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On the design of multifilter banks and orthonormal
multiwavelet bases

Qingtang Jiang

Abstract— Several forms of parametric expressions for or-
thogonal multifilter banks are presented. The explicit ex-
pressions for a group of orthogonal multifilter banks which
generate symmetric/antisymmetric scaling functions and or-
thonormal multiwavelets are obtained. Based on these
parametric expressions for orthogonal multifilter banks, or-
thonormal multiwavelet pairs with good time—frequency lo-
calization are constructed and examples of optimal multifil-
ter banks are provided.
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I. INTRODUCTION

Recently, the construction of multiwavelets is an area
of active research (see [7], [26], [17], [2], [5], [4], [18],
[13], and [15]). A set of functions ¢1,---,%, € L*(R)
are called orthonormal multiwavelets of multiplicity r if
¥1(29x — k), ,0.(29x — k), 5,k € Z, form an orthonor-
mal basis of L2(R). Multiwavelet construction is associ-
ated with multiresolution analysis (MRA) of multiplicity
r (see [8]). More precisely, an MRA of multiplicity r is a
nested sequence of closed subspaces (V;) in L?(R) satisfy-
1ng the followmg conditions: (1°) V; C Vji1,5 € Z; (2°)
{0} U ‘ez Vj is dense in LQ(R); 3) fev,e
f(] E VJ+1, ) There exist r functions ¢1,---, @, such
that {¢;(- — k) : 1 < j < r,k € Z} is a Riesz basis of
Vo- Such functions ¢1,-- -, ¢, are called scaling functions
and they are said to generate the MRA (Vj). If there is
a set of compactly supported scaling functions whose inte-
ger translates form an orthonormal basis of Vp, then (V)
is called an orthonormal MRA. For an orthonormal MRA
(V;), let W; := Vj 1 ©Vj, the orthogonal complement of V;
in Vj41. Then Conditions (1°) and (2°) imply that W; LW}
forj#kand ), ,0W; = L?(R). If there exist functions
¥1,-- -, such that the integer translates of them form
an orthonormal basis of Wy, then 94, --,1, are a set of
orthonormal multiwavelets.

For a set of functions fi,---, f. in L?(R), write F =
(fi,--+, f-)T, where throughout the paper, BT denotes the
transpose of the matrix B. We shall say that F is orthonor-
mal if the integer translates of f1,---, fr form an orthonor-
mal basis of their closed linear span in L?(R), and that
F is a scaling function (an orthonormal multiwavelet) if
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fi,---, fr are a set of scaling functions (a set of orthonor-
mal multiwavelets).

If ® = (¢1,---,¢r)T is a scaling function, then Condi-
tions (1°), (3°) and (4°) imply that there exist 7 Xr matrices
H;, such that

O(x) =2 Hp®(2z — k). (1)
keZ

Let H denote the matrix frequency response for {Hy} de-
fined by H(w) := >, Hre . Then in the frequency
domain, the functional equation (1) can be written as
d(w) = H(w/2)d(w/2).

Assume that {Hj} is a finitely supported r x r ma-
trix sequence, and let H denote the corresponding ma-
trix frequency response. If there exists a compactly sup-
ported solution & of the equation (1) such that ® gen-
erates an orthonormal MRA (V;), we say that H gen-
erates the orthonormal scaling function ®. In this case,
®(w) = limp 00 P (w), where @, is defined by
w

Bo(w) = H(S) - H(

sin(w/2"+1)
w/2n+l

—z'w/2"+1

Vo (2)
and vy is the normalized right 1-eigenvector of H(0) (see
, [16]). Let {G} be another finitely supported r x r
matrix sequence, and let ¥ = (¢1,---,,)? be the vector—
valued function defined by ¥(z) := 2} ,., Gr®(22 — k),
or equivalently, ¥(w) = G(w/2)®(w/2), where G(w) :=
Y kez Gre @ If  is a compactly supported orthonor-
mal multiwavelet, we say that {H, G} generates the or-
thonormal multiwavelet ¥ (or {H, G} generates an or-
thonormal multiwavelet basis). The pair {H, G} is called
a multiwavelet filter bank (often abbreviated multifilter
bank), and H (G respectively) is called a matriz low-pass
filter (matriz high—pass filter respectively). For a multifil-
ter bank {H, G}, it is said to be causal if Hy, = 0,Gy, =
0,k < 0. It is said to be a finite impulse response (FIR)
multifilter bank if there exists an integer N such that
H;, = 0,G, = 0,|k] < N. Let H,,,(w) denote the mod-
ulation matrix of an FIR multifilter bank {H, G} defined
by
Hw) Hw+mn
Hpn(w) = Ggwg GEw —|—7rg (3)
It was shown in [8] (see also [7]) that if {H, G} generates

an orthogonal multiwavelet, then H,,(w) is lossless (or pa-
raunitary), i.e., H,,(w) is unitary for all w

H(w)H*(w) + Hw + 7)H*(w + 7) =L,

Hw)G*(w)+ H(w+7)G*(w+7) =0,,
G(w)G*(w)+ Gw+m)G*(w+m) =1,.

(4)
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Throughout this paper, B* denotes the Hermitian adjoint
of the matrix B, and I, and 0, denote the r x r iden-
tity matrix and zero matrix respectively. We also let 0;x
denote the [ by k zero matrix, and we would drop the sub-
script [ x k when it does not cause any confusion. If the
multifilter bank {H, G} satisfies (4), we say that {H, G} is
orthogonal. Condition (4) is necessary for {H, G} to gen-
erate an orthonormal multiwavelet. Indeed, assume that
supp{H;} C [0, N] for a positive integer N, i.e., Hy = 0 if
k< O0or k> N. Then {H,G} generates an orthonormal
multiwavelet basis if and only if {H, G} satisfies (4) and
the matrix 7y defined by

Ta = (2A2i—j)1-N<ij<N-1, (5)
where A; is the r2 xr2 matrix given by A;j := S0 H,_;®
H,, satisfies Conditions E (see [23] and [13]). For two
matrices B = (b;;) and C = (¢;5), B® C := (b;;C) denotes
the Kronecker product of B and C; and for a matrix D,
we say that D satisfies Condition E if the spectral radius
of D is 1, 1 is the unique eigenvalue of D on the unit circle
and it is a simple eigenvalue.

