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IMAGE RESTORATION: WAVELET FRAME SHRINKAGE,
NONLINEAR EVOLUTION PDES, AND BEYOND∗

BIN DONG† , QINGTANG JIANG‡ , AND ZUOWEI SHEN§

Abstract. In the past few decades, mathematics based approaches have been widely adopted
in various image restoration problems; the partial differential equation (PDE) based approach (e.g.,
the total variation model [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259–268]
and its generalizations, nonlinear diffusions [P. Perona and J. Malik, IEEE Trans. Pattern Anal.
Mach. Intel., 12 (1990), pp. 629–639; F. Catté et al., SIAM J. Numer. Anal., 29 (1992), pp. 182–
193], etc.) and wavelet frame based approach are some successful examples. These approaches were
developed through different paths and generally provided understanding from different angles of the
same problem. As shown in numerical simulations, implementations of the wavelet frame based
approach and the PDE based approach quite often end up solving a similar numerical problem
with similar numerical behaviors, even though different approaches have advantages in different
applications. Since wavelet frame based and PDE based approaches have all been modeling the same
types of problems with success, it is natural to ask whether the wavelet frame based approach is
fundamentally connected with the PDE based approach when we trace them all the way back to their
roots. A fundamental connection of a wavelet frame based approach with a total variation model and
its generalizations was established in [J. Cai, B. Dong, S. Osher, and Z. Shen, J. Amer. Math. Soc.,
25 (2012), pp. 1033–1089]. This connection gives the wavelet frame based approach a geometric
explanation and, at the same time, it equips a PDE based approach with a time frequency analysis.
Cai et al. showed that a special type of wavelet frame model using generic wavelet frame systems
can be regarded as an approximation of a generic variational model (with the total variation model
as a special case) in the discrete setting. A systematic convergence analysis, as the resolution of
the image goes to infinity, which is the key step in linking the two approaches, is also given in
Cai et al. Motivated by Cai et al. and [Q. Jiang, Appl. Numer. Math., 62 (2012), pp. 51–66], this
paper establishes a fundamental connection between the wavelet frame based approach and nonlinear
evolution PDEs, provides interpretations and analytical studies of such connections, and proposes
new algorithms for image restoration based on the new understandings. Together with the results
in [J. Cai et al., J. Amer. Math. Soc., 25 (2012), pp. 1033–1089], we now have a better picture of
how the wavelet frame based approach can be used to interpret the general PDE based approach
(e.g., the variational models or nonlinear evolution PDEs) and can be used as a new and useful
tool in numerical analysis to discretize and solve various variational and PDE models. To be more
precise, we shall establish the following: (1) The connections between wavelet frame shrinkage and
nonlinear evolution PDEs provide new and inspiring interpretations of both approaches that enable
us to derive new PDE models and (better) wavelet frame shrinkage algorithms for image restoration.
(2) A generic nonlinear evolution PDE (of parabolic or hyperbolic type) can be approximated by
wavelet frame shrinkage with properly chosen wavelet frame systems and carefully designed shrinkage
functions. (3) The main idea of this work is beyond the scope of image restoration. Our analysis and
discussions indicate that wavelet frame shrinkage is a new way of solving PDEs in general, which
will provide a new insight that will enrich the existing theory and applications of numerical PDEs,
as well as those of wavelet frames.
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1. Introduction. Image restoration, including image denoising, deblurring, in-
painting, and computed tomography, is one of the most important areas in imaging
science. Its major purpose is to enhance the quality of a given image that is corrupted
in various ways during the process of imaging, acquisition, and communication, thus
enabling us to see crucial but subtle objects that reside in the image. Mathematics has
become one of the main driving forces of the modern development of image restora-
tion. The partial differential equation (PDE) based approach (e.g., the total variation
(TV) method and nonlinear evolution PDEs) and the wavelet frame based approach
developed in the last few decades are successful examples among many mathematics
based approaches.

One of the most commonly used nonlinear PDE based approaches for image
restoration, especially in the classical problem of image denoising, is nonlinear dif-
fusion. Since the introduction of second-order nonlinear diffusion by Perona and
Malik in 1990 [51], a variety of second-order nonlinear diffusion has been proposed
(see, e.g., [15,67,24] and the references therein). Fourth-order nonlinear diffusion was
proposed in [68, 69] to resolve the blocky effects that Perona–Malik (PM) diffusion
and its variants tend to produce in image denoising. Later, fourth-order nonlinear
diffusion was also studied in [48], and high order diffusion with an edge enhancing
functional was proposed in [62]. The theoretical properties of high order diffusion
have been studied in [25]. Other than nonlinear diffusions, nonlinear hyperbolic equa-
tions, such as shock filters [50], were also used for image restoration. What these
PDE models for image restoration have in common is that they seek a good balance
between the two seemingly contradictory objectives: smoothness at locations where
noise or other artifacts have been removed, and preservation or even enhancement of
the sharpness of edges, corners, etc., which are singularities.

Wavelet frame based methods are generally considered to be a different approach
from the nonlinear PDE based methods, and they were developed along a fairly
different path. Wavelet frame based image processing started in [18, 19] for high-
resolution image reconstructions, where an iterative algorithm that applies threshold-
ing to wavelet frame coefficients at each iteration to preserve sharp edges of images
was proposed. In order to gain more flexibility, in [12,10], the authors introduced an
additional weighting and proposed the model now known as the balanced model. It
was shown in [7] that the algorithm of [18,19] converges to a solution of a special case
of the balanced model. The balance algorithm has been applied to various applica-
tions in [14, 11, 16, 17]. The model proposed in [12, 10] is called the balanced model,
since it balances the sparsity of the wavelet frame coefficient and the smoothness of
the restored image. This includes two other wavelet frame based models as special
cases. One is known as the synthesis based model [23,35,36,38,39], where the sparsity
term in the balanced model is emphasized. The other is known as the analysis based
model [13, 33, 59], where the smoothness of the restored image is emphasized. The
three approaches are different from each other, unless the underlying wavelet frame
systems is in fact orthonormal/biorthogonal. However, what they have in common is
the penalization of the sparsity of the wavelet frame coefficients of the image being
restored.

Ever since the early 1990s, numerous image restoration models and algorithms
based on PDEs and wavelets (wavelet frames) have been proposed and studied in
the literature. Many of them are rather successful in the accurate modeling of given
image restoration problems. These approaches were developed through different paths
and generally provided understanding from different angles of the same problem. As
shown in many numerical simulations, implementations of the wavelet based approach
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and the PDE based approach quite often end up solving a similar numerical problem,
and their numerical behaviors are often comparable, although different approaches
have advantages in different applications. Since all these different approaches are
modeling the same type of problem with success, it is natural to ask whether the
wavelet frame based approach is fundamentally connected with PDE methods when
we trace them all the way back to their roots. A fundamental connection between
a wavelet frame based approach and a general variation model (with TV model [55]
as a special case) was established in [8]. It was shown in [8] that a special type
of wavelet frame model using generic wavelet frame systems can be regarded as an
approximation of the variational model in the discrete setting.

Motivated by [8] and [46], this paper establishes a fundamental connection be-
tween wavelet frame shrinkage and nonlinear evolution PDEs, provides interpretations
and analytical studies of this connection, and proposes new algorithms for image
restoration based on the new understandings. This connection automatically gives
the wavelet frame based approach a geometric explanation through nonlinear PDEs,
and, at the same time, it equips the PDE based approach with a time frequency
analysis by the nature of the two approaches. Together with the results in [8], we
now have a better picture of how the wavelet frame based approach can be used to
interpret the general PDE based approach and how it can be used as a new and useful
tool in numerical analysis to discretize and solve various variational and PDE models.

Some earlier results in [64,65,66] showed the correspondence between Haar wavelet
shrinkage and second-order nonlinear diffusions. This work was recently generalized to
wavelet frame shrinkage and higher order nonlinear diffusions for the one-dimensional
case in [46]. However, it is not clear how two-dimensional (2D) wavelet frame shrink-
age can be related to nonlinear PDEs. Can we theoretically justify such a connection?
Furthermore, can we observe something new and something we could not see without
establishing a relation between them? These important questions have yet to be an-
swered. As we will see, this fundamental connection between wavelet based shrinkage
and nonlinear evolution PDEs provides answers to all these questions.

The key idea of the wavelet frame based approach is to apply shrinkage (especially
soft-thresholding) to wavelet frame coefficients iteratively, so that it converges to
an optimal solution of some objective functional. The bridge between the wavelet
frame based approach and the PDE based approach is established when we see that
a proper choice of numerical scheme of solving nonlinear evolution PDEs can be
viewed as applying a properly chosen shrinkage operator on wavelet frame coefficients
iteratively. Corresponding optimal properties are also discussed. Furthermore, the
asymptotic analysis, i.e., when the image resolution goes to infinity, will be given for
a few important cases. The connection between the wavelet frame based and PDE
based approaches will become clear once we show the following.

First, we show that we can approximate a generic nonlinear evolution PDE (of
parabolic or hyperbolic type) using iterative (discrete) wavelet frame shrinkage by
properly choosing the underlying wavelet frame systems and carefully designing the
associated shrinkage operator. Such a nonlinear evolution PDE includes the nonlinear
parabolic equation called the Perona–Malik (PM) equation [51], the nonlinear hyper-
bolic equation known as the Osher–Rudin shock filter [50], and many others as exam-
ples. Our key observations are the connections between the (discrete) wavelet frame
decomposition and differential operators (that were observed in [8]), and between the
(discrete) wavelet frame reconstruction and divergence operators. The approxima-
tions by wavelet frame transforms is fundamentally different from the widely used
finite difference approximation and the well-known wavelet Galerkin methods, in that
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the underlying solution and its derivatives are sampled differently in different func-
tion spaces. We will elaborate on what the samplings corresponding to wavelet frame
transforms are exactly, how they are related to the existing methods, and why they are
superior. Our arguments are also supported by our numerical experiments for image
restoration, in which the advantage of approximating nonlinear diffusion equations
using wavelet frames shrinkage over some standard finite difference discretization is
presented. Various optimal properties in wavelet frame domains for these numerical
schemes are discussed. Furthermore, we provide a rigorous convergence analysis of
the discretization by wavelet frame shrinkage. We prove that, for a certain quasilinear
parabolic equation, the associated iterative wavelet frame shrinkage algorithm does
converge to the solution of the PDE as mesh-size goes to zero. The given conver-
gence analysis can be generalized to other well-posed nonlinear evolution PDEs under
suitable conditions.

Second, and more importantly, the connections between wavelet frame shrink-
age and nonlinear evolution PDEs provide new and inspiring interpretations of both
approaches. On one hand, the optimality property of the wavelet frame shrinkage
sheds lights on that of the PDEs’. In addition, some of the wavelet frame shrink-
age algorithms that are commonly used in image restoration, such as iterative soft-
thresholding algorithms, lead to new types of nonlinear PDEs that have not been
considered in the literature. In particular, one of these PDEs can be regarded as a
regularized version of the well-known mean curvature flow. On the other hand, the
nonlinear PDE based approach also provides new insights into the desirable choices
of adaptive thresholds for wavelet frame shrinkage, which have not yet been system-
atically studied. In particular, the idea of anisotropy of the PM equation can be used
to create an adaptive wavelet frame shrinkage algorithm that outperforms the tradi-
tional wavelet frame shrinkage algorithms. As shown by the numerical experiments
of this paper, the performances of some of the new iterative wavelet frame shrinkage
algorithms inspired by our theoretical studies are generally better than some existing
iterative wavelet frame shrinkage algorithms that are currently widely used in image
restoration.

Finally, although we will mostly focus on PDE models and wavelet frame shrink-
age for image restoration, the significance of our findings is beyond what it may
appear. In fact, our analysis and discussions in this paper already indicate that the
wavelet frame based approach is a new way of solving PDEs in general. We believe
that the advantage of the wavelet frame based approach over existing methods is not
limited to image restoration. PDEs are one of the most powerful tools for modeling
the physical world. Finding numerical solutions of PDEs has always been at the heart
of numerical analysis. For different types of PDEs arising in different applications,
the quality measures of the solutions may be different, and it is very hard to predict
if the wavelet frame based approach can outperform conventional methods. However,
given the vast collection of wavelet frame systems with a variety of desirable prop-
erties suitable to approximate functions living in different function spaces, we think
the wavelet frame based approach will at least provide a new school of thought as a
complement to the existing theory and applications of numerical PDEs.

The rest of the paper is organized as follows. We start with a brief introduction
of wavelet frames and fast wavelet frame transforms in section 2. In the same section,
we also collect several examples of wavelet frame filters that will be used in later
sections. In addition, we will introduce a general formula for iterative wavelet frame
shrinkage and discuss its optimality properties when different types of shrinkage are
used. Then, we discuss how wavelet frame shrinkage algorithms can be regarded as
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a discrete approximation to nonlinear evolution PDEs in a rather general setting.
Differences between our approach and some existing numerical methods for PDEs,
such as finite difference methods and wavelet Galerkin methods, are discussed at the
end of section 2. Generic connections between wavelet frame shrinkage and nonlinear
evolution PDEs are established in section 3. In section 3.1, we start with generic
derivations for the correspondence of wavelet frame shrinkage to nonlinear diffusion
equations. We will show how the commonly used PDE models for image restoration
can be derived from iterative shrinkage of wavelet frame coefficients. In section 3.2,
we present some new high order diffusion equations that correspond to the B-spline
tight wavelet frame systems which are commonly used in image restoration. In the
same section, we also study the rotation-invariant high order diffusion equation and its
associated frame filter banks. In section 3.3, we show that some of the iterative wavelet
frame shrinkage algorithms, i.e., iterative soft-thresholding, commonly used in image
restoration lead to new nonlinear diffusion equations. We also discuss how we can
borrow the idea of anisotropy of the PM nonlinear diffusion to design new iterative
wavelet frame shrinkage algorithms which are adaptive to local image features. In
section 4, we prove the convergence of the iterative wavelet frame shrinkage algorithm
to the solution of a second-order nonlinear diffusion equation as mesh-size goes to
zero. We also address stability and convergence of generic iterative wavelet frame
shrinkage algorithms. Finally, numerical experiments are presented in section 5.

2. Preliminaries and main ideas. This section starts with an overview of
wavelet frames, including some basic concepts of wavelet frames such as vanishing
moments, and generic iterative wavelet frame shrinkage algorithms. Then, we provide
some of the general ideas of how wavelet frame shrinkage algorithms can be regarded
as discrete approximations to nonlinear evolution PDEs. Finally, we point out the
fundamental differences between the wavelet frame based approach to solving nonlin-
ear evolution PDEs and the existing methods such as finite difference methods and
wavelet Galerkin methods, especially in the context of image restoration.

2.1. Review of wavelet frames. In this subsection, we first briefly introduce
the concept of wavelet frames. The interested reader should consult [53, 54, 21, 22]
for theories of frames and wavelet frames, [56] for a short survey on the theory and
applications of frames, and [31] for a more detailed survey.

A set X = {gj : j ∈ Z} ⊂ L2(Rd), with d ∈ N, is called a frame of L2(Rd) if

A‖f‖2L2(Rd) ≤
∑
j∈Z
|〈f, gj〉|2 ≤ B‖f‖2L2(Rd) for all f ∈ L2(Rd),

where 〈·, ·〉 is the inner product of L2(Rd). We call X a tight frame if it is a frame
with A = B = 1. For any given frame X of L2(Rd), there exists another frame

X̃ = {g̃j : j ∈ Z} of L2(Rd) such that

f =
∑
j∈Z
〈f, gj〉g̃j for all f ∈ L2(Rd).

We call X̃ a dual frame of X. We shall call the pair (X, X̃) bi-frames.
For given Ψ := {ψ1, . . . , ψL} ⊂ L2(Rd), the corresponding quasi-affine system

X(Ψ) generated by Ψ is defined by the collection of the dilations and the shifts of Ψ
as

(2.1) X(Ψ) = {ψ`,n,k : 1 ≤ ` ≤ L;n ∈ Z,k ∈ Zd},
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where ψ`,n,k is defined by

ψ`,n,k :=

{
2

nd
2 ψ`(2

n · −k), n ≥ 0,
2ndψ`(2

n · −2nk), n < 0.

When X(Ψ) forms a (tight) frame of L2(Rd), each function ψ`, ` = 1, . . . , L, is called a
(tight) framelet, and the whole system X(Ψ) is called a (tight) wavelet frame system.

The construction of framelets Ψ is usually based on a multiresolution analysis
(MRA) that is generated by some refinable function φ with refinement mask p ∈
`2(Zd) and its dual MRA generated by φ̃ with refinement mask p̃ ∈ `2(Zd) satisfying

φ = 2d
∑
k∈Zd

p[k]φ(2 · −k) and φ̃ = 2d
∑
k∈Zd

p̃[k]φ̃(2 · −k).

The idea of an MRA based construction of bi-framelets Ψ = {ψ1, . . . , ψL} and Ψ̃ =

{ψ̃1, . . . , ψ̃L} is to find masks q(`) and q̃(`), which are finite sequences on Zd, such
that, for ` = 1, 2, . . . , L,

(2.2) ψ` = 2d
∑
k∈Zd

q(`)[k]φ(2 · −k) and ψ̃` = 2d
∑
k∈Zd

q̃(`)[k]φ̃(2 · −k).

For a sequence {p[k]}k∈Z2 of real numbers, we use p̂(ω) to denote its (two-scale)
symbol (it is also called a filter here):

p̂(ω) =
∑
k∈Z2

p[k]e−ikω.

When p is a sequence with finitely many nonzero terms, its corresponding two-scale
symbol p̂(ω) is a trigonometric polynomial, and we shall call it a finite impulse re-
sponse (FIR) filter.

The mixed extension principle (MEP) of [54] provides a general theory of the con-
struction of MRA based wavelet bi-frames. Given two sets of FIR filters {p, q(1), . . . , q(L)}
and {p̃, q̃(1), . . . , q̃(L)}, the MEP says that as long as we have
(2.3)

p̂(ω)̂̃p(ω)+

L∑
`=1

q̂(`)(ω)̂̃q(`)
(ω) = 1 and p̂(ω)̂̃p(ω + ν)+

L∑
`=1

q̂(`)(ω)̂̃q(`)
(ω + ν) = 0

for all ν ∈ {0, π}d \ {0} and ω ∈ [−π, π]d, the quasi-affine systems X(Ψ) and X(Ψ̃)

with Ψ and Ψ̃ given by (2.2) form a pair of bi-frames in L2(Rd). In particular, when
p = p̃ and q(`) = q̃(`) for ` = 1, . . . , L, the MEP (2.3) becomes the following unitary
extension principle (UEP) discovered in [53]:

(2.4) |p̂(ω)|2+

L∑
`=1

|q̂(`)(ω)|2 = 1 and p̂(ω)p̂(ω + ν)+

L∑
`=1

q̂(`)(ω)q̂(`)(ω + ν) = 0,

and the system X(Ψ) is a tight frame of L2(Rd). We call {p, q(1), . . . , q(L)} and
{p̃, q̃(1), . . . , q̃(L)} a pair of bi-frame filter banks if they satisfy (2.3). p is called the
lowpass filter, and q(`), q̃(`) are called the highpass filters. If {p, q(1), . . . , q(L)} satisfies
(2.4), then it is called a tight frame filter bank. Note that some of the filter banks we
use in later sections only satisfy the first identity of (2.3) or (2.4), and they shall be
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called undecimated bi-frame filter banks or undecimated tight frame filter banks. In
this case the system generated by the functions associated to these filters does not
form a frame or tight frame for L2(Rd). However, these filters do form frames or tight
frames (undecimated) for sequence space `2(Zd). Since image data are elements in
`2(Zd), undecimated (tight) frames in the sequence space can also be used to efficiently
represent images. Therefore, we shall consider both types of filter banks and refer to
them all as bi-frame or tight frame filter banks.

In this paper, we shall refer to the tight wavelet frame system constructed by
Ron and Shen in [53] as the B-spline tight wavelet frame system. Here, we present
two examples, both of which have been widely used in frame based image restoration
problems (see, e.g., [16, 19, 18, 7, 11, 12, 13, 26, 45, 27, 28, 70]). Notice that the framelet
masks shown by the following examples correspond to standard difference operators
up to some proper scaling, which is also true for framelets constructed by higher
order B-splines [53]. This is a crucial observation in [8] indicating that a link does
exist between the variational and wavelet frame based approaches. We shall further
extend such an observation to framelet masks that are not standard finite difference
operators.

