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Abstract: We consider the existence of distributional (or Lg) solutions of the matrix

refinement equation

= P(-/2)3(-/2),

where P is an r X r matrix with trigonometric polynomial entries.

One of the main results of this paper is that the above matrix refinement equation
has a compactly supported distributional solution if and only if the matrix P(0) has an
eigenvalue of the form 2", n € 7ZZ,. A characterization of the existence of Ls-solutions of
the above matrix refinement equation in terms of the mask is also given.

A concept of Lo-weak stability of a (finite) sequence of function vectors is introduced.
In the case when the function vectors are solutions of a matrix refinement equation, we

characterize this weak stability in terms of the mask.
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1. Introduction

The equation

(1.1) o= ) Pa®(2-—a),
1Y/l
where P, a € 7ZZ° are r x r real matrices, is considered in wavelet theory in the context
of multiwavelet construction and in the area of subdivision in the context of Hermite
interpolation. The solution ® in (1.1) is an r-vector.
Assume that P, = 0, for all « ¢ [0, N]® for some positive integer N. Define

P:=2"° Z P,exp(—ia-).
1<V/Ad
Then, P is an r X r matrix with trigonometric polynomial entries whose Fourier coeflicients
are real and supported in [0, N]*. Equation (1.1) is then equivalent to

(1.2) O :=P(-/2)®(-/2).

Either equation (1.1) or equation (1.2) is called a matrix refinement equation; P
({Pq}) is called the (matrix) refinement mask and a nonzero solution ® of (1.1) is
called a (P-)refinable (function) vector.

One of the objectives of the present paper is to characterize the existence of distri-
butional solutions of (1.1). We will show in §2 that (1.1) has a compactly supported
distributional solution if and only if P(0) has an eigenvalue of the form 2", n € 7ZZ,. We
will further give a characterization in terms of the refinement mask of the existence of
Ly-solutions of (1.1) under a mild assumption on P(0). (Since only nonzero solutions are
considered in this paper, a statement that (1.1) has a solution should be understood as a
statement that (1.1) has a nonzero solution.)

The existence of compactly supported distributional solutions of (1.1) was previously
considered in [HC] for the case s = 1. It was shown in [HC] that if p(P(0)) < 2 and
the largest eigenvalue of P(0) is simple, (1.1) has a compactly supported distributional
solution ® with ®(0) = r, where r is a right eigenvector of eigenvalue 1 of P(0). (Here and
hereafter the spectral radius of a matrix M is denoted by p(M).) This result was improved
in [CDP] by removing the condition that the largest eigenvalue of P(0) should be simple.

We will show at the beginning of §3 that if (1.1) has a solution ® C Ly(IR*) with
det Gg(0) # 0, where G (w) is the Gramian matrix of ®, the matrix P(0) satisfies Condi-
tion E(1) (i.e. p(P(0)) <1, 1 is a simple eigenvalue of P(0) and is the only eigenvalue on
the unit circle). When P(0) does not satisfy Condition E(1), we introduce in §3 a concept
of the weak stability of a sequence of function vectors, and give a characterization of the
weak stability of the solutions of (1.1) in terms of the mask.
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We conclude this section with some notations. We say that a matrix M € Ly(IR?)
(or in £5(72%)), when each entry of M is in Lo(IR®) (or in ¢5(ZZ%)). For a given matrix

M = (mi,j),
M=) |mi
1,7

For 1 < j <, use i; to denote the vector (§;(k));_,. Also, I stands for a unit left (row)
eigenvector of P(0) and r denotes a unit right (column) eigenvector of P(0). Finally,
H";lej = MlMg T Mk

2. Matrix refinement equations

A column vector

¢ = (QS'L)::I # 0,

where each component ¢; is in the space S'(IR°) of tempered distributions, is called a
solution of (1.1), if ® satisfies the refinement equation

~

(2.1) o= P(é)@)(é).

The support of ® is the set
supp(®) := Uj_, supp(¢).
The solutions of (2.1) are related to the infinite matrix product
(2.2) 1152, P(-/27) := limy, oo IT¥_, P(-/27).

If the infinite product (2.2) converges on every compact subset of IR® and each entry of
the limit matrix has at most polynomial growth at infinity, then (2.1) hence (1.1) has
distributional solutions.
We say that an operator M defined on a finite dimensional linear space (such as a
matrix M) satisfies Condition E(m), when the following conditions are satisfied:
(i) p(M) <1,
(ii) 1 is the only eigenvalue of M on the unit circle,
(iii) 1 is a nondegenerate eigenvalue of M and m is its multiplicity, in the sense that
both the geometric and the algebraic multiplicity of 1 are m.