The first example of orthonormal multiwavelets was con-
structed in [7] and [5], and more examples were provided
in [26], [2], [4]. In [13], a group of orthonormal scaling
functions and orthonormal multiwavelets with good reg-
ularity and better time—frequency localization were con-
structed. However, up to now, there is still no systematic
method to construct orthonormal multiwavelets. In this
paper, we provide a method to construct orthonormal mul-
tiwavelets based on the lattice structures for M x M causal
FIR lossless systems. The elegant factorization theory for
M x M FIR lossless systems was begun by Belevitch and
completed by Vaidyanathan et al, and it plays a funda-
mental role in developing filter banks with desirable prop-
erties (see [29], [28] and references therein). (As for the
relation between scalar wavelets and filter banks, see e.g.,
[1], [9], [24], [25], and [30].) By the factorization theory,
we will give parametric expressions for orthogonal causal
FIR multifilter banks. With such explicit expressions at
hand, the scaling functions and orthonormal multiwavelets
with various properties can be constructed. Symmetry and
time-frequency localization of scaling functions and multi-
wavelets will also be discussed in this paper.

This paper is organized as follows. In Section II, we give
several forms of the parametric expressions for orthogonal
causal FIR multifilter banks based on the lattice structures
for M x M causal FIR lossless systems. In Section III, we
derive the parametric expressions for a group of orthogo-
nal causal FIR multifilter banks which generate symmet-
ric/antisymmetric scaling functions and orthonormal mul-
tiwavelets. In Section IV, we discuss the time—frequency
resolution of the scaling functions and multiwavelets, and
construct the orthonormal multiwavelet pairs with opti-
mum time—frequency resolution. The conclusions are given
in Section V. The proofs of some lemmas and propositions
are presented in Appendix A, and some optimal filters are
provided in Appendix B.

Scaling functions, orthonormal multiwavelets, and the
filter coefficients of the multifilter banks discussed in this
paper are real. In this paper, we let R™ denote the n—
dimensional Euclidean space (let R denote R!, the set of
all real numbers), let S"~! denote the unit sphere in R™,
ie, S"ti={x= (21, --,7,)T € R": xTx = 1}, and let
T denote S!, the unit circle. In the following, we also let
T denote the interval [0,27). We use O(n) to denote the
set of all n x n real matrices B with BBT =1,,.

II. PARAMETRIZATION OF ORTHOGONAL CAUSAL FIR
MULTIFILTER BANKS

Let {H, G} be a causal FIR multifilter bank. Write

H(w) — Z H2ke—i2kw + (Z H2k+le—i2kw)e—iw
= Ego(2w) + Eq1(2w)e™ ™,
G(w) — Z G2k67i2kw + (Z G2k+167i2kw)67iw

= E10(2w) + E11(2w)e_iw.

Then the polyphase matrix E,(w) of the multifilter bank
{H, G} is given by

Eqo(w)

Fp(w) = [ Eio(w) Eno) ] '

En(w)

Let H,,(w) denote the modulation matrix of H, G defined
by (3) and Us,(w) denote the unitary matrix defined by

Uy (w) := V2 [

L L,
2 .

e~ W, —e W[,

Then the polyphase matrix and modulation matrix of H, G
have the following relation

H,,(w) = V2E,(2w) Us, (w).

Since Usg,(w) is unitary for any w € T, H,,(w)*H,,(w) =
I, if and only if

(V2E,(2w))*V2E,(2w) = L,,, we€T.

Thus the causal FIR multifilter bank {H, G} is orthogonal
if and only if v/2E,(w) is causal and lossless. If v2E,(w)
is causal and lossless, then it can be factorized as (see e.g.,
[9]; [25], [28], and [29])

VIE, (@) = V4 (2) Vo1 (2) - Vi (2) U,

z=e",

where + is the (McMillan) degree of v/2E,(w), Ug € O(2r)
and
Vi(2) i=Iop + (27 = Dvivy, vieeS*™ ' (6)

Thus, by its definition, {H, G} is factorized as

|60 | = [
= gvv(f)vv_l(f)---Vl(zQ)Uo [ z_IIIT ] (7)
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where 2z = .

Theorem 1: If {H, G} is a causal FIR multifilter bank
which generates an orthonormal multiwavelet basis, then
there exist vectors vy, - -+, vy € $2" ' and Uy € O(2r) such
that {H, G} is given by (7), and the matrix 7y associated
to H satisfies Condition E. Conversely, for any positive
integer v, vectors vq,---,v, € S~ and Uy € O(2r), if
{H, G} is the causal FIR multifilter bank defined by (7),
then {H, G} is orthogonal. Furthermore, if 7y satisfies
Condition E, then the multifilter bank {H, G} generates
an orthonormal multiwavelet basis.

Recall that a matrix A is called a projection matrix if
A is real and satisfies AT = A,A%2 = A. For 2r x 2r
projection matrices Ay, define

Vk(z) =1y, + (Z_l — l)Ak (8)

Then Vi(2)Vi(z~1)T = I, and we have the following
proposition.

Proposition 1: For any positive integer ~y, projection ma-
trices Aq,---,A, and Uy € O(2r), if {H,G} is the FIR
multifilter bank given by (7) with V(z) defined by (8),
then {H, G} is orthogonal. Furthermore, if 7y satisfies
Condition E, then {H, G} generates an orthonormal mul-
tiwavelet basis.

For a projection matrix Ay, if rank(A;) = 1, then
Ay = vivE, v € S7! and Vi(z) defined by (8) is ex-
actly the one defined by (6). In the construction of or-
thonormal multiwavelets, we shall also consider the case
rank(Ay) > 1. This is because there will be more free
parameters available to construct scaling functions and or-
thonormal multiwavelets with small supports.

Assume that the matrix filter H generates an orthonor-
mal scaling function ®. Then H(0) satisfies Condition E
and H satisfies the vanishing moment conditions of order
at least one, i.e., there exists a vector v € S™! such that
(see [3] and [16])

vIH() =vT, vIH(r)=0. (9)

By H(w)®(w) = </I;(2w) and </I;(0) # 0 (otherwise ® is a zero
function), </I\>(O) is a right 1—eigenvector of H(0). In fact,
we have the following proposition.