Example 2.1 (Haar framelets). Let p = 1
2 [1, 1] be the refinement mask of the

piecewise constant B-spline B1(x) = 1 for x ∈ [0, 1] and 0 otherwise. Define q1 =
1
2 [1,−1]. Then p and q1 satisfy both identities of (2.4). Hence, the system X(ψ1)
defined in (2.1) is a tight frame of L2(R). The mask q1 corresponds to a first-order
difference operator up to a scaling.

Example 2.2 (piecewise linear framelets). Let p = 1
4 [1, 2, 1] be the refinement

mask of the piecewise linear B-splineB2(x) = max (1− |x|, 0). Define q1 =
√

2
4 [1, 0,−1]

and q2 = 1
4 [−1, 2,−1]. Then p, q1, and q2 satisfy both identities of (2.4). Hence,

the system X(Ψ) where Ψ = {ψ1, ψ2} defined in (2.1) is a tight frame of L2(R). The
masks q1 and q2 correspond to the first-order and second-order difference operators,
respectively, up to a scaling.

In the discrete setting, let an image f be a d-dimensional array. We denote by
Id := RN1×N2×···×Nd the set of all d-dimensional images. We will further assume
that all images are square images, i.e., N1 = N2 = · · · = Nd = N , and they all have
supports in the open unit d-dimensional cube Ω = (0, 1)d. For simplicity, we will focus
on d = 2 throughout the rest of this paper. We denote the 2D fast Lev-level wavelet
frame transform/decomposition with {q(0), q(1), . . . , q(L)} (see, e.g., [31]) as

(2.5) Wu = {Wl,`u : 0 ≤ l ≤ Lev− 1, 0 ≤ ` ≤ L}, u ∈ I2.

We will mostly consider the case Lev = 1 in this paper, and, in that case, W` = W0,`.
However, all results we have can be generalized to Lev > 1 without much difficulty.
In some of our analytical results and numerical experiments, we also use multilevel
wavelet frame decomposition for better image restoration quality.

The fast wavelet frame transformW is a linear operator withWl,`u ∈ I2 denoting
the frame coefficients of u at level l and band `. Furthermore, we have

Wl,`u := ql,`[−·]~ u,

where ~ denotes the convolution operator with a certain boundary condition, e.g.,
periodic boundary condition, and ql,` is defined as

(2.6) ql,` = q̌l,` ~ q̌l−1,0 ~ · · ·~ q̌0,0 with q̌l,`[k] =

{
q`[2

−lk], k ∈ 2lZ2,
0, k /∈ 2lZ2.
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Notice that q0,` = q`, and we let q0 = p for convenience. Similarly, we can define

W̃u and W̃l,`u. We denote the inverse wavelet frame transform (or wavelet frame

reconstruction) as W̃>, which is the adjoint operator of W̃ , and by the MEP, we
have the perfect reconstruction formula

(2.7) u = W̃>Wu for all u ∈ I2.

In particular, when W is the transform for a tight frame system, the UEP gives us

u = W>Wu for all u ∈ I2.

2.2. Vanishing moments. The concept of vanishing moments of wavelet frames
and their associated FIR filters is closely related to the orders of differential operators
and their corresponding finite difference operators. The correspondence between the
vanishing moments of wavelet frames and the orders of differential operators was
crucial to the analysis of [8]. In this subsection, a key observation, which is given in
Lemma 2.3, is the connection between the vanishing moments of FIR filters and the
order of finite difference operators (and the orders of approximation as well).

For an FIR highpass filter q, let q̂(ω) =
∑
k∈Z2 q[k]e−ikω be its two-scale symbol.

Throughout this paper, for a multi-index α = (α1, α2) ∈ Z2
+ and ω ∈ R2, denote

α! = α1!α2!, |α| = α1 + α2,
∂α

∂ωα
=

∂α1+α2

∂ωα2
2 ∂ωα1

1

.

We say q (and q̂(ω)) have vanishing moments of order α = (α1, α2), where α ∈ Z2
+,

provided that ∑
k∈Z2

kβq[k] = i|β|
∂β

∂ωβ
q̂(ω)

∣∣∣
ω=0

= 0

for all β ∈ Z2
+ with |β| < |α| and for all β ∈ Z2

+ with |β| = |α| but β 6= α. By
convention, we say that q has the vanishing moment of order (0, 0) if

∑
k q[k] 6= 0.

We also say q has total vanishing moments of order K with K ∈ Z+ if

(2.8)
∑
k∈Z2

kβq[k] = i|β|
∂β

∂ωβ
q̂(ω)

∣∣∣
ω=0

= 0 for all β ∈ Z2
+ with |β| < K.

Suppose K ≥ 1. If (2.8) holds for all β ∈ Z2
+ with |β| < K except for β 6= β0 with

certain β0 ∈ Z2
+ and |β0| = J < K, then we say q has total vanishing moments of

order K\{J + 1}.
Clearly, if q has vanishing moments of order α, then it has total vanishing mo-

ments of order at least |α|, and it has total vanishing moments of order K\{|α|+ 1}
with K ≥ |α| + 1. It is obvious that if

∑
k1∈Z k

β1

1 q[k1, k2] = 0 for all 0 ≤ β1 <

α1, k2 ∈ Z, and
∑
k2∈Z k

β2

2 q[k1, k2] = 0 for all 0 ≤ β2 < α2, k1 ∈ Z, then q has vanish-
ing moments of order α = (α1, α2). To have a better understanding of the concept of
vanishing moments, let us look at two examples.

Let q̂1(ω) = eiω1 − e−iω1 . Then

q̂1(0) = 0,
∂

∂ω1
q̂1(0) = 2i 6= 0,

∂

∂ω2
q̂1(0) = 0.

Thus q̂1(ω) has vanishing moments of order (1, 0). In addition, we have

∂2

∂ω2
1

q̂1(0) = 0,
∂2

∂ω1∂ω2
q̂1(0) = 0,

∂2

∂ω2
2

q̂1(0) = 0.
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Therefore, q1 has total vanishing moments of order 3\{|(1, 0)|+ 1}, or 3\{2} (it does

not have total vanishing moments of order 4\{2} since ∂3

∂ω3
1
q̂1(0) = −2i 6= 0).

Let q̂2(ω) = (eiω1 − e−iω1)(1− e−iω2)2. Then

∂β

∂ωβ
q̂2(0) = 0 for |β| < 3 and β = (3, 0), (2, 1), (0, 3),

and ∂3

∂ω1∂ω2
2
q̂2(0) = −4i 6= 0. Thus q2 has vanishing moments of order (1, 2). Observe

that ∂4

∂ω1∂ω3
2
q̂2(0) = −4 6= 0. Therefore, q2 has total vanishing moments of order 4\{4}

(instead of 5 \ {4}).
Lemma 2.3. Let q be an FIR highpass filter with vanishing moments of order

α ∈ Z2
+. Then for a smooth function F (x) on R2, we have

1

ε|α|

∑
k∈Z2

q[k]F (x+ εk) = Cα
∂α

∂xα
F (x) +O(ε) as ε→ 0,(2.9)

where Cα is the constant defined by

(2.10) Cα =
1

α!

∑
k∈Z2

kαq[k] =
i|α|

α!

∂α

∂ωα
q̂(ω)

∣∣∣
ω=0

.

If, in addition, q has total vanishing moments of order K\{|α|+1} for some K > |α|,
then

1

ε|α|

∑
k∈Z2

q[k]F (x+ εk) = Cα
∂α

∂xα
F (x) +O(εK−|α|) as ε→ 0.(2.11)

Proof. The proof is by straightforward calculation based on Taylor’s expansion.

2.3. Wavelet frame filter banks. For any nonlinear evolution PDE considered
in this paper, we can simply use the filter bank of one of the tensor-product B-spline
wavelet frame systems constructed in [53], as long as the highest order of vanishing
moments of the highpass filters is no lower than half of the order of the PDE. All
we need to do is choose appropriate parameters for each of the highpass filters such
that the ones that are inactive in the given PDE, i.e. the filters whose associated dif-
ferential operators do not appear in the PDE, converge to zero asymptotically. One
may also simply set those parameters to zero. However, choosing a parameter that
asymptotically goes to zero sometimes leads to better image restoration results. This
idea first appeared in [8]. We will also present some specific choices of the parame-
ters associated to the inactive highpass filters in Corollaries 3.3 and 3.7. Numerical
examples showing the benefit of having inactive highpass filters in the filter bank are
given in section 5.

However, using B-spline type filter banks for all nonlinear evolution PDEs may
not always be efficient, especially when we have too many inactive filters. We need
to compute the decomposition transform associated to those inactive filters in any
case; otherwise the first identity of (2.3) is violated, and we will not have the perfect
reconstruction (2.7). In some applications, when image quality is less of a concern
than computation efficiency, it is desirable to specifically construct a filter bank for a
given PDE that has as few filters as possible. Therefore, we list some of the FIR filter
banks that will be used in later sections. As we will see, these filters can be used to
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discretize different types of nonlinear evolution PDEs, especially nonlinear diffusion
equations.

Let {a, b(1), b(2)} be a piecewise linear B-spline tight frame filter bank of [53]
(given by Example 2.2):

â(ω) =
1

2
+

1

4
(e−iω + eiω) =

1

4
eiω(1 + e−iω)2,

b̂(1)(ω) =

√
2

4
(eiω − e−iω), b̂(2)(ω) =

1

2
− 1

4
(e−iω + eiω) =

1

4
eiω(1− e−iω)2.

(2.12)

By the tensor product, we can construct the separable 2D piecewise linear B-spline
tight frame filter bank from (2.12), which is commonly used in image denoising, image
inpainting, and other areas. We note that all filter banks in this subsection except for
(2.14) are undecimated bi-frame or tight frame filter banks, which means they only
satisfy the first equation of (2.3) or (2.4).

Example 2.4. Let a, b(1), and b(2) be given as in (2.12). The separable 2D piece-
wise linear B-spline tight frame filter bank p, q(1), . . . , q(8), with ω = (ω1, ω2), is given
by

(2.13)

p̂(ω) = â(ω1)â(ω2), q̂(1)(ω) = b̂(1)(ω1)â(ω2), q̂(2)(ω) = â(ω1)b̂(1)(ω2),

q̂(3)(ω) = b̂(2)(ω1)â(ω2), q̂(4)(ω) = b̂(1)(ω1)b̂(1)(ω2), q̂(5)(ω) = â(ω1)b̂(2)(ω2),

q̂(6)(ω) = b̂(2)(ω1)b̂(1)(ω2), q̂(7)(ω) = b̂(1)(ω1)b̂(2)(ω2), q̂(8)(ω) = b̂(2)(ω1)b̂(2)(ω2).

It is straightforward to obtain the following orders of vanishing moments of q(1), . . . , q(8):

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (1, 1),β5 = (0, 2), β6 = (2, 1), β7 = (1, 2), β8 = (2, 2).

These filters will be used to discretize nonlinear diffusion equation (3.28).

We can construct a type of tight frame filter bank similar to (2.14) with fewer
highpass filters.

Example 2.5. Let a be given in (2.12). A separable 2D piecewise linear B-spline
tight frame filter bank with fewer highpass filters is given by

p̂(ω) = â(ω1)â(ω2), q̂
(1)(ω) =

√
2

16

(
eiω1 − e−iω1

)(
1 + e−iω2

)2
eiω2 ,

q̂(2)(ω) =

√
2

8

(
eiω1 + e−iω1

)(
eiω2 − e−iω2

)
, q̂(3)(ω) =

1

16

(
1− e−iω1

)2(
1 + e−iω2

)2
eiω1eiω2 ,

q̂(4)(ω) =

√
2

8

(
eiω1 − e−iω1

)(
eiω2 − e−iω2

)
, q̂(5)(ω) =

1

4

(
1− e−iω2

)2
eiω2 .

(2.14)

These filters will be used to discretize nonlinear diffusion equations (3.31) and (3.32).

Furthermore, we can construct tight frame filter banks which result in the rotation-
invariant diffusion equations of arbitrary orders.

Example 2.6. The lowpass and highpass filters are given, respectively, by

(2.15) p̂(ω) =
1

22m

(
1 + e−iω1

)m(
1 + e−iω2

)m
ei[m/2](ω1+ω2), m ≥ 1,
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and

q̂(s,k)(ω)(2.16)

=
1

22m−k

√(
m

s

)(
s

k

)
ei[

m−k
2 ]ω1ei[m/2]ω2

(
1 + e−iω1

)m−s(
1 + e−iω2

)m−k
·
(
1− e−iω1

)s−k(
1− e−iω2

)k
.

These filters will be used to discretize the rotation-invariant nonlinear diffusion equa-
tion (3.37).

Now, we present filter banks that will be used for the diffusion equations of the
PM and TV models, image inpainting diffusion, and shock filtering.

Example 2.7. The following bi-frame filter bank is constructed for the PM diffu-
sion (3.20):

(2.17)


p̂(ω) = ̂̃p(ω) = 1

4

(
1 + e−iω1

)(
1 + e−iω2

)
,

q̂(1)(ω) = 1
2

(
1− e−iω1

)
, ̂̃q(1)

(ω) = 1
16

(
1− e−iω1

)(
6 + eiω2 + e−iω2

)
,

q̂(2)(ω) = 1
2

(
1− e−iω2

)
, ̂̃q(2)

(ω) = 1
16

(
1− e−iω2

)(
6 + eiω1 + e−iω1

)
.

Example 2.8. The following bi-frame filter bank is constructed for the image in-
painting diffusion (3.23):
(2.18)
p̂(ω) = ̂̃p(ω) = 1

4
(1 + e−iω1)(1 + e−iω2), q̂(1)(ω) = 1

2
(1− e−iω1), q̂(2)(ω) = − 1

2
(1− e−iω2),

q̂(3)(ω) = − 1
32
(1− e−iω1)2eiω1(6 + e−iω2 + eiω2),

q̂(4)(ω) = − 1
32
(1− e−iω2)2eiω2(6 + e−iω1 + eiω1),̂̃q(1)

(ω) = 1
2
(eiω2 − 1), ̂̃q(2)

(ω) = 1
2
(eiω1 − 1), ̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.

Example 2.9. The following bi-frame filter bank is constructed for the nonlinear
hyperbolic equation of shock filters (3.27):
(2.19)

p̂(ω) = ̂̃p(ω) = 1
16
(1 + e−iω1)2(1 + e−iω2)2eiω1eiω2 ,

q̂(1)(ω) = 1
8
(eiω1 − e−iω1)(1 + e−iω2)2eiω2 , q̂(2)(ω) = 1

8
(eiω2 − e−iω2)(1 + e−iω1)2eiω1 ,

q̂(3)(ω) = − 1
32
(1− e−iω1)2eiω1(6 + e−iω2 + eiω2),

q̂(4)(ω) = − 1
32
(1− e−iω2)2eiω2(6 + e−iω1 + eiω1),̂̃q(1)

(ω) = 1
64
(eiω1 − e−iω1)(6 + e−iω2 + eiω2), ̂̃q(2)

(ω) = 1
64
(eiω2 − e−iω2)(6 + e−iω1 + eiω1),̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.

Finally, we note that the filter bank that can be used to discretize a given PDE
is not uniquely determined, even though we do not allow inactive highpass filters in
the filter bank. For example, other than (2.18), we can use the following filter bank
for the image inpainting diffusion (3.23):

p̂(ω) = ̂̃p(ω) = 1

16
(1 + e−iω1)2(1 + e−iω2)2eiω1eiω2 ,

q̂(1)(ω) =
1

2
(eiω1 − e−iω1), q̂(2)(ω) = −1

2
(eiω2 − e−iω2),

q̂(3)(ω) = − 1

512
(1− e−iω1)2eiω1(6 + e−iω1 + eiω1)(22 + 4e−iω2 + 4eiω2 + e−i2ω2 + ei2ω2),

q̂(4)(ω) = − 1

512
(1− e−iω2)2eiω2(6 + e−iω2 + eiω2)(22 + 4e−iω1 + 4eiω1 + e−i2ω1 + ei2ω1),

̂̃q(1)
(ω) =

1

2
(eiω2 − e−iω2), ̂̃q(2)

(ω) =
1

2
(eiω1 − e−iω1), ̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.
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However, constructing multiple filter banks for a given PDE is not the focus of this
paper. Therefore, we shall only use the filter banks presented in this section as
examples.

2.4. Iterative wavelet frame shrinkage. Iterative wavelet frame shrinkage
(especially soft- and hard-thresholding) is the key ingredient of the wavelet frame
based approach for image restoration in [18, 19, 14, 11, 16, 17, 70, 28]. In this section,
we review the formula for more general iterative wavelet frame shrinkage, which goes
beyond soft- and hard-thresholding, and rewrite it in a compact form that will be
repeatedly used in later sections.

Let {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} be a pair of FIR filters that satisfy
the first equation of (2.3). Let {u0

j}j∈Z2 be the initial data. The (one-level) wavelet
frame transform based denoising consists of the following processes:

Ln =
∑
j∈Z2

p[j]u0
j+n, H

(`)
n =

∑
j∈Z2

q(`)[j]u0
j+n, n ∈ Z2, 1 ≤ ` ≤ L,

u1
j =

∑
n∈Z2

p̃[j − n]Ln +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]S`(H(`)
n ), j ∈ Z2,

(2.20)

where S`, 1 ≤ ` ≤ L, are the shrinkage functions. The first step in (2.20) is called
the analysis process, and the second is called the synthesis process after shrinkage.

Ln and H
(`)
n are the lowpass and highpass outputs of u0. The shrinkage functions

we consider in this paper are not limited to the well-known soft-thresholding that
is frequently used in image restoration. As we shall see in later sections, different
shrinkage operators will correspond to different PDEs.

Proposition 2.10. Let {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} be a pair of bi-
frame filter banks, and let u1

j be the resulting signal given by (2.20) after one-step

frame shrinkage of u0
j with these filter banks. Then

(2.21) u1
j = u0

j +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]
(
S`(ξ)− ξ

)∣∣∣
ξ=H

(`)
n

, j ∈ Z2,

where H
(`)
n is defined by (2.20).

Proof. Since {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} satisfy the first equation of
(2.3), u0

j can be recovered from the synthesis algorithm (2.20) with S`(ξ) = ξ, namely,

u0
j =

∑
n∈Z2

p̃[j − n]Ln +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]H(`)
n , j ∈ Z2.

Thus,

u1
j =

∑
n∈Z2

p̃[j − n]Ln +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]S`(H(`)
n )

= u0
j −

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]H(`)
n +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]S`(H(`)
n )

= u0
j +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]
(
S`(ξ)− ξ

)∣∣∣
ξ=H

(`)
n

, j ∈ Z2.
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The frame shrinkage process (2.20) can be applied iteratively:

H(`),k−1
n =

∑
j∈Z2

q(`)[j]uk−1
j+n, 1 ≤ ` ≤ L;

ukj = uk−1
j +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]
(
S`(H(`),k−1

n )−H(`),k−1
n

)
, k = 1, 2, . . . .

(2.22)

In this paper we will also consider the channel-mixed frame shrinkage (coupled
frame shrinkage):

(2.23) u1
j =

∑
n∈Z2

p̃[j −n]Ln +

L∑
`=1

∑
n∈Z2

q̃(`)[j −n]S`(H(1)
n , H(2)

n , . . . ,H(L)
n ), j ∈ Z2,

where S`, 1 ≤ ` ≤ L,n ∈ Z2 are functions of several variables. If u1
j , j ∈ Z2, are given

by (2.23) after channel-mixed shrinkage, then one can obtain similarly to the proof of
Proposition 2.10 that

(2.24) u1
j = u0

j +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]
(
S`(H(1)

n , H(2)
n , . . . ,H(L)

n )−H(`)
n

)
, j ∈ Z2.

The channel-mixed frame shrinkage process can also be applied iteratively:

H(`),k−1
n =

∑
j∈Z2

q(`)[j]uk−1
j+n, 1 ≤ ` ≤ L,

ukj = uk−1
j +

L∑
`=1

∑
n∈Z2

q̃(`)[j − n]
(
S`(H(1),k−1

n , . . . ,H(L),k−1
n )−H(`),k−1

n

)
, k = 1, 2, . . . .

(2.25)

Although the choice of shrinking functions S` can be general, they need to be mean-
ingfully chosen. In this paper, we will focus on a few specific shrinkage operators
which are closed-form solutions of certain optimization problems.

Next, we rewrite (2.22) and (2.25) in operator form. Let Wu =: d be the

wavelet frame decomposition of u defined by (2.5), and let̃W>d be the reconstruction

operator using a duel wavelet frame. We have W̃>W = I. For simplicity, we assume
the level of decomposition is 1, i.e., Lev = 1 in (2.5). For a given wavelet frame
coefficient d = {d`,n : n ∈ Z2, 0 ≤ ` ≤ L} and threshold α(d) = {α`,n(d) : n ∈
Z2, 0 ≤ ` ≤ L}, define the multiplicative shrinkage operator Sα(d) as

(2.26) Sα(d) = {Sα`,n(d)(d`,n) = d`,n(1− α`,n(d)) : n ∈ Z2, 0 ≤ ` ≤ L}.