We also use the notation E(m) for the set of all such operators.
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Suppose P(0) € E(m). Then, (2.2) converges on any compact subset of IR®. It
is further known that there are then m linearly independent distributional solutions ®,
1 <k < m with EISk(O) = rg, where rg is a right eigenvector of P(0) corresponding to
eigenvalue 1 (see [HC] and [LCY]). However equation (1.1) may have solutions even in the
case (2.2) does not converge. For instance, it was shown in [CDP] that if 1 is an eigenvalue
of P(0) and p(P(0)) < 2, then (1.1) has a compactly supported distributional solution.

In this section, we will show that (1.1) has a compactly supported distributional
solution if and only if P(0) has an eigenvalue of the form 2" for some n € 7ZZ,. The
following lemma, establishes the ‘only if’ part of that result, and was proved previously in
[HC] for the case that s = 1.

Lemma 2.3. Suppose (1.1) has a compactly supported distributional solution. Then, the
matrix P(0) has an eigenvalue 2" for some n € 7Z..

Proof. Since ® is compactly supported, d is analytic. Since d # 0, there exist
B € Z7, such that

DP®(0) # 0, D*®(0) = 0, for all « € Z%, (8 — ) € Z3\{0}.

Therefore,
83 L (B pp-a a3 1 83
0°8)0) = Y 5 (D) (0P P)0)(D°8)(0) = 55 PO)(D7F) 0).
0<a<p
Thus, 218 is an eigenvalue of P(0) and DA®(0) is the corresponding eigenvector. O

It follows from the next theorem, whose proof will be postponed to the end of this
section, that the above necessary condition is also a sufficient condition for the existence
of a compactly supported distributional solution of (1.1).

Theorem 2.4. Suppose that 1 is the only eigenvalue of P(0) of the form 2™, n € 7Z,.
Then, for each right eigenvector r of P(0) corresponding to eigenvalue 1, there is a unique
compactly supported distributional solution ® of (1.1) with ®(0) = r.

For the special case when r = 2, a result similar to Theorem 2.4 was independently
obtained in [Z].
The following theorem is the main result of this section.

Theorem 2.5. The matrix refinement equation (1.1) has a compactly supported distri-
butional solution if and only if P(0) has an eigenvalue of the form 2", n € 7Z.

Proof. The ‘only if’ part was proved in Lemma 2.3.
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Suppose that P(0) has some eigenvalues of the form 2" n € ZZ,. Let 2™ be the
largest eigenvalue of that form. Define P (w) := 27" P(w), then P;(0) has 1 as the only
eigenvalue of the form 2", n € 7ZZ,. By Theorem 2.4, there exists a compactly supported
distribution ®; satisfying

B, = Py (=), (=)

1= P1(5)0(5)

Choose 8 € Z7 such that [3| = no, and define ® := DB®,. Then ® is a compactly
supported distribution and ®(w) = i/#lwP®,(w) # 0. Further, ® satisties

)b (

B(w) = 2"IP,(5)8(5) = P(5)3(5).

| &
| &

Hence, ® is a compactly supported distributional solution of (1.1). O
Theorem 2.4, together with the proof of Theorem 2.5, lead to the following corollary:

Corollary 2.6 . Suppose 1 is an eigenvalue of P(0) and r is a corresponding right eigen-
vector. Then the matrix refinement equation (1.1) has a unique solution ® satisfying
®(0) = r if and only if 1 is the only eigenvalue of P(0) of the form 2™, n € 7 .

This corollary implies the following known fact (see [HC] and [LCY]).

Corollary 2.7. Suppose that P(0) € E(m). Let ry,...,r,, be a set of linearly indepen-
dent right eigenvectors of eigenvalue 1 of P(0). Then, there are m linearly independent
solutions ®1,...,®,,, with EISJ-(O) =rj, j=1,...,m of (1.1). Further, any other solution
of (1.1) is a linear combination of ®;, j =1,...,m.

Example 1. Let P, =0, a #0,1,2,3,

et (s ) net (s )

and Py = SoP150, P53 = SoPoSy, where Sy := diag(1, —1). Consider the matrix refinement
equation

(2.8) ® = P(-/2)8(-/2),

where P(w) = 1/2 Zi:o P, exp(—iwa). Since P(0) = I, where I5 is the 2 x 2 identity
matrix, (2.8) has 2 linearly independent compactly supported distributional solutions ®;
and ®, with $j(0) = ij,7 = 1,2 by Theorem 2.5 and Corollary 2.7. In fact, the first
(second) component of ®5 is the second (first) component of . O



To prove Theorem 2.4, we start with a compactly supported distribution ®3. Then,
we define @y, iteratively by

(2.9) Br = P(-/2)Bk_1(-/2).

