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Abstract. This paper is devoted to a study of symmetric paraunitary matrix extensions. The
problem for a given compactly supported orthonormal scaling vector with some symmetric property,
to construct a corresponding multiwavelet which also has the symmetric property is equivalent to the
symmetric paraunitary extension of a given matrix. In this paper we study symmetric paraunitary
extensions of two types of matrices which correspond to two different cases for the symmetry of the
scaling vector: the components of the scaling vector have or don’t have the same symmetric center.
In this paper we also discuss parametrizations of symmetric orthogonal multifilter banks.
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1. Introduction. Unlike one dimensional scalar filters, the matrix filter for a
multiwavelet of Ly(R), cannot in general be given in terms of the matrix filter for the
scaling vector (except some special cases). So for a given r xr (r > 2) FIR matrix filter
H(2) = > ez hrz" (called low-pass filter) for a compactly supported orthonormal
(o.n.) scaling vector ¢ = (¢1,---,$,)T, one needs an algorithm to construct another
r x r FIR matrix filter G(z) = 3", g1z * (called high-pass filter) such that

(1.1) H()GR)*"+ H(—2)G(—2)* =0,,G(2)G(2)* + G(—2)G(-=2)" = I,
for all z € C{0}. With such a filter G, the vector ¥ = (¢1,---,,)T defined by

~ W

~

(1.2) Y(w) := Gle

i

fg

is a compactly supported multiwavelet, i.e., the collection {2%1&1(21' x—k),1<L<
r,j,k € Z} forms an o.n. basis of Ly(R) (see [3]). We call a vector of functions
¢ = (¢1,--,¢-)T an o.n. scaling vector if ¢ is refinable (that is ¢ satisfies ¢(w) =

i

H(eT)qAS(§) for some FIR H), ¢; € La(R) and
[ 6ita ~ W@z = 8 - )6, 1<hi<nkez

For a matrix filter P(z) = Y., prz ", it is said to be a finite impulse response
(FIR) filter if each entry of P(z) is a Laurent polynomial of z71, i.e., there exist
integers ki, ka such that pp = 0,k < k1,k > ko. If pg, # 0,pg, # 0, we use len(P) :=
ks — k1 + 1 to denote its filter length. An FIR P(z) is said to be causal if each entry
of P(z) is a polynomial of 27!, i.e., pr = 0 for k& < 0. Throughout this paper, PT
(P* resp.) denotes the transpose (the complex conjugate and transpose resp.) of P,
I and 0, denote the r x r identity matrix and zero matrix respectively. We also let
0jx; denote the j by | zero matrix, and we would drop the subscript j x ! when it
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does not cause any confusion. A necessary condition for H generating an o.n. scaling
vector ¢ is that H is a matrix Conjugate Quadrature Filter (CQF) (see e.g., [12], [5],
[6] for the necessary and sufficient conditions), i.e.,

(1.3) H(z)H(2)*+ H(-2z)H(-2)*=1,, z€C.

A pair {H, G} of matrix filters is called a multifilter bank, and it is said to be orthog-
onal if H,G satisfy (1.1) and (1.3).
For an FIR matrix filter H, write

(1.4) H(z) = Zh%z_% + (Z hopy12= %)zt

2 2
=: £He(zz) + £Ho(z2)z_1.
2 2
Then H satisfies (1.3) if and only if [H.(z), Ho(2)] is paraunitary. A j x1 (j <)
matrix filter P(z) with real coefficients py, is called paraunitary if

PPN =1;, z#0,

that is P(e™) is a matrix of orthonormal rows for all w € R. Throughout this paper
we assume that the coefficients of the matrix filters are real.

Let G be another FIR matrix filter, and G, G, be the corresponding filters defined
in the way of (1.4). Then G satisfies (1.1) if and only if

[Ge(2),Go(2)]E(z )T =[0, L],
where E(z) is the polyphase matrix of the multifilter bank {H, G} defined by

(1.5) B(z) = [ gg; ggg ]

Thus given an H satisfying (1.3), to find G to satisfy (1.1) is equivalent to the parau-
nitary extension problem of a paraunitary matrix: Given an r x 2r paraunitary matrix
[He(2), H,(2)], to find [G.(2),G,(2)] such that E(z) defined by (1.5) is paraunitary. It
was shown in [9] and [10] that this paraunitary extension problem is always solvable,
i.e., given a paraunitary matrix [H.(z), H,(2)], one can always find its paraunitary
extension [Ge(z), Go(2)].

The problem considered in this paper is that given an FIR matrix filter H gener-
ating an o.n. scaling vector ¢ with some symmetric property, is there a corresponding
compactly supported multiwavelet ¢ with some symmetric property, and if it exits,
how to construct the high-pass filter G? Equivalently, the problem we consider is
for a given paraunitary matrix [H,(z), H,(z)] with some symmetry, to decide if there
is its paraunitary extension [G.(z),G,(z)] which also has some symmetry and if it
exists, how to construct it. Since symmetry is one of the most important properties
of multiwavelets, the problem for a given symmetric o.n. scaling vector, to construct
a corresponding symmetric multiwavelet deserves our study.

There are two types of symmetric causal filters H. The first one is that H satisfies

(1.6) 27VSoH(271) S = H(2), So = diag(s, —Ir—s),

for a nonnegative integer s < r. In this case if H generates an o.n. scaling vector
¢ = (¢1,---,¢:)T, then ¢1,---,¢s are symmetric about /2 while ¢psi1,---, @, are
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antisymmetric about v/2 (see e.g., [1], [7], [15] about the relationship between the
symmetry of ¢, and the property of H,G). Filters with this type of symmetry are
called filters with the same symmetric center.