Note that Sα`,n
(d`,n) in (2.26) denotes (Sα(d))`,n, whose value may depend on more

values than merely d`,n (see, e.g., (3.17)). Similarly, we denote the anisotropic and
isotropic soft-thresholding operators as T 1

α and T 2
α, respectively, where

(2.27)

T 1
α(d) =

{
T 1
α`,n(d)(d`,n) =

d`,n
|d`,n|

max{|d`,n| − α`,n(d), 0} : n ∈ Z2, 0 ≤ ` ≤ L
}

and
(2.28)

T 2
α(d) =

{
T 2
α`,n(d)(d`,n) =

d`,n
R`,n

max
{
R`,n − α`,n(d), 0

}
: n ∈ Z2, 0 ≤ ` ≤ L

}
,
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where R`,n = (
∑
|β`′ |=|β`| |d`′,n|

2)
1
2 . Observe that R`,n = R`′,n if |β`′ | = |β`|. For

all shrinkage operators, we always fix the threshold α0,n = 0, which means we never
penalize the low frequency coefficients d0,n.

With the notation in (2.5) and choosing the shrinking functions S` as Sα and
T ℘
α, we can rewrite both (2.22) and (2.25) as

(2.29) uk = W̃>Sαk−1(Wuk−1), k = 1, 2, . . . ,

which shall be referred to as the iterative multiplicative wavelet frame shrinkage (al-
gorithm), and

(2.30) uk = W̃>T ℘
αk−1(Wuk−1), k = 1, 2, . . . , ℘ = 1, 2,

which shall be referred to as the iterative (anisotropic/isotropic) wavelet frame soft-
thresholding (algorithm). Here, αk−1 = {α`,n(dk−1) : n ∈ Z2, 0 ≤ ` ≤ L} with
dk−1 = Wuk−1. When W is the transform associated with a tight wavelet frame

system, we have W̃ = W in (2.29) and (2.30). We note that the shrinkage operator
(2.26) is in fact so general that it includes (2.27) and (2.28) as special cases. In
other words, the iterative multiplicative shrinkage (2.29) includes (2.30) as a special
case. We shall give more details in section 3.3, where we present nonlinear diffusions
that are in correspondence to (2.30) with various choices of thresholds. However, we
will keep the two types of thresholding separated in notation and in our discussions,
since they have different thresholding mechanisms and have rather different optimality
properties, as will be shown in the following subsection.

Although the iterative algorithms (2.29) and (2.30) may not correspond to a
certain optimization problem, the solutions of two consecutive time steps of both
algorithms possess certain optimality properties. Given an α, we assume that

(2.31) 0 ≤ α < 1, i.e., 0 ≤ α`,n < 1, for all n ∈ Z2, 0 ≤ ` ≤ L.

Consider the quadratic optimization problem

min
d

1

2
‖d−Wu‖22 +

1

2

∥∥∥√ α

1−α
· d
∥∥∥2

2
,

where d = {d`,n : n ∈ Z2, 0 ≤ ` ≤ L} and
√

α
1−α · d := {

√
α`,n

1−α`,n
d`,n : n ∈ Z2, 0 ≤

` ≤ L}. We first observe that

Sα(Wu) = arg min
d

1

2
‖d−Wu‖22 +

1

2

∥∥∥√ α

1−α
· d
∥∥∥2

2
,

which is easy to derive by simple differentiation. Also, we have (see, e.g., [32, 20,8])

T ℘
α(Wu) = arg min

d

1

2
‖d−Wu‖22 +

∥∥∥α · d∥∥∥
1,℘
, ℘ = 1, 2,

where α · d :=
{
α`,nd`,n : n ∈ Z2, 0 ≤ ` ≤ L

}
,

(2.32) ‖d‖1,1 :=
∑
`,n

|d`,n|, and ‖d‖1,2 =
∑
n

m∑
l=1

( ∑
|β`′ |=l

|d`′,n|2
) 1

2

.
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Here we regroup β`, 1 ≤ ` ≤ L, according to the order of vanishing moments |β`| of
highpass filter q(`), and we assume the largest number among |β1|, . . . , |βL| is m.

When we have a tight frame system, i.e., W̃ = W , by [9, Proposition 3], we have

(2.33)
1

2
‖d−Wu‖22 =

1

2
‖W>d− u‖22 +

1

2
‖(I −WW>)d‖22.

Therefore, the iteration (2.29) has the following optimality property:

(2.34) uk =


W̃>

[
arg mind

1
2‖d−Wuk−1‖22 + 1

2

∥∥√ αk−1

1−αk−1 · d
∥∥2

2

]
bi-frame,

W>
[

arg mind
1
2‖W

>d− uk−1‖22 + 1
2‖(I −WW>)d‖22

+ 1
2

∥∥√ αk−1

1−αk−1 · d
∥∥2

2

]
tight frame.

Similarly, the iteration (2.30) has the following optimality property:

(2.35) uk =


W̃>

[
arg mind

1
2‖d−Wuk−1‖22 +

∥∥αk−1 · d
∥∥

1,℘

]
bi-frame,

W>
[

arg mind
1
2‖W

>d− uk−1‖22 + 1
2‖(I −WW>)d‖22

+
∥∥αk−1 · d

∥∥
1,℘

]
tight frame.

Judging from the formulas of the shrinkage operator, the parameter αk−1 depends
only on the wavelet frame coefficients dk−1. The first optimization problem in (2.35)
is a synthesis based model [23, 35, 36, 38, 39], and the second optimization problem is
a balanced model [18,7].

2.5. Wavelet frame shrinkage and nonlinear evolution PDEs. In this
subsection, we discuss how wavelet frame shrinkage is related to nonlinear evolution
PDEs in general. We shall focus on the motivation of such a connection and leave the
details to later sections. We will also discuss the similarities and differences between
our approach and some of the existing approaches, i.e., the finite difference and wavelet
Galerkin methods.

Throughout this paper, all the evolution PDEs we shall consider take the following
general form:

(2.36) ut =

L∑
`=1

∂α`

∂xα`
Φ`(Du, u), with D =

(
∂β1

∂xβ1
, . . . ,

∂βL

∂xβL

)
,

where we assume the PDE is defined on R2 for the moment, and |α`|, |β`| ≥ 0 for
all 1 ≤ ` ≤ L. Note that (2.36) includes diffusion, hyperbolic, and Hamilton–Jacobi
equations as special cases. In this paper, we shall focus on nonlinear diffusions. How-
ever, we will also discuss a nonlinear hyperbolic equation used for image restoration
called the shock filter [50].

Given a pair of bi-frame filter banks {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)},
and their associated transforms W and W̃ , we have W̃>W = I. We split the low
and high frequency components of W̃ and W according to the notation in (2.5) as

Wlow = W0 and Whigh = {W` : 1 ≤ ` ≤ L}.

We define W̃low and W̃high similarly. Assuming that q(`) and q̃(`) have vanishing mo-
ments of orders β` and α`, respectively, our key observation is based on the following
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relations, which can be derived using Lemma 2.3 by choosing λ and λ̃ properly:

(2.37) λ ·Whighu ≈ (Du)∣∣ and
(
λ̃ · W̃high

)>
·
(
v`

)L
`=1
≈ −

( L∑
`=1

∂α`

∂xα`
v`

)∣∣,
where u = u| and v` = (v`)| for some smooth functions u and v`, f| denotes the

restriction of f on Z2, λ·Whighu = {λ`W`u : 1 ≤ ` ≤ L}, and
(
λ̃·W̃high

)> ·(v`)L`=1
=∑L

`=1 λ̃`W̃
>
` v`. Note that the first approximation of (2.37) was observed earlier in [8],

while both approximations of (2.37) in the one-dimensional setting were used in [46].
Using the observation (2.37), we can discretize (2.36) as

(2.38) ũk =̃ uk−1 − τ
(
λ̃ · W̃high

)>
·
(
Φ`(λ ·Whigh̃u

k−1 ,̃uk−1)
)L
`=1

,

wherẽ ukj denotes an approximation to the value u(hj, τk) of u(x, t) at (hj, τk), where
h and τ are the spatial step size and the time step size. Recall that from Proposition
2.10 and the iterative shrinkage formula (2.24) that follows, we have the following
general expression of the iterative wavelet frame shrinkage algorithm:

(2.39) uk = uk−1 − W̃>
high ·

[
Whighu

k−1 −
(
S`(Whighu

k−1)
)L
`=1

]
.

Comparing (2.38) with (2.39), we will show that, if the shrinkage operator S` is
properly chosen, the iterative wavelet frame shrinkage algorithm will match (2.38) in
the sense that̃ uk = uk for all k ≥ 1 as long as̃ u0 = u0. This implies that (2.39),
and its equivalent operator form (2.29), is a discrete approximation of the evolution
PDE (2.36) if the shrinkage operator is properly chosen. On the other hand, for some
type of given shrinkage, such as the soft-thresholding operator, we will work our way
backward and find the associated (new) evolution PDEs. The main ideas here will be
followed and carried out in detail in sections 3.1 and 3.2 to establish the connections
between the nonlinear evolution PDEs (especially the nonlinear diffusions) and the
wavelet frame based approach for image restorations. Furthermore, in section 3.3,
we will discuss how we can further generalize such a relation, and how new evolution
PDEs and iterative wavelet frame shrinkage algorithms can be created.

2.5.1. Difference from finite difference approach. The main advantage of
wavelet frame based discretization of PDEs is that it equips the nonlinear diffusion
PDE approach with a space-frequency analysis and multiscale analysis through the
multiresolution analysis associated to wavelet frames. This is impossible to achieve
by other finite difference methods. This provides a new angle from which to under-
stand the nonlinear PDE approach. It further provides new types of nonlinear PDEs
motivated by the wavelet frame based approach. On the other hand, as we will see
in this paper, the PDE based approach in turn gives the wavelet frame based ap-
proach a geometric explanation and motivates us to develop new wavelet frame based
methods which are different from the already available wavelet frame methods, which
are mainly based on the sparse approximation of underlying solutions in the wavelet
domain. We elaborate on some of the details as follows.

1. Finite difference methods and our approach are different in how discrete
data is sampled from the unknown function. For a standard finite differ-
ence method, discrete data u is sampled from its continuum counterpart u
normally by u = Rhu, where Rh is the restriction of u on a certain grid with
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mesh-size h. However, the wavelet frame based approach samples u using
the associated refinable function, which generates the underlying MRA of the
wavelet frame system, as u = Thu with (Thu)k := 2n〈u, φn,k〉 (see (4.9)).
The sampling used by the wavelet frame based approach is more general and
better than that used by finite difference methods in the following sense.
(a) When u is continuous, the two samplings are equal to each other asymp-

totically (see Lemma 4.9 for details).
(b) When u ∈ L2(R2), the sampling Thu is still well defined, while Rhu

is not. More importantly, with the samples of u, the sampled values
of various differentiations of u can be obtained by applying a standard
wavelet decomposition on Thu. In this way, we are able to directly link
the sampled values of derivatives to wavelet frame coefficients, which
can be used to analyze various properties of the underlying solution,
e.g., singularities.

2. For standard finite difference approximation of the operator D = ( ∂β`

∂xβ`
)L`=1

(differentiation) and
∑L
`=1

∂α`

∂xα`
(divergence), there is not a bi-frame struc-

ture for the finite differencing of differentiation and divergence. However,
when we use wavelet frame transform to discretize differentiation and diver-
gence, λ ·Whigh approximates the differentiation and λ̃ ·W̃>

high approximates
the divergence. By augmenting the associated lowpass filter, we always have
W̃>W = I. This property is used extensively, and without it, we would not
be able to rewrite the standard iterative wavelet frame shrinkage algorithm
(2.20) as (2.21) (see the proof of Proposition 2.10). In other words, we would
not have the general iterative wavelet frame shrinkage algorithm (2.39) that
can be used to link with (2.38). Note that if we start with a certain finite
difference scheme, we can complete the corresponding system to a certain bi-
frame system. Therefore, implicitly, the finite difference method is also frame
based, although it may not have the MRA structure and wavelet frames asso-
ciated to it. However, the completion to a bi-frame system is not considered
by finite difference methods.

3. Finally, the advantage of the discretization by wavelet frame transforms
over the finite difference methods is the multiresolution structure of wavelet
frames, or the multiple decomposition levels of wavelet frame transform. This
automatically casts a multiscale analysis and space-frequency analysis to the
PDE based approach. The multilevel decomposition allows us to detect sin-
gularities of the underlying solution and its directives in the presence of noise.
The ability to detect singularities enables us to activate wavelet frame bands
and the associated shrinkage algorithms adaptively according to the orders of
singularities. These advantages of discretization by wavelet frame transforms
over finite difference methods will be illustrated in our numerical simulations
in section 5 (Tables 1 and 2), where multiple decomposition levels are used.

2.5.2. Difference from wavelet Galerkin. The basic idea of the wavelet
Galerkin method [1, 42, 47, 52] is to represent the solution by a linear combination
of a refinable function φ for an orthonormal wavelet system. One can form the weak
form of the given PDE using refinable functions as test functions and then obtain a
linear system with a stiffness matrix, or an iterative scheme associated to the linear

system, which has entries like 〈∂φ
α

∂xα ,
∂βφ
∂xβ
〉 called connection coefficients. The key idea

of the wavelet Galerkin method is to make the stiffness matrix sparse in the wavelet
domain. In order to make this idea work, the wavelet system used has to be close
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in some way to the eigenfunctions of the differential operator. However, it is hard to
design such a wavelet system in general.

Our approach here never tries to make the stiffness matrix sparse. Instead, our
methods are based on the properties of the underlying solutions. One example of such
properties is that the underlying solutions for many differential equations considered
in this paper are piecewise smooth functions, which can be sparsely approximated by a
wide range of wavelet systems. Iterative algorithms are derived by carefully designing
shrinkage operators based on prior knowledge of the underlying solutions. Such prior
knowledge can be obtained either from the given data or by a prior analysis of the
underlying solution. For example, when soft-thresholding is used, we assume that the
underlying solution has a good sparse approximation in the wavelet frame domain.

Finally, to solve a given PDE using the wavelet Galerkin method, one needs
to compute the connection coefficients first, which is an additional complication in
solving PDEs, especially given the fact that many refinable functions do not have
analytic forms. Our approach, however, is much easier to implement in practice.
We can use the exact same algorithmic structure to solve a large class of (nonlinear)
PDEs. We do not need to alter the fast wavelet frame transforms; we simply need
to choose the right shrinkage operator and proper parameters λ and λ̃, which can
be calculated analytically. In other words, ease of implementation and flexibility in
solving general nonlinear PDEs are the major advantages of our approach over the
wavelet Galerkin method.

3. Wavelet frame shrinkage and nonlinear evolution equations. This
section establishes connections between the wavelet frame shrinkage algorithm (2.29)
and the nonlinear evolution PDE of the form (2.36). As illustrated in the previous
section, discretization of the PDE (2.36) using wavelet frame transforms can be written
as (2.38), and the iterative wavelet frame shrinkage can be written as (2.39). The
connections can be made by comparing the formulas (2.38) and (2.39). This is the
key observation that we shall rely on in this section. As a further illustration of the
observation, we use a specific evolution PDE and the Haar framelet as an example. For
the rest of this section, however, we shall discuss the connections in generic settings.

Consider the following PDE:

ut =
∂Φ1

∂x1

(
∂u

∂x1
,
∂u

∂x2
, u

)
+
∂Φ2

∂x2

(
∂u

∂x1
,
∂u

∂x2
, u

)
.

If we choose tensor-product Haar framelets to discretize the involved differential op-
erators, a discrete form of the above PDE can be written as

ũk =̃ uk−1 − τ λ̃1W
>
1 Φ1(λ1W1ũ

k−1, λ2W2ũ
k−1, ũk−1)

−τ λ̃2W
>
2 Φ2(λ1W1ũ

k−1, λ2W2ũ
k−1, ũk−1).

For the same wavelet frame system, the iterative shrinkage algorithm (2.29) can be
written as

uk = uk−1 −W>
1

[
W1u

k−1 − S1(W1u
k−1,W2u

k−1,uk−1)
]

−W>
2

[
W2u

k−1 − S2(W1u
k−1,W2u

k−1,uk−1)
]
.

Comparing the above two formulas, to link the two iterative algorithms, we can simply
define S`, ` = 1, 2, as a pointwise defined operator such that, for ξ`, ζ ∈ R,

S`(ξ1, ξ2, ζ) := ξ` − τ λ̃`Φ`(ξ1, ξ2, ζ) = ξ`

(
1− τ λ̃`Φ`(ξ1, ξ2, ζ)/ξ`

)
,
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as long as the ratio Φ`(ξ1, ξ2, ζ)/ξ` is well defined. In particular, when Φ`(
∂u
∂x1

, ∂u∂x2
, u) =

g`(|∇u|2, u) ∂u∂x`
(nonlinear diffusion), we have

S`(ξ1, ξ2, ζ) = ξ`

(
1− τ λ̃`g`(ξ2

1 + ξ2
2 , ζ)

)
.

The parameters λ` and λ̃` are chosen so that λ`W` ≈ ∂
∂x`

and λ̃`W
>
` ≈ ∂

∂x`
.

3.1. Wavelet frame shrinkage derived from PDEs. In this section, we fo-
cus on the relation between the iterative multiplicative wavelet frame shrinkage and
nonlinear diffusion equations. A nonlinear hyperbolic equation known as the shock
filter [50] will also be studied; this can be cast (formally) into the form of a nonlinear
diffusion. In fact, the arguments we use to link wavelet frame shrinkage with nonlinear
diffusions can be applied to general nonlinear evolution equations (2.36). Therefore,
in the rest of this paper, we will mostly focus on nonlinear diffusions.

We will show that, with proper choice of the shrinkage functions, the wavelet
frame shrinkage (2.22) (or, equivalently, (2.29)) is a discretization of the following
nonlinear diffusion equation for u = u(x, t), x ∈ R2, t ≥ 0:

(3.1) ut =

L∑
`=1

(−1)1+|α`| ∂
α`

∂xα`

{
g`

((
∂β`u

∂xβ`

)2)
∂β`u

∂xβ`

}
,

with g` : R 7→ R+ smooth and f being the initial function u(x, 0) = f(x),x ∈ R2.
More precisely, let {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} be a pair of bi-frame filter
banks. With u0

j = f(hj), the sequence ukj generated by (2.22) (or, equivalently, from
(2.29)) approximates u(hj, kτ), where h and τ are the spatial and temporal step sizes,
provided that S` in (2.22) satisfies

(3.2) S`(ξ) = ξ

{
1− τ

C
(`)
α`C

(`)
β`
h|α|+|β`|

g`

(
ξ2

(C
(`)
β`

)2h2|β`|

)}
, ξ ∈ R, 1 ≤ ` ≤ L,

or, equivalently, the shrinkage operator Sα in (2.26) satisfies

Sα`,n(d)(d`,n) = d`,n(1− α`,n(d`,n))(3.3)

= d`,n

(
1− τ

C̃
(`)
α`C

(`)
β`
h|α`|+|β`|

g`

(
d2
`,n

(C
(`)
β`

)2h2|β`|

))
, 1 ≤ ` ≤ L,

where α`,β` in Z2
+ are the vanishing moment orders of q̃(`), q(`), and C̃

(`)
α` , C

(`)
β`

are
defined by (2.10).

In this section we will also consider the channel-mixed nonlinear diffusion

(3.4) ut =

L∑
`=1

(−1)1+|α`| ∂
α`

∂xα`

{
g`

(
∂β1u

∂xβ1
,
∂β2u

∂xβ2
, . . . ,

∂βLu

∂xβL

)
∂β`u

∂xβ`

}
,

with g` : RL 7→ R+ smooth, and show how to design some tight frame and bi-
frame filter banks and choose appropriate shrinking functions/operators such that
the iterative frame shrinkage (2.25)/(2.29) is a discretization of (3.4).

