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Abstract

Nonlinear diffusion filtering and wavelet/frame shrinkage are two popular methods for
signal and image denoising. The relationship between these two methods has been studied re-
cently. In this paper we investigate the correspondence between frame shrinkage and nonlinear
diffusion.

We show that the frame shrinkage of Ron-Shen’s continuous-linear-spline-based tight frame
is associated with a fourth-order nonlinear diffusion equation. We derive high-order nonlinear
diffusion equations associated with general tight frame shrinkages. These high-order nonlinear
diffusion equations are different from the high-order diffusion equations studied in the liter-
ature. We also construct two sets of tight frame filter banks which result in the sixth- and
eighth-order nonlinear diffusion equations.

The correspondence between frame shrinkage and diffusion filtering is useful to design
diffusion-inspired shrinkage functions with competitive performance. On the other hand, the
study of such a correspondence leads to a new type of diffusion equations and helps to design
frame-inspired diffusivity functions. The denoising results with diffusion-inspired shrinkages
provided in this paper are promising.

Key words and phrases: Nonlinear diffusion filtering, high-order nonlinear diffusion, signal
denoising, undecimated frame filter banks, frame shrinkage, connection between nonlinear
diffusion and frame shrinkage

1 Introduction

Nonlinear diffusion filtering [26] and wavelet shrinkage (see e.g. [15, 16, 22]) are two powerful
methods for signal and image denoising. Correspondence between these two methods has been
studied in [23, 31]. In this paper we investigate the correspondence between frame shrinkage and
nonlinear diffusion.

For a given 1-D signal f with a noise, nonlinear diffusion filtering is to obtain u = u(x, t)
satisfying the nonlinear diffusion equation

ut =
∂

∂x

(
g(u2

x)ux
)
, (1.1)

with the initial condition
u(x, 0) = f(x),
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and certain boundary conditions, where g is the diffusivity and ux denotes the first-order partial
derivative of u(x, t) with respect to x. The diffusivity g is a nonnegative decreasing function
controlling the diffusion. The solution u(x, t) of the above nonlinear equation is a denoised version
of f(x).

Since the nonlinear diffusion was introduced by Perona and Malik in 1990, a variety of nonlin-
ear diffusion filters have been proposed, see e.g. [6, 36, 13] and the references therein. The fourth-
order nonlinear diffusion was proposed in [38, 39] to solve the problem that (the second-order)
Perona and Malik diffusion and its variants tend to produce blocky effects in image denoising.
The fourth-order nonlinear diffusion has also been studied in [21], and high-order diffusion with an
edge enhancing functional was proposed in [35]. The theoretical properties of high-order diffusion
have been studied in [14]. A 1-D high-order diffusion equation is an equation like

ut = (−1)n+1 ∂
n

∂xn

(
g

(
(
∂nu

∂xn
)2

)
∂nu

∂xn

)
, (1.2)

for an integer n ≥ 2.
The discretization of (1.1) could be given as follows. Let h denote the spatial step size and let

τ be the time step size. Denote
u0
k = f(kh), k ∈ Z.

We use ujk, j ≥ 1 to denote the (approximation) value of the solution u(x, t) at (kh, jτ). Thus uj

is the approximation solution at time jτ . With the facts that (uj+1
k − ujk)/τ approximates ut at

(kh, jτ) and (ujk+1 − ujk)/h approximates ux at (kh, jτ), equation (1.1) can be discretized as

uj+1
k = ujk +

τ

h2
g

(
(
ujk+1 − ujk

h
)2

)
(ujk+1 − ujk)−

τ

h2
g

(
(
ujk − ujk−1

h
)2

)
(ujk − ujk−1), (1.3)

for j = 0, 1, · · · .
Wavelets have been successfully used in signal and image processing [15, 16, 22, 33]. In

particular, the undecimated wavelet transform (UWT) (also called the shift-invariant wavelet
transform) based denoising [11] has been used widely for signal and image denoising. Let {p, q}
be a wavelet filter bank. For a given signal {ck}k, the UWT-based denoising consists of the
analysis step:

Ln =
1√
2

∑

k∈Z
pkck+n, Hn =

1√
2

∑

k∈Z
qkck+n, (1.4)

and the synthesis step:

uk =
√

2
4

∑

n∈Z
pnLk−n +

√
2

4

∑

n∈Z
qnSθ(Hk−n), (1.5)

where Sθ is the shrinkage function, depending a parameter θ (or several parameters). With
a suitable shrinkage function (for example, the hard or soft shrinkage function), {uk}k is the
denoised signal of the original signal {ck}k with noise.

It was shown in [23] that when p, q are the Haar filter pair, namely, p0 = p1 = 1, q0 = 1, q1 =
−1, pk = 0, qk = 0, k 6= 0, 1, then uk in (1.5) is u1

k in (1.3) provided that shrinkage function Sθ
and the diffusivity g satisfy

Sθ(x) = x

(
1− 4τ

h2
g(

2x2

h2
)
)
, (1.6)
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where θ is the parameter with the diffusivity g. Namely, iterated Haar wavelet shrinking and the
2nd-order diffusion filtering result in the same signal. This relationship reveals the connection
between nonlinear diffusion filtering and wavelet shrinkage and hence, it opens the gate of ex-
changing ideas between these two fields. In particular, the connection helps to choose shrinkage
functions from diffusivity functions, and vice versa. Refer to [23, 31, 24] for the detailed discussion
on the importance of the relationship. The reader is referred to [1, 10] for the relationship between
PDE diffusion and the bilateral filter, another popular method for image denoising.

Recently wavelet frames have been successfully used in noise removal [30], image recovery [7, 8],
image inpainting/restoration [3, 4, 5], signal classification [9] and medical image analysis [18, 25].
Compared with wavelet systems, the elements in a frame system may be linearly dependent;
namely, frames can be redundant. The property of redundancy not only provides a flexibility
for the construction of framelets with desirable properties, but also provides high sparsity of
frame transform coefficients. Such sparsity is a key property for many applications. In addition,
frames work better in a noisy environment [9]. It is very natural to ask whether there is a
correspondence between frame shrinkage functions and the nonlinear diffusivity functions of some
diffusion equations. In this paper we show that the undecimated frame shrinking corresponds to
a high-order nonlinear diffusion such as

ut =
∂

∂x

(
g1(u2

x)ux
)− ∂2

∂x2

(
g2(u2

xx)uxx
)
, (1.7)

with f as initial condition:
u(x, 0) = f(x),

where uxx denotes the second-order partial derivative of u(x, t) with respect to x. Observe that the
high-order diffusion equation corresponding to a frame shrinkage is different from the high-order
diffusion equations like (1.2) considered in [38, 39, 21, 14].