The second type of the symmetric filter H is that H will generate a symmetric
o.n. scaling vector with its components not having the same symmetric center. We
call the filter of this type to be a filter with different symmetric centers. In this paper

we consider H(2) = 224! hy2~* satisfying

(1.7) 2~ @ diag(So22, 1) H (2~ 1) diag(Se, 2) = H(z), So = diag(I,, —Ir_s_1),

for a nonnegative integer s < r — 1. In this case if H generates an o.n. scaling vector
¢ = (¢1,-++,¢r)7, then ¢1,---, @5 are symmetric about v — 1 while @si1,-+, Pr_s_1
are antisymmetric about v — %, and ¢, is symmetric about v. ¢;,1 < j <r —1 are
supported on [0, 2y — 1] while ¢, is supported on [0, 27] (see [13] about the discussion
on the supports of scaling vectors).

The symmetric extensions [Ge,G,] of the paraunitary matrices [H,, H,] related
to these two types of filters H are carried out in Section 2 and Section 3, respectively.
We will construct their paraunitary extensions [G.,G,] such that ¢ defined by (1.2)
with
3

~ZGo(2H)27h,

(1.8) G(z) == :

5 G.(2%) +

have symmetry, and len(G) <len(H). More precisely, for H satisfying (1.6), the
constructed G satisfies

(1.9) 280G (1) S0 = —G(2).

Thus components of the corresponding multiwavelet ¢ are symmetric/antisymmetric
about /2. For H satisfying (1.7), the constructed G satisfies

(1.10) 2~ diag(8, 22, S,)G (2~ 1) diag(So, 2) = G(2),
where
(1.11) S1 = I, Sy :=diag(lr—s, —I,—s),if 28 > r;

81 = Ir_25, 82 = diag(ls, —I5),if 25 < 7.

The corresponding multiwavelet ¢ has the following symmetric properties: (1) if

2s > r, then 4, --,99s_, are antisymmetric about v — %, Yos—ry1,"-+,Ps and
Ysy1, %, are symmetric and antisymmetric about  respectively; (2) if 2s < 7,
then )y, +, 1, _2s are symmetric about v — %, UVr_2s+1s s Wr—s and P gy 1, , Uy

are symmetric and antisymmetric about «y respectively. Our construction also answers
the problem on the existence of symmetric multiwavelets.

In Section 4, we discuss the parametrization of symmetric orthogonal multifilter
banks. Parametrizations of FIR orthogonal systems are of fundamental importance
to the design of filter banks (see e.g., [14], [16], [17]). Parametrizations of orthog-
onal filter banks are equivalent to the factorizations of paraunitary matrices. The
parametrization of symmetric orthogonal multifilter banks {H, G} with the low-pass
filter H satisfying (1.6) for v = 2N + 1 was obtained in [7] (see [11] for the special
case). For the case r = 2,50 = (1), the parametrization of orthogonal multifilter
banks {H,G} with H satisfying (1.7) was provided in [8]. In Section 4 we present
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the parametrization of orthogonal multifilter banks {H,G} with H satisfying (1.6)
for v = 2N and the parametrization of {H, G} with H satisfying (1.7).

In this paper we use N, Ny, Z to denote sets of all natural numbers, nonnegative
integers and integers, respectively. For n € N, denote

(1.12) D,, := diag(I,,—Ip_1).
We use O(n) to denote the set of all n by n real orthogonal matrices, and use Tr(M)
to denote the trace of a matrix M.

2. Symmetric extension of matrices related to the same symmetric
center filters. In this section we discuss the symmetric matrix extension related to
low-pass filters H satisfying (1.6). We consider the cases ¥ = 2N + 1 and v = 2N,
N € N in the following two subsections respectively.

2.1. The case vy =2N +1. Let H = Zii{;l hrz~* be a matrix CQF satisfying
(1.6) with v = 2N + 1, and hg # 0, han+1 # 0. Let H,, H, be the filters defined by
(1.4). Then (1.6) for v = 2N + 1 is equivalent to

(2.) VS HG ]| g, | = e Ho)

Denote

P(2) := [He(2), Ho(2)]Uq ,

where
V2 [ I, S
- G20 8]
One can check that P satisfies
(2.3) 2 NSoP(z~Ydiag(I,, —1I,) = P(z).

Note that Uy € O(2r). Thus P satisfies P(2)P(z~1)T = I, i.e., P is also paraunitary.
In the following we give a symmetric paraunitary extension of P.

We need a lemma which will be used here and in the following sections.

LEMMA 2.1. (i) Suppose an £ x 2k (£ > k) real matriz A satisfies

(2.4) Adiag(I,, —I;) AT = 0.

Then there exists u € O(k) such that

(2.5) A [ i’; ] =0.

(i) Suppose an £ x (2k —1) (£ >k — 1) real matriz A satisfies
(2.6) Adiag(Iy, —Iy 1)AT = 0.
Then there exists u € O(k) such that

uT

o Lo =
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Proof. (i). By (2.4), the rank of A, denoted by n, is not greater than k. Let
{x1,T2,--, 2, } be an orthonormal basis for the columns of the matrix A” (found by
Gram-Schmidt process). Write

[1,- -, zn] =: [ }Z/1 ] , Yi1,Z; are k X n matrices.
1

Then Y{I'Yy + ZTZ, = I,,. By (2.4), we have Y|V, = ZI'Z,. Thus
1
v =2z = 51n-

Therefore v/2Y1,v/27Z; are k x n matrices of orthonormal columns. Let Y5, Z, be the
k x (k —n) matrices such that v/2[Y1,Y2],v/2[Z1, Z5] € O(k). Then one has

e B .
|:Y:2T —Z2T Z’j—o, 1<j<n.