Finally, applying similar techniques, we will show how can we design tight frame
and bi-frame filter banks and the associated shrinking functions/operators to dis-
cretize the PM equation [51], the Bertalmio–Sapiro–Caselles–Ballester image inpaint-
ing diffusion [5], and a nonlinear hyperbolic equation known as the Osher–Rudin shock
filter [50].
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3.1.1. Shrinkage for nonlinear diffusions. In this subsection, we discuss the
correspondence between frame shrinkage and high order nonlinear diffusion. Let
p, q(`), 1 ≤ ` ≤ L, be a tight frame filter bank. Suppose q(`), 1 ≤ ` ≤ L, have

vanishing moments of orders β` with C
(`)
β`
6= 0, where C

(`)
β`

are the constants defined

by (2.10) with q = q(`), respectively. We will show that, with properly chosen shrink-
age functions, the iterative shrinkage (2.22) or equivalently (2.29) is a discretization
of the high order nonlinear diffusion equation

(3.5) ut =

L∑
`=1

(−1)1+|β`| ∂
β`

∂xβ`

{
g`

((
∂β`u

∂xβ`

)2)
∂β`u

∂xβ`

}
for u = u(x, t), x ∈ R2, t ≥ 0, with u(x, 0) = f(x) and some smooth diffusivity
function g` : R 7→ R+.

Recall that h and τ denote the spatial step size and the time step size. Lemma 2.3

ensures that we can use FIR filter q(`) to approximate partial derivatives ∂β`

∂xβ`
u(x, t)

and ∂β`

∂xβ`
G`(x, t), where

G`(x, t) := g`

((
∂β`u

∂xβ`

)2)
∂β`u

∂xβ`
.

Indeed,

∂β`

∂xβ`
u(hj, τk) ≈ 1

C
(`)
β`

1

h|β`|

∑
n∈Z2

q(`)[n]u(hj + hn, τk),(3.6)

∂β`

∂xβ`
G`(hj, τk) ≈ (−1)|β`|

C
(`)
β`

1

h|β`|

∑
m∈Z2

q(`)[m]G`(hj − hm, kτ)(3.7)

=
(−1)|β`|

C
(`)
β`

1

h|β`|

∑
m∈Z2

q(`)[j −m]G`(hm, kτ),

where (2.9) with ε = h and ε = −h has been used in (3.6) and (3.7), respectively.
Let u0

j = f(hj), j ∈ Z2. From (3.5), (3.6), and (3.7) with k = 0, ũ1
j , j ∈ Z2,

defined by

ũ1
j − ũ0

j

τ
=−

L∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]g`

((
1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃u0
n+m

)2)
·
(

1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃u0
n+m

)

give approximated values of the solution u(x, t) at (hj, τ), j ∈ Z2. The above equation
can be rewritten as

(3.8)

ũ1
j =̃ u

0
j − τ

L∑
`=1

1

C
(`)
β`

h|β`|

∑
m∈Z2

q(`)[j −m]g`

((
1

C
(`)
β`

h|β`|
H(`)
m

)2)(
1

C
(`)
β`

h|β`|
H(`)
m

)
, j ∈ Z2,

where H(`)
m is defined by (2.20): H(`)

m =
∑
n q

(`)[n]̃u0
n+m =

∑
n q

(`)[n]f(h(n+m)).
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Repeating the above process, we havẽ u1
j ,̃ u

2
j , . . . , which are approximated values

of the solution u(x, t) at (hj, 2τ), (hj, 3τ), . . . , respectively. More precisely, assume

we havẽ uk−1
j , approximated values of u(x, t) at (hj, τ(k − 1)), j ∈ Z2. Then from

(3.6), ∂β`

∂xβ`
u(hj, τ(k − 1)) ≈ 1/(C

(`)
β`

h|β`|)
∑
n∈Z2 q(`)[n]̃uk−1

n+j . This, together with

(3.7), implies that

∂β`

∂xβ`
G`(hj, τ(k − 1))

≈ (−1)|β`|

C
(`)
β`

1

h|β`|

∑
m

q(`)[j −m]g`
(( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃uk−1
n+m

)2)( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃uk−1
n+m

)
.

Thus, ũkj , j ∈ Z2, defined by

ũkj − ũ
k−1
j

τ
=−

L∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]g`

(( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃uk−1
n+m

)2)
·
( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]̃uk−1
n+m

)
give approximated values of the solution u(x, t) at (hj, τk), j ∈ Z2. Hence the high-
pass filters q(`), 1 ≤ ` ≤ L, give a discretization of (3.5), which can be rewritten as
follows: for j ∈ Z2,

ũkj =̃ uk−1
j − τ

L∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]g`

(( 1

C
(`)
β`

h|β`|
H(`),k−1
m

)2)
(3.9)

·
( 1

C
(`)
β`

h|β`|
H(`),k−1
m

)
, k = 1, 2, . . . ,

where H(`),k−1, 1 ≤ ` ≤ L, are the highpass outputs of̃ uk−1
j defined by (2.20) with

u0 replaced bỹ uk−1.
Let uk be the resulting sequences of the wavelet frame shrinkage (2.22) with

u0
j = f(hj), j ∈ Z2. Comparing (2.22) and (3.9), we have that ukj =̃ ukj , j ∈ Z2, for

all k ≥ 2 as long as u0 =̃ u0 and

(3.10) S`(ξ) = ξ

{
1− τ

(C
(`)
β`

)2h2|β`|
g`

(
ξ2

(C
(`)
β`

)2h2|β`|

)}
, ξ ∈ R, 1 ≤ ` ≤ L.

If uk is generated from (2.29), the equivalent operator form of (2.22), then condition
(3.10) can be translated equivalently to
(3.11)

Sα`,n(d)(d`,n) = d`,n(1−α`,n(d`,n)) = d`,n

(
1− τ

(C
(`)
β`

)2h2|β`|
g`

(
d2
`,n

(C
(`)
β`

)2h2|β`|

))
, 1 ≤ ` ≤ L.

In other words, the iterative wavelet frame shrinkage algorithm (2.22)/(2.29) generates
the exact same sequence as (3.9) provided that u0 =̃ u0 and (3.10)/(3.11) is satisfied,
where (3.9) is in fact a discretization of the nonlinear diffusion (3.5). In the following
theorem, we summarize this result on the relation between the wavelet frame shrinkage
algorithm (2.22)/(2.29) and the high-order nonlinear diffusion (3.5).
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Theorem 3.1. Let uk be the resulting sequence from the iterative wavelet frame
shrinkage (2.22)/ (2.29) with u0

j = f(hj), j ∈ Z2, and using a tight frame filter bank

{p, q(1), . . . , q(L)} with q(`) having vanishing moment β`. Then, uk is a discrete
approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t) the solution of (3.5)
provided that the shrinkage functions satisfy (2.22)/ (3.11). Furthermore, if the α
given in (3.11) satisfies (2.31), we have that both the optimality properties in (2.34)
hold for uk.

Remark 3.2. In Theorem 3.1 and many other results in this paper, the statement
that “uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t)
the solution of a given PDE” means that the discretization by (2.29) is consistent
with the given PDE. Since all the consistency proofs are very similar to each other,
we present a detailed proof of consistency for a specific PDE later in Proposition
4.3, which can be easily modified to a proof for Theorem 3.1, as well as all other
consistency results in this paper. To show that uk indeed converges to the solution of
the given PDE, we need it to be well-posed and the algorithm to be stable, in addition
to consistency. A complete proof of convergence of the discretization given by (2.29)
to a specific PDE is given in section 4. Although the analysis is only applied to one
particular PDE, one can easily see from the proofs in section 4 that, as long as the
given PDE is well-posed, we can always show convergence of (2.29) with properly
chosen shrinkage functions.

With Theorem 3.1, we have the following easy corollary.

Corollary 3.3. Let uk be the resulting signal from the iterative multiplicative
wavelet frame shrinkage (2.29) with u0

j = f(hj), j ∈ Z2, and using a tight frame filter

bank {p, q(1), . . . , q(L)}, with L > 2, q(`) having vanishing moment β`. Let L̃ be an

integer with 2 ≤ L̃ < L. Then, uk is a discrete approximation of {u(hj, kτ) : j ∈
Z2, k = 1, 2, . . .} with u(x, t) the solution of

(3.12) ut =

L̃∑
`=1

(−1)1+|β`| ∂
β`

∂xβ`

{
g`

((
∂β`u

∂xβ`

)2)
∂β`u

∂xβ`

}
,

provided that the shrinkage operator of (2.29) is chosen as
(3.13)

Sα`,n(d)(d`,n) = d`,n(1−α`,n(d`,n)) =


d`,n

{
1− τ

(C
(`)
β`

)2h2|β`|
g`
(

(d`,n)2

(C
(`)
β`

)2h2|β`|

)}
for 1 ≤ ` ≤ L̃,

d`,n
{
1− C̄

(0)
`
τ

hs` g`
(
C̄

(1)
`

(d`,n)2

h2|β`|

)}
for L̃ < ` ≤ L,

where C̄
(0)
` , C̄

(1)
` ≥ 0 and s` < 2|β`|. Furthermore, if the α given in (3.13) satisfies

(2.31), we have that both the optimality properties in (2.34) hold for uk.

Remark 3.4. Theorem 3.1 and Corollary 3.3 imply that we can use the tight frame

filter bank {p, q(1), . . . , q(L̃)} or {p, q(1), q(2), . . . , q(L)} with L > L̃ to approximate
the same PDE (3.12). Numerically, the discretization by Corollary 3.3 can produce
better image restoration results than the discretization by Theorem 3.1. This is in
fact consistent with our earlier findings in [8], where we discretize variational models
using B-spline tight wavelet frames.

Similarly, when a pair of bi-frame filter banks {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)}
are used for frame shrinkage, the formulas used to discretize partial derivatives ∂β`

∂xβ`
u(x, t)

and ∂β`

∂xβ`
G`(x, t) in the diffusion equation (3.1), where G`(x, t) = g`((

∂β`u
∂xβ`

)2) ∂
β`u
∂xβ`

,
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are

∂β`

∂xβ`
u(hj, τk) ≈ 1

C
(`)
β`

1

h|β`|

∑
n∈Z2

q(`)[n]u(hj + hn, τk),

∂β`

∂xβ`
G`(hj, τk) ≈ (−1)|β`|

C̃
(`)
α`

1

h|β`|

∑
m∈Z2

q̃(`)[j −m]G`(hm, τk),

where C
(`)
β`

and C̃
(`)
α` are the constants defined by (2.10) with q = q(`) and q = q̃(`),

respectively. Theñ ukj with̃ u0
j = f(hj), j ∈ Z2, defined by

ũkj =̃ uk−1
j − τ

L∑
`=1

1

C̃
(`)
α` h

|β`|

∑
m∈Z2

q̃(`)[j −m]g`

(( 1

C
(`)
β`

h|β`|
H(`),k−1
m

)2)
(3.14)

·
( 1

C
(`)
β`

h|β`|
H(`),k−1
m

)

for k = 1, 2, . . . provides a discretization of the diffusion equation (3.1), whereH(`),k−1,
1 ≤ ` ≤ L, are the highpass outputs of̃ uk−1 defined by (2.20) with u0 replaced by
ũk−1. Let uk be the resulting sequences from wavelet frame shrinkage (2.22) with
u0
j = f(hj), j ∈ Z2. Comparing (2.22) with (3.14), we have uk =̃ uk for k ≥ 1 if

(3.2) holds. Therefore, in this case, the wavelet frame shrinkage algorithm (2.22) (or
its equivalent form (2.29)) approximates the nonlinear diffusion (3.14).

Theorem 3.5. Let uk be the resulting sequences from wavelet frame shrinkage
(2.22)/ (2.29) with u0

j = f(hj), j ∈ Z2, and using a bi-frame filter bank {p, q(1), . . . , q(L)}
and {p̃, q̃(1), . . . , q̃(L)} with q(`) (resp., q̃(`)) having vanishing moment β` (resp., α`).
Then, uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t)
the solution of (3.1) provided that (3.2)/ (3.3) is satisfied. Furthermore, if the α given
in (3.3) satisfies (2.31), we have that the first optimality property in (2.34) holds for
uk.

Similarly, one can easily derive the correspondence between the wavelet frame
shrinkage and diffusion of (3.4). In this case, the discretization scheme for (3.4) with
a bi-frame filter bank {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} is, for k = 1, 2, . . . ,

(3.15)

ũkj =̃ uk−1
j − τ

L∑
`=1

1

C̃
(`)
α` h

|β`|

∑
m∈Z2

q̃(`)[j −m]g`

(
H(1),k−1
m

C
(1)
β1

h|β1|
, . . . ,

H(L),k−1
m

C
(L)
βL

h|βL|

)(
H(`),k−1
m

C
(`)
β`

h|β`|

)
,

wherẽ u0
j = f(hj), j ∈ Z2, and H(`),k−1, 1 ≤ ` ≤ L, are the highpass outputs of̃ uk−1

with q(`).

Theorem 3.6. Let uk be the resulting sequence from the wavelet frame
shrinkage (2.25)/ (2.29) with u0

j = f(hj), j ∈ Z2, and using a bi-frame filter bank

{p, q(1), . . . , q(L)} and {p̃, q̃(1), · · · , q̃(L)} with q(`) (resp., q̃(`)) having vanishing mo-
ment β` (resp., α`). Then, uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k =
1, 2, . . .} with u(x, t) the solution of (3.4) provided that the shrinkage functions S` of
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(2.25) satisfy

(3.16)

S`(ξ1, . . . , ξL) = ξ` −
τξ`

C̃
(`)
α`C

(`)
β`
h|α`|+|β`|

g`

(
ξ1

C
(1)
β1
h|β1|

, . . . ,
ξL

C
(L)
βL
h|βL|

)
, ξ1, . . . , ξL ∈ R,

1 ≤ ` ≤ L,

or equivalently the shrinkage operator of (2.29) is chosen as

Sα`,n(d)(d1,n, . . . , dL,n) = d`,n
(
1− α`,n(d1,n, . . . , dL,n)

)
= d`,n

(
1− τ

C̃
(`)
α`C

(`)
β`
h|α`|+|β`|

g`

(
d1,n

C
(1)
β1
h|β1|

, . . . ,
dL,n

C
(L)
βL
h|βL|

))
(3.17)

for 1 ≤ ` ≤ L. Furthermore, if the α given in (3.17) satisfies (2.31), we have that the
first optimality property in (2.34) holds for uk.

With Theorem 3.6, we have the following easy corollary.

Corollary 3.7. Let uk be the resulting signal from the iterative multiplicative
wavelet frame shrinkage (2.29) with u0

j = f(hj), j ∈ Z2, and using a bi-frame filter

bank {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} with L > L̃ ≥ 2, q(`) (resp., q̃(`))
having vanishing moment β` (resp., α`). Then, uk is a discrete approximation of
{u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t) the solution of

(3.18) ut =

L̃∑
`=1

(−1)1+|α`| ∂
α`

∂xα`

{
g`

(
∂β1u

∂xβ1
,
∂β2u

∂xβ2

)
∂β`u

∂xβ`

}
,

provided that the shrinkage operator of (2.29) is chosen as

Sα`,n(d)(d`,n) = d`,n
(
1− α`,n(d1,n, . . . , dL,n)

)
=


d`,n

(
1− τ

C̃
(`)
α`
C

(`)
β`
h|α`|+|β`|

g`

(
d1,n

C
(1)
β1
h|β1|

,
d2,n

C
(2)
β2
h|β2|

))
for 1 ≤ ` ≤ L̃,

d`,n

(
1− C̄

(0)
`
τ

hs` g`

(
C̄

(1)
`
d1,n

h|β1|
,
C̄

(2)
`
d2,n

h|β2|
, . . . ,

C̄
(L)
`

dL,n

h|βL|

))
for L̃ < ` ≤ L,

(3.19)

where C̄
(j)
` ≥ 0, j = 0, 1, . . . , L, and s` < |α`|+ |β`|. Furthermore, if the α given in

(3.19) satisfies (2.31), we have that the first optimality property in (2.34) holds for
uk.

Remark 3.8. Theorem 3.6 and Corollary 3.7 imply that we can use a bi-frame filter

bank {p, q(1), . . . , q(L̃)} and {p̃, q̃(1), . . . , q̃(L̃)} or {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)}
with L > L̃ to approximate the same PDE (3.18). Numerically, the discretization by
Corollary 3.7 can produce better image restoration results than the discretization by
Theorem 3.6.

3.1.2. PDE models for image restoration. In this subsection we show how
iterative wavelet frame shrinkage can be used to discretize some PDE models com-
monly used in image restoration. We will consider the PM equation [51] and a modified
TV equation, the Bertalmio–Sapiro–Caselles–Ballester image inpainting diffusion [5],
and the Osher–Rudin shock filter [50].
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1. PM and TV models. The most commonly used diffusion equation is

(3.20) ut = div
(
g(|Ou|2)Ou

)
,

namely,

ut =
∂

∂x1

{
g
(( ∂u

∂x1

)2

+
( ∂u
∂x2

)2) ∂u
∂x1

}
+

∂

∂x2

{
g
(( ∂u

∂x1

)2

+
( ∂u
∂x2

)2) ∂u
∂x2

}
,

where g is the diffusivity function. If g(x2) = c
1+(x/λ)2 , where c > 0, λ > 0 are

constants, (3.20) is the PM model; it is the (modified) TV model if g(x2) = c√
ε2+x2

,

where c > 0, ε > 0 are constants.
Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be a pair of bi-frame filter banks defined

by (2.17). Then q(1), q̃(1) have vanishing moment of order (1, 0) and q(2), q̃(2) have

vanishing moment of order (0, 1) with C
(1)
(1,0) = C̃

(1)
(1,0) = C

(2)
(0,1) = C̃

(2)
(0,1) = − 1

2 . Thus,

by Theorem 3.6 with g1(ξ1, ξ2) = g2(ξ1, ξ2) = g(ξ2
1 + ξ2

2), if

S1(ξ1, ξ2) = ξ1 −
4τξ1
h2

g

(
4(ξ2

1 + ξ2
2)

h2

)
, S2(ξ1, ξ2) = ξ2 −

4τξ2
h2

g

(
4(ξ2

1 + ξ2
2)

h2

)
,(3.21)

or equivalently

(3.22) Sα`,n(d)(d1,n, d2,n) = d`,n

(
1− 4τ

h2
g

(
4(d1,n)2 + 4(d2,n)2

h2

))
, ` = 1, 2,

then the iterative channel-mixed frame shrinkage (2.25)/(2.29) results in a discretiza-
tion of the PM equation.

2. Image inpainting diffusion. The (slightly modified) diffusion equation for image
inpainting is

ut = O(4u) · Ou⊥ + ε4u, (x, t) ∈ D × (0, T )

with initial condition u(x, 0) = fext,x ∈ Ω, an extension of f from D to Ω\D, where
ε > 0 and

Ou⊥ =

[
− ∂
∂y
∂
∂x

]
.

We consider the more general equation

(3.23) ut = O
(
g(4u)

)
· Ou⊥ + ε4u,

where g is a smooth function on R. Equation (3.23) can be written as

(3.24) ut =
∂

∂y

(
g(4u)

∂u

∂x

)
+

∂

∂x

(
− g(4u)

∂u

∂y

)
+ ε4u.

Thus (3.23), or equivalently (3.24), can be expressed in the form of (3.4) with L = 4,

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (0, 2),

α1 = (0, 1), α2 = (1, 0), α3 = (0, 0), α4 = (0, 0),

and

g1(ξ1, ξ2, ξ3, ξ4) = g(ξ3 + ξ4), g2(ξ1, ξ2, ξ3, ξ4) = −g(ξ3 + ξ4),

g3(ξ1, ξ2, ξ3, ξ4) = g4(ξ1, ξ2, ξ3, ξ4) = −ε.
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Therefore, in order for the wavelet frame shrinkage to be in correspondence to the
diffusion equation (3.24), the analysis highpass filters q(1), . . . , q(4) need to have van-
ishing moments of orders (1, 0), (0, 1), (2, 0), (0, 2), respectively. The synthesis high-
pass filters q̃(1) and q̃(2) should have vanishing moments of orders (0, 1) and (1, 0),
respectively, and filters q̃(3) and q̃(4) are just the delta filter which have vanishing
moment of (0, 0) order.

The bi-frame filters needed to discretize (3.24) are given by (2.18). Indeed, the
highpass filters q(1), q(2), q(3), q(4) and q̃(1), q̃(2), q̃(3), q̃(4) have vanishing moments of
orders (1, 0), (0, 1), (2, 0), (0, 2) and (0, 1), (1, 0), (0, 0), (0, 0), respectively. One can
easily obtain

C
(1)

(1,0) = −
1

2
, C

(2)

(0,1) =
1

2
, C

(3)

(2,0) = C
(4)

(0,2) = −
1

4
, C̃

(1)

(0,1) = C̃
(2)

(1,0) = −
1

2
, C̃

(3)

(0,0) = C̃
(4)

(0,0) = 1.