The rest of the paper is organized as follows. In Section 2, we show how Ron-Shen’s continuous-
linear-spline-based tight frame shrinkage corresponds to the diffusion equation given in (1.7). In
Section 3, we consider the general case. We show how the vanishing moment of a highpass filter q(`)

is related to the order of a nonlinear diffusion equation and derive high-order nonlinear diffusion
equations associated with general tight frame shrinkages. In Section 4, we construct two sets of
tight frame filter banks which result in the 6th-order and 8th-order diffusion equations. In Section
5, we provide some experiment results. We draw the conclusion in Section 6.

2 Fourth-order diffusion and tight frame shrinkage correspon-
dence

In this section we show how Ron-Shen’s continuous-linear-spline-based tight frame shrinkage cor-
responds to a 4th-order nonlinear diffusion equation.

2.1 Ron-Shen’s tight frame shrinkage

For a sequence {pk}k∈Z of real numbers, we use p(ω) to denote its symbol (also called filter here):

p(ω) =
1
2

∑

k∈Z
pke
−ikω.
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Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of FIR frame filter banks. Assume that
they are biorthogonal, namely,

p(ω)p̃(ω) +
L∑

`=1

q(`)(ω)q̃(`)(ω) = 1, (2.1)

p(ω)p̃(ω + π) +
L∑

`=1

q(`)(ω)q̃(`)(ω + π) = 0. (2.2)

If a filter bank {p, q(1), · · · , q(L)} satisfies (2.1) and (2.2) with p̃ = p, q̃(`) = q(`), 1 ≤ ` ≤ L, then
it is called a tight frame filter bank. It was shown in [28] that if compactly supported scaling
functions φ, φ̃ corresponding to lowpass filters p, p̃ are in L2(R) with

∫
R φ(x)dx 6= 0,

∫
R φ̃(x)dx 6= 0,

and p(0) = p̃(0) = 1, p(π) = p̃(π) = q(`)(0) = q̃(`)(0) = 0, 1 ≤ ` ≤ L, then biorthogonal frame
filter banks generate wavelet bi-frames (also called dual wavelet frames) of L2(R).

Let {ck}k be the initial data. The undecimated frame transform (UFT) based denoising
consists of the analysis step:

Ln =
1√
2

∑

k∈Z
pkck+n, H

(`)
n =

1√
2

∑

k∈Z
q

(`)
k ck+n, n ∈ Z, ` = 1, · · · , L, (2.3)

and the synthesis step:

uk =
√

2
4

∑

n∈Z
p̃nLk−n +

√
2

4

L∑

`=1

∑

n∈Z
q̃(`)
n S`θ`(H

(`)
k−n), (2.4)

where S`θ` , 1 ≤ ` ≤ L are the shrinkage functions, depending on parameters θ`. One can easily ver-
ify that when S`θ`(x) = x, 1 ≤ ` ≤ L, uk is ck provided that {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)}
satisfy (2.1). Namely, in this case the synthesis step recovers the original signal.

In this section we consider a particular tight frame filter bank from [27]. The corresponding
scaling function is the continuous linear spline function (hat function) supported on [−1, 1]. In
this paper we call this filter bank Ron-Shen’s tight frame filter bank. The nonzero coefficients of
the filters are

p0 = 1, p1 = p−1 =
1
2
, q

(1)
0 = 0, q(1)

−1 =
√

2
2
, q

(1)
1 = −

√
2

2
, q

(2)
0 = 1, q(2)

−1 = q
(2)
1 = −1

2
. (2.5)

With this tight frame filter bank, Ln,H
(1)
n ,H

(2)
n defined by (2.3) are

Ln =
√

2
4

(cn−1 + 2cn + cn+1), H(1)
n =

1
2

(cn−1 − cn+1), H(2)
n =

√
2

4
(2cn − cn−1 − cn+1). (2.6)

Let S1
θ and S2

σ denote the frame shrinkage operators applied to the first and second highpass
outputs {H(1)

n }n and {H(2)
n }n respectively. Then the denoised signal uk after the synthesis step

(2.4) is

uk =
√

2
4

(Lk +
1
2
Lk−1 +

1
2
Lk+1) +

√
2

4

√
2

2

(
S1
θ (H(1)

k+1)− S1
θ (H(1)

k−1)
)

+
√

2
4

(
S2
σ(H(2)

k )− 1
2
S2
σ(H(2)

k+1)− 1
2
S2
σ(H(2)

k−1)
)
.
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With Lk, H
(1)
k and H

(2)
k given by (2.6), uk can be written as

uk =
1
16

(ck−2 + 4ck−1 + 6ck + 4ck+1 + ck+2) +
1
4
S1
θ (
ck − ck+2

2
)− 1

4
S1
θ (
ck−2 − ck

2
) (2.7)

+
√

2
4
S2
σ(
√

2
4
{2ck − ck−1 − ck+1})−

√
2

8
S2
σ(
√

2
4
{2ck−1 − ck−2 − ck})

−
√

2
8
S2
σ(
√

2
4
{2ck+1 − ck − ck+2}).

With suitable shrinkage functions S1
θ and S2

σ, uk is the denoised signal after one step of frame
denoising process of the original ck with noise. We can apply the above denoising process to uk
to get further denoised signal. In fact we can apply the frame shrinkage process repeatedly to the
denoised signal to get further denoised signal. We call this process the iterated frame denoising
process. In the next subsection we show that the output after iterated denoising process with
Ron-Shen’s tight frame filter bank is the same signal resulted by the nonlinear diffusion of a
4th-order diffusion equation.