Since each column of AT is a linear combinations of z;,1 < j < n, we have

v -z | v _
Thus (2.5) holds true with u = —2[Y1, ¥2][Z1, Z2]T € O(k).
(ii). The proof is similar. In this case write

[Z1, -, 2] =t [ ? ] , Yi1,7; are k x n and (k — 1) X n matrices,
1

where {21, T2, -+, 2, } is an orthonormal basis for the columns of A”. Then V2Y1,V22,
are k x n and (k — 1) x n matrices of orthonormal columns, respectively. Let Y2, Zo
be the k x (k —n) and (k — 1) x (k — 1 — n) matrices such that v/2[Y;,Y5] €
O(k),V2[Z1, Z>) € O(k — 1). Then one has

S T .
[ Y'ZT _[Z270]T AT = 07 1 <j<n.

Thus

Yi Y,
A =0
[ _Zl _[ZZ;O] :| ’

and (2.7) holds with u = —2diag([Z1, Z2],1)[Y1, Ya]T € O(k). O

From the proof of Lemma 2.1, we know that orthogonal matrices u in (2.5) and
(2.7) are constructed by the Gram-Schmidt process of the rows of A.

For v € O(r), define

(2.8) V() = 5 [ _I;T ;:’ ] +1 [ 1{; }’ ]z_l, v € O(r).

Then one has the following lemma.
LEMMA 2.2. Let V(z) be the matriz defined by (2.8) with some v € O(r). Then
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(i) V()T =V(z™h), V(2)V(z7!) = L.

(ii) 2~ diag(I,, —I,)V (2~ ') diag(I,, —I,) = V(2).

Proof. (i) and (ii) follow from the direct calculations. O

For a causal paraunitary matrix P satisfying (2.3), write
P=py+---+pnz .

By (2.3), py = Sopodiag(l,,—I.). On the other hand, the paraunitaryness of P
implies that pop% = 0. Thus

podiag(I, —I,)pj = 0.

By Lemma 2.1, we can find vy € O(r) such that po[I,,vn]" = 0.
Let Vv be the matrix defined by (2.8) with v = vx. Then P defined by

Is(z) = P(2)Vn(z71)

is causal. Since Vy(z) is paraunitary and satisfies (ii) of Lemma 2.2, P is also
paraunitary and satisfies (2.3) with N — 1. Continuing this process, we construct
UN—1,",01 € O(r) similarly such that P can be written as

P(z) = P(2)Vn(2) = --- = PoVa(2) - Vv (2),

where V; are defined by (2.8) with v =wv;, 1 < j < N, and Fy is an 7 x 2r matrix of
constant entries satisfying

PPl =1,, SoPy= Pydiag(l,,—1I,).

One has that for Py satisfying the above conditions, it can be written as

where ag and by are s x r and (r — s) x r matrices respectively with agal = I, bobl =

I._;. Let a; and b; be such matrices that [ ZO ] , [ 20 ] € O(r). Denote
1 1
0
Qo = [ o ] .

Fo ] € O(2r) and —SoQo = Qodiag(l.,—I,). Thus @ defined by

Then [ Qo

Q(2) == QoVi(2) - Vn(2),
satisfies that

Z_NSOQ(Z_I)dia’g(Ira _Ir) = —Q(Z),

P . . . . .
and [ 0 ] is causal and paraunitary. Therefore ) is a symmetric paraunitary exten-

1

sion of P. We note that the degree of each entry of @) as a polynomial of 27+ is not

greater than N. Let [G.,G,] = Q(2)Uy. Then we have the following theorem.



SYMMETRIC PARAUNITARY MATRIX EXTENSION 7

THEOREM 2.3. Suppose [H,, H,] is an r X 2r paraunitary matric satisfying (1.6)
for v = 2N + 1. Then [G.,G,] obtained by the above algorithm is a symmetric
paraunitary extension of [H, H,| with

N So[Gu(z ), Cole ™) [ So ] = _[Gu(2),Col2)]:

So

Let G be the filter defined by (1.8). Then G is causal, len(G) < 2N +1, G satisfies
(1.9), and {H,G} is an orthogonal multifilter bank. Thus we have the following
corollary.

COROLLARY 2.4. Suppose the causal FIR H generates an o.n. scaling vector
¢ = (1, -+, 0-)T supported on [0,2N + 1] with the first s components symmetric,
and the other components antisymmetric about N + % Let G be the causal matriz
filter constructed by the above algorithm. Then 1 defined by (1.2) is a multiwavelet
supported on [0,2N + 1] with the first s components antisymmetric, and the other
components symmetric about N + %

Example 1. Let H(z) = 22:0 hxz~* be a matrix CQF with

B 1 [ 100/101 10/101 b - 1 T100/101 1000/101
7 701 10e e M T I01 10e 100e ’
1 [ 9801/202 990/101 o _ .
hs = m |: ]-0]-f 0 :| ) h] = SOhS—]'Sb; 3< Jj< 5;

where Sy = diag(1,—1), and

261 7+/1147 — 202 f i 101 144/1147 — 143
T4 7071147 — 412827 7T 4 7071147 — 41282°

H satisfies (1.6) with v = 5, and it generates a symmetric/antisymmetric o.n. scaling
vector ¢ with ¢ € W1-87659(R). Here W?(R) denotes the Sobolev space consisting of
all functions with f(w)(1 + |w|?)5 € La(R), and we use the smoothness estimate of
¢ provided in [4]. We will construct the corresponding symmetric high-pass filter by
the above algorithm.

Let H., H, be the filters defined by (1.4). Then P(z) := [H,, H,)JU! is po +
prz~ ' + paz~? with

1 [200/101 -990/101 0 -—10 ]

Po=701| 20e —99¢ 0 —10le
_ 1 [992/101 1980/101 0 0
Pr= 901 0 0 —202f 0 |

p2 = Sopodiag(l2, —I2).
By the above algorithm, we can construct ve € O(2), then v; € O(2) with

1[99 —20] 1[99 20]
’ 1

2777011 20 99 U= 701 | 20 —99

such that P(2)Va(z~1)Vi(271) is

10 0 0
PO_[O 0 —2f —2e]’
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where V; are the matrices defined by (2.8) with v = v;,j = 1,2. Let Qo defined by

[0 0 2 -2f
QO_[OlO 0]

be the orthogonal extension of Py. Then Q(z) = QoV1(z)V2(2) is a symmetric exten-

sion of P(z). Finally, we get G(z) = ‘/TEQ(zQ)UO [ 2,1121 ] =: 22:0 grz"F with
2

1 10f f 1 [ 10f 100f
9 =101 | —495/101 —99/202 |* 9' = 101 | —495/101 —4950/101 |
1 [ —10e 0 .
%= 101 [ 990/101 200/101 ] ) 95 = =S0g5—3%0, 3<j<5.

