(1)(ω) defined by (1.2) is

q(1)(ω) = e−iωp(ω + π) =
1

32
ei2ω(e−iω − 1)5.
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By a direct calculation, we have

R(ω) = 1− |p(ω/2)|2 − |p(ω/2 + π)|2 =
1

256
(130− 120 cosω − 10 cos 2ω)

=
10

256
(1− cos 2ω) +

120

256
(1− cosω) =

5

64
sin2 ω +

15

16
sin2 ω

2

=
5

64

∣∣e−iω − eiω
2

∣∣2 +
15

16

∣∣1− eiω
2

∣∣2.
Thus R(ω) can be written as R(ω) = |h0(ω)|2 + |h1(ω)|2 with

h0(ω) = s1

√
5

16
(e−iω − eiω), h1(ω) = s2

√
15

8
(1− eiω),

where s1 = ±1, s2 = ±1. Hence, the corresponding q(2), q(3) given by Theorem 3.4 are

q(2)(ω) =

√
10

32

(
s22
√

3(e−iω − eiω) + s1(e
−i2ω − ei2ω)

)
,

q(3)(ω) = e−iωq(2)(ω + π) =

√
10

32

(
s22
√

3(e−i2ω − 1) + s1(e
iω − e−i3ω)

)
.

Observe that q(2) and q(3) are antisymmetric and they both have shorter filter lengths than p. �

Though [4] proposed to use (3.15) to construct symmetric/antisymmetric tight frames, in practice
[4] also constructed q(2), q(3) with smaller filter lengths in Examples 3.3 and 3.4.

Example 3.5. Let p(ω) = 1
64e

i3ω(1+e−iω)6 be the two-scale symbol of the C4 6th-order B-spline B6(x).
By a direct calculation, one can obtain that R(ω) can be written as R(ω) = |h0(ω)|2 + |h1(ω)|2 with

h0(ω) = a1(e
−iω − eiω), h1(ω) = b1(1− eiω) + b2(e

−iω − ei2ω),

where

a1 =
1

16

√
8−
√

31, b1 =
1

64
(
√

2 + 4
√

62), b2 =

√
2

64
.

The corresponding q(2), q(3) given in Theorem 3.4 are

q(2)(ω) =

√
2

2

(
b1(e

−iω − eiω) + a1(e
−i2ω − ei2ω) + b2(e

−i3ω − ei3ω)
)
,

q(3)(ω) = e−iωq(2)(ω + π).

Both q(2) and q(3) are antisymmetric and they have the same filter lengths as p. �

Next we consider the 2-D case. The following theorem provides an approach for the construction of
q(4), · · · , q(7) with the double-canonical and symmetric property.

Theorem 3.5. Let p be a symmetric 2-D FIR lowpass filter and q(1), q(2), q(3) be the highpass filters
defined by (2.4) with s = 2. Suppose R(ω) = 1−

∑3
j=0 |p(ω/2 + πηj)|2 can be written as

R(ω) = |h0(ω)|2 + |h1(ω)|2 + |h2(ω)|2 + |h3(ω)|2, ω ∈ R2, (3.17)
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for some trigonometric polynomials hk(ω) satisfying

h0(−ω) = h0(ω), h1(−ω) = e−iω1h1(ω), h2(−ω) = e−i(ω1+ω2)h2(ω), h3(−ω) = e−iω2h3(ω), or

h0(−ω) = −h0(ω), h1(−ω) = −e−iω1h1(ω), h2(−ω) = −e−i(ω1+ω2)h2(ω), h3(−ω) = −e−iω2h3(ω).

(3.18)

Let q(4), · · · , q(7) be the FIR filters defined by

q(4)(ω) =
1

2

(
h0(2ω) + e−iω1h1(2ω) + e−i(ω1+ω2)h2(2ω) + e−iω2h3(2ω)

)
, (3.19)

and
q(k+4)(ω) = eiρ(ηk)ωq(4)(ω + πηk), k = 1, 2, 3. (3.20)

Then {p, q(1), · · · , q(7)} is a double-canonical FIR tight frame filter bank. In addition, q(4), · · · , q(7) are
symmetric/antisymmetric.