Proposition 2: If H generates an orthonormal scaling
function @, then ®(0) is a normalized right and left 1-
eigenvector of H(0), and &(0)TH(r) = 0.

In Proposition 2 and throughout this paper, a vector v
is called a right and left eigenvector of a matrix B if v (v¥
respectively) is a right (left respectively) eigenvector of B.
The proof of Proposition 2 is provided in Appendix A.

In the next theorem, we will give another form of fac-
torization for an orthogonal causal FIR multifilter bank
{H, G} with H satisfying (9) taken into account. For this,
we recall in the following that any vector x € S"~! can be

given by the operations of rotations on e; := (1,0,---,0)7.
Indeed, for x = (z1,22,---,2,)7 € 7! C R", x can be
written as

Ty =CoSqy, Ty =sinogcosas, ---,

T, 1 =sinay---sina, _scosa,_1,
T, =sinaqi - -sina,_9sina,_1,

where a,—1 € T,0 < ap, < 7,0 <k <r—2. Let R(a) €
O(2) denote the rotation by an angle « in the (z2,z1)—
plane:

cos
sin &

(10)

COoS &

R(a) := [

For 1 < k <, let Ri(a) € O(r) denote the rotation by an
angle « in the (zg41,zr)-plane, ie.,

Rk (a) = diag(Ik_l, R(a), Ir—k—l)-

—sin o ]

Denote
R(T)(ala te ;ar—l) = Rr—l(ar—l) s R1(041)-

Then R (ay,---,a,_1) € O(r) since Ry(ag) € O(r).
One can check that x = R(T)(al, S ap_t)er.

For any matrices uj,us € O(r) and multifilter bank
{H, G}, define

T T
H1 = lllHlll , G1 = 112G111 -

Then {H, G} is orthogonal if and only if {H;,G1} is or-
thogonal; and {H, G} generates a scaling function & and
an orthonormal multiwavelet ¥ if and only if {H;, G1} gen-
erates the scaling function ®; and the orthonormal multi-
wavelet \I’l, where @1 = u1<I>, \I’l = 11211’.

Assume that {H;,G;} is an orthogonal FIR multifilter
bank generating a scaling function ®; and an orthonormal
multiwavelet ¥; with ®,(0) = e;. For any v € S"~!, there
exist a,_1 € T,0 < o, < 7,0 < k < r — 2, such that
v =R (a,---,a, 1)e1. Define for U € O(r),

H(w) = R(T)(ala T Janl)Hl(w)R(r)(ala ToT ,Oz,.,l)T,
{ G(w) = UG (w)RM(ay, -+, ap1)T.
(11)

Then {H, G} is an orthogonal FIR multifilter bank gener-
ating a scaling function ® and an orthonormal multiwavelet
¥ with ®(0) = R (ay,---,a, 1)®1(0) = v. Conversely,
suppose that {H, G} is an orthogonal FIR multifilter bank
generating a scaling function ¢ and an orthonormal mul-
tiwavelet ¥. Then by Proposition 2, ®(0) € S™!, and
therefore there exist a,_1 € T,0 < o < T, 0 <k <r—2
such that </IS(O) =R (ay, -+, 0a,_1)e;. Define {H,G1}
by

Hl(w) = R(T) (ala Tt ar—l)TH(w)R(r) (Oél, Tt aar—l);
Gi(w) =UTGW)R (g, -, ar_1),

where U € O(r). Then {H;,G;} is also orthogonal and
generates a scalin/g function ®; and an orthonormal multi-
wavelet ¥y with ®,(0) = e;. Thus to factorize the orthog-
onal causal FIR multifilter bank {H, G}, we need only to
factorize its corresponding orthogonal causal FIR multifil-
ter bank {H;,G1}, where H; generates an orthonormal
scaling function ®; with C/I;I(O) = e;. In this case, e; is a
right and left 1-eigenvector of H;(0) with e Hy(7) = 0.
By e{Hl(O)Gl(O)* +e1TH1(7r)G1(7r)* =0, e{Gl(O)T =0,
i.e., G1(0)e; = 0. Let H,,(w) denote the modulation ma-
trix of Hy, G;. Then
T1 o0
I-o o]

_ | H1(0)
| G1(0)

H; ()

H,,(0) G ()

(12)
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for some 2r—1 by 2r—1 real matrix U;. Thus the polyphase
matrix E,(w) of H;, Gy satisfies

5o =m0 F 5|

171 o0 L I,
ER I
Since the causal FIR multifilter bank {H;,G:} is or-
thogonal, v/2E,(w) is causal and lossless. Hence Uj is
also orthogonal, i.e., Uy € O(2r — 1). Let v2E,(w) =
V., (2)V,_1(2) -+ Vi(2)Ug,z = €, be the lattice struc-
ture for v/2E,(w), where V(2) are defined by (8) and
Uy € O(2r). Note that V(1) = I,. Thus

V21 0 I, I,
2 0 Ul Ir _Ir '

T2

Uy = ﬁEP(O) =

Hence we have

[ 218 ] = %V7(22)V~,,1(z2)...vl(z2)
oo [T S e o9

where z = €™,V (2) are defined by (8) with projection
matrices Ay, and U; € O(2r — 1). The preceding discus-
sions lead to the following theorem.

Theorem 2: If {H, G} is a causal FIR multifilter bank
generating an orthonormal multiwavelet basis, then there
exist a1, -, -1, 0 < @1, -, Qr_o < 7, ar_1 € T, pro-
jection matrices Ay,---,A,, Uy € O(2r—1)and U € O(r)
such that {H, G} is given by (11) with {Hy, G1} given by
(13), and the matrix 7Tg, associated to H; satisfies Con-
dition E. Conversely, for any a1, ---,a,_1 € R, projec-
tion matrices Aq,---, A, and Uy € O(2r — 1), if {Hy, G}
is the multifilter bank defined by (13) and {H, G} is de-
fined by (11) for some U € O(r), then the FIR multifilter
bank {H, G} is orthogonal. Furthermore, if Ty, satisfies
Condition E, then {H, G} generates an orthonormal mul-
tiwavelet basis.