Thus by Theorem 3.6, if the shrinkage functions S` of (2.25) and the diffusion function
g satisfy

S`(ξ1, ξ2, ξ3, ξ4) = ξ` −
4τξ`
h2

g

(
− 4ξ3 + 4ξ4

h2

)
for ` = 1, 2,

S`(ξ1, ξ2, ξ3, ξ4) = ξ`

(
1− 4τε

h2

)
for ` = 3, 4,

or equivalently if the shrinkage operator Sα of (2.29) satisfies

Sα`,n(d)(d`,n) =

{
d`,n

(
1− 4τ

h2 g
(
− 4d3,n+4d4,n

h2

))
for ` = 1, 2,

d`,n
(
1− 4τε

h2

)
for ` = 3, 4,

then, with the filters given by (2.18), the wavelet frame shrinkage (2.25)/(2.29) is a
discretization of the diffusion (3.23).

3. Osher–Rudin shock filter. The Osher–Rudin shock filter (nonlinear hyperbolic
equation) is governed by

(3.25) ut + |Ou|F (L(u)) = 0, (x, t) ∈ Ω× (0, T ),

with initial condition u(x, 0) = f(x), x ∈ Ω, where F is a Lipschitz continuous function
satisfying {

F (0) = 0,
sign(x)F (x) > 0 for x 6= 0.

The simplest example for F is F (x) = x. A desirable choice for L(u) is

(3.26) L(u) =
u2
xuxx + 2uxuyuxy + u2

yuyy

|Ou|2
,

which is the second derivative of u in the direction of n = Ou
|Ou| . Here we consider the

case F (x) = x and show that the wavelet frame shrinkage is connected with the shock
filtering of (3.25) with L(u) given by (3.26). In this case (3.25) is

ut = −
u2
xuxx + 2uxuyuxy + u2

yuyy

|Ou|
,
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which can be written as

(3.27) ut =
∂

∂x

(
g(|Ou|2)

∂u

∂x

)
+

∂

∂y

(
g(|Ou|2)

∂u

∂y

)
− g(|Ou|2)

∂2u

∂x2
− g(|Ou|2)

∂2u

∂y2
,

where g(x) = −
√
x, x ≥ 0. Thus (3.27) is an equation in the form of (3.4) with L = 4,

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (0, 2),

α1 = (1, 0), α2 = (0, 1), α3 = (0, 0), α4 = (0, 0),

and g1 = g2 = g3 = g4 = g(ξ2
1 + ξ2

2). Therefore, in order that the frame shrinkage
corresponds to the diffusion with (3.24), the analysis highpass filters q(1), . . . , q(4)

have vanishing moments of orders (1, 0), (0, 1), (2, 0), (0, 2), respectively, while the
synthesis highpass filters q̃(1) and q̃(2) should have vanishing moments of orders (0, 1)
and (1, 0), respectively, and q̃(3) and q̃(4) are just the delta filters, which have vanishing
moment of (0, 0) order.

The filter bank that satisfies the above requirements is given by (2.19). Indeed,
the highpass filters q(1), q(2), q(3), q(4) and q̃(1), q̃(2), q̃(3), q̃(4) have vanishing moments
of orders (1, 0), (0, 1), (2, 0), (0, 2) and (1, 0), (0, 1), (0, 0), (0, 0), respectively. We have

C
(1)
(1,0) = C

(2)
(0,1) = −1, C

(3)
(2,0) = C

(4)
(0,2) = −1

4
, C̃

(1)
(0,1) = C̃

(2)
(1,0) = −1

4
, C̃

(3)
(0,0) = C̃

(4)
(0,0) = 1.

Thus, by Theorem 3.6, if the shrinkage functions S` of (2.25) and the diffusion function
g satisfy

S`(ξ1, ξ2, ξ3, ξ4) = ξ` −
4τξ`
h2

g

(
ξ2
1 + ξ2

2

h2

)
for ` = 1, 2,

S`(ξ1, ξ2, ξ3, ξ4) = ξ` +
4τξ`
h2

g

(
ξ2
1 + ξ2

2

h2

)
for ` = 3, 4,

or equivalently if the shrinkage operator Sα of (2.29) satisfies

Sα`,n(d)(d`,n) =

d`,n
(

1− 4τ
h2 g

(
(d1,n)2+(d2,n)2

h2

))
for ` = 1, 2,

d`,n

(
1 + 4τ

h2 g
(

(d1,n)2+(d2,n)2

h2

))
for ` = 3, 4,

then, with the filters given by (2.19), the sequence from the wavelet frame shrinkage
(2.25)/(2.29) is a discretization of (3.27).

3.2. PDEs derived from wavelet frame shrinkage. In the previous section,
we showed, in generic settings, how to construct the wavelet frame system and choose
appropriate shrinkage functions so that the wavelet frame shrinkage is a discrete
approximation of a given PDE. In this section we present several specific (new) high
order diffusion equations that are derived from wavelet frame shrinkage (2.29) using
some specific B-spline tight wavelet frame systems. Note that our techniques can be
generalized easily to many other wavelet frame systems, and other (possibly new)
nonlinear evolution PDEs can be derived similarly.

3.2.1. Diffusions from B-spline filter banks. Let {p, q(1), . . . , q(8)} be the
separable spline tight frame filter bank given in (2.14). The corresponding nonlinear
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diffusion equation is

ut=
∂

∂x1

{
g1

(( ∂u
∂x1

)2) ∂u
∂x1

}
+

∂

∂x2

{
g2

(( ∂u
∂x2

)2) ∂u
∂x2

}
− ∂2

∂x2
1

{
g3

((∂2u

∂x2
1

)2)∂2u

∂x2
1

}
(3.28)

− ∂2

∂x1∂x2

{
g4

(( ∂2u

∂x1∂x2

)2) ∂2u

∂x1∂x2

}
− ∂2

∂x2
2

{
g5

((∂2u

∂x2
2

)2)∂2u

∂x2
2

}
+

∂3

∂x2
1∂x2

{
g6

(( ∂3u

∂x2
1∂x2

)2) ∂3u

∂x2
1∂x2

}
+

∂3

∂x1∂x2
2

{
g7

(( ∂3u

∂x1∂x2
2

)2) ∂3u

∂x1∂x2
2

}
− ∂4

∂x2
1∂x

2
2

{
g8

(( ∂4u

∂x2
1∂x

2
2

)2) ∂4u

∂x2
1∂x

2
2

}
,

with the initial condition u(x, 0) = f(x),x ∈ R2. More precisely, with

C
(1)
β1

= C
(2)
β2

= −
√
2

2
, C

(3)
β3

= −1

4
, C

(4)
β4

=
1

2
, C

(5)
β5

= −1

4
, C

(6)
β6

= C
(7)
β7

=

√
2

8
, C

(8)
β8

=
1

16
,

we know, by Theorem 3.1, that the resulting signals from the wavelet frame shrinkage
(2.22)/(2.29), with the filters (2.14), approximate the solution of diffusion equation
(3.28) in the discrete setting provided that the shrinking functions S` and the diffu-
sivity g` have the following relationship:

S`(ξ) = ξ
{

1− 2τ

h2
g`

(2ξ2

h2

)}
for ` = 1, 2, S`(ξ) = ξ

{
1− 16τ

h4
g`

(16ξ2

h4

)}
for ` = 3, 5,

S`(ξ) = ξ
{

1− 32τ

h4
g`

(32ξ2

h4

)}
for ` = 6, 7,

S4(ξ) = ξ
{

1− 4τ

h4
g4

(4ξ2

h4

)}
, S8(ξ) = ξ

{
1− 256τ

h8
g8

(256ξ2

h8

)}
,

or equivalently the shrinkage operator satisfies

Sα`,n(d)(d`,n) = d`,n

{
1− 2τ

h2
g`

(
2(d`,n)2

h2

)}
for ` = 1, 2,

Sα`,n(d)(d`,n) = d`,n

{
1− 16τ

h4
g`

(
16(d`,n)2

h4

)}
for ` = 3, 5,

Sα`,n(d)(d`,n) = d`,n

{
1− 32τ

h6
g`

(
32(d`,n)2

h6

)}
for ` = 6, 7,

Sα4,n(d)(d4,n) = d4,n

{
1− 4τ

h4
g4

(
4(d4,n)2

h4

)}
,

Sα8,n(d)(d8,n) = d8,n

{
1− 256τ

h8
g8

(
256(d8,n)2

h8

)}
.

Next we construct wavelet frame filter banks with fewer highpass filters, while
the lowpass filter is still the same: p(ω) = a(ω1)a(ω2). Denote

(3.29) ξ =

(
cos

ω1

2

)2

, η =

(
cos

ω2

2

)2

.

Observe that

ξ =

∣∣∣∣1 + e−iω1

2

∣∣∣∣2, 1− ξ =

(
sin

ω1

2

)2

=

∣∣∣∣1− e−iω1

2

∣∣∣∣2,
η =

∣∣∣∣1 + e−iω2

2

∣∣∣∣2, 1− η =

(
sin

ω2

2

)2

=

∣∣∣∣1− e−iω2

2

∣∣∣∣2,
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and that

4ξ(1− ξ) = (sinω1)2 =

∣∣∣∣eiω1 − e−iω1

2

∣∣∣∣2, (1− 2ξ)2 = (cosω1)2 =

∣∣∣∣eiω1 + e−iω1

2

∣∣∣∣2,
4η(1− η) = (sinω2)2 =

∣∣∣∣eiω2 − e−iω2

2

∣∣∣∣2, (1− 2η)2 = (cosω2)2 =

∣∣∣∣eiω2 + e−iω2

2

∣∣∣∣2.
From |p(ω)|2 = ξ2η2 and

1 =
(
η + (1− η)

)2

= η2 + 2η(1− η) + (1− η)2

=
(
ξ + (1− ξ)

)2

η2 + 2
(

(1− 2ξ)2 + 4ξ(1− ξ)
)
η(1− η) + (1− η)2

= ξ2η2 + 2ξ(1− ξ)η2 + (1− ξ)2η2 + 2(1− 2ξ)2η(1− η) + 8ξ(1− ξ)η(1− η) + (1− η)2,

we know that q(`), 1 ≤ ` ≤ 5 given by

|q̂(1)(ω)|2 = 2ξ(1− ξ)η2 =
1

2

(
sinω1)2

(
cos

ω2

2

)4
,

|q̂(2)(ω)|2 = 2(1− 2ξ)2η(1− η) =
1

2

(
cosω1)2

(
sinω2

)2
,

|q̂(3)(ω)|2 = (1− ξ)2η2 =
(

sin
ω1

2

)4(
cos

ω2

2

)4
,

|q̂(4)(ω)|2 = 8ξ(1− ξ)η(1− η) =
1

2

(
sinω1

)2(
sinω2

)2
,

|q̂(5)(ω)|2 = (1− η)2 =
(

sin
ω2

2

)4
,

which are the filters given by (2.14), together with the lowpass filter p, form a tight
frame filter bank. The highpass filters q(1), . . . , q(5) have the vanishing moments of
orders

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (1, 1), β5 = (0, 2),

respectively, and one can obtain the constants C
(`)
β`

in (2.10) with q = q(`):

C
(1)
(1,0) = C

(2)
(0,1) = −

√
2

2
, C

(3)
(2,0) = C

(5)
(0,2) =

1

4
, C

(4)
(1,1) =

√
2

2
.(3.30)

The nonlinear diffusion equation corresponding to this Ron–Shen-type tight frame
filter bank is

ut=
∂

∂x1

{
g1

(( ∂u
∂x1

)2) ∂u
∂x1

}
+

∂

∂x2

{
g2

(( ∂u
∂x2

)2) ∂u
∂x2

}
− ∂2

∂x2
1

{
g3

((∂2u

∂x2
1

)2)∂2u

∂x2
1

}
(3.31)

− ∂2

∂x1∂x2

{
g4

(( ∂2u

∂x1∂x2

)2) ∂2u

∂x1∂x2

}
− ∂2

∂x2
2

{
g5

((∂2u

∂x2
2

)2)∂2u

∂x2
2

}
,

with u(x, 0) = f(x), x ∈ R2. From Theorem 3.1, we have the conclusion in the
following theorem.

Theorem 3.9. Let uk be the resulting signal from the wavelet frame shrinkage
(2.22)/ (2.29) with u0

j = f(hj), j ∈ Z2, and using the spline tight frame filter bank

{p, q(1), . . . , q(5)} given in (2.14). Then, uk is a discrete approximation of {u(hj, kτ) :



WAVELET FRAME SHRINKAGE, PDES, AND BEYOND 635

j ∈ Z2, k = 1, 2, . . .} with u(x, t) the solution of (3.31), provided that the shrinkage
functions S` of (2.22) are chosen as

S`(ξ) = ξ
{

1− 2τ

h2
g`
(2ξ2

h2

)}
for ` = 1, 2, S`(ξ) = ξ

{
1− 16τ

h4
g`
(16ξ2

h4

)}
for ` = 3, 5,

S4(ξ) = ξ
{

1− 2τ

h4
g4

(2ξ2

h4

)}
, ξ ∈ R,

or equivalently the shrinkage operator Sα of (2.29) is chosen as

Sα`,n(d)(d`,n) = d`,n
(
1− α`,n(d`,n)

)
=


d`,n

{
1− 2τ

h2 g`

(
2(d`,n)2

h2

)}
for ` = 1, 2,

d`,n

{
1− 16τ

h4 g`

(
16(d`,n)2

h4

)}
for ` = 3, 5,

d4,n

{
1− 2τ

h4 g4

(
2(d4,n)2

h4

)}
for ` = 4.

Furthermore, if the α given above satisfies (2.31), both the optimality properties in
(2.34) hold for uk.

3.2.2. Rotation-invariant diffusions. For some applications, the rotation-
invariant diffusion is preferred. In this subsection we will show that the iterative
wavelet frame shrinkage (2.25)/(2.29) corresponds to rotation-invariant diffusion if
we choose the threshold α for Sα properly. In particular, the rotation-invariant dif-
fusion equation corresponding to the spline tight frame filter banks (2.14) is

(3.32)

ut=
∂

∂x1

{
g1

(( ∂u
∂x1

)2
+
( ∂u
∂x2

)2) ∂u
∂x1

}
+

∂

∂x2

{
g1

(( ∂u
∂x1

)2
+
( ∂u
∂x2

)2) ∂u
∂x2

}
− ∂2

∂x2
1

{
g2

((∂2u

∂x2
1

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u

∂x2
2

)2)∂2u

∂x2
1

}
− ∂2

∂x2
2

{
g2

((∂2u

∂x2
1

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u

∂x2
2

)2)∂2u

∂x2
2

}
− ∂2

∂x1∂x2

{
g2

((∂2u

∂x2
1

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u

∂x2
2

)2) ∂2u

∂x1∂x2

}
,

with the initial condition u(x, 0) = f(x),x ∈ R2, where g1 and g2 are functions on R.

Theorem 3.10. Let uk be the resulting signal from the wavelet frame shrinkage
(2.25)/ (2.29) with u0

j = f(hj), j ∈ Z2, and using the spline type tight frame filter bank

{p, q(1), . . . , q(5)} given in (2.14). Then, uk is a discrete approximation of {u(hj, kτ) :
j ∈ Z2, k = 1, 2, . . .} with u(x, t) the solution of (3.32), provided that the shrinkage
functions S` of (2.25) satisfy

S`(ξ1, ξ2, ξ3, ξ4, ξ5) = ξ`

{
1− 2τ

h2
g1

( 2

h2
(ξ2

1 + ξ2
2)
)}

for ` = 1, 2,

S`(ξ1, ξ2, ξ3, ξ4, ξ5) = ξ`

{
1− 16τ

h4
g2

( 2

h4
(8ξ2

3 + ξ2
4 + 8ξ2

5)
)}

for ` = 3, 5,(3.33)

S4(ξ1, ξ2, ξ3, ξ4, ξ5) = ξ4

{
1− 2τ

h4
g2

( 2

h4
(8ξ2

3 + ξ2
4 + 8ξ2

5)
)}
,

or equivalently the shrinkage operator Sα of (2.29) is chosen as

Sα`,n(d)(d`,n) = d`,n
(
1− α`,n(d`,n)

)

=


d`,n

{
1− 2τ

h2 g`
(

2(d1,n)2+2(d2,n)2

h2

)}
for ` = 1, 2,

d`,n
{
1− 16τ

h4 g`
(

16(d3,n)2+2(d4,n)2+16(d5,n)2

h4

)}
for ` = 3, 5,

d`,n
{
1− 2τ

h4 g`
(

16(d3,n)2+2(d4,n)2+16(d5,n)2

h4

)}
for ` = 4.

(3.34)
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Furthermore, if the α given in (3.34) satisfies (2.31), both the optimality properties
in (2.34) hold for uk.

Next we construct tight filters which result in higher order rotation-invariant
diffusion. The scaling functions for the tight filter banks are the tensor products of
the B-spline of an arbitrary order m with the two-scale symbol given by (2.15). Recall

from (3.29) that ξ and η denote
(

cos ω1

2

)2
and

(
cos ω2

2

)2
, respectively. Thus from the

fact
∣∣p̂(ω)

∣∣2 = ξmηm and the identity

1 =
(
η + (1− η)

)m
=

m∑
r=0

(
m

r

)
ηm−r(1− η)r

=

m∑
r=0

(
m

r

)(
ξ + (1− ξ)

)m−r
ηm−r(1− η)r

=

m∑
r=0

(
m

r

)m−r∑
j=0

(
m− r
j

)
ξm−r−j(1− ξ)rηm−r(1− η)r

=

m∑
r=0

(
m

r

) m∑
s=r

(
m− r
s− r

)
ξm−sηm−r(1− ξ)s−r(1− η)r (by s = r + j)

=

m∑
s=0

s∑
r=0

(
m

s

)(
s

r

)
ξm−sηm−r(1− ξ)s−r(1− η)r

= ξmηm +

m∑
s=1

s∑
r=0

(
m

s

)(
s

r

)
ξm−sηm−r(1− ξ)s−r(1− η)r,

we may choose tight frame highpass filters q̂(s,r)(ω), 1 ≤ s ≤ m, 0 ≤ r ≤ s, by

∣∣q̂(s,r)(ω)
∣∣2 =

(
m

s

)(
s

r

)(
cos

ω1

2

)2(m−s)(
cos

ω2

2

)2(m−r)(
sin

ω1

2

)2(s−r)(
sin

ω2

2

)2r

,

or by (2.16). Highpass filter q(s,r) has vanishing moment of order (s− r, s). Let Cs,r
denote the constants in (2.10) with q = q(s,r). Then it is not difficult to obtain

(3.35) Cs,r =
(−1)s

22m−r

√(
m

s

)/(s
r

)
.

We consider the iterative channel-mixed shrinkage defined by
(3.36)

ukj =
∑
n∈Z2

p[j−n]Lk−1
n +

m∑
s=1

s∑
r=0

∑
n∈Z2

q(s,r)[j−n]Ss,r(H(s,0),k−1
n , H(s,2),k−1

n , . . . , H(s,s),k−1
n ),

where u0
j = f(hj), j ∈ Z2, Lk−1, and H(s,r),k−1 are the lowpass and highpass outputs

of uk−1 with lowpass filter p and highpass filters q(s,r), and for an s with 1 ≤ s ≤ m,
each of Ss,r, 0 ≤ r ≤ s, is a function of s + 1 variables. Note that (3.36) can be
cast in the form of the generic iterative wavelet frame shrinkage (2.29). However, for
notational convenience, we shall use the current form.

We can show as in the previous section that the tight frame filter bank given by
(2.15) and (2.16) corresponds to the following general high order rotation-invariant
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nonlinear diffusion:

(3.37) ut =

m∑
s=1

(−1)1+s
∑
|α|=s

∂α

∂xα

{
gs

( ∑
|β|=s

(
∂βu

∂xβ

)2)
∂αu

∂xα

}
,

where m ≥ 1, and gs : R 7→ R+ is smooth.

Theorem 3.11. Let uk be the resulting signal from the iterative wavelet frame
shrinkage (3.36) with u0

j = f(hj), j ∈ Z2, and using the tight frame filter bank

{p, q(s,r), 1 ≤ s ≤ m, 0 ≤ r ≤ s} given by (2.15) and (2.16). Then, uk is a dis-
crete approximation of {u(hj, τk) : j ∈ Z2, k = 1, 2, . . .} with u(x, t) the solution of
(3.37), provided that

Ss,r(ξ0, ξ1, . . . , ξs) = ξr

{
1− τ(

Cs,k
)2
h2s

gs
( 1

h2s

s∑
j=0

1

(Cs,j)2
ξ2
j

)}
, r = 0, 1, . . . , s,(3.38)

for 1 ≤ s ≤ m.