The corresponding multiwavelet ¢ is symmetric/antisymmetric about 5/2. O

2.2. The case v = 2N. Suppose H satisfies (1.6) with v = 2N, N € N. We
hope to find such a causal G that each component of the corresponding ¢ has the
same symmetry center IV, i.e., to find G to satisfy

(2.9) 272N81G(z7 1Sy = G(2), Sy = diag(+£1,---,+1).

First we have the following proposition.

PROPOSITION 2.5. Suppose {H,G} is orthogonal, and H,G satisfy (1.6) for
v = 2N and (2.9) respectively. Then r is even and by permutations, So and S are
dzag(Ig , —Ig)

Proof. By (1.6) for v = 2N and (2.9),

R R I R

and

ey cor[® [ HOT[S
(620 6011, ")

(2.10) implies that diag(So, S1) is similar to diag(Sp, So). Thus Tr(S;)=Tr(Se). While
(2.11) implies that Tr(S;)+Tr(Se) = 0. Therefore Tr(S;)=Tr(Sy) = 0. Hence r is
even, and half diagonal entries of both Sy and S; are 1 and the other half diagonal
entries are —1. [0

Due to Proposition 2.5, in the rest of this subsection we always assume that
r = 2m for some m € N and

So = diag(Im, —Inm)-

We will discuss the following symmetric extension problem: Given a causal H satis-
fying (1.6) for v = 2N, to find G such that G satisfies (2.9) with Sy = diag(—1I,s, In)
and {H,G} is orthogonal. For this we introduce a paraunitary matrix U(z) defined
by

o 1 SOU150 U1 _ Ir u
(2.12) U(z):= 3| Ut sUns, | Uy = ur I | € O(m).
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LEMMA 2.6. Let U(z) be the matriz defined by (2.12) for some u € O(m). Then
(1) URU ()T = .
So

(ii) U(z~Y)diag(Soz~1, S0)U(z7 1)1 = S6

Proof. One can obtain (i) by a direct calculation. For (ii), we have

IR _ L[ SoUiz=t ULS S
e s s =3 [0 G- [ 5 * Jue

ad
For a causal matrix CQF H satisfying (1.6) for v = 2N, let H,, H, be the causal
filters defined by (1.4). Then (1.6) for v = 2N is equivalent to

(213) = (NDGo[H, (1), H, (=) diag(>~1So, So) = [Ho(2), Ho(2)].
By (1.3) and symmetry of H, hohly = 0 and hany = SohoSy. Thus
hoSohd = 0.

By Lemma 2.1, we can find ug € O(m) such that ho[L,,ue]T = 0. Thus

Im Uo _
(2.14) ho [ 3o ] =0.

Let Up(z) be the paraunitary matrix defined by (2.12) with v = ug. Equation (2.14)
implies that the r x 2r matrix [H,, H,] defined by

[H.(2), Ho(2)] = [He(2), Ho(2)[Uo(2 )"
is causal. The paraunitaryness of [H.,H,] and Up(z) imply that [ﬁe,ﬁo] is also
paraunitary. On the other hand, by (ii) in Lemma 2.6 and (2.13), one has
NN | g, ] = o)
0

Thus by Theorem 2.3, there exist causal FIR G, (z), G,(z) such that [G.(z),G,(2)] is
a symmetric paraunitary extension of [H,, H,] with

zf(Nfl)SO[ée(zfl),éo(zfl)] [ 5 So :| = —[Ge(Z);Go(z)].

Define

[Ge(2), Go(2)] = [Ge(2), Go(2)]Uo(2)-
Then [G¢(2),G,(#)] is a symmetric paraunitary extension of [H, H,] and it satisfies
(2.15) 2 WDG[G. (27 1Y), Go(z V)]diag(z 1 S0, So) = —[Ge(2), Go(2)].

THEOREM 2.7. Suppose [He, H,)] is an r x 2r causal paraunitary matriz satisfying
(2.13). Then [Ge,G,] obtained by the above algorithm is a symmetric paraunitary
extension of [H., H,| with [Ge(2),Go(2)] satisfying (2.15). Furthermore len(G.) < N,
len(G,) < N —1.
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Let G be the filter defined by (1.8). Then G is causal, len(G) < 2N, G satisfies
(2.9) with Sy = diag(—I,Im), and {H,G} is orthogonal.

COROLLARY 2.8. Suppose the causal filter H generates an o.n. scaling vector
¢ = (p1,- -, P2m)? supported on [0,2N] with the first m components symmetric, and
the other m components antisymmetric about N. Let G be the matriz filter obtained
by the above algorithm. Then v defined by (1.2) is a multiwavelet supported on [0,2N]
with the first m components antisymmetric, and the other m components symmetric
about N.