If & r converges uniformly on any compact subset K of IR® to a limit vector denoted by
</I\>, and if each entry of d is an entire function with at most polynomial growth at infinity,
then the well defined compactly supported vector @ is a distributional solution of (1.1). In
the next lemma, we construct a special ®¢ such that the sequence {‘fk}k obtained from ®,
converges indeed uniformly on every compact subset K of IR®. Further, the corresponding
entries of the limit vector will be shown to have at most polynomial growth at infinity.
This will lead to the proof of the existence of a solution of equation (1.1).

Lemma 2.10. Suppose that 1 is the only eigenvalue of P(0) of the form 2™, n € 7Z,.
Then, for any m € 7., there exists a compactly supported distribution ®( such that for
an arbitrary compact subset K of IR?,

(2.11) P(w/2)®o(w/2) — ®p(w)| < Cklw|™, weK,
for some w-independent constant Ck.

Proof. Let r be a right eigenvector of eigenvalue 1 of P(0). Define the compactly
supported distribution &, by

- WP
(2.12) Do(w) = Y G

|Bl<m

where vg, |3| < m are r-vectors defined inductively as follows:
(i) vo:=r;
(ii) vg is the solution of the system of equations

(2.13) P -PO)vg= > (i) DP(0)vs_a, 1< |8 <m.

0<a<lp

The assumption that the matrix P(0) has no eigenvalues of the form 2™, n € 7ZZ,\{0}
is used here to show that (2.13) has a unique solution.
Let

B
Aw) = Z %!(O)wﬁ.
|BI<m

Then, we have that
[P(w/2)B0(w/2) — Bo(w)|
< |(P(w/2) = A(w/2))@o(w/2)| + | A(w/2)Do(w/2) — Do(w))]
< Cklw[™ T + [A(w/2)Bo(w/2) — Bo(w)].

5



To prove (2.11), it remains to show that
[A(w)®o(w) — ®o(2w)| < Cxlw|™ !, weEK,

for some constant Ck.

First, we calculate A(w)®o(w). We write

For || < m, we have that

DeP(0)vg_q 2181y
(B)= > a!([g—)(f)! - ﬁ!ﬁ

0<a<p

by (2.13). This means in view of the definition of ®( that all the terms of order < m
in A(w)®o(w) match with those of ®g(2w). Thus, A(w)Po(w) — Do(2w) consists of all
terms of order > m in the power expansion of A(w)®y(w). Since the power expansion
of A(w)®o(w) — ®o(2w) only has finitely many terms, and since K is a compact set, the
inequalities (2.11) holds for some w-independent constant Ck. O

Proof of Theorem 2.4. Since each entry of P is a trigonometric polynomial, the function
matrix P is bounded for any operator matrix norm || - ||. Let ¢o := max,ems||P(w)|| and
let m be a nonnegative integer with ¢y < 2m+1.

Let K be given compact subset of IR®. Since

‘$k+1(w) - ‘/I\)k(w)‘ = ‘(H§:1P(2_jw)) (P(glsj-l )(50(21:-1) B (I\)O(i)) ‘ ’

we have

~ ~ s w m ¢
Ben() - 8] < Gl P () < Clol™ ()

by Lemma 2.10. Therefore, {®(w)} is a Cauchy sequence in Loo(K). Hence {®y(w)}s
converges uniformly on K to a continuous function vector ®(w).

Consider any w with 2/ < |w| < 29+ for some j € Z. Since ®(w) = P(%)o(
P(%)---P(£)3(),

2 27 27

(NS

) =

|$(U})| S C]_C'g S Clcgog2 |w] — C1|(“J|log2 307
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where ¢1 1= sup|,|<2 |EI\>(w)| < 00. Therefore, C/I;(w) has at_most polynomial growth at
infinity, hence, ® is a distributional solution of (1.1) with ®(0) = r. Further, since ®g
is a polynomial, ®y is a compactly supported distribution. Since the mask is finitely
supported, ® is a compactly supported distribution for all k£, and the supports of the
vectors @, kK = 0,1,... are uniformly bounded. Since the sequence ®; converges to ® in
the distributional sense, ® is compactly supported.