3.3. Further development. Up to this point, we have already known that
given a certain nonlinear evolution equation, we can choose a wavelet frame system
and the threshold α in Sα properly such that (2.29) is an iterative finite difference
scheme solving the given equation. On the other hand, new nonlinear diffusion equa-
tions can be derived using the iterative shrinkage (2.29) with certain wavelet frame
filter banks and proper choices of the threshold α for Sα. In this section, we focus
on the discussion of the iterative shrinkage (2.30) and also on other type of iterative
shrinkage that originated from (2.29) and (2.30). The main goal of this section is to:

1. show that the iterative wavelet frame soft-thresholding algorithms commonly
used in image restoration can lead to new nonlinear diffusion equations;

2. show that by borrowing ideas from some of the algorithms used in image
restoration, we can design new iterative multiplicative wavelet shrinkage algo-
rithms which can also be understood as a discretization of a certain nonlinear
diffusion equation;

3. discuss how we can borrow the idea of anisotropy of the PM nonlinear dif-
fusion to design a new iterative wavelet frame soft-thresholding algorithm
which is adaptive to local image features.

3.3.1. Nonlinear diffusions from soft-thresholding. Throughout this sub-
section, we assume that W is the transform of a tight frame system, i.e., W>W = I.
We will find the corresponding diffusion equations to the iterative soft-thresholding
algorithms in (2.30) with various choices of thresholds.

We start with the soft-thresholding operator with ℘ = 1 given by (2.27). We will
show that the diffusion equation corresponding to the iterative shrinkage algorithm
(2.30) takes the form of (3.5) with some specific diffusivity functions g`. The connec-
tion between the diffusivity functions g` and the shrinkage operator is given by (3.10).
In fact, the specific expression for g` can be solved from (3.10) by equating Sα = T 1

α

and choosing an appropriate α. Indeed, for T 1
θ`

(ξ) = ξ
|ξ| max{|ξ| − θ`, 0}, we have

τ

(C
(`)
β`

)2h2|β`|
g`

( ξ2

(C
(`)
β`

)2h2|β`|

)
= 1− max{|ξ| − θ`, 0}

|ξ|
= min

{
1,
θ`
|ξ|

}
.

Thus the diffusivity function g` in (3.5) satisfies

g`(ξ
2) = min

{ (C
(`)
β`

)2h2|β`|

τ
,
C

(`)
β`
h|β`|θ`

τ |ξ|

}
.
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Now, we discuss how we should choose the threshold θ` properly such that when
h, τ → 0, g`(ξ) is a function independent of h and τ . Note that it is reasonable to
assume that there exists C > 0 such that h2m/τ = C (see Proposition 4.6 in section
4), where m is the largest number among |β1|, . . . , |βL|. If we choose

θ` =
τ |ξ|

C
(`)
β`
h|β`|

g̃`(ξ
2), with some smooth function g̃` : R 7→ R+,

then we have the following formula for the diffusivity functions g`:
(3.39)

g`(ξ
2) = min

{ (C
(`)
β`

)2C

h2(m−|β`|)
, g̃`(ξ)

}
=

{
min

{
(C

(`)
β`

)2C, g̃`(ξ
2)
}

for |β`| = m,

g̃`(ξ
2) for 1 ≤ |β`| < m

whenever h is small enough. Then we have the following result.

Theorem 3.12. Let {p, q(1), . . . , q(L)} be a given tight frame filter bank, and let

q(`) have vanishing moment β` with the associated constant C
(`)
β`

given by (2.10) and
m = max`{|β`| : 1 ≤ ` ≤ L}. Assume that the threshold α(d) for wavelet frame
coefficients d takes the form

α(d) =

{
α`,n(d`,n) =

τ |d`,n|
C

(`)
β`
h|β`|

g̃`((d`,n)2) : 1 ≤ ` ≤ L,n ∈ Z2

}
,

with g̃` : R 7→ R+ being some smooth function; and we set h2m/τ = C for some
constant C > 0 with h and τ sufficiently small. Let uk be generated from the iterative
soft-thresholding algorithm (2.30) with ℘ = 1. Then, uk is a discrete approximation
of {u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t) being the solution of the diffusion
equation (3.5) with the diffusivity functions given by (3.39).

Note that in Theorem 3.12, the threshold α depends on the wavelet frame coef-
ficient d, which means that the threshold in the iterative soft-thresholding algorithm
(2.30) will be changing along with the iteration. However, the threshold used in the
literature of wavelet or wavelet frame based image restoration is generally chosen inde-
pendently of the iteration. The following corollary, which is a special case of Theorem
3.12, describes the type of differential equation that is approximated by the iterative
soft-thresholding (2.30) when the threshold α is independent of the iteration.

Corollary 3.13. Under the same assumptions and notation as Theorem 3.12,
if we choose the threshold α as

α =

{
α`,n =

τλ`

C
(`)
β`
h|β`|

1 ≤ ` ≤ L,n ∈ Z2

}
for some constants λ` > 0, then uk generated from (2.30) with ℘ = 1 approximates
the solution of the diffusion equation (3.5) with the diffusivity functions given by

g`(ξ
2) =

{
min

{
(C

(`)
β`

)2C, λ`

|ξ|

}
for |β`| = m,

λ`

|ξ| for 1 ≤ |β`| < m.

In particular, when L = 2, β1 = (1, 0), β2 = (0, 1), and C
(1)
β1

= C
(2)
β2

= Cβ (e.g., the
Haar framelets), the corresponding diffusion equation to (2.30) is

(3.40) ut =
∂

∂x1

(
min

{
C̄,

λ1

|ux1 |

}
ux1

)
+

∂

∂x2

(
min

{
C̄,

λ2

|ux2 |

}
ux2

)
,
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with C̄ = (Cβ)2C.

Remark 3.14.
1. To have (2.30) approximate the second-order nonlinear diffusion (3.40), we do

not have to use Haar framelets. For example, we can use any B-spline tight
frame filter bank, such as the piecewise linear framelets. We only need to
properly adjust the threshold in a way similar to that described in Corollary
3.3, i.e., introducing an additional power of h so that the terms corresponding
to higher order derivatives vanish as h→ 0.

2. The diffusion (3.40) resembles the (anisotropic version of) mean curvature
flow for λ1 = λ2,

ut = λ

[
∂

∂x1

(
ux1

|ux1
|

)
+

∂

∂x2

(
ux2

|ux2
|

)]
,

except that the flow induced by iterative soft-thresholding, i.e., (3.40), is more
regular in the sense that the diffusivity is bounded above.

For ℘ = 2, we consider the following rotation-invariant diffusion:

(3.41) ut =

L∑
`=1

(−1)1+|β`| ∂
β`

∂xβ`

{
g`

( ∑
|β`′ |=|β`|

(
∂β`′u

∂xβ`′

)2)
∂β`u

∂xβ`

}
.

Here, for a given β`, the summation
∑
|β`′ |=|β`| =

∑
{`′: |β`′ |=|β`|}. The relation

between the shrinkage operator and the diffusivity functions g` is given by

(3.42) S`(ξ`) = ξ`

{
1− τ(

C
(`)
β`

)2
h2|β`|

g`

(
1

h2|β`|

∑
|β`′ |=|β`|

ξ2
`′(

C
(`′)
β`′

)2)}, 1 ≤ ` ≤ L.
Now, for

T 2
θ`

(ξ`) =
ξ`(∑

|β`′ |=|β`| |ξ`′ |
2
) 1

2

max
{( ∑
|β`′ |=|β`|

|ξ`′ |2
) 1

2 − θ`, 0
}
,

we have

τ

(C
(`)
β`

)2h2|β`|
g`

( ∑
|β`′ |=|β`|

ξ2
`′

(C
(`′)
β`′

)2h2|β`′ |

)
= 1−

T 2
θ`

(ξ`)

ξ`
= min

{
1,

θ`(∑
|β`′ |=|β`| |ξ`′ |

2
) 1

2

}
,

or

g`

( ∑
|β`′ |=|β`|

ξ2
`′

)
= min

{
(C

(`)
β`

)2h2|β`|

τ
,

(C
(`)
β`

)2h|β`|θ`

τ
(∑

|β`′ |=|β`|
∣∣C(`′)
β`′

ξ`′
∣∣2) 1

2

}
.

Following the same idea as the case ℘ = 1 and assuming h2m/τ = C for some C > 0,
we can choose

θ` =
τ
(∑

|β`′ |=|β`|
∣∣C(`′)
β`′

ξ`′
∣∣2) 1

2

(C
(`)
β`

)2h|β`|
g̃`

( ∑
|β`′ |=|β`|

ξ2
`′

)
,

so that

(3.43) g`

( ∑
|β`′ |=|β`|

ξ2
`′

)
=

 min
{

(C
(`)
β`

)2C, g̃`

(∑
|β`′ |=|β`| ξ

2
`′

)}
for |β`| = m,

g̃`

(∑
|β`′ |=|β`| ξ

2
`′

)
for |β`| < m

whenever h is small enough. Then, we have the following result.
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Theorem 3.15. Let {p, q(1), . . . , q(L)} be a given tight frame filter bank, and let

q(`) have vanishing moment β` with the associated constant C
(`)
β`

given by (2.10) and

m = max`{|β`| : 1 ≤ ` ≤ L}. Assume that the threshold α(d) for wavelet frame
coefficients d takes the form

α(d) =
{
α`,n(d`,n) =

τ
(∑

|β`′ |=|β`|

∣∣C(`′)
β`′

d`′,n
∣∣2) 1

2

(C
(`)
β`

)2h|β`|
g̃`
( ∑
|β`′ |=|β`|

(d`′,n)
2
)
: 1 ≤ ` ≤ L,n ∈ Z2

}
,

with g̃` : R 7→ R+ being some smooth function; and we set h2m/τ = C for some
constant C > 0 with h and τ sufficiently small. Let uk be generated from the iterative
soft-thresholding algorithm (2.30) with ℘ = 2 and the threshold given above. Then, uk

is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, . . .} with u(x, t) being the
solution of the diffusion equation (3.41) with the diffusivity functions given by (3.43).

Similar to Corollary 3.13 is the following corollary, which is a special case of
Theorem 3.15.

Corollary 3.16. Under the same assumptions and notation as Theorem 3.15,
if we choose the threshold α as

α =
{
α`,n =

τλ`

C
(`)
β`
h|β`|

: 1 ≤ ` ≤ L,n ∈ Z2
}

for some constants λ` > 0, then uk generated from (2.30) with ℘ = 2 approximates
the solution of the diffusion equation (3.5) with the diffusivity functions given by

g`(ξ
2) =


min

{
(C

(`)
β`

)2C, λ`(∑
|β

`′ |=|β`|
C

(`′)
β
`′
ξ2
`′

)1/2

}
for |β`| = m,

λ`(∑
|β

`′ |=|β`|
C

(`′)
β
`′
ξ2
`′

)1/2 for 1 ≤ |β`| < m.

In particular, when L = 2, β1 = (1, 0), β2 = (0, 1), and C
(1)
β1

= C
(2)
β2

= Cβ (e.g., the
Haar framelets), the corresponding diffusion equation to (2.30) is

(3.44) ut =
∂

∂x1

(
min

{
C̄,

λ1/Cβ
|∇u|

}
ux1

)
+

∂

∂x2

(
min

{
C̄,

λ2/Cβ
|∇u|

}
ux2

)
,

with C̄ = (Cβ)2C.

Remark 3.17. The diffusion (3.44) resembles the well-known mean curvature flow
(see, e.g., [2, 44,40,41,58]) for λ1 = λ2,

ut = λ

[
∂

∂x1

(
ux1

|∇u|

)
+

∂

∂x2

(
ux2

|∇u|

)]
,

except that the flow induced by iterative soft-thresholding, i.e., (3.44), is more regular
in the sense that the diffusivity is bounded above. In other words, the iterative
isotropic soft-thresholding algorithm with threshold given in Corollary 3.16 solves a
regularized mean curvature flow. The mean curvature flow has been used in image
restoration as a regularizer that removes noise [55,49,61]. Since the equation becomes
singular when |∇u| ≈ 0, a regularized diffusivity was used to replace |∇u|, which is
|∇u|ε :=

√
|∇u|2 + ε2. However, such regularization reduces the ability of the PDE

model to preserve edges. It is known in the literature that soft-thresholding of wavelet
frame coefficients can well preserve edges. Therefore, Corollary 3.16 reveals that (3.44)
is a better regularization of the mean curvature flow than using |∇u|ε in place of |∇u|.
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3.3.2. Image-restoration embedded diffusion. Other than the balanced and
synthesis based model, the analysis based model (see [33, 59]) is also frequently used
in image restoration. This subsection shows that, inspired by algorithms solving the
analysis based model, a new class of nonlinear diffusions, with the underlying image
restoration model embedded, can be derived.

Due to the diffusive nature of the diffusion equations, one drawback of the non-
linear diffusions we have seen so far is that, when t→∞, noise and all image features
will vanish. For a good diffusion equation, image features diffuse more slowly than
noise or other artifacts. Therefore, in practice, an appropriate stopping time should
be chosen for these diffusion equations. Also, since these diffusion equations do not
have an idea of what image restoration problem they are solving, they are not guar-
anteed to produce relevant image restoration results. Therefore, we need to properly
place the model of the underlying image restoration into the diffusion equations.

Image restoration is usually cast as the following linear inverse problem:

(3.45) Au = f + η,

where f is the observed image, η is additive noise, and A is a linear operator corre-
sponding to an image restoration problem (i.e., A = I for denoising, A = (a∗) for
deblurring, etc.). In a discrete setting, we shall denote A, u, and f as A, u, and f ,
respectively. Since A is usually ill posed, regularization based methods are usually
adopted to find a reasonable solution. In the literature, various types of regularization
have been used, including the TV model [55], and the wavelet or wavelet frame based
approach, which includes a synthesis based approach [23, 35, 36, 38, 39], an analysis
based approach [33,59], and a balanced approach [18,7].

Here, we shall focus on the following analysis based model that was recently
proposed by [37]:

(3.46) min
u

Hλ(Wu) +
µ

2
‖Au− f‖22 +

µ2

2
‖A>Au−A>f‖2D,

where Hλ is the Huber function (see [37] for details) and ‖u‖2D = 〈u,Du〉 with
D = (I − µA>A)−1. Two algorithms solving (3.46) were proposed by [37]: one is
based on the proximal forward-backward splitting (PFBS) algorithm [20, 18, 7]; the
other is based on the accelerated proximal gradient (APG) algorithm [57] (also known
as FISTA [4]). Throughout the rest of this subsection, we assume again that W is a
tight frame, i.e., W>W = I.

Start with the PFBS algorithm that solves (3.46),

(3.47) uk = (I − µA>A)W>T λ(Wuk−1) + µA>f , k = 1, 2, . . . ,

where T λ is the soft-thresholding operator defined by either (2.27) or (2.28). Then,
comparing the PFBS algorithm (3.47) with (2.29), it is natural to generalize (2.29)
to the following algorithm:

(3.48) uk = (I − µA>A)W>Sαk−1(Wuk−1) + µA>f , k = 1, 2, . . . .

It is not clear which energy function the algorithm (3.48) tries to minimize, since the
threshold value αk−1 = α(Wuk−1) depends on Wuk−1, which is changing along
with the iteration. However, if αk = α for all k, then it is not hard to show (similarly
as in [37]) that (3.48) is a PFBS algorithm that solves the following optimization
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problem:

min
u

1

2
‖
√
α ·Wu‖22 +

µ

2
‖Au− f‖22 +

µ2

2
‖A>Au−A>f‖2D.

Therefore, when αk changes with k, algorithm (3.48) can be understood as an attempt
to solve

(3.49) min
u

1

2
‖
√
α(Wu) ·Wu‖22 +

µ

2
‖Au− f‖22 +

µ2

2
‖A>Au−A>f‖2D.

Indeed, at each iteration k, if we let α(Wu) = α(Wuk−1) in (3.49) and conduct one
step of PFBS, we obtain the algorithm (3.48).

Now, we discuss the formulas of the nonlinear diffusions to which the algorithms
(3.48) correspond. Once we have them, the corresponding diffusions to the algorithm
(3.47) are automatically given by Theorems 3.12 and 3.15. We assume that the
continuum and discrete versions of the operator A satisfy the following consistency
property:

(3.50) Av = Av +O(h) and A>v = A>v +O(h),

where vj = v(jh) for j ∈ Z2 and v smooth enough. For the equations in (3.50) and
below, their meaning is that the left-hand side (in sequence space) of the equation is
a discretization of the smooth function on the right-hand side of the equation. We
choose µ = κτ with some constant κ > 0. When the shrinkage given by (3.17) is used,
we have

µA>AW>Sα(Wu) = κτA>Au+O(τh) +O(τ2).

Then, assuming (3.50), choosing the shrinkage given by (3.17) and following a similar
derivation as in section 3.1, we can obtain that the PDE approximated by algorithm
(3.48) takes the form

(3.51) ut =

L∑
`=1

(−1)1+|β`| ∂
β`

∂xβ`

{
g`

(
u,
∂β1u

∂xβ1
, . . . ,

∂βLu

∂xβL

) ∂β`

∂xβ`
u
}
− κA>(Au− f).

In particular, when L = 2 with β1 = (1, 0),β2 = (0, 1) and g1 = g2 = g(ξ2
1 + ξ2

2), we
have the following second-order nonlinear diffusion:

ut = div
(
g
(
|∇u|2

)
∇u
)
− κA>(Au− f),

which was considered in [63].
Now, recall the APG algorithm that solves (3.46) in [37]. Given some initial guess

v0 and v1, and letting t0 = 1, t−1 = 0, the algorithm reads

vk = uk−1 +
tk−2 − 1

tk−1
(uk−1 − uk−2),

uk = (I − µA>A)W>T λ(Wvk) + µA>f , k = 1, 2, . . . ,

(3.52)

where tk =
1+
√

1+4(tk−1)2

2 . Following a similar argument as before, we have the
following algorithm that generalizes (2.29):
(3.53)

uk = (I−µA>A)W>Sαk−1

(
(1+γk−1)Wuk−1−γk−1Wuk−2

)
+µA>f , k = 1, 2, . . . ,
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where γk−1 = tk−2−1
tk−1 . The algorithm (3.53) (resp., (3.52)) is different from the PFBS

algorithm (3.48) (resp., (3.47)) in that it has both uk−1 and uk−2 involved in the
iteration and the weighting given by tk is changing along with the iteration. These
differences makes APG require a much smaller number of iterations to converge than
the PFBS algorithm [57, 4]. The corresponding differential equation to the APG
algorithm (3.53) will also be quite different from that of the PFBS algorithm (3.48).
Once we find the corresponding nonlinear PDE to (3.53), the corresponding diffusions
to the algorithm (3.52) are automatically given by Theorems 3.12 and 3.15.

We first have the following lemma about the asymptotical properties of tk and
γk, whose proof is provided at the end of this subsection.

Lemma 3.18. Let tk, γk, k = 2, 3, . . ., be the sequences defined by tk =
1+
√

1+4(tk−1)2

2
with t1 = 1, and γk = (tk−1 − 1)/tk. Then

(3.54)
tk

k
=

1

2
+O

(
log k

k

)
and

(3.55) 1− γk =
3

k
+O

(
log k

k2

)
.

For ukj = u(jh, τk) with u smooth enough, Taylor’s expansion with respect to
the time variable at t = τ(k − 1) gives us

(1 + γk−1)uk−1
j − γk−1uk−2

j = u(jh, τ(k − 1)) +O(τ),(3.56)

uk − (1 + γk−1)uk−1
j + γk−1uk−2

j = (1− γk−1)τut(jh, τ(k − 1))

+τ2 1 + γk−1

2
utt(jh, τ(k − 1)) +O(τ3).

What makes algorithm (3.53) different from (3.48) is that uk−2 is also involved in
the expression, which means we have u at three time steps present in the algorithm.
This suggests to us that, with a slightly different choice of the shrinkage operator, the
corresponding PDE of algorithm (3.53) can be second-order in time. However, such
correspondence turns out to be slightly different from all other correspondences we
have established so far.

Suppose k is some large integer of size O( 1
τ ), i.e., k = C1/τ for some C1 > 0.