3. Symmetric extension of matrices related to different symmetric cen-
ter filters. Suppose H = Zil‘gl hxz~* is a matrix CQF satisfying (1.7). Let H,, H,
be the causal filters defined by (1.4). Then [H,, H,] satisfies

(3.1) 27 diag(Soz, 1)[He(271), Hy(2~1)|diag(Jo, 2) = [He(2), Ho(2)],
where
So
(3.2) Jo = 1
So

In this section, we discuss the symmetric extension of [H,, H,]. We will construct
[Ge,G,] such that it is a paraunitary matrix of [H., H,] and

(3.3) 2z~ Vdiag(S12,852)[Ge (z™h), Go(z_l)]diag(Jo, z) = [Ge(2),G0(2)],

where S; and S are defined by (1.11). Then G defined by (1.8) satisfies (1.10).
Define Ry € O(2r — 1) by

(3.4) Ry = g Iro_ 1 \35 Iro_ 1
-I—v 0 I
Then
Ry JoRT = diag(Sy, 1, —S)).
Let My be such a 2r x 2r permutation matrix that

(3.5) Mydiag(So, 1, —So, 2) Mo = diag(z, I, —I.—1) = diag(z, D,).

Recall a matrix is called a permutation matrix if its columns are a permutation of the
columns of identity matrix. D, is the matrix defined by (1.12). Denote

P(z) := [He(2), Ho(2)]diag(R1, 1) Mo,
Then P is causal and paraunitary, and [H,, H,] satisfies (3.1) if and only if P satisfies
(3.6) 2 "diag(Soz,1)P(z !)diag(z, D,) = P(2).

We now consider the symmetric extension of P. We want to construct a causal
filter @ such that @ is a paraunitary extension of P and satisfies

(3.7 27 Vdiag(S1 2, S2)Q (2 Vdiag(z, D,) = Q(2).
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If Q satisfies (3.7), then [G., G,] defined by [G.,G,] = QMydiag(RT, 1) satisfies (3.3).
First let us consider the case v = 1. In this case, (3.6) implies that P can be
written in the form of

0 a O 0 0 0
0 0 b |+]0 0 0 |z,
o Y1 Yo 0 y1 —u

where ag, by are s x r and (r —s — 1) x (r — 1) matrices, ¢ € R and y;,y2 are 1 X r
and 1 x (r — 1) row vectors. The paraunitaryness of P implies that

aoaq = Iy, boby =Ir—s—1, aoy; =0, boys =0, w1yl =yays, cot+dyiy; =1.

Thus we know ag, bp are s X r and (r — s — 1) x (r — 1) matrices of orthonormal rows.
Let 6 be such a real number that

cosf =cp, sinf =4/1-c2.

Then y1,y2 can be written as

1 1
(3.8) Yy = §sint9u0, Yo = Esin0vo,

where ug and v are 1 xr and 1 x (r — 1) row vectors such that ZO ] and [ ZO ] are
0 0

(s+1) xr and (r—s) x (r—1) matrices of orthonormal rows. Indeed, if sin§ = 0, then
y1 = 0,92 = 0 and any unit vectors ug, vg orthonormal to rows of ag, by respectively
will do. If sin@ # 0, ug = 2y1/siné, vo = 2y2/siné.

Consider the case 2s > r. Choose (r—s—1) xr, (2s—r)x (r—1) and (r — s —
1) x (r — 1) matrices @, 1, ¥ such that

[ag ,ug,u"] € O(r), [bg,vg,0",8{] € O(r—1),

where g, vg are the vectors satisfying (3.8). Then @ defined by

0 0 20, 0 0 0
—2sinf cosfug cosBug 0 cosBuy —cosbug
1 . . 1 - - 1
Q(z) == 0 0 0] +-|0 U -0 z2
2 2
0 Ug Vg 0 —uo Vo
0 i 0 0 —a 0

is a symmetric paraunitary extension of P with @ satisfying (3.7) for v = 1.
For the case 2s < r, choose (r —2s) xr, (s—1) x (r—1) and (s — 1) x (r — 1)
matrices @, 4 and ¥ such that

[ad i, a”,af] € O(r), [bd,vd,0%] € O(r —1),

where ug, vg are the vectors satisfying (3.8). Then @ defined by

0 2111 0 0 0 0
1 —2sinf@ cosBug cosbug 0 cosBuy — cosbug
Q) == 0 @ 0y +=10 @ —0 27
2 2
0 UQ Vo 0 —Ug Vo
0 U v 0 —U v
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is a symmetric paraunitary extension of P with @ satisfying (3.7) for v = 1.

PROPOSITION 3.1. Suppose P is a causal paraunitary matriz satisfies (3.6) for
v = 1. Then @ constructed above is a symmetric paraunitary extension of P satisfying
(8.7) for v =1.

Now let us discuss the case v > 2. First we introduce a paraunitary matrix W (z).
[ W
For w =:
w

T

] € O(r) with w, the last row of w, define

0 0 0 0 2w, 0
12 0o o 1o o o |
(3:9) WE=310 & -5, |%*2|0 & I |7
0 - I, 0 & I,

Then by a direct calculation, one has the following lemma.
LEMMA 3.2. Let W(z) be the matriz defined by (3.9) with some w € O(r). Then
(i) W)W (z 1)1 = Iy,
(ii) 2z diag(z~1, D)W (2~ 1) diag(z, D,) = W(z).
Suppose P is a paraunitary matrix satisfying (3.6) for v > 2. Then P has the
form of

P:[ao b0]+|:al b1:|z1+___+|:SOGO SOler:|z('y2)+

co do ca dp &1 d2D,
0 SoboD, —(y=1) 0 0 —
[ Co d1 DT ] o + 0 do DT o ’

for some ¢; € R, (r—1) x 1 and 1 x (2r — 1) vectors a; and d;, and (r —1) x (2r — 1)
matrices b;. The paraunitaryness of P implies that

a b ]J0 o 17 _ 0

Co do 0 doDr -

[4%)) bo 0 S(]b()Dr r + [45] b1 0 0 r -0

Co do Co dlDr C1 d1 0 doDr -
which leads to

b
| patdy =0,
By Lemma 2.1, we can construct w, € O(r) satisfying

(3.10) [ Z‘; ] [ (I:{i 0 ] = 0.