Finally, we show that ® is the unique solution of (1.1) with ®(0) = r. Suppose ¥ is
a solution of (1.1) with ¥(0) = r which is not equal to ®. Then, ® — ¥ is a nontrivial
solution of (1.1) with (@ — (I\!)(O) = 0. Applying the proof of Lemma 2.3 to the function
® — U, one can obtain an eigenvalue of P(0) with the form 2" for some n > 1. This is a
contradiction. O

3. Weak stability

In this section, we consider the weak stability of a compactly supported solution
® € Ly(IR%) of (1.1).

It is very convenient to discuss the weak stability in the Fourier domain by using
Gramian analysis. For a given sequence of functions ®, the pre-Gramian matrix at
w € T is defined as the following ® x 7ZZ° matrix

J(w) == Jo(w) = ((w + 272)) p a5
where qg is the Fourier transform of the function ¢. Its adjoint matrix
T* (W) = J§(w) := ($(w + 270) )

is a 7ZZ° x ® matrix.

The Gramian matrix of functions ® denoted by G¢ is the ® x ® matrix defined as
the product of Jg and J§, i.e. G(w) := Go(w) := Jp(w)J3(w). The pre-Gramian matrix
was first introduced in [RS]; the basic properties of the pre-Gramian and its roles in the
Gramian analysis for shift invariant spaces can be found in [RS].

Let P be the given refinement matrix mask with P, = 0, o ¢ [0, N]® for some positive
integer N. Let IH be the space of all » x r matrices whose entries are trigonometric poly-
nomials with their Fourier coefficients supported in [—N, N]°. The transition operator
T associated to P is defined on IH by

(3.1) TH:= Y P(/2+m)H(-/2+m)P*(-/2+7v), HecH.
ve{0,1}s



If ® € Lyo(IR?) is a compactly supported solution of (1.1), then Gg is an eigenvector of T
corresponding to eigenvalue 1.

At the first part of this section, we will show that if there is a compactly supported
solution ® € Ly(IR®) of (1.1) with det Go(0) # 0, then P(0) € E(1). For this, we observe
the following facts:

Proposition 3.2. Let ® be a compactly supported solution of (1.1). Let A be an eigen-
value of P(0) with |\| > 1 and let 1 be an arbitrary left row eigenvector corresponding to
A. Suppose that ® € Ly(IR?). Then,

(i)
(3.3) 19(278) =0, B e Z*\{0}.
Further, if A # 1, then IEI\D(O) = 0.
(ii) If det Gg(mv) # 0, v € {0,1}*\{0}, then IP(7v) =0, v € {0,1}*\{0}.
Proof. Since
1G5 (0)1* = 1TG5(0)1* = [A\|21G5(0)1* + Z IP(mv)Gg(mv)P* (nv)1*,
ve{0,1}5\{0}

>1Ge()I* + ) IP(nv)Go(mv)P*(m)I,
ve{0,1}4\{0}

we have
(3.4) IP(7v)Ge(mv)P*(nv)1* = 0,v € {0,1}°\{0}.

Part (ii) follows immediately from (3.4)
(mv

For (i), using the fact that Gg(nv) = Je(mv)Jg(mv), we have

3" IP(rv)® (1w + 210)B* (1w + 2ma) P* (mw)I* = 0, v € {0,1}*\{0}.

Therefore,

~

10(27v 4+ 47a) = 0, v € {0,1}°\{0}, 0 € ZZ2°.

Given 8 € 7Z*\{0}, we write it in the form of 8 = 2%v + 2¢*1q, for some £ € ZZ,,v €
{0,1}°\{0}, a € Z°. Then,

~ 2 2 9
1@(27r5):1p(%5)...P(2Lf)¢(2Lf)

= IP(0)*® (21w + 4ma) = A1D(27v + 4wa) = 0.

This shows (3.3).
Finally, since 13(0) = IP(0)®(0) = A1®(0), 18(0) = 0, whenever A # 1. O



Proposition 3.5. Let ® € Ly(IR®) be a compactly supported solution of (1.1). Suppose
that det Go(0) # 0, then P(0) satisfies condition E(1).