Regarding the matrices Uy € O(2r) in Theorem 1,
Proposition 1, and U; € O(2r — 1) in Theorem 2, they can
be given in terms of parameters such as Euler angles (see
[31]) or Givens rotations (see [28]). Therefore Theorem 1,
Proposition 1, and Theorem 2 give parametric expressions
for orthogonal causal FIR multifilter banks. Comparing
to Proposition 1, the expressions in Theorem 2 have some
advantages. Flrstly if we want to design the scaling func-
tion ® such that ®(0) is a desirable value, we need only
choose appropriate parameters oy in (11). Secondly, the
scaling function ® and orthonormal multiwavelet ¥ gener-
ated by {H,G} and ®;, ¥; generated by {H;, G} have
the same approximation and smoothness properties, but
dim(O(2r)) — —dim(O(2r — 1)) = 2r — 1. Thus by Theo-
rem 2, we use less free parameters to construct ®;, ¥; that
have the same approximation and smoothness properties as
®, ¥ constructed by Proposition 1.

Usually the support lengths of the scaling functions and
orthonormal multiwavelets constructed with (11) and (13)
are odd integers. If we want to construct scaling functions
and orthonormal multiwavelets with support lengths be-
ing even integers using (11) and (13), we would choose a
projection matrix A in (8) that satisfies

. I
A;diag(1,Uy) [ 1 ] = 02 xr- (14)

The next lemma characterizes the matrix A; that satisfies
(14).

Lemma 1: Assume that A; is a 2r X 2r matrix with
rank(A1) = s. Then A, is a projection matrix and sat-
isfies (14) for some Uy € O(2r — 1) if and only if s < r
and

A= %diag(l,Ul) [ g ] [BT B7]diag(1,UT) (15)

for some 7 x s real matrix B with BTB = I,.
The proof of Lemma 1 is given in Appendix A.
If Ay is given by (15), then

oHi(w) | _ 1
[ 1Gi(v) ] =5 (L (27 = DA1) -
(

[omH:H e

- Lot Ul)([ ] (I - BBT) +

I —iw L

[ 1, ]e + -1,

Thus to construct scaling functions and orthonormal mul-
tiwavelets with even integer support lengths, we will use

the following parametric expressions for orthogonal causal
FIR multifilter banks:

] BB”e™%¥). (16)

Hi(w) | _ 2 2y ... oy [ 2Hi(w)
e | v v 28 ](, i
1
where z = €™, V,(z) are given by (8) with projection

matrices Ay, {3H1,2G1} is defined by (16) with U; €
O(2r — 1) and 7 x s matrix B satisfying BBT =1, s < r.
For the rest of this section, we will consider the case
r = 2 in greater details. In this case, R®(a;) = R(a1),
{H, G} and {Hy, G1} are related by
H(w) = R(a1)Hi(w)R(a1)", G(w) = R(az)Hl(w)R(O(él):;,
18
where a1, € T, and Uy in (13) and (16) is a 3 x 3
orthogonal matrix. The matrix U; € O(3) can be given by
Euler angles or Given rotations (see [28] and [31]), but here
we will not write down its parametric expression. For the
projection matrix Ay in (8), if rank(Ag) = 1, then Ay =
vkva,vk € S3; if rank(Ay) =3, A, =14 —vkv,{,vk €53
and if rank(Aj) = 2, Ay can be written as

A = R®(ay, s, a3)diag(1, wkw,{)R(‘l) (a1, a0, 3)7,
(19)
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where wy, = (cos au, sin ay €oS a5, Sin ay sin a5)T € S? with
aj,az, a4 €T,0 < ag,as <.
In the case r = 2, B in (16) is [ cos o
sin g
with g € T. Thus to construct scaling functions and or-
thonormal wavelets of multiplicity 2, we will use the ex-
plicit expressions (13) and (17) with z = e, U; € O(3),
Vk(z) =14+ (271 — l)Ak, A, = vkva,vk € 53, or Ay

. | cosag
given by (19), and B = [ sin a

] [cos ayg), sin ay)

] [cos ay, sin ] in (16).

ITI. SYMMETRIC/ANTISYMMETRIC ORTHONORMAL
MULTIWAVELETS

In this section, we will consider causal FIR multifilter
banks which generate orthonormal scaling functions ® and
orthonormal multiwavelets ¥ with symmetry. Here we dis-
cuss the case r = 2, and consider the situation where
the first components of ® and ¥ are symmetric, while
the second components are antisymmetric. For a function
f = (f1,f2)T, we say that f is symmetric/antisymmetric
about a center of symmetry ¢ € R if fi (f2 respectively)
is symmetric (antisymmetric respectively) about the center
co- If ® is symmetric/antisymmetric, then 3(0) = (1,07,
and thus we choose R (o), R (az) in (18) to be I,.
Hence H = Hy, G = Gy and they are given by (13) or (17)
with r = 2.

Denote

So :=diag(1,-1), Sp := diag(So,So)-

Let {vH, yG} with yH(w) = S5 Hre ™, yG(w) =
S, Gre~* be an orthogonal FIR multifilter bank. In
order that the corresponding scaling function y® and or-
thonormal multiwavelet y ¥ are symmetric/antisymmetric
about the symmetry center % for some positive integer N,
we shall construct matrix filters {Hy}2_ o, {Gy}Y, satis-
fying (see e.g., [2]):

SoHN_1So = Hi, SoGN-So = G, k=0,---,N, (20)

or equivalently

NS, [ vH(w)

VW) |52 [ VD] e

NG(~w)
(21)

Thus to construct symmetric/antisymmetric scaling func-

tions y® and orthonormal multiwavelets 5 ¥ based on (13)

and (17), we shall determine Uy, Ay in (13) and (17) such

that yH, yG satisfy (21). However here we would like to

determine Uy, Ay such that if ;H, ;G satisfy (21), then
r2H(w)

c12G(w) ] = V(") [ ’Zggig ]

also satisfies (21), which implies that 2S;Vy(2)S; =
Vi(2z71). We need the following two lemmas, whose proofs
are presented in Appendix A.

Lemma 2: Assume that Vi(2) = Iy + (271 — 1)Ay, for
some projection matrix Ag. Then 281V (2)S; = Vi (271)

if and only if

1 cos by, 0 Fsin
1 cos by, 1 sin 0y, 0
Aw = 2 0 sin 6y, 1 + cos Oy (22)
Fsin§y, 0 + cos 8, 1
with 6, € T'.