2.2 Fourth-order nonlinear diffusion equation

We consider nonlinear diffusion equation (1.7) for u = (x, t) with u(x, 0) = f(x). To discretize
the diffusion equation (1.7), we recall two formulas to approximate derivatives of a function. For
a function L(x) on R and ε > 0, we have that (see e.g. [2])

L′(x0) =
1
2ε

(L(x0 + ε)− L(x0 − ε))− ε2

6
L(3)(ξ1), (2.8)

provided that L ∈ C3[x0 − ε, x0 + ε], where ξ1 ∈ [x0 − ε, x0 + ε]; and that

L′′(x0) =
1
ε2

(L(x0 − ε)− 2L(x0) + L(x0 + ε))− ε2

12
L(4)(ξ2), (2.9)

provided that L ∈ C4[x0 − ε, x0 + ε], where ξ2 ∈ [x0 − ε, x0 + ε].
Next we discretize (1.7) by using (2.8) and (2.9) to approximate the first- and second-order

partial derivatives with respect to the variable x in (1.7). Recall that h and τ denote the spatial
step size and the time step size respectively. As in Section 1, we use uj to denote the approximation
solution of (1.7) at time jτ , and ujk to denote the approximation value of the solution at (kh, jτ).
Thus (uj+1

k −ujk)/τ is the approximation of ut at (kh, jτ). We use (2.8) with ε = h to approximate
the first-order partial derivative ux of u(x, t) and the first-order partial derivative of g1(u2

x)ux in
the first term on the right-hand side of (1.7), while we use (2.9) with ε = h to approximate uxx
and the second-order partial derivative with respect to x of g2(u2

xx)uxx in the second term on the
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right-hand side of (1.7). Then we have

uj+1
k − ujk
τ

=
1

2h

{
g1

(
(
ujk+2 − ujk

2h
)2

)
ujk+2 − ujk

2h
− g1

(
(
ujk − ujk−2

2h
)2

)
ujk − ujk−2

2h

}

− 1
h2

{
g2

(
(
ujk−2 − 2ujk−1 + ujk

h2
)2

)
ujk−2 − 2ujk−1 + ujk

h2

−2g2

(
(
ujk−1 − 2ujk + ujk+1

h2
)2

)
ujk−1 − 2ujk + ujk+1

h2

+g2

(
(
ujk − 2ujk+1 + ujk+2

h2
)2

)
ujk − 2ujk+1 + ujk+2

h2

}
.

Thus, we get

uj+1
k = ujk +

τ

4h2
g1

(
(ujk+2 − ujk)2/(4h2)

)
(ujk+2 − ujk) (2.10)

− τ

4h2
g1

(
(ujk − ujk−2)2/(4h2)

)
(ujk − ujk−2)

− τ

h4
g2

(
(ujk−2 − 2ujk−1 + ujk)

2/h4
)

(ujk−2 − 2ujk−1 + ujk)

+
2τ
h4
g2

(
(ujk−1 − 2ujk + ujk+1)2/h4

)
(ujk−1 − 2ujk + ujk+1)

− τ

h4
g2

(
(ujk − 2ujk+1 + ujk+2)2/h4

)
(ujk − 2ujk+1 + ujk+2).

Next, we obtain that uk in (2.7) after 1-step frame shrinkage is u1
k after 1-step diffusing if S1

θ

and S2
σ are related to g1(x) and g2(x) respectively as given in the next theorem.

Theorem 1. Let uk in (2.7) be the resulting signal after 1-step frame shrinking with input ck =
f(kh), k ∈ Z and u1

k in (2.10) be the signal after 1-step diffusing with the initial input u0
k =

f(kh), k ∈ Z. If

S1
θ (x) = x

(
1− 2τ

h2
g1(

x2

h2
)
)
, S2

σ(x) = x

(
1− 16τ

h4
g2(

8x2

h4
)
)
, (2.11)

then uk = u1
k for all k.

Proof. With u0
k = ck, u1

k in (2.10) after 1 step diffusion is

u1
k = ck +

τ

4h2
g1

(
(ck+2 − ck)2/(4h2)

)
(ck+2 − ck)

− τ

4h2
g1

(
(ck − ck−2)2/(4h2)

)
(ck − ck−2)

− τ

h4
g2

(
(ck−2 − 2ck−1 + ck)2/h4

)
(ck−2 − 2ck−1 + ck)

+
2τ
h4
g2

(
(ck−1 − 2ck + ck+1)2/h4

)
(ck−1 − 2ck + ck+1)

− τ

h4
g2

(
(ck − 2ck+1 + ck+2)2/h4

)
(ck − 2ck+1 + ck+2).
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Write ck as

ck = 1
16(ck−2 + 4ck−1 + 6ck + 4ck+1 + ck+2)− 1

8(ck+2 − ck) + 1
8(ck − ck−2)

+ 1
16(ck−2 − 2ck−1 + ck)− 1

8(ck−1 − 2ck + ck+1) + 1
16(ck − 2ck+1 + ck+2).

Then we have that

u1
k =

1
16

(ck−2 + 4ck−1 + 6ck + 4ck+1 + ck+2) (2.12)

+
(

τ

4h2
g1((ck+2 − ck)2/(4h2))− 1

8

)
(ck+2 − ck)

−
(

τ

4h2
g1((ck − ck−2)2/(4h2))− 1

8

)
(ck − ck−2)

+
(

1
16
− τ

h4
g2

(
(ck−2 − 2ck−1 + ck)2/h4

))
(ck−2 − 2ck−1 + ck)

−2
(

1
16
− τ

h4
g2

(
(ck−1 − 2ck + ck+1)2/h4

))
(ck−1 − 2ck + ck+1)

+
(

1
16
− τ

h4
g2

(
(ck − 2ck+1 + ck+2)2/h4

))
(ck − 2ck+1 + ck+2).

Comparing (2.7) with (2.12), we obtain that uk in (2.7) after 1-step frame shrinking is u1
k after

1-step diffusing if S1
θ , S2

σ, g1(x) and g2(x) satisfy (2.11). �
From Theorem 1, we immediately have the following corollary.

Corollary 1. With diffusivity functions g1(x), g2(x) and shrinkage functions S1
θ , S2

σ satisfying
(2.11), iterated frame shrinking with Ron-Shen’s tight frame filer bank and nonlinear diffusing with
(1.7) result in the same signal.

The correspondence (2.11) between frame shrinkage and diffusion filtering is useful to design
diffusion-inspired shrinkage functions for frame signal denoising. On the other hand, this corre-
spondence is useful to design frame-inspired diffusivity functions. In the following we give the
corresponding shrinkage functions S1

θ , S2
σ when diffusivity functions g1, g2 are the Perona-Malik

diffusivity and Weickert diffusivity functions, and provide the associated diffusivity functions
g1, g2 when S1

θ , S2
σ are the hard shrinkage and soft shrinkage functions. The reader is referred to

[23, 31, 24] for more diffusivity and shrinkage functions.
Assume the spatial step size h = 1. Corresponding to the Perona-Malik diffusivity [26]

g(x2) =
c

1 + (x/λ)2
,

where c is a constant, shrinkage functions S1
θ , S2

σ are

S1
θ (x) = x(1− 2τc1

1 + (x/θ)2
), S2

σ(x) = x(1− 16τc2

1 + (2
√

2x/σ)2
); (2.13)

while corresponding to the TV diffusivity [29], shrinkage functions S1
θ , S2

σ are

S1
θ (x) = x− 2τ sgn(x), S2

σ(x) = x− 4
√

2 τ sgn(x). (2.14)
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If g1, g2 are the Weickert diffusivity [36] given by

g(x2) =
{

1, if x = 0,
1− exp(−3.31488λ8/x8), if x 6= 0,

then the corresponding shrinkage functions S1
θ , S2

σ are

S1
θ (x) =

{
0, if x = 0,
x(1− 2τ + 2τexp(−3.31488θ8/x8)), if x 6= 0,

(2.15)

S2
σ(x) =

{
0, if x = 0,
x(1− 16τ + 16τexp(−3.31488σ8/(2

√
2x)8)), if x 6= 0.