This is a reasonable assumption if we assume that the time interval [0, T ] is divided
uniformly with size τ , and we focus on the behavior of (3.53) for large k. By Lemma

3.18, 1+γk

2 → 1 as k →∞. Assume that (3.50) holds, and we take µ = τ2κ with some
κ > 0 and choose the following shrinkage function:
(3.57)

Sα`,n(d)(d1,n, . . . , dL,n) = d`,n

(
1− τ2

C̃
(`)
α`C

(`)
β`
h|α`|+|β`|

g`

( d1,n

C
(1)
β1
h|β1|

, . . . ,
dL,n

C
(L)
βL
h|βL|

))
for 1 ≤ ` ≤ L. We can see from (3.56) and Lemma 3.18 that, when τ and h are
asymptotically small and k = O( 1

τ ), the algorithm (3.53) behaves asymptotically like
the following nonlinear evolution PDE that is second-order in time:
(3.58)

utt + Cut =

L∑
`=1

(−1)1+|β`| ∂
β`

∂xβ`

[
g`

(
u,
∂β1u

∂xβ1
, . . . ,

∂βLu

∂xβL

) ∂β`

∂xβ`
u
]
− κA>(Au− f),
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where C = 3/(kτ), the positive constant term in (1 − γk−1)/τ = 3
kτ + O( log k

k2τ ). For
example, when k = C1/τ , then C = 3/C1. During the review process, we were made
aware that a discovery similar to (3.58) was made in [60] without partial differentials
on the right-hand side.

Remark 3.19.
1. Both of the algorithms (3.47) and (3.48) discretize the PDE (3.51). For

different types of shrinkage, we have different diffusivity functions g` (see,
e.g., the previous subsection for the form of g` that corresponds to the soft-
thresholding).

2. What makes the nonlinear diffusion (3.51) different from those we have seen
in earlier sections is that (1) we have the underlying image restoration model
embedded in the PDEs, which leads to better image restoration results as
supported by our numerical simulations; (2) it is now safe to seek the steady
state solution, i.e., u(x,∞), which makes the determination of stopping easier.

We end this subsection by providing the proof of Lemma 3.18.
Proof of Lemma 3.18. For simplicity of presentation, denote ak = 2tk, k =

1, 2, . . . . From

(3.59) ak = 1 +
√

1 + a2
k−1,

we have

1 + ak−1 < ak < 2 + ak−1, k ≥ 2.

Thus,

(k − 1) + a1 < · · · < 1 + 1 + ak−2 < ak < 2 + 2 + ak−2 < · · · < 2(k − 1) + a1,

and hence, we have

(3.60) k < ak < 2k, k = 2, 3, . . . .

From (3.59) again, for n ≥ 1,

an+1 = 1 +
√

1 + a2
n = 1 + an

√
1 + (1/an)2

= 1 + an

(
1 +

1

2

1

a2
n

− 1

8

1

a4
n

+O(
1

n6
)
)

= 1 + an +
1

2

1

an
− 1

8

1

a3
n

+O

(
1

n5

)
.

Thus, we have

(3.61) an+1 − an = 1 +
1

2

1

an
+O

(
1

n3

)
, n ≥ 1,

which leads to

ak − a1 =

k−1∑
n=1

(an+1 − an) = k − 1 +
1

2

k−1∑
n=1

1

an
+O(1) = k − 1 +O(log k),

where the last last equality follows from (3.60) and the fact
∑k
n=1

1
n = O(log k).

Therefore, we have ak/k = 1 +O(log k/k). This shows that (3.54) holds.
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Applying (3.61) with n = k − 1, we have

1− γk = 1− ak−1 − 2

ak
=
ak − ak−1

ak
+

2

ak
=

1 + 1/(2ak−1) +O(1/k3)

ak
+

2

ak

=
3

ak
+O

(
1

k2

)
=

3

k +O(log k)
+O

(
1

k2

)
=

3

k
+O

(
log k

k2

)
.

This shows (3.55).

3.3.3. Adaptive thresholding for wavelet frame shrinkage. Most of the
iterative wavelet (frame) shrinkage algorithms for image restoration use one, or a few,
fixed thresholds for all coefficients. Since the original image to be restored can be
sparsely approximated by wavelet frames, the threshold should be chosen such that
the wavelet frame coefficients corresponding to features of the image, such as edges,
are above the threshold. The rest of the coefficients are set to zero, which does not
hamper the restoration quality since the representation is sparse and thus most of the
small nonzero coefficients correspond to noise instead of signal.

However, for a given natural image, it contains components with varied regularity.
Therefore, a threshold should be chosen according to the following criteria:

1. A large threshold should be chosen where the image is regular, while a small
threshold should be chosen around singularities, and the value of such a
threshold should depend on the type of the singularities.

2. The threshold near singularities not only should be moderately small but also
should be chosen such that we only introduce smoothing along the level sets
of the image and do not introducing any smoothing or even sharpening in the
directions normal to the level sets.

3. Since the restored image changes along with the iteration, the threshold
should also be modified properly to incorporate the updated information of
local regularities of the image.

Therefore, to get a desirable image restoration through iterative wavelet frame shrink-
age, we need a thresholding strategy satisfying the above three conditions.

It is not obvious how to design such a thresholding strategy from only the per-
spective of wavelet frame transform. However, since we have the connection between
wavelet frame shrinkage and nonlinear diffusions, we can borrow ideas from nonlinear
diffusions, e.g., anisotropic diffusions, and use them to design a self-adaptive thresh-
olding strategy for iterative wavelet shrinkage.

Take the PM equation [51] as an example. This anisotropic diffusion equation
reads

ut = div
(
g(|∇u|2)∇u

)
,

where g is a function satisfying

(3.62)


g : [0,∞) 7→ (0,∞) decreasing;

g(0) = 1; g(x)→ 0 as x→∞;

g(x) + 2xg′(x) > 0 for x ≤ K; g(x) + 2xg′(x) < 0 for x > K.

One example of g is g(x) = 1
1+xp/K for some constant K > 0 and p > 1/2. The

diffusion coefficient of the PM equation is g(|∇u|2), which controls the amount of
diffusion at each location. By the specific assumption on g, we can see that at smooth
regions (|∇u| is small), g(|∇u|2) is large, which means more diffusion is allowed; while
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near singularities (|∇u| is large), g(|∇u|2) is small, meaning less diffusion is allowed.
If we rewrite the PM equation as (see [51])

ut = g(|∇u|2)uTT + g̃(|∇u|2)uNN ,

with

g̃(x) = g(x) + 2xg′(x), N =
∇u
|∇u|

, and T = N⊥, |T | = 1,

we can see that around singularities, the amount of diffusion across the singularities
may be negative. A negative diffusivity means that we have a locally backward
diffusion, and hence the singularities such as edges are enhanced, which is desirable
for image restoration.

An alternative way of interpreting such anisotropic diffusion is that the diffusion
at different locations of an image stops at a different time or even moves in opposite
directions: diffusion in regions with singularities stops earlier to prevent smearing
or even moves backward to enhance sharp features, while diffusion in smooth regions
stops late in order to remove a sufficient amount of noise and other oscillatory artifacts.

Following the idea of the PM equation, we can choose the threshold α for T ℘
α in

the iterative wavelet frame soft-thresholding algorithm (2.30) to be adaptive to local
features of the given image. Also, when we have a specific image restoration model
(3.45) available, we can embed the model within the algorithm similarly to (3.48) and
(3.53).

Now, we present the following iterative wavelet frame soft-thresholding algorithm
with adaptive thresholds:

(3.63) uk = (I − µA>A)W>T ℘
θk−1(Wuk−1) + µA>f , with ℘ = 1 or 2,

where u0 = f the initial data (e.g., the observed noisy image) and

θk := θ(Gσ ∗Wuk) := θ(dk)(3.64)

:=
{
α0,n = 0;α`,n(d

k) = C`g`
(
h−2s`

∑
|β`′ |=|β`|

(dk`′,n)
2
)
: n ∈ Z2, 1 ≤ ` ≤ L

}
with C` ≥ 0 being some fixed constant and g`(x) satisfying the first two conditions
of (3.62), dk = Gσ ∗Wuk, where Gσ denotes a discretized Gaussian with variance σ
and s` satisfying {

s` = |β`| for ` ∈
{
` : |β`| = min1≤`′≤L{|β`′ |}

}
,

s` ≤ |β`| otherwise.

The reasons we require g` to satisfy only the first two sets of conditions of (3.62), i.e.,
we do not require the diffusivity to have a backward-diffusion mechanism, are that (1)
in contrast to the shrinkage operator S, the soft-thresholding operator already has an
edge-sharpening effect, and (2) when the observed image f is blurred by the blurring
operator A, the presence of the image restoration model in (3.63) (second term) also
has a sharpening effect.

Similarly, we can have the following iterative wavelet frame shrinkage algorithm
with adaptive thresholding that resembles (3.53), which is an accelerated version of
(3.63):
(3.65)
uk = (I−µA>A)W>T ℘

θk−1

(
(1 + γk−1)Wuk−1 − γk−1Wuk−2

)
+µA>f , ℘ = 1 or 2,
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where γk−1 = tk−2−1
tk−1 , t−1 = 0, t0 = 1, and θk is given by either (3.64) or

θk := θ
(
Gσ ∗

[
(1 + γk−1)Wuk − γk−1Wuk−1

])
.

4. Convergence analysis. This section provides convergence analysis of the
iterative wavelet frame shrinkage (2.29) for a second-order quasilinear parabolic equa-
tion and the convergence of the iterative wavelet frame shrinkage algorithms (2.29)
and (2.30) for generic thresholds.

Consider the following second-order nonlinear diffusion equation:

(4.1)


∂u
∂t = ∂

∂x1

[
g1

((
∂u
∂x1

)2
)

∂u
∂x1

]
+ ∂

∂x2

[
g2

((
∂u
∂x2

)2
)

∂u
∂x2

]
in Ω× (0, te),

u = 0 on ∂Ω× (0, te),

u(x, 0) = u0(x) in Ω,

where Ω = (0, 1)2 ⊂ R2, te > 0, and the initial data u0(x) ∈ L2(Ω). We shall show
that under suitable assumptions, we have that (2.29) converges to the solution of (4.1)
with a certain order of accuracy which depends on the choice of the corresponding
wavelet frame system. Note that we can obtain similar convergence analyses for most
of the nonlinear diffusions considered in this paper, provided that the given diffusion
is well-posed. For simplicity and clarity, we shall focus on the diffusion (4.1).

We will also analyze the stability and convergence of the following generic iterative
wavelet frame shrinkage:

(4.2) uk =

{̃
W>Sαk−1(Wuk−1), `2-shrinkage,

W̃>T θk−1(Wuk−1), `1-shrinkage,

with αk := α(dk), θk := θ(dk), where dk := Wuk. In order to include most of the
iterative shrinkage formulas we have discussed in the previous sections, we assume
the thresholding functions Sα(d) and T θ(d) take the following forms:

(4.3)


Sα(d) =

{
Sα`,n

(d`,n) = d`,n(1− α`,n(d)) : 0 ≤ ` ≤ L,n ∈ Z2
}
,

T θ(d) =
{
Tθ`,n(d`,n) =

d`,n
w max

{
w − θ`,n(d), 0

}
;

w = w(d1,n, . . . , dL,n) : 0 ≤ ` ≤ L,n ∈ Z2
}
,

with

(4.4)

α(d) =
{
α`,n(d) = g`(d1,n, . . . , dL,n, h, τ) : 0 ≤ ` ≤ L,n ∈ Z2

}
,

θ(d) =
{
θ`,n(d) = w g`(d1,n, . . . , dL,n, h, τ) : 0 ≤ ` ≤ L,n ∈ Z2

}
.

We shall prove that, under suitable assumptions on the function g`, the iteration
(4.2) has a subsequence that converges weakly to a function in L2(Ω) as h, τ → 0 and
k = O( 1

τ )→∞; and such convergence is stable.

4.1. Convergence of (2.29). This subsection focuses on the convergence of
the iterative wavelet frame shrinkage (2.29), with a proper choice of thresholds, to a
solution of the nonlinear diffusion equation (4.1) as τ, h → 0. To prove convergence
of (2.29), we need to first make sure the corresponding PDE (4.1) is well-posed, for
which we shall make the following assumptions.
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Assumption 4.1. We assume that, for each ` = 1, 2, g`(ξ) ∈ C∞(R) are nonneg-

ative functions satisfying 0 <
(
ξg`(ξ

2)
)′ ≤ B, ξ ∈ R, where B is a positive constant.

Under Assumption 4.1, it is clear from the theory of nonlinear semigroups and
monotone operators [6] that the quasilinear parabolic equation (4.1) is well-posed,
i.e., there exists a unique solution for each given initial data, and it is continuously
dependent on the initial data with respect to the L2-norm (see, e.g., [34] for a proof).
With well-posedness of the differential equation, Lax’s equivalent theorem implies
that, to prove convergence of (2.29), we only need to show consistency and stability of
this iterative method. For convenience, we shall also make the following assumptions
on the underlying wavelet frame systems of (2.29). Note that the assumptions below
are satisfied by all tensor-product B-spline tight frame systems constructed by [53].

Assumption 4.2. We shall consider the discretization given by a tensor-product
tight frame system with FIR filters {q(`) : 0 ≤ ` ≤ L}, where q(0) = p and L ≥ 2.
Assume that each q(`) with 1 ≤ ` ≤ L has vanishing moments of order β` and has
total vanishing moments of order K`\{|β`|+ 1} with 1 ≤ |β`| < K`. In particular, we
require that β1 = (1, 0), β2 = (0, 1), and K1 = K2.

4.1.1. Consistency. To show consistency, we need to show that for any given
u ∈ C∞(R2), when the algorithm (2.29) is applied to {u(hj, τk) : j ∈ Z2, k = 1, 2, . . .}
we will recover the PDE (4.1) plus the local truncation error which decreases to zero
with a certain order of τ and h.

Lemma 2.3 implies that, for any u ∈ C∞(R2) and h > 0 small enough, we have,
for 1 ≤ ` ≤ L,

(4.5)
1

h|β`|

∑
j∈Z2

q(`)[j]u(hm± hj) = C
(`)
β`

∂β`u(hm)

∂xβ`
+O(hK`−|β`|).

For example, when the Haar wavelet frame system is used, we have K1 = K2 = 2;
when the piecewise linear wavelet frame system is used, we have K1 = K2 = 3. By
Theorem 3.5 and Corollary 3.3, we can take the following threshold α for the shrinkage
operator Sα(d) that is in correspondence with the diffusivity functions of (4.1):

(4.6)

α`,n(d`,n) = τ

(C
(`)
β`

)2h2
g`

(
(d`,n)2

(C
(`)
β`

)2h2

)
for ` = 1, 2,

α`,n(d`,n) = 0 for 3 ≤ ` ≤ L.

Then, we have the following consistency result stating that the iterative shrinkage
method (2.29) using a tight wavelet frame satisfying Assumption 4.2 is consistent of

order O(τ) +
∑2
`=1O(hK`−|β`|).

Proposition 4.3. The numerical algorithm (2.29) with a tight wavelet frame sys-
tem satisfying Assumption 4.2 is consistent of order O(τ)+O(hK`−|β`|) to the diffusion
equation (4.1) provided that the thresholds are chosen as (4.6).

Proof. We need to show that for any u ∈ C∞(R2), we have

uk+1
j −

{
ukj − τ

2∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]g`
(( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]ukn+m

)2)
·
( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]ukn+m

)}

= τ
(
ukt,j +

2∑
`=1

(
g`
(
(ukβ`

)2
)
ukβ`

)
β`,j

)
+O(τ2) +

2∑
`=1

O(τhK`−|β`|),
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where ukj = u(hj, τk) and

ukt,j = ut(jh, τk), ukβ`
:=

∂β`u(x, τk)

∂xβ`
, and ukβ`,m

:=
∂β`u(mh, τk)

∂xβ`
.

Denote

G̃`(ξ) = ξg`(ξ
2), Ukj =

1

C
(`)
β`

h|β`|

∑
n

q(`)[n]ukn+j , j ∈ Z2.

Then by (4.5),
Ukj = ukβ`,j

+O(hK`−|β`|).

Applying (4.5) to G̃`, we have

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]G̃`(U
k
m) =

∂β`

∂xβ`
G̃`(U

k
j ) +O(hK`−|β`|)

=
∂β`

∂xβ`
G̃`

(
ukβ`,j

+O(hK`−|β`|)
)

+O(hK`−|β`|) =
∂β`

∂xβ`
G̃`(u

k
β`,j

) +O(hK`−|β`|)

=
(
g`
(
(ukβ`

)2
)
ukβ`

)
β`,j

+O(hK`−|β`|),

where the second to the last equality follows from the fact that G̃` is differentiable.
Note that uk+1

j − ukj = τut(jh, τk) +O(τ2). Therefore, we have

uk+1
j −

{
ukj − τ

2∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]g`
(( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]ukn+m

)2)
·
( 1

C
(`)
β`

h|β`|

∑
n

q(`)[n]ukn+m

)}

= uk+1
j − ukj + τ

2∑
`=1

1

C
(`)
β`

h|β`|

∑
m

q(`)[j −m]G̃`(U
k
m)

= τ

(
ukt,j +

(
g`
(
(ukβ`

)2
)
ukβ`

)
β`,j

)
+O(τ2) +

2∑
`=1

O(τhK`−|β`|).

This concludes the proof of the proposition.

Remark 4.4.
1. Note from Corollary 3.3 that, instead of setting the thresholds α`,n to zeros

for 3 ≤ ` ≤ L, we can take the choices of α given by (3.13). The proof of
consistency for these cases is very similar to that of Proposition 4.3.

2. The order of consistency we have just derived may not optimal. Optimal
order of consistency can be obtained by a more careful local truncation error
analysis. However, finding an (optimal) order of approximation of the solu-
tions of PDEs is not what we want to focus on in this paper. Although the
analysis in this section can be modified to reveal the order of approximation,
we will only prove convergence without addressing the order of convergence.
The reason is that in image restoration, or image processing and analysis in
general, all data are discrete to begin with, and most data do not have, nor
do they need, a corresponding continuum version. Therefore, in this section,
we show convergence only to rigorously justify that wavelet frame shrinkage
is indeed a discretization of the corresponding PDE.
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4.1.2. Stability. Similarly to standard finite difference discretization of nonlin-
ear diffusions, the temporal step size τ and the spatial step size h should satisfy a
certain stability condition. For the diffusivity functions in (4.1), the multiplicative
shrinkage operator Sα defined in (2.26) takes the following form:

(4.7) Sα(d) = {d`,n(1− α`,n(d`,n)) : n ∈ Z2, 0 ≤ ` ≤ L}

with α`,n given in (4.6). Now, we address the stability condition for our iterative
multiplicative shrinkage algorithm (2.29) as follows.

Assumption 4.5. Given the shrinkage operator Sα(d) in (4.7), we assume that
α`,n(ξ) is differentiable for each ` and n, and∣∣∣∣(ξ(1− α`,n(ξ)

))′∣∣∣∣ =
∣∣1− α`,n(ξ)− ξα′`,n(ξ)

∣∣ ≤ 1

for all 0 ≤ ` ≤ L and n ∈ Z2.

The following proposition shows that the stability requirements in Assumption
4.5 can be easily achieved in practice by assuming τ = O(h2).

Proposition 4.6. Suppose Assumption 4.1 holds for the diffusivity functions of
(4.1). Given the choice of thresholding α in (4.6), the stability requirements in As-
sumption 4.5 can be achieved by taking τ = Ch2 for some C independent of τ and
h.

Proof. First, observe that

(4.8)
∣∣1− α`,n(ξ)− ξα′`,n(ξ)

∣∣ ≤ 1 ⇔ 0 ≤ α`,n(ξ) + ξα′`,n(ξ) ≤ 2.

Let C̃ := τ

(C
(`)
β`

)2h2
. Then, we have

α`,n(ξ) = C̃g`

(
C̃ξ2/τ

)
⇒ α′`,n(ξ) =

2C̃2ξ

τ
g′`

( C̃ξ2

τ

)
.

Therefore,

α`,n(ξ) + ξα′`,n(ξ) = C̃g`

( C̃ξ2

τ

)
+

2C̃2ξ2

τ
g′`

( C̃ξ2

τ

)
= C̃

[
g`

( C̃ξ2

τ

)
+ 2

C̃ξ2

τ
g′`

( C̃ξ2

τ

)]
.

Recall the assumption we imposed in Assumption 4.1:

0 < (ξg`(ξ
2))′ = g`(ξ

2) + 2ξ2g`(ξ
2) ≤ B.

Thus, (4.8) is satisfied, whence we have C̃ ≤ 2
B , which yields the condition

τ = Ch2 with C ≤ 2(C
(`)
β`

)2/B.

This concludes the proof.

Assume that the computation domain Ω = (0, 1)2 is discretized by a dyadic grid

{2−nk : 0 < k1, k2 < 2n, n ≥ 1}.