Observe that if h0, · · · , h3 satisfy (3.18), then q(4) in Theorem 3.5 is symmetric/antisymmetric
around (0, 0). For simplicity of presentation, we give in Theorem 3.5 just the conditions on h0, · · · , h3
such that q(4) has symmetric/antisymmetric center (0, 0). The statement in Theorem 3.5 still holds if
R(ω) can be written as the sum of |hj(ω)|2 with h0, · · · , h3 satisfying similar conditions to (3.18) such
that q(4) has a different symmetric/antisymmetric center.

Example 3.6. Let

p(ω) =
1

16z1
(1 + z1)(1 + z2)(1 + z1z2)(1 +

z1
z2

)

be the two-scale symbol of the box spline B1111 on the 4-directional mesh of Z2. Lowpass filter p(ω) is
symmetric around (12 ,

1
2) and q(1), q(2), q(3) defined by (2.4) are

q(1)(ω) = z1z2p(−
1

z1
,

1

z2
), q(2)(ω) =

1

z1
p(−z1,−z2), q(3)(ω) = z2p(

1

z1
,− 1

z2
).

R(ω) = 1−
∑3

j=0 |p(ω/2 + πηj)|2 can be written as (3.17) with

h0(ω) = 0, h1(ω) =

√
3

4
(1− 1

z1
), h2(ω) =

√
2

8
(1− 1

z1z2
+

1

z1
− 1

z2
), h3(ω) =

√
3

4
(1− 1

z2
).

q(4) defined by (3.19) is antisymmetric around (0, 0). Thus p(ω) has an associated double-canonical tight
frame filter bank (with 7 highpass filters). In addition, these highpass filters are symmetric/antisymmetric.
The coefficients of q(4) and q(5), q(6), q(7) defined by (3.20) are given in the following matrices:

q(4)(ω)=̂
1

16


√

2 2
√

2

−2
√

3 0 2
√

3

−
√

2 −2 −
√

2

 , q(5)(ω)=̂
1

16

−
√

2 2 −
√

2

2
√

3 0 −2
√

3√
2 −2

√
2

 ,

q(6)(ω)=̂
1

16


√

2 −2
√

2

2
√

3 0 −2
√

3

−
√

2 2 −
√

2

 , q(7)(ω)=̂
1

16

 −
√

2 −2 −
√

2

−2
√

3 0 2
√

3√
2 2

√
2

 .
Observe that all the highpass filters have the same size of support as the lowpass filter p. �
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Example 3.7. Let

p(ω) =
1

64z21z
2
2

(1 + z1)
2(1 + z2)

2(1 + z1z2)
2

be the two-scale symbol of the box spline B222 on the 3-directional mesh of Z2. Lowpass filter p(ω) is
symmetric around (0, 0) and q(1), q(2), q(3) defined by (2.4) are

q(1)(ω) =
1

z1z2
p(−z1, z2), q(2)(ω) =

1

z1
p(−z1,−z2), q(3)(ω) =

1

z2
p(z1,−z2). (3.21)

R(ω) = 1−
∑3

j=0 |p(ω/2 + πηj)|2 can be written as (3.17) with

h0(ω) =
1

32
(z1 −

1

z1
+ z2 −

1

z2
+ z1z2 −

1

z1z2
), h1(ω) =

√
26

16
(1− 1

z1
) +

√
2

16
(z2 −

1

z1z2
),

h2(ω) =

√
26

16
(1− 1

z1z2
) +

√
2

16
(

1

z1
− 1

z2
), h3(ω) =

√
26

16
(1− 1

z2
) +

√
2

16
(

1

z1z2
− z1).

q(4) defined by (3.19) is antisymmetric around (0, 0). Thus p(ω) has an associated double-canonical tight
frame filter bank (with 7 highpass filters). In addition, these highpass filters are symmetric/antisymmetric.
In the following we provide the coefficients of q(4) and those of q(5) defined by (3.20):

q(4)(ω)=̂
1

64


0 0 1 2

√
2 −1

0 2
√

2 2
√

26 2
√

26 −2
√

2

−1 −2
√

26 0 2
√

26 1

2
√

2 −2
√

26 −2
√

26 −2
√

2 0

1 −2
√

2 −1 0 0

 ,

q(5)(ω)=̂
1

64


0 0 1 −2

√
2 −1

0 −2
√

2 2
√

26 − 2
√

26 −2
√

2

−1 2
√

26 0 −2
√

26 1

2
√

2 2
√

26 −2
√

26 2
√

2 0

1 2
√

2 −1 0 0

 .