(2.16)

If S1
θ , S

2
σ are the hard shrinkage functions [15, 22]:

S1
θ (x) =

{
0, if |x| ≤ θ,
x, if |x| > θ,

S2
σ(x) =

{
0, if |x| ≤ σ,
x, if |x| > σ,

then the corresponding diffusivity functions g1, g2 are

g1(x2) =
{

1
2τ , if |x| ≤ θ,
0, if |x| > θ,

g2(x2) =
{

1
16τ , if |x| ≤ 2

√
2σ,

0, if |x| > 2
√

2σ.
(2.17)

When S1
θ , S

2
σ are the soft shrinkage functions [16]:

S1
θ (x) =

{
0, if |x| ≤ θ,
x− θsgn(x), if |x| > θ,

S2
σ(x) =

{
0, if |x| ≤ σ,
x− θsgn(x), if |x| > σ,

the corresponding diffusivity functions g1, g2 are

g1(x2) =

{
1
2τ , if |x| ≤ θ,
θ

2τ |x| , if |x| > θ, g2(x2) =

{
1

16τ , if |x| ≤ 2
√

2σ,
σ

4
√

2τ |x| , if |x| > 2
√

2σ. (2.18)

Here we should point out that the diffusivity functions g1, g2 in either (2.17) or (2.18) are not
differentiable. Thus their derivatives in the original equation (1.7) should be understood as the
differences in (2.10), a discretized version of (1.7).

2.3 Minimizer of energy functional and Euler-Lagrange equations

In this subsection we show that the nonlinear diffusion equation (1.7) is related to the Euler-
Lagrange equation of a variational functional.

Let
F (u, u′, u′′) = (u− f)2 + αΨ((u′)2) + αΦ((u′′)2),

where u′, u′′ denote the first- and second-order derivatives of u(x). Consider the energy functional

E(u, u′, u′′) =
∫ b

a
F (u, u′, u′′)dx,

for α > 0. A necessary condition for E to gain the minimum is that u satisfies the Euler-Lagrange
equation (see [32] at p. 245)

∂F

∂u
− d

dx

(
∂F

∂u′

)
+

d2

dx2

(
∂F

∂u′′

)
= 0. (2.19)
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With
∂F

∂x
= 2(u− f),

∂F

∂u′
= 2αΨ′((u′)2)u′,

∂F

∂u′′
= 2αΦ′((u′′)2)u′′,

we know (2.19) is

2(u− f)− 2α
d

dx

(
Ψ′((u′)2)u′

)
+ 2α

d2

dx2

(
Φ′((u′′)2)u′′

)
= 0.

Denote g1(x) = Ψ′(x), g2(x) = Φ′(x). Then the above equation can be written as

u− f
α

=
d

dx

(
g1((u′)2)u′

)− d2

dx2

(
g2((u′′)2)u′′

)
. (2.20)

By introducing an artificial time variable t to u(x) and letting u(x, 0) = f(x), the left-hand side of
equation (2.20) can be understood as the discretization to the time variable t of ∂

∂tu(x, t) with step
size α, and equation (2.20) is a time discretization of the nonlinear diffusion equation (1.7). The
reader is referred to [14] for more detailed discussions on the relationship between Euler-Lagrange
equations and high-order diffusion equations.

3 High-order diffusion and undecimated frame shrinkage corre-
spondence

In this section we consider general frame filter banks and derive the nonlinear diffusion equa-
tions associated with them. Recall that for a pair of frame filter banks {p, q(1), · · · , q(L)} and
{p̃, q̃(1), · · · , q̃(L)}, Ln and H(`)

n are the outputs of initial data {ck}k after analysis algorithm (2.3)
at p.4, and uk is the shrunk data given by (2.4) with shrinkage functions S`θ` , 1 ≤ ` ≤ L. Ob-
serve that if the shrinking operators S`θ` in (2.4) are the identity operator (namely, no shrinking
process is applied), then uk = ck if and only if this pair of frame filter banks satisfy (2.1). We
call {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} a pair undecimated bi-frame filter banks if they
satisfy (2.1). {p, q(1), · · · , q(L)} is called an undecimated tight frame filter bank if it satisfies
(2.1) with p̃ = p, q̃(1) = q(1), · · · , q̃(L) = q(L). In this section we derive high-order nonlinear diffu-
sion equations associated with undecimated frame filter banks. In §3.1, we obtain a proposition
which rewrites uk in a formula which is closely related to a discretized version of some high-order
diffusion equations. In §3.2, we derive the correspondence between nonlinear diffusion equations
and undecimated bi-frame filter banks.

3.1 Undecimated bi-frame shrinkage

First we have the following lemma.

Lemma 1. Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of undecimated bi-frame filter
banks, namely they satisfy (2.1). Then

∑

m∈Z
p̃npn+j = 4δ(j)−

L∑

`=1

∑

n∈Z
q̃(`)
n q

(`)
n+j , j ∈ Z, (3.1)

where δ(j) denotes the Kronecker delta sequence with δ(j) = 1 if j = 0, and δ(j) = 0 if j 6= 0.
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Proof. Denote q̃(0)(ω) = p̃(ω), q(0)(ω) = p(ω). From (2.1), we have

(
1
2

)2
L∑

`=0

∑

m∈Z
q(`)
m eimω

∑

n∈Z
q̃(`)
n e−inω = 1.

Using the substitution m = n+ j, we have

1
4

L∑

`=0

∑

n∈Z

∑

j∈Z
q̃(`)
n q

(`)
n+je

ijω = 1,

which is equivalent to
L∑

`=0

∑

n∈Z
q̃(`)
n q

(`)
n+j = 4δ(j), j ∈ Z.