Write

w
w"f::|:w’y :|7
’YYT

where w, , is the last row of w,. From (3.10), we have

—dr—1

T ~T
(3.11) doD, { wa,r Wy ] =0.
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Let W, (2) be the matrix defined by (3.9) with w = w.,. Define P by
P(z) == P(2)W,(z~H)T.
Then (3.10) and (3.11) imply that P is causal, and it can be written as
Bo+ -+ pn_rz 7D,

for some r x 2r matrices p;. Since W, (2) is paraunitary and satisfies (ii) of Lemma
3.2, P is also paraunitary and satisfies (3.6) with v — 1. In this way, we construct
Wy—1,- -, w2 € O(r) similarly such that P can be written as

P(z) = P()W,(2) = - = Pi(z)Wa(2) .- Wi (2),

where W; is defined by (3.9) with w = w;, and P; is an 7 x 2r matrix satisfying (3.6)
with v = 1. By Proposition 3.1, we can construct a causal filter @); such that Q; is a
symmetric paraunitary extension of P;. Let

Q2) = Qu(z)Wa(2) - -- W, (2).
Then @ is a symmetric extension of P satisfying (3.7). Define
[Ge(2),Go(2)] = Q(2) Modiag(RY , 1).

Then [G,, G,] is a symmetric paraunitary extension of [H,, H,] with [G., G,] satisfying
(3.3).

THEOREM 3.3. Suppose [He, H,)] is an r x 2r causal paraunitary matriz satisfying
(8.1). Then [G.,G,] obtained by the above algorithm is a symmetric paraunitary
extension of [H,, H,] satisfying (3.3). Furthermore the filter length of [Ge,G,] is not
greater than .

Let G be the matrix defined by (1.8). Then G is causal, satisfies (1.10) and
len(G) < 2y + 1.

COROLLARY 3.4. Assume that the causal FIR H generates an o.n. scaling vector
¢ = (p1, -, )T with ¢y,--+,ds and psi1,-- -, br_s_1 symmetric and antisymmetric
about y— %, and ¢, is symmetric about y. Let G be the causal matriz filter obtained by
the above algorithm. Then v = (¢1,---,¢,)T defined by (1.2) is such a multiwavelet

that Y1, -+, 25— r are antisymmetric about ¥ — %, Yas—ri1,- -, Ps and Ysy1, -+, r
are symmetric and antisymmetric about -y respectively for the case 2s > r; and
P17+, Yr_ns are symmetric about ¥ — 5, Y2511, Pros and Pr_si1,-- -, Yy are

symmetric and antisymmetric about v respectively for the case 2s < r.
Example 2. Let ¢ = (¢1,¢2)7 be the o.n. scaling vector constructed in [2].
The low-pass filter H for ¢ is given by

1 6+ 6271 8v/2

H(z)= —
(2) 20 | (14927149272 —27%)/v/2 —3+102z71-3272

In this case So = (1), and

1 0 1 00 1

5
Rlzgoﬁo,m:obo
1 0 1 10 0
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Let H., H, be the filters defined by (1.4). Then P := [H,, H,|diag(R1,1)M, is

0 22 0 0o 0 0 017
VZIo_3V3 V3 V3 || g _3E V3 V3|
2 20 5 4 20 5 4

By the above algorithm, one can find P’s symmetric extension @:

Q(z)_2[o i O R I T S e
Then we get [Ge,G,] = Q(2)Mydiag(RY,1), and finally we have G(z) = G.(2?) +
Go(2%)z71:

() 1 [ (9—21=272+927%)/v2 —-3-102"1-3272 ]

T2 9-zl4+22-9,73 3v2(z2 — 1)

The first and the second components of the corresponding ¢ = (¢1,2)7 is symmetric
and antisymmetric about 1 respectively. O

4. Parametrization of symmetric multifilter banks. In this section we dis-
cuss parametrizations of symmetric orthogonal filter banks. We consider two types of
symmetry filters, having or not having the same symmetric centers, in the following
two subsections respectively.

4.1. Filter banks with the same symmetric center. Assume that {H,G}
is a causal orthogonal filter bank satisfying

(4.1) 27VSoH (2718 = H(2), 2 7S1G(271)So = G(2),
where
So = diag(Is, —I,—s), S1 =diag(£l,---,£1), s € Np.

One can show as in Subsection 2.2 that Tr(S;) =Tr(Sp). In this subsection we assume
that 51 = —S().

THEOREM 4.1. A causal FIR multifilter bank {H,G} is orthogonal and satisfies
(4.1) with v = 2N 4+ 1 for some N € N, S; = —Sy if and only if it can be factorized
in the form of

(4.2) H(z) = g { %0 ,2) ]m(zQ)---VN(f)UO [ IT?_I ]
=] 0 e wen] ).

where V; are the matrices defined by (2.8) with v; € O(r), ag,b1 and a1,by are s x r
and (r—s) x r matrices respectively with [al ,a¥],[bd,b1] € O(r), and Uy is the matriz
defined by (2.2).

THEOREM 4.2. A causal FIR multifilter bank {H,G} is orthogonal and satisfies
(4.1) with v = 2N for some N € N, So = diag(I;,,—Ip), S1 = —So if and only if it
can be factorized in the form of

a  H@=[% )] e [
o= 0 e wemoe [ 2],
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where V; are the matrices defined by (2.8) with v; € O(r), ag,b1 and a1,by are s x r
and (r — s) x r matrices respectively with [al,a¥], [bL,bT] € O(r), and Uy and U(2)
are the matrices defined by (2.2) and (2.12) with u € O(m) respectively.

Let M, be the permutation matrix defined by

. 0 I
M, = diag(Is, [ L., 0 ])

One can easily show that for H, G given by (4.2) and (4.3) respectively, they can also
be written in the forms of

o [B)heren [3 5] [ )

and

@) | g | =gmme e | 5 s Jven | .

where A, B € O(r).