Proof. It is clear that the vector ®(0) # 0 is a right eigenvector of P(0) of
eigenvalue 1. Let m be the sum of the algebraic multiplicities of all eigenvalues of P(0)
outside the open unit disc. If m > 1, there exists a left eigenvector 1 of P(0) such that
IEI;(O) = 0. However, Proposition 3.2 implies that 1G4(0)1* = |lEI\>(0)|2 = 0, hence G4(0)
must be singular. 0

Remark. In the proof, we used the fact that if A is a non simple eigenvalue of a matrix
M, then for a given right column eigenvector r, there exist a left row eigenvector 1 such
that Ir = 0. This can be shown easily, when M has a Jordan canonical form and it is not
difficult to extend this observation to the general case. O

Let ® € Ly(IR?). We say that that ® is stable, if there are constants 0 < ¢ < C' < o0,
such that for arbitrary sequences a4 € €2(72°), ¢ € @,

ey llagl* <) D as(@)g(- —a)l> <C Y llag)*.

ped PeED acZ® ped

A compactly supported vector ® € Lo(IR®) is stable if and only if its Gramian Gg is
positive definite everywhere (see e.g. [BDR] and [RS]).
A consequence of Proposition 3.2 and Proposition 3.5 is:

Corollary 3.6. Suppose that (1.1) has a compactly supported stable solution ® € Lo(IR?).
Then, P(0) satisfies condition E(1) and 1P(nv) = 0, v € {0,1}*\{0}, for any left eigenvec-
tor 1 of eigenvalue 1 of P(0).

Remark. A result similar to Corollary 3.6 was obtained by [DM]. Theorem 3.8 of [S]
characterizes the stability of a solution ® of (1.1) in terms of the mask. The characterization
was given under the assumption that P(0) satisfies condition E(1) and 1P(7v) = 0 for
v € {0,1}°\{0}, where 1 is the unit left (row) eigenvector of eigenvalue 1 of P(0). Corollary
3.6 shows that this assumption is also necessary for the stability of ®. Therefore, Theorem
3.8 of [S] holds without the assumption. O

When P(0) does not satisfy condition E(1), the corresponding solutions of equation
(1.1) cannot be stable and, moreover, equation (1.1) can have more than one linearly
independent solutions. The solutions can still be stable in the following weak sense.

A finite sequence of r-vectors @4, ..., ®,, is weakly stable, when the following con-
ditions are satisfied:

(i) ®; € Ly(IR?), for 1 < j < n, and



(ii) there exists constants 0 < ¢ < C < oo, such that for an arbitrary r-vector sequences
{Vata € €2(ZL7) the inequality

¢y Vol <N Y va®iz—a)3<C Y Ivalf?

[ 1<Y/Ad =1 «a€eZs a€s

holds.

The weak stability in L, norm was introduced in [CDL]. Clearly, if one of the sequence
of vectors ®4,...,®,, is stable, then the sequence ®4,..., ®,, is weakly stable.

Let ® € Ly(IR?) be given. For an arbitrary vector sequence v € £o(7Z%), we have that

I3 viota -l = | v @Cs@swis,

where Vv is the Fourier series of the sequence v = {v,}. This observation leads to the
following result:

Proposition 3.7. Let ®; € Ly(IR*),1 < j < n, be compactly supported function vectors.
The following statements are equivalent:

(i) the sequence of function vectors ®4,...,®,, is weakly stable;

(ii) there exists a positive constant ¢ such that

Z Gs,(w) > cI, for allw € T
7j=1

(iii) the matrix
((B1(w + 27))aczs (Po(w + 27a))aczs - - - (P (w + 27Q) ) aczs)

of order r x oo has rank r for all w € T'°;
(iv) the matrix
(Go,(w) -+ Go,(w))

of order r X rn has rank r for all w € T'?.

If equation (1.1) has a finite sequence of compactly supported solutions ®,...®,
which is weakly stable, we say that refinement equation (1.1) has a sequence of weakly
stable solutions.

Proposition 3.8. Suppose that refinement equation (1.1) has a sequence of weakly stable
solutions. Then,

(3.9) IP(mv) = 0,v € {0,1}°\{0},
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where 1 is any left row eigenvector of eigenvalue 1 of P(0).

Proof. Let ®q,...,®, be a sequence of weakly stable solutions of (1.1) and let
1 be one of the left row eigenvectors of eigenvalue 1 of P(0). Then, since each G, is an
eigenvector of eigenvalue 1 of the transition operator,

1) Go, (01" =1 Go, (01" + > 1P(mv)()_ Ga, (mv))P*(zv)I".
j=1 j=1 ve{0,1}°\{0} j=1
Since the matrix Z;-l:l Gs,(mv) is a (strictly) positive definite matrix, IP(7v) = 0, v €
{0,1}*\{0}. O
Replacing G in the proof of Proposition 3.5 by ) j Gg,;, we obtain the following
result:

Proposition 3.10. Suppose that refinement equation (1.1) has a sequence of weakly
stable solutions. Then, P(0) satisfies Condition E(m) for some positive integer m.