The subdivision scheme based on the two-scale symbol of B222 is called Loop’s scheme. It was shown
in [12] that the wavelet system {2j/2ψ(`)(2j · −k) : j ∈ Z, k ∈ Z2, 1 ≤ ` ≤ 3} generated by the canonical
wavelets is a Riesz basis of L2(R2). This Riesz basis has been used in [16] for surface compression.
Now with 4 framelets added, {2j/2ψ(`)(2j · −k) : j ∈ Z, k ∈ Z2, 1 ≤ ` ≤ 7} is a tight frame of L2(R2).
Tight frames associated with B222 with 7 framelets were constructed in [17] and [15]. All the highpass
filters constructed here have the same size of support as the lowpass filter p. These highpass filters have
a smaller size of support than those constructed in both [17] and [15]. In addition, our highpass filters
have the “double-canonical” property. Note that the construction of multivariate compactly supported
tight affine spline frames was first considered in [22]. But the tight frames constructed by the method in
[22] also have big supports. �

Example 3.8. Let

p(ω) =
1

64z21z2
(1 + z1)

2(1 + z2)
2(1 + z1z2)(1 +

z1
z2

)

be the two-scale symbol of the box spline B2211 on the 4-directional mesh of Z2. Lowpass filter p(ω)
is symmetric around (0, 0) and q(1), q(2), q(3) defined by (2.4) are given as in (3.21). R(ω) = 1 −
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∑3
j=0 |p(ω/2 + πηj)|2 can be written as (3.17) with

h0(ω) =
1

16
(z1 −

1

z1
+ z2 −

1

z2
), h1(ω) = a1(1−

1

z1
) +

1

32
(z2 −

1

z1z2
+
z2
z1
− 1

z2
),

h2(ω) = a2(1−
1

z1z2
) + b2(

1

z1
− 1

z2
), h3(ω) = a3(1−

1

z2
) +

1

32
(z1 −

1

z1z2
+
z1
z2
− 1

z1
),

where a1, a2, a3, b2 are given by

a1 =

√
12µ− µ2

8(µ− 7)
+
µ− 7

16
, a2 =

√
24− 2µ

16
, a3 =

µ− 7

8
− a1, b2 =

√
2µ

16

with µ = 1.5369740543671196320, a root of the polynomial 833−876x+258x2−28x3+x4. The numerical
values for a1, a2, a3, b2 are

a1 = −0.43319600820800456763, a2 = 0.28590626121205684060,

a3 = −0.24968223499610547836, b2 = 0.10957923982097668360.

q(4) defined by (3.19) is antisymmetric around (0, 0). Thus p(ω) has an associated double-canonical
symmetric/antisymmetric tight frame filter bank which has 7 highpass filters. In the following we provide
the coefficients of q(4) and those of q(5) defined by (3.20):

q(4)(ω)=̂
1

64


0 1 2 1 0
−1 32b2 32a3 32a2 1

−2 −32a1 0 32a1 2
−1 −32a2 −32a3 −32b2 1
0 −1 −2 −1 0

 , q(5)(ω)=̂
1

64


0 −1 2 −1 0

−1 −32b2 32a3 −32a2 1

−2 32a1 0 −32a1 2
−1 32a2 −32a3 32b2 1
0 1 −2 1 0

 .
Observe that all the highpass filters, again, have the same size of support as the lowpass filter p. �

Finally we consider the case s = 3. First we generalize Theorem 3.5 to the 3-D case for the
construction of q(8), · · · , q(15) with the double-canonical and symmetric property.