Lemma 3: If yH, yG satisfy (21), then U; in (12) for
the modulation matrix of yH, yG is

Fsinfy cosfy O
U, = 0 0 +1 | (for N =2N;+1), (23)
+cosfy sinfy O
or
Fsinfy 0 cosby
U, = 0 1 0 |(for N=2Ny), (24)
+cosfyp O sinby
where 6, € T.

By Lemma 3, if H; (w), G1(w), defined by (13) or (17) for
r = 2, satisfy (21), then Uy in (13) and (16) is determined
by (23) and (24), respectively.

Let U; be the matrix defined by (23) for the case N =
2N; + 1. Then denote

1H(w) _171 o0 I, I, —iw
[ 1G(w) =500 u, || |t] L |¢")
[ 1 0
1| cosfy Fsinby
“32] o 1 | T (25)
| sinflp =+ cosb
[ 1 0
1| —costly Fsinbp iw
2 0 F1
| —sinfy =+ cosby
Let {oH,2G} be the FIR multifilter bank defined by (16)
with B = Z?;zg [cosag,sinay], ap € T, and U is

given by (24) for the case N = 2N;. If {,H,,G} satisfies
(21), then cos? o = sin® a. Here we choose ag = 7/4. By
the facts that

cosfy F sinfy = v2cos(fp + ),
sin @y =+ cosfy = /2sin(fy + s

and by the change of variable 6y + 7/4 — 6y, we have

1 -1
oH(w) _ 1] —v2cosby V2 cos by
[ 2Gl) | T x1 1 |70
—v2sinf, +2siné,
[ 1 0
1] 0 FV2sinby | _i
2lF 0 °c T
0 ++v2cosfy
[ 1 1
1 V2cosby 2cosby %W
4 +1 +1 ’
| V2sinfy  /2siné
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with 68 € T. Therefore to construct symmet-
ric/antisymmetric scaling functions and orthonormal mul-
tiwavelets y®, v U, we use

By v [ B9 ] e
and
) | =i [ 169 ] e

where z = €™, Vi(2) = It + (271 — 1)Ay, Ay, are given
by (22), sH(w),2G(w) and 1H(w),1G(w) are defined by
(26) and (25) respectively. Lemma 2, Lemma 3 and the
fact that 1 H(w),1G(w) satisfy (21) for N = 1 lead to the
following theorem.

Theorem 3: Let {yH, yG} be an orthogonal FIR multi-
filter bank defined by (27) or (28) with V() = Ly + (2 ! -
1)A, and Ay, given by (22). Then yH(w), vG(w) satisfy
(21). Furthermore, if the matrix 7, g satisfies Condition
E, then {yH, G} generates symmetric/antisymmetric
orthonormal scaling functions and orthonormal multi-
wavelets.

Theorem 3 gives parametric expressions for a group of
orthogonal causal FIR multifilter banks that generate sym-
metric/antisymmetric scaling functions and orthonormal
multiwavelets. Note that the number of free parameters
is N; for QNIH,QNIG and N; +1 for 2N1+1H,2N1+1G. For
2 < N < 6, the explicit expressions of the orthogonal FIR
multifilter banks for symmetric/antisymmetric y® and y ¥
supported in [0, N] were also provided in [13]. In [15], the
complete factorization of orthogonal causal FIR multifil-
ter banks for symmetric/antisymmetric scaling functions
and orthonormal multiwavelets of dilation factor M is dis-
cussed.

Using the parametric expressions for orthogonal causal
FIR multifilter banks provided in (13), (17), (27) and (28),
we can construct lots of scaling functions and orthonor-
mal multiwavelets with good approximation and smooth-
ness properties. Assume that H is an FIR matrix filter
and H generates an orthonormal scaling function ®. Then
® provides an approximation of order m for some positive
integer m if and only if there exist real vectors y, € R"
with yo # 0, 0 < k < m, such that (see e.g., [11], [21], and
[14])

Yo (7)) 'y DHO) =27, o
i (5)(20) byl D'H(m) =0,

where D*H denotes the matrix formed by the ¢th deriva-
tives of the entries of H. Thus to construct orthonormal
scaling functions ® with good approximation, we need only
to find the parameters for H and the real vectors y; which
satisfy (29). We refer the reader to [13] for examples of
scaling functions and orthonormal multiwavelets with good
regularity, where we used the smoothness estimate of scal-
ing functions provided in [12].

IV. MULTIWAVELETS WITH OPTIMUM TIME-FREQUENCY
RESOLUTION

In many still-image and video processing applications,
the time—frequency localization of the decomposition tech-
nique is an important consideration (see [10] and [20]), and
in these applications, the time—frequency resolution prop-
erty of the scaling functions and wavelets is important. In
the scalar case, the design of optimum time—frequency res-
olution (OPTFR) wavelets was considered in [6]. Further
studies were carried out and more optimal filters were de-
signed in [33] and [20]. As for the vector case, OPTFR~-
multiwavelets were studied in [13]. In this section, we will
design OPTFR—multiwavelets which are more suitable for
image processing.

For a window function f, the time—duration A; of f is
defined by

Ay o= /R (t = D2 f )2t/ E)},

where # is the center in the time domain defined by
t = [pt|f(t)?dt/E, E = [,|f(t)[*dt. The frequency-
bandwidth of f denoted by A? is defined in the same

way with f replaced by f Then it is well known that
AfA? > 1/2. This inequality is called the uncertainty
principle, and the product AfA? is called the resolution
cell.

Since every component 1; of the orthonormal multi-
wavelet ¥ is a bandpass function (see [13]), as in the scalar
case, we shall also consider the frequency—bandwidth ﬁAj

of 9; defined by ([10], [6])

- +o0 =5 & ) +oo ~ ) 1
K, =([ T w-rPa [ [ Biwra)t,

— +oo ~ too
5= [ el / | e

One can check that for a real function ;, 5; = A;A -
i i

(@)2. If {b\j(O) = 0, then Ay, AJ,} > 1/2 holds (see [6] and
10]).