Proposition 3.10 was also obtained independently by [H].

Later, we will use a special similarity transform of P(0) that brings P(0) to a particular
Jordan canonical form defined as follows. Let P(0) € E(m) and let U be an invertible
matrix such that

Similarity transform 3.11.
(i) the matrix U—'P(0)U has a Jordan canonical form,
(ii) the m x m leading principal submatrix of U7 P(0)U is the identity matrix of order
m.

We keep the matrix U fixed for the given P(0) throughout the rest of the paper. We
denote by r;, j = 1,...,m the first m columns of the matrix U and note that they consist
of a basis of the right eigenspace of P(0) € E(m) corresponding to eigenvalue 1. There
are m linearly independent solutions ®4,...,®,, with ZISJ-(O) = r;. Further, any solution
of (1.1) should be a linear combination of ®,..., ®,, (see Corollary 2.7). The vectors
®q,..., D, with EI;j(O) =r;, 1 < j <m, are called the basic solutions of (1.1).

Let ¥q,..., ¥, be a sequence of weakly stable solutions of (1.1). If n < m, then there
exists a left row eigenvector 1 of eigenvalue 1 of P(0), so that l@j(O) =0,j=1,...,n.
Hence,

(3" G, (O)1 =0

by Proposition 3.2. Thus, n > m. Since an arbitrary solution of (1.1) is a linear com-
bination of the basic solutions ®1,...,®,, with ;I;j (0) = r;, checking whether there exist
a sequence of weakly stable solutions of (1.1) is equivalent to checking whether the basic
solutions @1, ..., ®,, of (1.1) are weakly stable.
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Define
My 2= Xozn)e (/29I P(-/29), and 1= T2, P(-/2).
If P(0) € E(m), the sequence II,,, n € Z converges to II pointwise and
(W)U = (91(w), -+, Pm(w), 0, ---,0),

where U gives similarity transform 3.11. Furthermore, for r x r matrices H;(w) and
Hy(w) € H, we have

(3.12) / (T™ ) () H () dow = / T, (w) Hy (2~ )T, ()" o (w)do
(see [LCY]).

The next theorem gives a characterization of the existence of Ls-basic solutions of
(1.1) in terms of the mask.

Theorem 3.13. Suppose that P(0) € E(m). Then, the basic solutions ®4,---,®,, of
equation (1.1) are in Lo(IR?®) if and only if there exists a positive semidefinite matrix
H € H such that
(i) TH = H,
(ii) the m x m leading principal submatrix of the matrix U~1H(0)(U~1)* is positive
definite, where U gives similarity transform 3.11.

Proof.  Let 1; :=i] U~'. Then L;P(0) = 1; and Liry = 6x(j).
Assume that ®y,---,®,, € Ly(IR"). Then, the matrix H(w) := 37" Go,(w) > 0
and TH = H. Further,

TUTTHO) (U™ ) = LHO); = ) Lirerjly = 6,(5),
=1

by Proposition 3.2 (i). Hence, the matrix U~ H(0)(U~!)* has I,,, as its leading principal
submatrix.

Conversely, assume that (i) and (ii) hold. Let M be the m x m leading principal sub-
matrix of U7YH(0)(U~1)*. Since the matrix II, (w)H (27"w)IL,(w)* converges pointwise
to the matrix



we have
/ |@(w)|*dw < C/ lim inf i} T, () H (27"w) I, () *ijdw
s R

s M—00 J
< clinn_l)iorgf/ ) i?Hn(w)H(2—nw)Hn(w)*ijdw
< 00.
The last inequality follows from the fact

/R T (@) H(2 )T, ()" de = / (i@ = [ A _

When r = 1, the corresponding refinement mask becomes a finitely supported se-
quence, hence, P is a trigonometric polynomial. Theorem 3.13 can be then stated as
follows: Suppose P(0) = 1. Equation (1.1) has a Ls-solution if and only if the transition
operator T has an eigenvector H with H(0) > 0 corresponding to eigenvalue 1. When
r =1 and s = 1, this result was given in [V].