Theorem 3.6. Let p be a symmetric 3-D FIR lowpass filter and q(1), · · · , q(7) be the highpass filters
defined by (2.4) with s = 3, where ηj and ρ(ηj) are defined by (2.2). Suppose

R(ω) = 1−
7∑
j=0

|p(ω/2 + πηj)|2 =
7∑

k=0

|hk(ω)|2, ω ∈ R3, (3.22)

where hk(ω), 0 ≤ k ≤ 7 are trigonometric polynomials satisfying

h0(−ω) = −h0(ω), h1(−ω) = −e−iω1h1(ω), h2(−ω) = −e−i(ω1+ω2)h2(ω),

h3(−ω) = e−iω2h3(ω), h4(−ω) = −e−iω3h4(ω), h5(−ω) = −e−i(ω1+ω3)h5(ω),

h6(−ω) = −e−i(ω1+ω2+ω3)h6(ω), h7(−ω) = −e−i(ω2+ω3)h7(ω).

(3.23)

Let q(8), · · · , q(15) be the FIR filters defined by

q(8)(ω) =

√
2

4

7∑
k=0

hk(2ω)e−iηkω, (3.24)
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and
q(k+8)(ω) = eiρ(ηk)ωq(8)(ω + πηk), k = 1, 2, · · · , 7. (3.25)

Then {p, q(1), · · · , q(15)} is a double-canonical FIR tight frame filter bank. In addition, q(8), · · · , q(15)
are symmetric/antisymmetric.

We present in Theorem 3.6 the conditions on h0, · · · , h7 such that q(8) defined by (3.24) is antisym-
metric about (0, 0, 0). The statement in Theorem 3.6 still holds if R(ω) can be written as

∑7
k=0 |hk(ω)|2

with h0, · · · , h7 satisfying the conditions such that q(8) is symmetric about (0, 0, 0) or has a different
symmetric/antisymmetric center.

The proof of Theorems 3.5 and 3.6 is similar to that for Theorem 3.4. For example, for the proof of
Theorem 3.6, by the antisymmetry property of q(8) and Remark 2.1, we have

7∑
k=0

q(`)(ω + πηk) q
(`′)(ω + πηk) = 0, for ` 6= `′, 8 ≤ `, `′ ≤ 15.

Thus, the modulation matrix Mq(8),··· , q(15)(ω) of q(8)(ω), · · · , q(15)(ω) satisfies

Mq(8),··· , q(15)(ω)∗ Mq(8),··· , q(15)(ω) =

7∑
k=0

|q(8)(ω + πηk)|2I8 =

7∑
k=0

|hk(2ω)|2I8 = R(2ω)I8.

Hence, the modulation matrix Mq(0),··· , q(15)(ω) (with q(0) = p) of p, q(1), · · · , q(15) satisfies

Mq(0),··· , q(15)(ω)∗ Mq(0),··· , q(15)(ω)

= Mq(0),··· , q(7)(ω)∗ Mq(0),··· , q(7)(ω) +Mq(8),··· , q(15)(ω)∗ Mq(8),··· , q(15)(ω)

=
7∑

k=0

|p(ω + πηk)|2I8 +R(2ω)I8 = I8,

which means that {p, q(1), · · · , q(15)} is a tight frame filter bank. �

Example 3.9. Let

p(ω) =
1

16z1z2z3
(1 + z1)(1 + z2)(1 + z3)(1 + z1z2z3)

be the two-scale symbol of the 3-D box spline with vectors:

v1 = [1, 0, 0], v2 = [0, 1, 0], v3 = [0, 0, 1], v4 = [1, 1, 1].

Lowpass filter p(ω) is symmetric around (0, 0, 0). Let q(1), · · · , q(7) be the highpass filters defined by
(2.4). R(ω) = 1−

∑7
j=0 |p(ω/2 + πηj)|2 can be written as (3.22) with

h0(ω) = 0, h1(ω) =

√
2

8
(

1

z1
− 1), h2(ω) =

√
2

8
(

1

z1z2
− 1), h3(ω) =

√
2

8
(

1

z2
− 1),

h4(ω) =

√
2

8
(

1

z3
− 1), h5(ω) =

√
2

8
(

1

z1z3
− 1), h6(ω) =

√
2

8
(

1

z1z2z3
− 1), h7(ω) =

√
2

8
(

1

z2z3
− 1).