Parametric expressions of causal orthogonal multifilter banks (4.4) and (4.5) were
provided in [6]. It was shown in [7] that the factorization (4.4) is complete. Theorem
4.2 shows that the factorization (4.5) is also complete. By the completeness of the
factorization (4.4) and the equivalence of forms (4.2) and (4.4), Theorem 4.1 is in fact
not new. For completeness of this paper, the sketch of its proof is provided here.

Proof of Theorem 4.1.  Clearly if {H,G} is given by (4.2), then it is a causal
symmetric orthogonal filter bank. Conversely, let E be the polyphase matrix of H, G.
Then E satisfies

= E(2).

(4.6) sziag(So,—So)E(zl)[ 0 S ]

So 0
Define E; (2) := E(2)U¢, where Uy is the matrix defined by (2.2). Then E; satisfies
2z~ Ndiag(Sy, —S0) E1 (27 Y)diag(I,., —I,) = Ei(2).

Write
Ei(2) =ey+---+enz V.

By the symmetry of E, ey = diag(So, —So)eodiag(I., —I.). By the paraunitaryness
of E, egek; = 0. Thus eodiag(I,, —I,)el = 0. By Lemma 2.1, we can find vx € O(r)

such that
I
€9 [ UJ;\} ] =0.

Let Vi (z) be the matrix defined by (2.8) with v = vy. Then E;(2) = E;(2)Vn(271)
is causal, paraunitary and satisfies

7~ N Vdiag(So, —So) E1 (2 1) diag(I, —I,) = E1(2).

Continuing this process, we can find vy _1,---,v1 € O(r) such that Ey (2)Va(271)--- Vi(271)
is

T 71T
ay 0 0 aj

0 b o o0 |
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where ag,b; and a1,bp are s x r and (r — s) X r matrices respectively satisfying
[ad',aT],[bd,bT] € O(r). Thus E can be factorized into

al 0 0 df

T

(4.7 E(z) =

Hence H,G can be written in the form of (4.2). O

Proof of Theorem 4.2.  Clearly if {H,G} is given by (4.3), then it is a causal
symmetric orthogonal filter bank. Conversely, let E be the polyphase matrix of H, G.
Then E satisfies

2~V =Ydiag(So, —So) E(z')diag(z 'S0, So) = E(z).
Write
E(2) = [eo,1,€0,2] + [e1,1,€12)2 F + -+ + [en1,ena]z N,
where e;1,€;2 are 2r X r matices. Then
en2=0, en1 = diag(So,—So)eo,150.

By the paraunitaryness of E, eg ey, = 0. Thus e 150ej; = 0. By Lemma 2.1, we
can find ug € O(m) such that

L,
€0,1 [ ugv :| =0.

Let U(z) be the matrix defined by (2.12) with u = ug. Then E(z) = E(2)U(z~1)*
is causal, paraunitary and satisfies (4.6) with N — 1. By the proof of Theorem 4.1,
E can be factorized into the product (4.7) with N — 1. Thus H,G can be factorized
into the form of (4.3). O

4.2. Filter banks with different symmetric centers. Suppose H(z) =
T bk G(2) = S0t gz satisfy (1.3), (1.1), and

(4.8) 2z~ D diag(Syz?, so) H (2~ *)diag(So, soz) = H(2),
2z~ diag(8) 22, S2)G(z ) diag(So, s0z) = G(2),
where sg = £1, Sp, 51,52 are diagonal matrices with diagonal entries 1 or —1.

PROPOSITION 4.3. Suppose a causal multifilter bank {H,G} is orthogonal and
satisfies (4.8). Then

TT(S())-/-TT'(Sl) = So, TT'(SQ) =0.

Proof. By (4.8),

(4.9) diag(So,so,Sl,SQ) [ ‘g((%)) ‘g((:}; ] diag(SO,SO,SO,—SO)
_ [ H(1) H(-1) ]
G(1) G(=1) |°
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and
(4.10) (—1)"idiag(So,—s0, S1,—S») [ a
Z[HFQ H@][ L]
G(—i) GG || 1 '
By (4.9), Tr(So)+Tr(S1)+Tr(Ss) = s0, and by (4.10), Tr(So)+Tr(S1)-Tr(S2) = so.

Thus Tr(Se)+Tr(S1) = s¢ and Tr(S2) =0. O
In the following we assume that s = 1 and suppose

(=i) H@@) | . . .
(=) G() ]dlag(So,soz,Sl,—soz)

So = diag(Is, —Ir—s—1), S1=diag(lr—p_s, —Is—p), S2 = diag(l,,—1I,)

for some s,p € Ny with s < p,2p < r. Let E be the polyphase matrix of H,G. Then
FE satisfies

27 Vdiag(Soz, 1, 812, So) E(2~1)diag(Jo, 2) = E(2),

where Jy is the matrix defined by (3.2).
Let M5 be such a permutation matrix that

M2diag(S()Z, ]., Slz, SQ)MQ = diag(DT_pz, Dp+1).

Let R; be the matrix defined by (3.4) and My be such a permutation matrix that
(3.5) holds. Denote

E(z) := MaE(z)diag(Ry,1) M.
Then £ is causal, paraunitary, and satisfies
(4.11) 2z Vdiag(D,_pz, Dpy1)E(z V)diag(z, D,) = £(2).