In [13], formulas to compute the energy moments of
scaling functions and multiwavelets in the time—frequency
plane were provided. Let & and ¥ be the scaling func-
tion and orthonormal multiwavelet supported in [0, N]
that correspond to a multifilter bank {H,G} given by
Hw) = Yn o Hre ™ G(w) = Yr_, Gre™ . Tt was
shown in [13] that the time-durations of the components
of @, ¥ are given in terms of the eigenvectors of the matri-
ces:

T = (QAgz_j)l—NSZ,jSN—la 0<8<2,

and
75 .= (282, . ; 0<B<2
G = (2By_jh-~n<tj<n-1, 0<B<2,
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where A7 = Y KPHi; ® Hy and B =
S, kPG ® Gy. If @ provides approximation order 2
and 1/4 is a simple eigenvalue of the matrix 7y defined by
(5), then the frequency—bandwidths AA‘ and AA‘ are also

given in terms of 7¢ and the 1/4- elgenvector of Tu (see
[13]). When we consider the resolution cell Ay, A -, by the
.7

fact that Ei = Afj — (@)?,
the center & of 1; in the frequency domain since Ay, and
AA. can be obtained by the formulas provided in [13]. In

what we need to compute is

thls case, we will use the cascade algorithm to approximate
the multiwavelets, i.e., we will compute the centers @ of
the components of lI!n, where ¥, (z) =2, Gr®,(22 — k)
and ®,, is defined by (2) for some n (e.g., n = 8). In the
case when 1/4 is a non—simple eigenvalue of Ty, or we are
not constructing scaling functions which provide approxi-
mation order 2, we can also use the cascade algorithm to
compute approximately the frequency—bandwidths of the
scaling functions and multiwavelets. As for the conver-
gence of the cascade algorithm, see [23] and [19].

Assume that @ = (¢, ¢2)7 and ¥ = (1,92)T are the
scaling function and orthonormal multiwavelet supported
in [0, N] that correspond to a multifilter bank {H, G} given

by Hw) = YN Hie ™ G(w) = Yr_, Gre . De-
note

L. H; H, HL Hy 0 0

T H; H, H; H, H; H,

Assume that (Vj) is the orthogonal multiresolution anal-
ysis generated by ® and W; := V;;1 ©V;,j € Z. Any
continuous—time function f(¢) in Vp can be expanded as

=2 vind

The function f is completely determined by the sequences

n) + vi) ga (t — n).

{v1 nts 1V (0)} The coarse approximation (component in
V_ ) is computed with the low—pass part of the orthogonal
multifilter bank (see [27] and [32]):

["'7[v§n1)7v2n l; ["’1n 1:"’2_7;1)1]7"'
=L, (0)] [v (0) (0) ]T

1n’2n ln 1’2n1

]T

(30)
Similarly, the details w§ n),wén) in W_; are computed
with the high—pass part {Gk} of the orthogonal multifilter
bank.

As in [18], an orthonormal multiwavelet ¥ is said to be
balanced if its corresponding scaling function @ satisfies
®(0) = (1,1)T/+/2. From (30), we note that a multifilter
bank differs from the usual scalar filter bank in the sense
that it requires two input streams (a vector stream). If ®
is unbalanced, simple methods for the vectorization, like
splitting the input signal into blocks of size two, may lead
to mixing of coarse resolution and details which creates

strong oscillations in the reconstructed signal after com-
pression (see [18]). In [27] and [32], prefiltering is used
when the orthonormal multiwavelet is not balanced. How-
ever, in this section, we will construct directly balanced
scaling functions and orthonormal multiwavelets which do
not need any prefiltering.

From (30), the low—pass frequency responses for this sys-
tem are ([22])

N
=3 Hi(a, e 2 + Hy(a,2)e F+2, (31)
k=0
and similarly the high—pass frequency responses are
N . .
fa(w) =Y Gp(a, 1)e™* + Gy(a, 2)e KT (32)
k=0

where a = 1,2, and for a matrix B, B(¢,j) denotes the
(¢, j)-entry of B. The filters hy, ho act as low—pass filters,
while g1, g2 act as high—pass filters. Thus it is required that
|ha(0)] = |ga(m)| = 1, ha(m) = ga(0) = 0, = 1, 2.

Proposition 3: If an orthonormal multiwavelet ¥ is bal-
anced, then h,(0) =1,¢,(0) =0, =1,2.

Proof: Note that
S RCCINE

[ h1(0)
h2(0)
If ¥ is balanced, then (1,1) is a right 1-eigenvector of
H(0) and G(0)(1,1)T = (0,0)”. Thus he(0) = 1,¢,(0) =
0,a=1,2. |
From Proposition 3, what we need in our design are the
requirements: hi(m) = ho(m) = 0 and ¢1(7) = g2(7) = £1.
In the following, we will design the balanced optimum
time—frequency resolution scaling functions and orthonor-
mal multiwavelets with the corresponding multifilter banks
satisfying

hi(m) = 0, ha(m) = 0,q1(7) = £1,g2(7) = (33)

We use (27) and (28) to construct the balanced OPTFR~-
multiwavelets. Assume that {§yH, yG} is an orthogonal
multifilter banks given by (27) or (28) and {yH,nG}
generates the scaling function y® = (y¢1, n¢2)T and or-
thonormal multiwavelet y¥ = (y1, Nt2)T supported in
[0, N]. Then (1,0)7 is a right 1-eigenvector of yH(0). By
the rotation of an angle 7r/4, we get the balanced scal-

-]

+1.

ing function y®° = (N¢1,N¢2) and orthonormal multi-
wavelet N\I’b (N¢15 N’lp2)
= Ron®, yU° = Ron 7, (34)
where i.e.,
. 2 —
Ro = R®)(x/4) = % [ — ] . (35)

In this case the multifilter bank corresponding to y®°, y ¥°
is

vH(w) = RoyH(w)RY, NG’ (w) = RonG(w)RT . (36)
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A scaling function ® = (¢1,#2)T (an orthonormal mul-
tiwavelet ¥ = (v1,12)7 respectively) is called a scaling
function pair (an orthonormal multiwavelet pair respec-
tively) about a center cp/2 if there exists ¢y € R such that
d2(co — ) = ¢1(x) (Pa2(co — ) = ¥1(x) respectively). In
fact in these definitions, ® and ¥ denote the sets of {¢1, 2}
and {91, 1} respectively. By a direct calculation, one has
the following proposition.