hj , 0 ≤ j ≤ 7 satisfy the conditions in (3.23) and q(8) defined by (3.24) is antisymmetric around (0, 0).
Thus p(ω) has an associated 3-D double-canonical symmetric/antisymmetric tight frame filter bank (with
15 highpass filters). q(8) is given by

q(8)(ω) =
1

16z1z2z3
(1 + z1)(1 + z2)(1 + z3)(1− z1z2z3).
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One can obtain easily other highpass filters q(9), · · · , q(15) from q(8) by the formula (3.25). Observe that
all the highpass filters have the same size of support as the lowpass filter p. �

Example 3.10. Let

p(ω) =
1

64z1z2z23
(1 + z1)(1 + z2)(1 + z3)(1 + z1z2z3)(1 + z1z3)(1 + z2z3)

be the two-scale symbol of the 3-D box spline with vectors:

v1 = [1, 0, 0], v2 = [0, 1, 0], v3 = [0, 0, 1], v4 = [1, 1, 1], v5 = [1, 0, 1], v6 = [0, 1, 1].

Lowpass filter p(ω) is symmetric around (1/2, 1/2, 0). Let q(1), · · · , q(7) be the highpass filters defined by
(2.4). R(ω) = 1−

∑7
j=0 |p(ω/2 + πηj)|2 can be written as (3.22) with

h0(ω) = 0, h1(ω) =
3
√

2

16
(1− 1

z1
), h2(ω) =

√
2

16
(1− 1

z1z2
+

1

z1
− 1

z2
+ z3 −

1

z1z2z3
),

h3(ω) =

√
10

16
(1− 1

z2
), h4(ω) =

3
√

2

16
(1− 1

z3
), h5(ω) =

3
√

2

16
(1− 1

z1z3
),

h6(ω) =

√
10

16
(1− 1

z1z2z3
), h7(ω) =

√
10

16
(1− 1

z2z3
).

hj , 0 ≤ j ≤ 7 satisfy the conditions in (3.23) and q(8) defined by (3.24) is antisymmetric around (0, 0, 0).
Thus p(ω) has an associated 3-D double-canonical tight frame filter bank (with 15 highpass filters). In

addition, these highpass filters are symmetric/antisymmetric. q(8) is provided below in (3.26), where for

each k3, {q(8)k1,k2,k3
}k1,k2 is displayed as a matrix.

q(8)(ω)=̂
1

32

{[
0 0
−1 0

]
,

[
−3 −3

−
√

5 −
√

5

]
,

 1
√

5 1

−3 0 3

−1 −
√

5 −1

 , [√5
√

5

3 3

]
,

[
0 1

0 0

]}
. (3.26)

(From left to right: q
(8)
k1,k2,−2, q

(8)
k1,k2,−1, q

(8)
k1,k2,0

, q
(8)
k1,k2,1

, q
(8)
k1,k2,2

.)

One can obtain easily other highpass filters q(9), · · · , q(15) from q(8) by the formula (3.25). Here we

provide q(9):

q(9)(ω)=̂
1

32

{0 0 0
0 0 0
1 0 0

 ,
 0 0 0

3 −3 0√
5 −

√
5 0

 ,
−1

√
5 −1

3 0 −3

1 −
√

5 1

 ,[√5 −
√

5

3 −3

]
,

[
0 −1

0 0

]}
.

(From left to right: q
(9)
k1,k2,−2, q

(9)
k1,k2,−1, q

(9)
k1,k2,0

, q
(9)
k1,k2,1

, q
(9)
k1,k2,2

.)

For the purpose to compare the support of p with those of q(8), · · · , q(15), we also provide the coefficients
pk1,k2,k3 of p:

p(ω)=̂
1

64

{[
1 1
1 1

]
,

1 2 1

2 4 2
1 2 1

 ,


0 1 1 0
1 4 4 1

1 4 4 1
0 1 1 0

 ,
 1 1 1

2 4 2

1 2 1

 ,
 0 1 1

0 1 1

0 0 0

}.
(From left to right: pk1,k2,−2, pk1,k2,−1, pk1,k2,0, pk1,k2,1, pk1,k2,2.)

�
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Example 3.11. Let

p(ω) =
1

128z21z
2
2z

2
3

(1 + z1)(1 + z2)(1 + z3)(1 + z1z2z3)(1 + z1z2)(1 + z1z3)(1 + z2z3)

be the two-scale symbol of the 3-D box spline with vectors:

v1 = [1, 0, 0], v2 = [0, 1, 0], v3 = [0, 0, 1], v4 = [1, 1, 1], v5 = [1, 0, 1], v6 = [0, 1, 1], v7 = [1, 1, 0].