In the following we discuss the factorization of £. First we consider the case
1. For this we introduce a paraunitary matrix W(z) defined as follows. For
=: [ “ ] € O(r),v =: [ Zl ] € O(r — 1), where u;, us, v; and vy are (r —p) x r,
2

pxr,(r—p—1) x (r—1) and p x (r — 1) matrices respectively, define

0 2u; 0 0 0 0
110 0 20 L]0 0 o0
(4.12) Wk)==12 0 0 |+=[0 0 0 |z7%
2 2
0 wus Vo 0 U2 —V2
0 wus Vo 0 —us V2

One can show that W is paraunitary and satisfies (4.11) for v = 1.
PROPOSITION 4.4. A causal paraunitary £ satisfies (4.11) for v = 1 if and only
it can be written as

(4.13) E(z) = diag(Lar—2p—1,¢, [,)WV(2), c€O(p+1).
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Proof. It is clear if £ is given by (4.13), then it is paraunitary and satisfies (4.11)
for v = 1. Conversely, condition (4.11) implies that £ has the form of

0 Ly 0 0 0 0
0 0 Ly |+] 0 0 0 271,
Co d() 0 Dp+1d0DT

where L1, Ly are (r — p) x r and (r — p — 1) x (r — 1) matrices respectively, ¢q is
(2p + 1) x 1 column vector satisfying D,11co = co, and dg is a (2p+ 1) x (2r — 1)
matrix. The paraunitaryness of £ implies that

(414) L. =1, ,, IL,LY =1, , ., diag(Li,Ls)dg =0, doD,dj = 0.

Again let {z;,72,---,7,} be an orthonormal basis for the columns of dl, where
n < r —1 is the rank of dy. Write

[1,---,2n] = [ }Zfl ], Y1,Z;1 are r x n and (r — 1) X n matrices.
1

Then v/2Y1,v/2Z; are r x n and (r — 1) x n matrices of orthonormal columns, respec-
tively. By (4.14), we know L1, Ly are (r — p) X r and (r — p — 1) x (r — 1) matrices
of orthonormal columns, and L,Y; = 0,LyZ; = 0. Thus [v/2Y3, LT],[vV2Z:,LY] are
rX (n+r—p) and (r—1) x (n+r—p—1) matrices of orthonormal columns, respectively.
Thus n < p. Let Y3, Z3 be r X (p —n) and (r — 1) x (p — n) matrices such that

[V2Yvy, LY V2Ys] € O(r), [V2Zy,LE V225 € O(r — 1).
Thus

vWwo-z{| _
[Y2T _ng z; = 0.

Therefore

i vl . . i % o]_
dO |: _Z1 _Z2 :| _Oa dlag(LlaLQ) [ _Z1 _Z2 :| =0.

Let W(z) be the matrix defined by (4.12) with w1y = Li,v1 = Lo, and uy =
V2[Y1,Ya]T va = V/2[Z1, Z5])T. Then &(2) := E(z)W(2~!)7 is a causal paraunitary
matrix satisfying

diag(Dr—p2, Dpt1)€o (Zil)diag(Drfpzila Dp1) = &o(2),

which implies that £y(z) is diag(a,b,c,d) for a € O(r — p),b € O(r —p —1),¢c €
O(p+1),d € O(p). One can check some parameters in a,b,c,d are redundant, and
we can choose a = Ir_p,b = I,_,_1,d = I,. Hence £ can be written in the form of
(4.13). O

Now let us consider the case v > 2.

LEMMA 4.5. If a causal, paraunitary £(z) = eg+e1z7 1 +---e,277 satisfies (4.11)
for v > 2, then there exists w, € O(r) such that

60[0,1177, —Ir_l]T = 0,

where W., is the matriz consisting of the first r — 1 rows of w,.



SYMMETRIC PARAUNITARY MATRIX EXTENSION 19

Proof. By (4.11), £ can be written as

e A B e

Co d(] C1 d1
0 DrphoDr | -1y [ O 0 J
Dp+100 Dp+1d1DT 0 Dp+1d0DT ’

where aj, bj, ¢;j and d;, (2r —2p—1) x 1, (2r —2p—1) x (2r — 1), (2p+1) x 1 and
(2p+ 1) x (2r — 1) matrices. The paraunitaryness of £ implies that

agp bo 0 0 T -0
Co d() 0 -Dp—‘,-ldOD”‘ -
and

[ao bOH 0 DprODT]T_i_[al bl][o 0 ]T_O
Co dg Dp+1CO Dp+1d1D7. C1 d1 0 Dp+1d0Dr )

Thus

b
| pd1 =0,

Therefore by Lemma 2.1, there exists w, € O(r) such that

el ]=o

The proof of Lemma 4.5 is complete. O

By Lemma 4.5, for a causal, paraunitary £ satisfying (4.11) for v > 2, there exists
w,, € O(r) such that £(2)W, (2~1)T is causal, paraunitary and satisfies (4.11) for y—1,
where W, (2) is the matrix defined by (3.9) with w = w.,,. In this way, we can find
Woy—1,- -, w2 € O(r) such that £(2)W,, (z71)T - - Wa(2~1)7 is causal, paraunitary and
satisfies (4.11) for v = 1. This together with Proposition 4.4 leads to the following
theorems.

THEOREM 4.6. A causal paraunitary FIR £ satisfies (4.11) if and only it can be
factorized in the form of

E(z) = dmg(12r—2p—170; Ip)W(Z)Wz(Z) : --Ww(z),

where ¢ € O(p + 1), W is the matriz defined (4.12) for u € O(r),v € O(r — 1), and
W;(z) are the matrices defined by (3.9) with w; € O(r).

THEOREM 4.7. A causal FIR multifilter bank {H,G} is orthogonal and satisfies
(4.8) if and only H,G can be factorized in the form

|6 ]-%

where Ms, Ry, My are the matrices defined above, ¢ € O(p + 1), W is the matriz
defined (4.12) for w € O(r),v € O(r — 1), and W;(z) are the matrices defined by (3.9)
with w; € O(r).

For the special case r = 2, s = p = 1, another form of the complete factorization of
orthogonal { H, G} satisfying (4.8) was obtained in [8]. By the parametric expression of
symmetric multifilter banks, one can construct multiwavelets with various properties.
We will carry out such work elsewhere.

: A : : . I,
Madiag(Tor—ap—1, ¢, LYW(2*)Wa(2?) - - - W, (2°) Mo diag(R{ , 1) [ = ] :
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