Thus (3.1) holds. �

Proposition 1. Suppose {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} are a pair of undecimated bi-
frame filter banks, namely they satisfy (2.1). Let uk be the resulting signal given by (2.4) after
1-step frame shrinking of ck with these filter banks. Then

uk = ck +
√

2
4

L∑

`=1

∑

m∈Z
q̃(`)
m

(
S`θ`(x)− x

) ∣∣∣∣x=H
(`)
k−m

, k ∈ Z, (3.2)

where H(`)
m is defined by (2.3).

Proof. By (3.1), we know the first summation in the right hand side of equation (2.4) for uk
is

1
2
√

2

∑

n∈Z
p̃nLk−n =

1
4

∑

n∈Z
p̃n
∑

m∈Z
pmcm+k−n =

1
4

∑

n∈Z

∑

j∈Z
p̃npn+j ck+j

=
∑

j∈Z

(
δ(j)− 1

4

L∑

`=1

∑

n∈Z
q̃(`)
n q

(`)
n+j

)
ck+j = ck − 1

4

L∑

`=1

∑

j∈Z

∑

n∈Z
q̃(`)
n q

(`)
n+jck+j

= ck −
√

2
4

L∑

`=1

∑

n∈Z
q̃(`)
n

1√
2

∑

j∈Z
q

(`)
n+jck+j = ck −

√
2

4

L∑

`=1

∑

n∈Z
q̃(`)
n H

(`)
k−n.

Thus,

uk = ck −
√

2
4

L∑

`=1

∑

n∈Z
q̃(`)
n H

(`)
k−n +

1√
2

L∑

`=1

∑

n∈Z
q̃(`)
n S`θ`(H

(`)
k−n)

= ck +
√

2
4

L∑

`=1

∑

m∈Z
q̃(`)
n

(
S`θ`(x)− x

) ∣∣∣∣x=H
(`)
k−n

,

as desired. �
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3.2 High-order nonlinear diffusion equation

For a (highpass) filter q(ω) = 1
2

∑
k∈Z qke−ikω, we say that it has vanishing moment order J if

∑

k∈Z
kjqk = 0, ∀j with 0 ≤ j < J.

The vanishing moments of analysis highpass filters imply the annihilation of discrete polynomials
in the analysis step or decomposition algorithm, which results in sparse representations of input
data.

Denote
CJ =

1
J !

∑

k∈Z
kJqk. (3.3)

Clearly, if q(ω) does not have vanishing moment order J + 1, then CJ 6= 0. Next we have a result
which can be found in [37] about using a highpass filter for the approximation of the derivative
of a function.

Lemma 2. If an FIR filter q(ω) has vanishing moment order J (not J + 1), then for a function
F (x) smooth enough,

1
CJ

1
εJ

∑

k∈Z
qkF (x+ kε) = F (J)(x) + o(1), (3.4)

1
CJ

(−1)J

εJ

∑

k∈Z
qkF (x− kε) = F (J)(x) + o(1), (3.5)

where CJ is defined by (3.3).

Proof. Using L’Hospital’s Rule repeatedly, we have

lim
ε→0

1
εJ

∑

k∈Z
qkF (x+ kε) = lim

ε→0

1
d
dε(ε

J)
d

dε

(∑

k∈Z
qkF (x+ kε)

)

= lim
ε→0

1
JεJ−1

∑

k∈Z
kqkF

′(x+ kε) = lim
ε→0

1
J d
dε(ε

J−1)
d

dε

(∑

k∈Z
kqkF

′(x+ kε)
)

= · · · = lim
ε→0

1
J !

∑

k∈Z
kJqkF

(J)(x+ kε) =
1
J !

(
∑

k∈Z
kJqk)F (J)(x).

Thus we have (3.4). (3.5) follows from (3.4) with ε replaced by −ε. �

Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of frame filter banks satisfying (2.1).
Assume that q̃(`) and q(`) have vanishing moment orders α` (not α` + 1) and β` (not β` + 1)
respectively. Consider the following nonlinear diffusion equation for u = (x, t):

ut =
L∑

`=1

(−1)1+α`
∂α`

∂xα`

(
g`

(
(
∂β`u

∂xβ`
)2

)
∂β`u

∂xβ`

)
, (3.6)

with f as initial condition:
u(x, 0) = f(x).
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Again, denote u0
k = f(kh), and let ujk denote the approximation to the value u(kh, jτ) of

u(x, t) at (kh, jτ), where h and τ are the spatial step size and the time step size. For the `-th
term in (3.6), we use following formulas to approximate partial derivatives ∂β`u

∂xβ`
and ∂α`

∂xα`G(x, t),

where G(x, t) := g`

(
(∂

β`u
∂xβ`

)2

)
∂β`u
∂xβ`

:

∂β`u

∂xβ`
(kh, jτ) ≈ 1

Cβ`

1
hβ`

∑

n∈Z
q(`)
n u(kh+ nh, jτ) ≈ 1

Cβ`

1
hβ`

∑

n∈Z
q(`)
n ujn+k, (3.7)

∂α`

∂xα`
G(kh, jτ) ≈ (−1)α`

C̃α`

1
hα`

∑

m∈Z
q̃(`)
m G(kh−mh, jτ), (3.8)

where Cβ` and C̃α` are the constants defined by (3.3) with q(`) and q̃(`) respectively. Observe that
(3.7) and (3.8) follow from (3.4) and (3.5) respectively with ε = h.

With (3.7) and (3.8), (3.6) can be discretized as

uj+1
k = ujk+τ

L∑

`=1

(−1)1+α`
(−1)α`

C̃α`

1
hα`

∑

m∈Z
q̃(`)
m g`

(
(

1
Cβ`

1
hβ`

∑

n∈Z
q(`)
n ujn+(k−m))

2

)
(

1
Cβ`

1
hβ`

∑

n∈Z
q(`)
n ujn+(k−m)).

In particular, with ck = u0
k, the above equation for j = 0 is

u1
k = ck − τ

L∑

`=1

1

C̃α`h
α`

∑

m∈Z
q̃(`)
m g`

(
(
√

2
Cβ`h

β`
H

(`)
k−m)2

)
(
√

2
Cβ`h

β`
H

(`)
k−m), (3.9)

where H(`)
m is defined by (2.3).

Comparing (3.2) with (3.9), we have the following result.