Lowpass filter p(ω) is symmetric around (0, 0, 0). Let q(1), · · · , q(7) be the highpass filters defined by
(2.4). R(ω) = 1−

∑7
j=0 |p(ω/2 + πηj)|2 can be written as (3.22) with

h0(ω) =

√
2

64
(z1 −

1

z1
+ z2 −

1

z2
+ z3 −

1

z3
+ z1z2z3 −

1

z1z2z3
),

h1(ω) = a1(1−
1

z1
) +

√
2

64
(z2 −

1

z1z2
+ z3 −

1

z1z3
+ z2z3 −

1

z1z2z3
),

h2(ω) = a2(1−
1

z1z2
) +

√
2

32
(

2

z1
− 2

z2
+ z3 −

1

z1z2z3
),

h3(ω) = a1(1−
1

z2
) +

√
2

64
(z1 −

1

z1z2
+ z3 −

1

z2z3
+ z1z3 −

1

z1z2z3
),

h4(ω) = a1(1−
1

z3
) +

√
2

64
(z1 −

1

z1z3
+ z2 −

1

z2z3
+ z1z2 −

1

z1z2z3
),

h5(ω) = a2(1−
1

z1z3
) +

√
2

32
(

2

z3
− 2

z1
+ z2 −

1

z1z2z3
),

h6(ω) = a3(1−
1

z1z2z3
) +

√
2

64
(

1

z1
− 1

z2z3
+

1

z2
− 1

z1z3
+

1

z3
− 1

z1z2
),

h7(ω) = a2(1−
1

z2z3
) +

√
2

32
(

2

z2
− 2

z3
+ z1 −

1

z1z2z3
),

where

a1 = −0.25635520335894088696, a2 = 0.19920005127022041990, a3 = 0.19817365580271475087,

which are a solution of 
32a21 − 2

√
2a1 − 2

√
2a2 −

√
2a3 − 127

64 = 0,

32a22 +
√

2a1 +
√

2a3 − 19
16 = 0,

32a23 + 3
√

2a1 + 6
√

2a2 − 119
64 = 0.

hj , 0 ≤ j ≤ 7 satisfy the conditions in (3.23) and q(8) defined by (3.24) is antisymmetric around (0, 0, 0).
Thus p(ω) has an associated 3-D double-canonical symmetric/antisymmetric tight frame filter bank with
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15 highpass FIR filters. q(8) is provided below:

q(8)(ω)=̂
1

128

{ −1 −1

−1 −2 −1
−1 −1

 ,


−1 −4 1

−1 −32
√

2a2 −32
√

2a1 4

−2 −32
√

2a3 −32
√

2a2 −1
−1 −2 −1

 ,


1 1

4 32
√

2a1 32
√

2a2 1

−1 −32
√

2a1 0 32
√

2a1 1

−1 −32
√

2a2 −32
√

2a1 −4
−1 −1

 ,


1 2 1

1 32
√

2a2 32
√

2a3 2

−4 32
√

2a1 32
√

2a2 1

−1 4 1

 ,
 1 1

1 2 1

1 1

}.
(From top left to right: q

(8)
k1,k2,−2, q

(8)
k1,k2,−1; from bottom left to right: q

(8)
k1,k2,0

, q
(8)
k1,k2,1

, q
(8)
k1,k2,2

.)

Again, one can obtain easily other highpass filters q(9), · · · , q(15) by (3.25). To compare the support of

p with those of q(8), · · · , q(15), we also provide the coefficients pk1,k2,k3 of p:

p(ω)=̂
1

128

{ 1 1
1 2 1
1 1

 ,


1 2 1

1 4 5 2
2 5 4 1
1 2 1

 ,


1 1
2 5 4 1

1 5 8 5 1
1 4 5 2

1 1

 ,


1 2 1
1 4 5 2

2 5 4 1
1 1 1

 ,
 1 1

1 2 1

1 1

}.
(From left to right: pk1,k2,−2, pk1,k2,−1, pk1,k2,0, pk1,k2,1, pk1,k2,2.)

�
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