Example 2. Let {P};_, be the mask given in Example 1. The matrix

2
H(w) = ) Hpe
k=—2
is an eigenvector of eigenvalue 1 of the transition operator T, where

[ —13V3/18  —1.25 [ —11/3/18 -1
H—Q_( 1.25 13\/3/18)’ H‘1_< 1 11\/3/18)’

. — 20.95313601221041 —13.65950144900945
07\ —13.65950144900945  19.79843547383120 |’

and Hy = HT,, Hy, = HT,. The matrix H(w) is positive definite for all w € T . Therefore,
the basic solutions ®;,j = 1,2, are in L?(IR) by Theorem 3.13. Since P(0) € E(2), ®; is
not stable by Proposition 3.5. O
In order to characterize the weak stability in terms of the refinement mask, we intro-
duce the generalized transition operator 7. Let 1;,1 < j < m be the j-th row of U™l ie.
1, = i?U ~1. where U gives similarity transform 3.11. Define for each j, 1 < j < m,
(3.14) W, = {H & H: LH(O)I; =0, (i, k) # (j, ), 1 < i,k < m}.
Suppose that P(0) € E(m) and that P satisfies (3.9). Then, IH; is an invariant

subspace of IH under the transition operator T. Denote by T; the restriction of T to IH;.
The generalized transition operator 7 is defined by

7 @;n:l]Hj — @;nzllHj; for H:= (Hj)lfjﬁma TH := (TjHj)lijm-
If ®; € Ly(IR?), 1 < j < m, then 1 is an eigenvalue of T; and G, is a corresponding
eigenvector. Hence, 7 has at least m independent eigenvectors corresponding to eigenvalue

1. Therefore the operator 7 satisfies condition E(m) if and only if T, satisfies condition
E(1).
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Lemma 3.15. Suppose that the refinement equation (1.1) has a set of weakly stable
solutions. Then, for an arbitrary H € H,
(3.16) lim [ T (w) H (w)/2")L, (w)* do = / T1(w) H (0) () * dov.

n—oo RS s

Proof. Since

/ 27:: 2w(dw—/ZG¢

we have that

(3.17)

Equality (3.16) follows from (3.17) and the fact that there exists a constant C' such
that for £, k, 1 < 4,k <,

17 T () H (w/2") T (w) ik | < C Y (M (w) ) Gy (27 w)Thy (w) i
k=1 j=1

O

Next, we give a characterization of the weak stability in terms of the refinement mask
P.

Theorem 3.18. Suppose that P(0) € E(m) and P satisfies (3.9). Then the refinement
equation (1.1) has a sequence of weakly stable solutions if and only if the following condi-
tions hold:

(i) the generalized transition operator T satisfies Condition E(m), and

(ii) eigenvalue 1 of the transition operator 7 has an eigenvector (Hy,---, Hy,) of rank r
with each H; > 0.

Proof. Suppose that (i) and (ii) hold. Let H(w) = (H1(w), -, Hpn(w)) € ©7,H;
be the full rank eigenvector of eigenvalue 1 of 7 with 1, H;(0)I¥ = 1. Define H(w) =
Z;nzl Hj(w), then TH = H,H > 0 and U='H(0)(U~')* has L, as its leading principal
submatrix. By Theorem 3.13, the basic solutions @1, -, ®,, of (1.1) are in Ly(IR?).

Since 7 satisfies Condition E(m), T; satisfies condition E(1). This implies that
H; = Gg,. Therefore, ®1,...®,, are weakly stable.

Conversely, assume that the basic solutions of (1.1) are weakly stable. To show (i)
and (ii), one only needs to show that T; as a linear operator on H;, 1 < j < m, satisfies
Condition E(1). The proof can be followed line by line from the corresponding proof of
Proposition 3.5 and Lemma 3.6 in [S] by applying Lemma 3.15 and by replacing TH there
by IH; here. O

14



The weak stability can also be characterized by the action of the transition operator
T on H.
For given ®, ¥ € Ly(IR®), the mixed Gramian G v is defined by

Gq:.’q/(w) = Jq:. (w)J\’f, (w)

Proposition 3.19. Suppose that P(0) € E(m). Suppose that the basic solutions ®1, ..., ®,,
of (1.1) with ®;(0) = r; are in Ly(IR®). Then, the matrices Go;0,, 1 < i,j < m are
eigenvectors of eigenvalue 1 of T. Further, matrices G(I)i7q>j, 1 < 4,57 < m are linearly
independent.

Proof. Let 1; = i?U —1 where U gives similarity transform 3.11. Then, 1 is a left
row eigenvector of P(0). Since 1,Go, o,;(0)l; = le&\)i(O)E)f(O)lz = 6;(£)6;(k), Go, @,;,1 <
1,J < m, are linearly independent.