Theorem 2. Let uk be the resulting signal in (2.4) after 1-step of frame shrinking of ck =
f(kh), k ∈ Z with undecimated bi-frame filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} and
shrinkage functions S`θ`. Let u1

k in (3.9) be the signal after 1-step diffusing defined above for
diffusion equation (3.6) with u0

k = f(kh), k ∈ Z as the initial input. If

S`θ`(x) = x

(
1− 4τ

C̃α`Cβ`h
α`+β`

g`

(
2x2

(Cβ`)2h2β`

))
, 1 ≤ ` ≤ L, (3.10)

then uk = u1
k for all k.

For the tight frame filter bank, p̃ = p and q̃(`) = q(`). In this case the nonlinear diffusion
equation corresponding to the tight frame shrinking is

ut =
L∑

`=1

(−1)1+β`
∂β`

∂xβ`

(
g`

(
(
∂β`u

∂xβ`
)2

)
∂β`u

∂xβ`

)
, (3.11)

with f as initial condition:
u(x, 0) = f(x).
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For undecimated tight frame filter banks, the formulas used to discretize partial derivatives ∂β`u
∂xβ`

and ∂β`

∂xβ`
G(x, t), for G(x, t) := g`

(
(∂

β`u
∂xβ`

)2

)
∂β`u
∂xβ`

are

∂β`u

∂xβ`
(kh, jτ) ≈ 1

Cβ`h
β`

∑

n∈Z
q(`)
n ujn+k,

∂β`

∂xβ`
G(kh, jτ) ≈ (−1)β`

Cβ`h
β`

∑

m∈Z
q(`)
m G(kh−mh, jτ).

Then u1
k after 1-step diffusing is

u1
k = ck − τ

L∑

`=1

1
Cβ`h

β`

∑

m∈Z
q(`)
m g`

(
(
√

2
Cβ`h

β`
H

(`)
k−m)2

)
(
√

2
Cβ`h

β`
H

(`)
k−m), (3.12)

where H(`)
m is defined by (2.3). Comparing (3.2) with (3.12), we have the following result, which

is a special case of Theorem 2.

Theorem 3. Let uk be the resulting signal in (2.4) after 1-step of frame shrinking of ck =
f(kh), k ∈ Z with an undecimated tight frame filter bank {p, q(1), · · · , q(L)} and shrinkage functions
S`θ`. Let u1

k in (3.12) be the signal after 1-step diffusing defined above for diffusion equation (3.11)
with u0

k = f(kh), k ∈ Z. If

S`θ`(x) = x

(
1− 4τ

(Cβ`)2h2β`
g`

(
2x2

(Cβ`)2h2β`

))
, 1 ≤ ` ≤ L, (3.13)

then uk = u1
k for all k.

Theorem 3 reveals the connection between nonlinear diffusion equations and general undec-
imated tight frame shrinkages. As in Section 2.3, one can show that the nonlinear diffusion
equation (3.11) is related to the Euler-Lagrange equation of a variational functional.

Since bi-frame (tight frame) filter banks are undecimated bi-frame (tight frame) filter banks,
all results above hold true for bi-frame (tight frame) filter banks. Next, let us look at Ron-Shen’s
tight frame filter bank again to illustrate the general theorem.

Example 1. Let {p, q(1), q(2)} be Ron-Shen’s tight frame filter bank defined by (2.5). Then
β1 = 1, Cβ1 = −√2; β2 = 2, Cβ2 = −1

2 . Thus S1
θ1

(x) and S2
θ2

(x) in (3.13) are

S1
θ1(x) = x− 4τ

(Cβ1)2h2
g1

( 2x2

(Cβ1)2h2

)
x = x− 4τ

(−√2)2h2
g1

( 2x2

(−√2)2h2

)
x = x− 2τ

h2
g1(

x2

h2
)x,

S2
θ2(x) = x− 4τ(−1)β2

(Cβ2)2h4
g2

( 2x2

(Cβ2)2h4

)
x = x− 4τ(−1)2

(−1
2)2h4

g2

( 2x2

(−1
2)2h4

)
x = x− 16τ

h4
g2(

8x2

h4
)x.

Therefore relationship (3.13) of the diffusivity and shrinkage functions for this tight frame bank
coincides with that in (2.11) with θ1 = θ, θ2 = σ.
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4 More high-order nonlinear diffusion equations

In this section we construct two sets of tight frame filter banks which result in the 6th- and
8th-order nonlinear diffusion equations. In the following, denote

z = e−iω.

4.1 Sixth-order nonlinear diffusion equation

In this subsection we construct a tight frame filter bank with three highpass filters q(`), 1 ≤ ` ≤ 3.
q(`) has vanishing moment order `, and it is symmetric or antisymmetric around the origin, namely,
q(`)(−ω) = q(`)(ω) or q(`)(−ω) = −q(`)(ω). We consider the filters that are supported on [−2, 2].
That is the coefficients q(`)

k = 0 if |k| > 2.
First let us look at q(3). If it has vanishing moment order 3, and it is antisymmetric around

the origin and supported on [−2, 2], then it can be written as

q(3)(ω) =
1
2
e0(−1

2
z−2 + z−1 − z +

1
2
z2), (4.1)

for some e0 ∈ R. The formula in Lemma 2 for the 3rd derivative L(3)(x) of a function L(x) related
to such a q(3)(ω) is

L(3)(x0) =
1
ε3

(
− L(x0 − 2ε) + 2L(x0 − ε)− 2L(x0 + ε) + L(x0 + 2ε)

)
+O(ε2). (4.2)

Next we consider q(1)(ω) and q(2)(ω). We choose q(1)(ω) to be the filter given by

q(1)(ω) =
1
2
c0

12
(z−2 − 8z−1 + 8z − z2), (4.3)

where c0 ∈ R. The reason for such a choice of q(1) is that the corresponding formula for the
derivative L′(x) of a function L(x) is the so-called five-point formula (see e.g. [2]):

L′(x0) =
1

12ε

(
L(x0 − 2ε)− 8L(x0 − ε) + 8L(x0 + ε)− L(x0 + 2ε)

)
+O(ε4). (4.4)

For q(2)(ω), we hope that the corresponding formula for the derivative L′′(x) is similar to the
five-point formula for L′(x):

L′′(x0) =
1

12ε2

(
−L(x0−2ε)+16L(x0−ε)−30L(x0)+16L(x0 +ε)−L(x0 +2ε)