Proposition 4: Assume that vector—valued functions
F,F? satisfy F* = RgF Then F is symmet-
ric/antisymmetric about a center N/2 if and only if F* =
(8, )T satisfies (N —z) = f(a).

By Proposition 4, y®® (y¥® respectively) defined by
(34) is an orthonormal scaling function pair (multiwavelet
pair respectively). Clearly if x®° is a scaling function pair,
then y®° is balanced. In [13], OPTFR~multiwavelet pairs
were constructed by minimizing the sums of the areas of
the resolution cells of the scaling functions and orthonormal
multiwavelets. In this section, we will construct OPTFR-
multiwavelet pairs under the constrained conditions (33).

Proposition 5: Suppose that {yH®, yG®} is the multi-
filter bank deﬁned by (36) with yH, G satisfying (21).
Let nh’, ngb,a = 1,2, be the corresponding frequency re-
sponses defined by (31) and (32) respectively. Then

Nhg(w) —e —i(2N+1)w hb(—w)
NGy (w) = e NI ygh (—y),

and yhé(7) = (2,2)—entry of yH(0), ng}(7) =

The proof of Proposition 5 is presented in Appendix A.

In the following, yH? and yG? are given by (36) with
~H and §G given by (27) and (28). Here we will choose
+, F in Ay of (22), Uy of (23) (in (25)) and (24) (in
(26)) to be + and — respectively. By Proposition 3.2,
~H(0) = diag(l,—sinfy) and xyG(0) = diag(0,cosby)
with 6y € T. Proposition 5 implies that xh(7) = — sin 6y,
Ng(m) = cosfy. Therefore yhé(7) = 0 if and only if
~q’(m) = £1. Thus the constrained conditions (33) reduce
to sinfy ~ 0. Since x5 (N — z) = ydb(z), NY5(N — ) =
NYb (), we construct OPTFR-multiwavelet pairs by min-
imizing the sums nS° := AN¢>‘{ANA¢11> + ANW{A;E and

W3 =

sinfy ~ 0. Let y®% and y¥% (y&% and y T respec-
tively) denote the corresponding OPTFR-scaling function
and orthonormal multiwavelet pairs constructed by mini-
mizing xS® (vS? respectively). In the following, we will
construct the OPTFR-scaling function and orthonormal
multiwavelet pairs for 3 < N < 7. The constrained condi-
tion sinfp ~ 0 used is |sinfp| < 1074

For N = 3,4, there are two free parameters for ~H? and
~G?, and we will minimize yS° and xS® under the con-
strained condition |sinfy| < 10~ and the resulting n®°
provides an approximation of order 1. For N = 5,6,7,
there are more free parameters, and in these cases, we min-
imize yS® under the constrained condition |sinfy| < 107*
and the resulting y®° provides an approximation of or-
der 2. The parameters for the optimal multifilter banks

(2,2)—-entry

AN¢11, AN/(E + AN’/"IAN/QE under the condition that

generating y®%, yU% and y®%, y¥% are provided in
Table 1 and Table 2 respectively. One can check that for
such choices of parameters, the matrices 7, g+ associated
to the low-pass parts yH? of the optimal multifilter banks
satisfy Condition E. Thus y®%, y¥% and y®b°, yWbo
are orthonormal scaling functions and orthonormal mul-
tiwavelets. The areas of the resolution cells of OPTFR-
scaling function and orthonormal multiwavelet pairs are
given in Table 3. Based on the results in Table 3, we
conclude that yS® < n415% NS® < N41SP, N = 3.5.
We show the graphs of 3®%°, ;Wb and 5<I>b°, 5T in

Fig.1 and Fig.3 respectively. The magnitude responses
|sh1(w)|, |3q1(w)| corresponding to the optimal multifil-
ter bank generating 3®%°, 3¥%° are shown in Fig.2, while
in Fig.4 the figures shown are the magnitude responses
|shi(w)|, |sq1(w)| corresponding to the optimal multifilter
bank generating 58 (5—1x), s ¥%°(5—z), i.e., corresponding
to the multifilter bank {e~®“;H’(—w),e ®¥;Gb(~w)},
where {sH%(w), G®(w)} is the optimal multifilter bank pro-
vided in Appendix B. The optimal multifilter banks for
N = 3,5,7 are provided in Appendix B.

Remark 1: In the design of OPTFR—multiwavelets, we
obtain multifilters HS, H}, --- H% and G}, G}, ---,GY
by minimizing the sums of the areas of the the
resolution cells ySb, NS However sometimes,
the optimal multifilters required in practice may be
H% HY ,,---,H} and G4,GY _,,---,G) instead. In-
deed, if {{H;}Y ),{G!}N ,} generates a scaling func-
tion ®(z) and an orthonormal multiwavelet ¥(x), then
{{H2}0_\, {G8}0_\} sgenerates the scaling function

®(N — z) and the orthonormal multiwavelet ¥(N — z).
Furthermore, for a window function f, f(z) and f(c — )
have the same time— frequency resolution cell for any cE€ R
Choosing {H}}i,, {GL}iL, or {HR}_n, {GL}i_w
pends on their frequence responses defined by (31) and
(32). For example, for the optimal filters generating
5®%(x), 5¥b°(z) provided in Appendix B, we shall use
{H:,--- ,H}} and {G¢,---,G}}, but not {HJ,---,HE}
and {G},---,GL}, in image processing applications.