Let @ be a solution of refinement equation (1.1). Write the matrix Jg(w) as a column
block matrix

Jo(w) = ($(w + 27V + 4T)) g (v, ) €@ x ({0,1}° X2

then, we have
Jo(w) = (P(w/2+ 7v)Je(w/2 + 7V))veqo,1}5-

Thus,

(3.20) Go,0,(w) = Jo,()J5,(w) = > Pw/2+m)Gs,e,(w/2+10)P*(w/2+mv),
ve{0,1}s

hence the mixed Gramian matrix Gq>i7q>j € H is an eigenvector of eigenvalue 1 of the
transition operator T. O

Theorem 3.21 . Suppose that P(0) € E(m). The refinement equation (1.1) has a se-
quence of weakly stable solutions if and only if the following conditions hold:

(i) the transition operator T defined on H satisfies Condition E(m?), and

(ii) there is a positive definite eigenvector of eigenvalue 1 of T.

Proof. Assume that (i) and (ii) hold. Let Hy be an eigenvector of eigenvalue 1 of
T with Hy > 0. The basic solutions ®4,---,®,, of (1.1) are in Ly(IR*) by Theorem 3.13.
Since T satisfies Condition E(m?) and since Gs,;0; 1 <1i,j <m are linearly independent
eigenvectors of eigenvalue 1 of T, we have that

Ho = E Ciqu;.i’q;.j.

1<i,j<m
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Hence,

0<Hy<C) Go,,
j=1
and ®4,...®9,, are weakly stable.
Conversely, assume that ®4,...®,, are weakly stable. Let Hy(w) := Z;n:l Go,(w). It
is clear that THy = Hy with Ho(w) > 0. This gives (ii).
For (i), let H be an eigenvector of T corresponding to the eigenvalue A. Since

3 [ Hw) H(w) dw = /

B T H () H (1) *dow = / I, (w) H (2~"w)TT,, (w)* H (w)*dw,

$ $

lim,,_, oo A™ exists. Hence, |A\| < 1 and 1 is the only eigenvalue of T on the unit circle.

Next, we show that the geometric multiplicity of the eigenvalue 1 of T is m2. Since
P(0) € E(m), the vectors I; = i U~!, 1 < i < m, where U gives similarity transform 3.11,
form a basis of the left eigenspace of P(0) corresponding to eigenvalue 1. Let H be an
eigenvector of eigenvalue 1 of T, and let ¢;; := L;H(0)15, 1 <4, j < m. Then,

U HO) - Y ci;jGe,0,(0)Ui, =0,

1<i,j<m

for 1 </, k < m. Therefore,

HW)(H©O)~ Y cijGa,e,(0)*(w) = 0.

1<i,5<m

Applying Lemma 3.15, we have that

/S(H_ Z Cz]G<1> D; )(H Z C”G@ b, ) dw

1<i,5<m 1<i,5<m
=/ M (w)(H2 "w) = Y ¢ijGa,0,(2 ") n(w)* (H(w) — Y _ ¢ijGa,,a,(w))*dw
i,5 1,9
—>/ ZCZJGq; D, ZC”Gq; D, dw
=0.
Therefore,

H(w) = Z ¢ijGo,0;(w).

1<i,j<m

Hence, the geometric multiplicity of eigenvalue 1 of T is m?2.
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Finally, we need to show that 1 is a nondegenerate eigenvalue of T. Suppose that 1
is a degenerate eigenvalue of T. Then, there exist matrices H, G € IH such that TG = G
and TH =G + H. Let
H,:=H — Z cijGo,0;,
1<i,j<m

where c;; = 1; H(0)1;. Then, on the one hand, we have

/ T H ()G () e = / T () F(27 )T, (0)* G )
= | TMw)(H©O)- > cjGo,0,0)(w) G(w)*dw = 0.

L 1<i,j<m

On the other hand, we have

T"H, =T"H — E Cichpi’cpj =nG+ H — E CijG(I)i,q)j,
1<4,5<m 1<i,5<m

which gives || [, T"H1(w)G(w)*dw|| — oo as n — co. This leads to a contradiction. O

Example 3. Let {P};_, be the mask given in Example 1. It can be checked easily that
the corresponding transition operator T is in F(4). Example 2 shows that T has a positive
definite eigenvector H(w). Therefore, the sequence of the basic solutions @1, @y of (2.8) is
weakly stable by Theorem 3.21. O
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