)
+O(ε4). (4.5)

q(2)(ω) corresponding to the formula (4.5) is given by

q(2)(ω) =
1
2
d0

12
(−z−2 + 16z−1 − 30 + 16z − z2), (4.6)

where d0 ∈ R. Let p(ω) be the lowpass filter given

p(ω) =
1
2

(b0z−2 +
1
2
z−1 + 1− 2b0 +

1
2
z + b0z

2), (4.7)
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where b0 ∈ R.
For p, q(1), q(2) and q(3) given by (4.7), (4.3), (4.6) and (4.1), we find that we are unable to

choose b0, c0, d0, e0 such that p, q(1), q(2) and q(3) form a tight frame filter bank with the resulting
scaling function being in L2(R). Because of this we consider q(2)(ω) given by

q(2)(ω) =
1
2

d0

a0 − 2
(−z−2 + (a0 + 2)z−1 − 2a0 − 2 + (a0 + 2)z − z2), (4.8)

where d0, a0 ∈ R, a0 6= 2. The corresponding formula for the 2nd derivative L′′(x) of a function
L(x) is

L′′(x0) =
1

(a0 − 2)ε2

(
− L(x0 − 2ε) + (a0 + 2)L(x0 − ε)− (2a0 + 2)L(x0) (4.9)

+(a0 + 2)L(x0 + ε)− L(x0 + 2ε)
)

+O(ε2).

Then we can choose a0, b0, c0, d0, e0 such that the resulting scaling function is in L2(R). More
precisely, if

b0 =
3
√

2− 14
178

, c0 =
√

2 + 16b0, d0 =
7 + 104b0

6
, e0 =

√−14− 256b0
6

, a0 =
233 + 2314b0

21
,

then φ is W 1.20414(R) and p, q(1), q(2), q(3) form a tight frame filter bank. The corresponding
nonlinear diffusion equation is

ut =
∂

∂x

(
g1

(
(
∂u

∂x
)2

)
∂u

∂x

)
− ∂2

∂x2

(
g2

(
(
∂2u

∂x2
)2

)
∂2u

∂x2

)
+

∂3

∂x3

(
g3

(
(
∂3u

∂x3
)2

)
∂3u

∂x3

)
. (4.10)

In the above paragraph and also in the next subsection, for s > 0, W s(R) denotes the Sobolev
space which consists of all functions f on R satisfying

∫
R(1 + |ω|2)s|f̂(ω)|2dω < ∞, where f̂(ω)

denotes the Fourier transform of f(x). The Sobolev exponent of a compactly supported scaling
function φ can be characterized by the eigenvalues of the transition operator associated with the
refinement mask of φ. The reader is referred to [17, 34, 19] for the characterization, and to [20]
for the Matlab routines about calculating the Sobolev smoothness of φ.

For q(1), q(2) and q(3) given by (4.3), (4.8) and (4.1) respectively, one can calculate directly
that their vanishing moment orders βj and the corresponding Cβj defined by (3.3) are

β1 = 1, Cβ1 = c0; β2 = 2, Cβ2 = d0; β3 = 3, Cβ3 = e0.

Thus, the relationship between S`θ` and g` in Theorem 3 is given by

S1
θ1(x) = x

(
1− 4τ

c2
0h

2
g1(

2x2

c2
0h

2
)
)
, S2

θ2(x) = x

(
1− 4τ

d2
0h

4
g2(

2x2

d2
0h

4
)
)
, S3

θ3(x) = x

(
1− 4τ

e2
0h

6
g3(

2x2

e2
0h

6
)
)
,

(4.11)
where h and τ are the spatial step size and the time step size respectively.

In conclusion, with the relationship in (4.11) for the diffusivity and shrinkage functions, the
signal resulted from iterated denoising with p, q(1), q(2) and q(3) of the tight frame filter bank given
by (4.7), (4.3), (4.8) and (4.1) respectively and that resulted from diffusion governed by equation
(4.10) with the discretization of the 1st, 2nd and 3rd partial derivatives given by (4.4), (4.9) and
(4.2) respectively are the same.
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4.2 Eighth-order nonlinear diffusion equation

In this subsection, we construct a tight frame filter bank with four symmetric/antisymmetric
highpass filters q(`), 1 ≤ ` ≤ 4. q(`) has vanishing moment order `, and all the filters constructed
are supported on [−2, 2]. This filter bank results in a 8th-order nonlinear diffusion equation.

Let p, q(1), q(2) and q(3) be the filters given by (4.7), (4.3), (4.6) and (4.1) respectively. We
construct the 4th highpass q(4) to have vanishing moment order 4 and to be symmetric around
the origin. Then q(4) is given by

q(4)(ω) =
1
2
f0(z−2 − 4z−1 + 6− 4z + z2), (4.12)

where f0 ∈ R. The corresponding formula for the 4th-order derivative L(4) of a function L(x) is

L(4)(x0) =
1
ε4

(
L(x0 − 2ε)− 4L(x0 − ε) + 6L(x0)− 4L(x0 + ε) + L(x0 + 2ε)

)
+O(ε2). (4.13)

If we choose

b0 =
√

7057− 95
192

, c0 =
√

2 + 16b0, d0 =
√

7 + 104b0
4

, e0 =
√−14− 256b0

6
, f0 =

589 + 624b0
54

,

then φ is in the Sobolev space W 1.19195(R), and {p, q(1), q(2), q(3)} is a tight frame filter bank. The
corresponding nonlinear diffusion equation is

ut =
∂

∂x

(
g1

(
(
∂u

∂x
)2

)
∂u

∂x

)
− ∂2

∂x2

(
g2

(
(
∂2u

∂x2
)2

)
∂2u

∂x2

)
(4.14)

+
∂3

∂x3

(
g3

(
(
∂3u

∂x3
)2

)
∂3u

∂x3

)
− ∂4

∂x4

(
g4

(
(
∂4u

∂x4
)2

)
∂4u

∂x4

)
.

For q(1), q(2), q(3) and q(4) given by (4.3), (4.6), (4.1) and (4.12), one can calculate directly that
their vanishing moment orders βj and the corresponding Cβj defined by (3.3) are

β1 = 1, Cβ1 = c0; β2 = 2, Cβ2 = d0; β3 = 3, Cβ3 = e0; β4 = 4, Cβ4 = f0.

Thus the relationship between S`θ` and g` in Theorem 3 is given by

S1
θ1(x) = x

(
1− 4τ

c2
0h

2
g1(

2x2

c2
0h

2
)
)
, S2

θ2(x) = x

(
1− 4τ

d2
0h

4
g2(

2x2

d2
0h

4
)
)
,

S3
θ3(x) = x

(
1− 4τ

e2
0h

6
g3(

2x2

e2
0h

6
)
)
, S4

θ4(x) = x

(
1− 4τ

f2
0h

8
g4(

2x2

f2
0h

8
)
)
.