Therefore, the mesh-size for spatial discretization is h = 2−n. We denote the index
set O2

h ⊂ Z2 as
O2
h := {k ∈ Z2 : 0 < k1, k2 < 2n}.
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Given any function u ∈ L2(Ω), and a compactly supported tensor-product B-spline
function φ ∈ L2(R2), we define the sampling operator Th : L2(Ω) 7→ `2(Z2) as

(4.9) (Thu)k := 2n〈u, φn,k〉, with k ∈ O2
h,

where φn,k = 2nφ(2n · −k). When a wavelet frame system associated to a refinable
function φ is used in the shrinkage algorithms, the underlying sampling is given by the
operator Th. We denote the space `2,h(O2

h) as the collection of all vectors supported
on the index set O2

h equipped with the following norm:

‖v‖2`2,h(O2
h) =

∑
j∈O2

h

|vj |2h2.

Note that we have ‖Thu‖`2,h(O2
h) ≤ C‖u‖L2(Ω) with some C independent of h (see,

e.g., [8]).
Given a t ∈ (0, te), let K = bt/τc. We define the discrete operator Mh,τ :

`2,h(O2
h) 7→ `2,h(O2

h) as

Mh,τv :=
( K∏
k=0

W>SαkW
)
v for v ∈ `2,h(O2

h).

Note that the shrinkage operator Sα(d) defined in (2.26) is nonlinear in d, since α
depends on d (see (4.7)). Thus the product above means a product of compositions
of nonlinear operators.

Definition 4.7. We say that the discrete algorithm (2.29) is stable if for any
ε > 0 there exist δ > 0 independent of τ, h, such that for any u, v ∈ L2(Ω) with
‖u− v‖L2(Ω) < δ, we have

‖Mh,τThv −Mh,τThu‖`2,h(O2
h) < ε;

i.e., the set of operators {Mh,τTh}h,τ is equicontinuous.

Now we show that {Mh,τTh}h,τ is indeed equicontinuous if Assumptions 4.2 and
4.5 are satisfied.

Proposition 4.8. Algorithm (2.29), with threshold satisfying (4.6), is stable if
Assumptions 4.2 and 4.5 are satisfied.

Proof. Note that ‖W‖`2,h(O2
h) = ‖W>‖`2,h(O2

h) ≤ 1, which is in fact true for all

tight wavelet frame systems. We have

‖Mh,τThv −Mh,τThu‖`2,h(O2
h

) =
∥∥∥( K∏

k=0

W>SαkW
)
Thv −

( K∏
k=0

W>SαkW
)
Thu

∥∥∥
`2,h(O2

h
)

≤
∥∥∥SαK

(
W
(K−1∏
k=0

W>SαkW
)
Thv

)
− SαK

(
W
(K−1∏
k=0

W>SαkW
)
Thu

)∥∥∥
`2,h(O2

h
)
.

Let

dKv = W
(K−1∏
k=0

W>SαkW
)
Thv and dKu = W

(K−1∏
k=0

W>SαkW
)
Thu.
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Then, we have

‖Mh,τThv −Mh,τThu‖`2,h(O2
h

) ≤
∥∥∥SαK (dKv )− SαK (dKu )

∥∥∥
`2,h(O2

h
)

=
∥∥∥dKv · (1−α(dKv ))− dKu · (1−α(dKu ))

∥∥∥
`2,h(O2

h
)

(Assumption 4.5) ≤
∥∥∥dKv − dKu ∥∥∥

`2,h(O2
h

)
≤
∥∥∥SαK−1(d

K−1
v )− SαK−1(d

K−1
u )

∥∥∥
`2,h(O2

h
)

· · ·
≤ ‖Thv − Thu‖`2,h(O2

h
) ≤ C‖v − u‖L2(Ω).

This shows that {Mh,τTh}h,τ is indeed equicontinuous on L2(Ω).

4.1.3. Convergence. We show that well-posedness + consistency + stability
⇒ convergence. We first establish the following lemma regarding the consistency
between the sampling Th and the pointwise sampling for smooth functions. Given
u ∈ C(Ω), we denote the pointwise sampling operator Rhu as

(4.10) (Rhu)k = u(hk), k ∈ O2
h.

Then we have the following lemma.

Lemma 4.9. Let φ be a tensor-product B-spline refinable function; then we have,
for every u ∈ C(Ω),

(4.11) ‖Thu−Rhu‖`2,h(O2
h) → 0 as h→ 0.

Proof. We first note that ‖ · ‖`2,h(O2
h) ≤ ‖ · ‖`1(O2

h). Thus, we focus on showing
that

(4.12) ‖Thu−Rhu‖`1(O2
h) → 0 as h→ 0.

Let �k be the rectangular domain [ k12n ,
k1+1

2n ]× [ k22n ,
k2+1

2n ] with k ∈ O2
h. Then we have

‖Thu−Rhu‖`1(O2
h) =

∑
k∈O2

h

∣∣∣2n〈u, φn,k〉 − u(2−nk)
∣∣∣2−2n

=

∫
Ω

∑
k∈O2

h

∣∣∣2n〈u, φn,k〉 − u(2−nk)
∣∣∣χ�kdx

=

∫
Ω

∣∣∣ ∑
k∈O2

h

2n〈u, φn,k〉χ�k − u(2−nk)χ�k

∣∣∣dx.
By [8, Lemma 4.1], for every u ∈ L1(Ω) ⊃ C(Ω) we have∫

Ω

∣∣∣ ∑
k∈O2

h

2n〈u, φn,k〉χ�k(x)− u(x)
∣∣∣dx→ 0 as n→∞.

On the other hand, the fact that for every u ∈ C(Ω)∫
Ω

∣∣∣ ∑
k∈O2

h

u(2−nk)χ�k − u(x)
∣∣∣dx→ 0 as n→∞

is well known in real analysis. We then have (4.12) by triangular inequality.
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Given any v ∈ L2(Ω) and a t ∈ (0, te), we define an operator M : L2(Ω) 7→ L2(Ω)
as u(x, t) = M(v), where u(·, t) ∈ L2(Ω) is a solution of (4.1) with u0 = v. Since the
PDE (4.1) is well-posed w.r.t. the L2-norm [34], then for any ε > 0, there exists δ > 0
such that for any ‖u − v‖L2(Ω) < δ, we have ‖Mu −Mv‖L2(Ω) < ε. In other words,
M is well defined and continuous on L2(Ω).

Definition 4.10. A method Mh,τ is said to converge to M if for any v ∈ L2(Ω)
we have

‖ThMv −Mh,τThv‖`2,h(O2
h) → 0 as τ, h→ 0.

Theorem 4.11. With Assumptions 4.1–4.5 and assuming that Mv ∈ C∞(Ω)
whenever v ∈ C∞(Ω), the iterative algorithm (2.29) with threshold (4.6) converges
to the nonlinear diffusion (4.1).

Proof. Given any u ∈ L2(Ω) and a given δ > 0, we can always find v ∈ C∞(Ω)
such that ‖u− v‖L2(Ω) < δ. Then by triangular inequality we have

‖ThMu−Mh,τThu‖`2,h(O2
h) ≤ ‖ThMu− ThMv‖`2,h(O2

h) + ‖ThMv −Mh,τThv‖`2,h(O2
h)

+‖Mh,τThv −Mh,τThu‖`2,h(O2
h),

where the three terms on the right-hand side of the inequality correspond to well-
posedness, consistency, and stability, respectively. Note that ‖ThMu−ThMv‖`2,h(O2

h) ≤
CT ‖Mu−Mv‖L2(Ω). Thus, the first term above can be made arbitrarily small for a
properly chosen v due to well-posedness of the problem M . The same argument holds
for the last term above as well, due to stability in Proposition 4.8. We now show that

‖ThMv −Mh,τThv‖`2,h(O2
h) → 0 as h, τ → 0.

Indeed, we have

‖ThMv −Mh,τThv‖`2,h(O2
h) ≤ ‖ThMv −RhMv‖`2,h(O2

h) + ‖RhMv −Mh,τRhv‖`2,h(O2
h)

+‖Mh,τThv −Mh,τRhv‖`2,h(O2
h).

By (4.11) and that Mv ∈ C∞(Ω), the first term goes to zero. By our previous
consistency analysis in Proposition 4.3, we have that the second term goes to zero as
well. Finally, following a similar proof of stability in Proposition 4.8, we have

‖Mh,τThv −Mh,τRhv‖`2,h(O2
h) ≤ ‖Thv −Rhv‖`2,h(O2

h) → 0.

This concludes the proof of this theorem.

4.2. Behavior of the generic wavelet frame shrinkage (4.2). We will an-
alyze the asymptotic behavior of the iterative wavelet frame shrinkage (4.2) under
suitable assumptions, which are given as follows.

Assumption 4.12. We make the following assumptions on the wavelet frame sys-
tem we use and the threshold function g` = g`(ξ1, . . . , ξL, h, τ):

1. Let W be the transform operator of a tensor-product wavelet frame system

constructed from a univariate B-spline function, and assume that W̃ is the
transform operator of the canonical duel system.

2. We assume that, for each 0 ≤ ` ≤ L, g` ∈ C1(RL), 0 ≤ g` ≤ 1, and∣∣∣ ∂
∂ξj

(
ξ`
(
1− g`(ξ1, . . . , ξL, h, τ)

))∣∣∣ ≤ 1 for all 1 ≤ j ≤ L,

for every (ξ1, . . . , ξL) ∈ RL, and h, τ > 0 small enough.
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Similarly to before, we assume Ω = (0, 1)2 is discretized by the dyadic grids
{k2−n : 0 < k1, k2 < 2n, n ≥ 1}. Then, h = 2−n and τ = O(2−np) for some p > 0.
The value p comes naturally from the second assumption of Assumption 4.12 (e.g.,
p = 2 in section 4.1). We define the adjoint operator of Th as T ∗h : `2,h(O2

h) 7→ L2(Ω):

T ∗hv = 2−n
∑
j∈O2

h

vjφn,j .

We note that ‖Thu‖`2,h(O2
h) ≤ CT ‖u‖L2(Ω) and ‖T ∗hu‖L2(Ω) ≤ CT ‖u‖`2,h(O2

h).
With Assumption 4.12, we have the following theorem.

Theorem 4.13. Suppose all requirements in Assumption 4.12 are satisfied. For
any given artificial time t > 0, let K = bt/τc be the stopping iteration of (4.2).

1. For any given initial data v ∈ L2(Ω), we denote the K step iterative proce-
dure based on the first formula of (4.2) as a nonlinear operator T ∗hM

S
h Th :

L2(Ω) 7→ L2(Ω):

T ∗hM
S
h Thv := T ∗h

( K∏
k=0

W̃>SαkW
)
Thv.

Then, for every v ∈ L2(Ω), the sequence {T ∗hMS
h Thv}h has a weakly converg-

ing subsequence in L2(Ω). Furthermore, the iterative algorithm (4.2) is stable
in the following sense: for any ε > 0, there is a δ > 0 independent of h, such
that for any ‖u− v‖L2(Ω) < δ, we have

‖T ∗hMS
h Thu− T ∗hMS

h Thv‖L2(Ω) < ε.

2. Denote the K step iterative procedure based on the second formula of (4.2)
as a nonlinear operator T ∗hM

T
h Th : L2(Ω) 7→ L2(Ω):

T ∗hM
T
h Thv := T ∗h

( K∏
k=0

W̃>T θkW
)
Thv.

The conclusions in 1 also hold for T ∗hM
T
h Th.

Proof. We shall only prove part 1, since the proof of part 2 is similar. Note that
from the first set of assumptions of Assumption 4.12, we have ‖W ‖`2,h(O2

h) = CW and

‖̃W ‖`2,h(O2
h) = 1

CW
. Therefore, we have

‖T ∗hMS
h Thv‖L2(Ω) ≤

CT
CW

∥∥∥SαkW
(K−1∏
k=0

W̃>SαkW
)
Thv

∥∥∥
`2,h(O2

h)

≤ CT
CW

∥∥∥W(K−1∏
k=0

W̃>SαkW
)
Thv

∥∥∥
`2,h(O2

h)
≤ CT

∥∥∥(K−1∏
k=0

W̃>SαkW
)
Thv

∥∥∥
`2,h(O2

h)

≤ · · · ≤ CT ‖Thv‖`2,h(O2
h) ≤ C2

T ‖v‖L2(Ω),

where the second inequality follows from the assumption 0 ≤ g` ≤ 1. This shows that
{T ∗hMS

h Thv}h is bounded; hence it has a weakly converging subsequence in L2(Ω).
On the other hand, using the second inequality of 2 of Assumption 4.12 and

following a derivation similar to that in the proof of equicontinuity in Proposition 4.8,
we can easily show that, for any u, v ∈ L2(Ω) and some constant C > 0, we have

‖T ∗hMS
h Thu− T ∗hMS

h Thv‖L2(Ω) ≤ C‖u− v‖L2(Ω),

which gives us the stability.
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Fig. 1. Test images: Original (first row) and observed (second row). The PSNR values of the
observed images are 23.4519 (Barbara), 22.4428 (Boat), and 22.5482 (Peppers). The image size of
“Barbara” is 195 × 195, and both “Boat” and “Peppers” are of size 256 × 256.

5. Numerical simulations and comparisons. In this section, we conduct
numerical experiments using some of the algorithms we discussed in earlier sections.
Recall the general image restoration model

Au = f + η,

where f is the observed image and η is assumed to be Gaussian white noise. We take
image deblurring as the specific image restoration problem, whereA is the convolution
operator with the kernel generated in MATLAB by “fspecial(’gaussian’,11,1.5).” The
test images and their blurry noisy counterparts are presented in Figure 1. To measure
the quality of the restored image, we use the peak signal-to-noise ratio (PSNR) value
defined by

PSNR := −20 log10

‖u− ũ‖2
N

,

where u and ũ are the original and restored images, respectively, and N is the total
number of pixels in u.

We will compare performance of some of the algorithms discussed earlier in this
paper for image deblurring. For convenience of the readers, we list these algorithms
here. Note that all the parameters that are not specifically mentioned below are
chosen manually for optimal image restoration quality. For Algorithm 1 and 2, we
stop our iteration when we have the highest PSNR values of the restored images. For
the rest of the algorithms, since we have image restoration model embedded in the
algorithms, we can let the iteration run until convergence. In our experiments, we
adopt the following stopping criterion for algorithms 3–6:

‖uk − uk−1‖2/‖f‖2 < 10−5.
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All of the following algorithms are implemented on a Windows laptop with Intel Core
i7 processor (1.73 GHz) and 8GB memory.

List of algorithms used for comparison.
1. PM equation with standard discretization (PM-SD) [51]:

ut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
(PM).

We take g(ξ) = 1
1+ξ/K .

2. PM equation discretized by Haar (PM-Haar) and piecewise linear (PM-Linear)
B-spline wavelet frame systems:

uk = W>Sαk−1(Wuk−1).

Here we choose the level of decomposition Lev = 1 for W . The shrinkage
operator Sαk−1(dk−1) = {Sα`,n(dk−1)(d

k−1) : 1 ≤ ` ≤ L} is chosen as in
(3.21) for ` = 1, 2 with g(ξ) = 1/(1 + ξ/K). We choose Sα`,n

for 3 ≤ ` ≤ L
as in Corollary 3.7 with s` = |α1|+ |β1| = 2 and

g`

( C̃(1)
1 ξ1
h|β1|

,
C̃

(2)
2 ξ2
h|β2|

, . . . ,
C̃

(L)
2 ξL
h|βL|

)
= g
( ∑
|β`′ |=|β`|

ξ2
`′

C
(`′)
β`′

hβ`′

)
.

3. Iterative soft-thresholding algorithm by Haar (IST-Haar) and piecewise linear
(IST-Linear) B-spline wavelet frame systems:

uk = (I − µA>A)W>T 2
λ(Wuk−1) + µA>f .

Here we choose the level of decomposition Lev = 3 for W and λ is some fixed
threshold.

4. Adaptive multiplicative-thresholding by Haar (AMT-Haar) and piecewise lin-
ear (AMT-Linear) B-spline wavelet frame systems:

uk = (I − µA>A)W>Sαk−1(Wuk−1) + µA>f .

Here we choose the level of decomposition Lev = 3 for W . We take

Sαk−1(Wuk−1) = {Sαl,`,n(Wluk−1)(Wlu
k−1) : 0 ≤ l ≤ Lev− 1, 1 ≤ ` ≤ L},

where Wlu = {Wl,`u : 1 ≤ ` ≤ L}. The shrinkage operator Sαl,`,n
is chosen

the same as in 2 for l = 0 and Sαl,`,n
= Sα0,`,n

for l > 0.
5. Adaptive soft-thresholding by Haar (AST-Haar) and piecewise linear (AST-

Linear) B-spline wavelet frame systems:

uk = (I − µA>A)W>T 2
θk−1(Wuk−1) + µA>f .

Here, the threshold

θk−1 =
{
θl,`(Wl,1u

k−1,Wl,2u
k−1, . . . ,Wl,Lu

k−1) : 0 ≤ l ≤ Lev− 1, 1 ≤ ` ≤ L
}

is chosen as

θl,`(ξ1, ξ2, . . . , ξL) = C`g
( ∑
|β`′ |=|β`|

ξ2
`′

C
(`′)
β`′

hβ`′

)
for all l = 0, 1, . . . ,Lev − 1. Here we choose g = 1/(1 + x0.25/K), Lev = 3,
and C` > 0 as some fixed constants.
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6. Image-restoration embedded diffusion with standard discretization (IRED-
SD) [51]:

ut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
− κA>(Au− f) (IRED).

Table 1
Comparisons for image deconvolution. PSNR values of the restored images by algorithms 1 and

2 (without the knowledge of image restoration model): PM-SD, PM-Haar, and PM-Linear. The bold
numbers indicate the best PSNR value for each image example.

Image name PM-SD PM-Haar PM-Linear
Barbara 24.8097 24.9080 24.9625

Boat 23.4765 23.5915 23.6089
Peppers 23.6635 23.8096 23.8203

Table 2
Comparisons for image deconvolution. PSNR values of the restored images by algorithms 3–

6: IST-Haar, IST-Linear, AMT-Haar, AMT-Linear, AST-Haar, AST-Linear, and IRED-SD. The
bold numbers indicate the best PSNR value for each image example.

Image name IST-Haar IST-Linear AMT-Haar AMT-Linear AST-Haar AST-Linear IRED-SD
Barbara 25.5111 25.5204 25.5987 25.5651 25.4221 25.5398 25.5482

Boat 24.6767 24.7341 24.8784 24.7906 24.7158 24.9417 24.6955
Peppers 24.9834 25.0974 25.1419 25.4677 25.0221 25.3208 25.2149

Our results in Table 1 show that the discretization provided by wavelet frame
shrinkage is better than the standard discretization by [51] in terms of restoration
quality. The results in Table 2 show that with the image restoration model being
properly incorporated into the algorithms, better results can be obtained. More im-
portantly, the new algorithms AMT and AST outperform the IST algorithm that is
commonly used in wavelet frame based image restoration problems. In addition, the
AMT algorithm, which is a discretization of IRED, generates better results than the
standard discretization of IRED.

In section 3.3.2, we proposed an accelerated version of AMT and IRED. The
accelerated algorithm and PDE produce results of quality similar to those of their
corresponding nonaccelerated versions, while the total number of iterations and com-
putation time are greatly reduced. For the same image deblurring problem and with
the same stopping criterion, we implemented the accelerated (APG) version of AMT
and IRED following the generic formulas of (3.53) and (3.58). To be more precise, we
implement the following accelerated AMT (A-AMT)

uk = (I−µA>A)W>Sαk−1

(
(1+γk−1)Wuk−1−γk−1Wuk−2

)
+µA>f , k = 1, 2, . . . ,

where the shrinkage operator Sα is chosen exactly the same as that of Algorithm 4
above. The accelerated IRED takes the form

utt + Cut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
− κA>(Au− f) (A-IRED),

which is discretized by the standard finite differencing [51]. We shall call the A-IRED
discretized by such finite differencing A-IRED-FD. The parameters for A-AMT are
chosen exactly the same as AMT, and we choose C = 0.2 for A-IRED. A comparison
of efficiency is summarized in Table 3.
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Table 3
Comparisons for image deconvolution. PSNR values of the restored images by algorithms 3–6:

IST-Haar, IST-Linear, AMT-Haar, AMT-Linear, AST-Haar, AST-Linear, and IRED-SD.

AMT-Linear A-AMT-Linear IRED-FD A-IRED-FD
Image name Time (sec.) PSNR Time (sec) PSNR Time (sec) PSNR Time (sec) PSNR

Barbara 23.38 25.5651 15.34 25.5657 7.11 25.5482 3.50 25.5555
Boat 40.44 24.7906 23.27 24.7322 9.62 24.6955 5.06 24.6916

Peppers 55.95 25.4677 31.46 25.4678 17.21 25.2149 8.73 25.2201
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