With such a relation among the diffusivity and shrinkage functions, the signal resulted from
iterated denoising with the tight frame filter bank given by (4.7), (4.3), (4.6), (4.1) and (4.12)
and that resulted from diffusion governed by equation (4.14) with the discretization of the 1st to
4th partial derivatives given by (4.4), (4.5), (4.2), (4.13) are the same.

The reader is referred to [12] for a tight frame filter bank consisting of 4 highpass filters
q(`), 1 ≤ ` ≤ 4 with q(`) having vanishing moment order `. Its corresponding scaling function is
the C2 cubic spline supported on [−2, 2]; and its first two highpass filters q(1), q(2) are different from
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these given above (they cannot result in five-point formulas (4.4)(4.5) for the 1st- and 2nd-order
derivatives), while up to constants, q(3) and q(4) are the filters given in (4.1) and (4.12).

Remark 1. In this section we construct two sets of tight frame filter banks which result in
the 6th- and 8th-order nonlinear diffusion equations. If we consider undecimated tight frame filter
banks, then we will have more flexibility for the construction which will result in smoother scaling
functions. The details related to such construction are omitted here.

5 Experimental results

We carried out various experiments of signal denoising based on Ron-Shen’s tight frame filter bank
with different shrinkage functions. The overall performances of the diffusion-inspired shrinking
(except for the one from TV diffusivity) are comparable with hard and soft threshold denoising.
Actually, they perform slightly better. Here we provide experimental results with two “toy”
signals, denoted as S1 and S2.

For S1, which is shown on the top-left of Fig. 1, five noised signals are generated by adding
zero-mean Gaussian noise five times to the original signal S1. Each noised signal has signal-to-
noise ratio (SNR)=6. SNR is defined as

SNR = 20(log10 |s− s|2 − log10 |n|2),

where s is the ideal signal and s is the mean of s, and n is the noise. We apply 1-level Ron-
Shen’s frame shrinking iteratively 50 times to each noised signal. We provide in Table 1 the
SNRs of the denoised signals with different shrinkage functions. The SNR for each case in Table
1 is the average of the SNRs of the denoised signals of the five noised signals mentioned above.
When we apply the Perona-Malik (denoted as P−M) diffusivity function, we choose h = 1, τ = 1

4 .
We choose c1 = 1 when Perona-Malik diffusivity-based S1

θ given in (2.13) is applied to the first
highpass output H(1)

n while we set c2 = 1
8 when Perona-Malik diffusivity-based S2

σ in (2.13) is
applied to the second highpass output H(2)

n . We set h = 1, τ = 1
4 when Weickert diffusivity-based

S1
θ defined by (2.15) is applied to the first highpass output H(1)

n , while we use h = 1, τ = 1
16

when Weickert diffusivity-based S2
σ in (2.16) is applied to the second highpass output H(2)

n . The
parameters θ and σ are selected such that SNRs of the denoised signals are as big as possible. The
TV diffusivity-based S1

θ , S
2
σ defined by (2.14) are independent of the parameters. Here we choose

a smaller τ with τ = 1
32 . From Table 1, we know for S1, Perona-Malik diffusivity-inspired and

Weickert diffusivity-inspired shrinkages perform slightly better than hard and soft shrinkages.

Shrinkage S1
θ=P−M S1

θ=Weickert S1
θ=Hard S1

θ=Soft S1
θ=P−M S1

θ=Weickert S1
θ=TV

Method S2
σ=P−M S2

σ=Weickert S2
σ=Hard S2

σ=Soft S2
σ=Weickert S2

σ=P−M S2
σ=TV

SNR (for S1) 18.0560 18.0643 17.4083 17.8367 18.0589 18.0539 16.2321
SNR (for S2) 26.1805 25.6973 24.4256 24.4167 26.3698 25.6202 16.2660

Table 1: Signal denoising results with different shrinkage functions

The second signal S2 we consider is shown on the top-left of Fig. 2. Again five noised signals
are generated by adding zero-mean Gaussian noise five times to S2. In this case each noised signal
has SNR=16 and we apply Ron-Shen’s frame shrinking iteratively 100 times to each noised signal

17



0 50 100 150 200 250 300 350 400 450 500

−3

−2

−1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

4

Figure 1: Top-left: Original signal S1; Top-right: Noised signal with SNR=6; Bottom-left: Denoised signal
with Perona-Malik shrinkage; Bottom-right: Denoised signal with Weickert shrinkage

(still 50 times for TV diffusivity-inspired shrinking). The constant c1, c2 and τ are chosen as
above. The SNRs of the denoised signals with different shrinkage functions are provided also in
Table 1. Again, for each case, the SNR for S2 in Table 1 is the average of the SNRs of the denoised
signals of five noised signals. This example also shows that Perona-Malik diffusivity-inspired and
Weickert diffusivity-inspired shrinkages perform better than hard and soft shrinkages.

6 Conclusion and future work

In this paper we establish the correspondence between frame shrinkage functions and the diffusiv-
ity functions of certain high-order nonlinear diffusion equations. We start with the frame shrinkage
based on a Ron-Shen’s continuous-linear-spline-based tight frame filter bank and obtain a 4th-
order nonlinear diffusion equation associated with this filter bank. After that we derive high-order
nonlinear diffusion equations associated with general tight frame filter banks. These high-order
nonlinear diffusion equations are different from the high-order diffusion equations studied in the
literature. In addition, we construct two sets of tight frame filter banks which result in the 6th-
and 8th-order nonlinear diffusion equations. We also present signal denoising experiments with
various shrinkage functions including diffusivity-inspired shrinkage functions.

The study of relationship between the frame shrinkage and diffusion filtering leads to a new
type of diffusion equations. The derived relationship is useful to design diffusion-inspired shrinkage
functions with competitive performance. On the other hand, the relationship is helpful to design
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Figure 2: Top-left: Original signal S2; Top-right: Noised signal with SNR=16; Bottom-left: Denoised
signal with Perona-Malik shrinkage; Bottom-right: Denoised signal with Weickert shrinkage

frame-inspired diffusivity functions.
In this paper we consider frame shrinkage and diffusion filtering correspondence in the 1-D

case. Our future work will include the study of the correspondence between 2-D frame shrinkage
and diffusion filtering, the design of competitive diffusion-inspired shrinkage functions for image
denoising and the construction of tight frame filter banks which result in nonlinear diffusion
equations with good performances in image noise removal.
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