V. CONCLUSIONS

In this paper, several forms of parametric expressions for
orthogonal causal FIR multifilter banks are obtained based
on the lattice structures for M x M causal FIR lossless
systems. The explicit expressions for a group of orthogo-
nal causal FIR multifilter banks which generate symmet-
ric/antisymmetric scaling functions and orthonormal mul-
tiwavelets are presented. Based on the parametric expres-
sions for orthogonal multifilter banks, orthonormal mul-
tiwavelet pairs with good time—frequency resolution are
constructed, and examples of optimal multifilter banks are
provided. Future research problems include: (i) to design
optimal multifilter banks with even better time—frequency
resolution; (ii) to use the optimal multifilter banks in image
processing applications.
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APPENDIX A
A. Proof of Proposition 2

Proof: Since H generates the scaling function @, H(0)
satisfies Condition E, and there exists a vector v € 7!
such that vIH(7) = vT,vTH(x) = 0. Thus vI ®(2kn) =
0,k € Z\{0} (see [16]) By the first equation in (4),
vIH(0)T = vT, ie., H(0)v = v. By our assumption that
& is real, ®(0) is also real. Since 1 is a simple eigenvalue of
H(0) and ®(0) is a right 1-eigenvector of H(0), v = ¢, ®(0)
for some constant ¢y # 0. Thus ®(0) is a right and left 1-
eigenvector of H(0). To complete the proof of Proposition
2, we need to show that ®(0) € S"~1. By the orthonormal-
ity of ®, Gg(w) =1, w € T (see [8]). Here

Go(w) =Y B(w + 21k)®* (w + 27k)
keZ
is the Gram matrix of ®. Therefore
3(0)73(0) = 8(0)" G (0)2(0)
T3 @(2nk)B(27k)*)B(0) = (2(0)73(0))?,
keZ

which implies that ®(0)Y®(0) =1, i.e., ®(0) € S*!. MW

B. Proof of Lemma 1

Proof: Clearly if A; is given by (15), then A; is a
projection matrix and satisfies (14). Conversely, if A; is a
projection matrix , then there exists a matrix P € O(2r)
such that A; = PTdiag(I,,0)P = PTP;, where P, is the
s X 2r matrix consisting of the first s rows of P. By (14),

diag(I,, 0)P diag(1,U;) [ _Ii :|:027-><7=. Thus
P,1[1 o I, I,
0 0 U, -I. I,
T
o [o2 ]
(2r—s)xr

where B is an r x s matrix. Therefore

51l o]

0
_V2 0 BT I, -1
B 2 2T 0(2r—s)><r Ir Ir
_V2[ BT BT
) 0 0 |’

which leads to P; = [BT BT]diag(1,U7)/v2. By
P,PT = 1,, we conclude that BBT = I,. Thus s < r
and A; = PTP; can be written in the form (15). ]

C. Proof of Lemma 2

Proof: If Ay is given by (22), then one can check that
281 V(2)S; = Vi(z71). Conversely, if 2S;V,(2)S; =
Vi(2z71), then S;A;S; = Iy — Ay. This fact, together
with the relations AT = Ay, A2 = Ay, imply that A can
be written in the form (22). [ ]

D. Proof of Lemma 3

Proof: If yH, nG satisfy (21), then by (20), vH(0) =
diag(1,a), yH(7) = diag(0,b), nG(0) = diag(0, ¢) and

NG(r) = [ 0 g](forN:2N1+1)
N NG(r) = [ a0 ] (for N = 2]V})

for some a,b,c,d,e € R. Consequently, (4) implies that
d=+1,a2+b*=1,c>+¢e? =1 and ac+be = 0. Thus U;
in (12) is given by (24) or (23). ]

E. Proof of Proposition 5

Proof: Recall that Sy =diag(1,—1), Ry = R (x/4).
By the assumption of the proposition, SogHy_;So = Hy.
Then we have

N

th 1 0 RonRT( —zw)Te—ika
0

] efz2kw7

k=
N ,
]_ 1 +ezw
= 5 Z(la_l)Hk [ -1 +eiw
k=0

which gives

N
th Z 0 1 ROHkRO( —zw)Te—’iQkuJ
k=0

(1,1)Hp(1 + e, -1 4 e~w)Temi2hw

I
N | =
M =

kS
Il

0

(1,—1)SoHSo(1 + e~ 1 — e7™)Tgmi2kw

I
N =
‘MZ

=~
Il
=)

14 e
—1+4e

I
N =
™ =

(]-a_]-)HN—k |: :| eiZ(N—k)we—i(2N+1)w
k=0
— efi(2N+1)thl1>(_w)‘

The relationship between ¢?(w) and ¢5(w) can be estab-
lished in a similar way. By Proposition 3.2, yH(0) =
diag(1, Fsinby) and yG(0) = diag(0,+cosby) for some
6y € T. Thus

N
whE(m) = (1, -1)H(0,-2)" /2
k=0

= (-1,1)vH(0)(0,1)" = Fsinfy,
and ygb(7) = (1,-1)yG(0)(0, —1)T = £ cosby. [ ]
APPENDIX B
Denote Jo := (1) _01 ] . The optimal multi-

filter banks {yH’ yGP’} are given by yHP(w) =
RovH(W)RT, G (w) = RonG(w)RT, where Ry is de-
fined by (35) and yH, yG are as follows.
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3H,3G for 3q)bo and 3\I'b02

H. — | 00790248504499  .06236018964540
07 | .00789624898652 —.06236097958210 |’
H. - | 49209751495501 .06236018964540
L= —.49210374851348 .06231097958210 |’

and H; = SoH3_;S0, j = 2,3, Gy = (=1)*""H;J»,0 <
k<3. B N
3H,3G for 3q)bo and 3\I’b02

Ho — .00840489892798  .06427913454613
07 | .00839847097250 —.06427997471463 |’
.49159510107202

H. — .06427913454613
L= | —.49160152652750 .06422997471463 |’
and H; = SoH3_;So, j = 2,3, Gy = (—=1)""HJ5,0 <

k <3.

5H,5G for 5(I)bo and 5\I’b02

H. — [ —.00880400349405  .00249794465312
0= | —-00880425324450 —.00249706424028 |’
H, — [ .01505927978451  —.05307641691552
t= | —-01505397206753 —.05307792257812 |’
H, — [.49374472370954 —.05557436156864
2= | -49375027867697  .05552498681839 |’

and H; = SoH;_;Sp, 3 < j <5, G = (=1)F11H,J,,0 <
k <5. _ _
5H,5G for 5q)bo and 5\I’b02

H. — [ —.01374612215754  .00537394370532
0= | —-01374665948318 —.00537256906623 |’

H. — .02055687876217  —.05258286691076
t= | —-02055162037270 —.05258492233572 |’

H, = [.49318924339537 —.05795681061608
2= | -49319503661048  .05790749140195 |’

and H; = SoH;_;Sy, 3 < j <5, G = (—1)"THJ2,0 <
k <5.
7H, 7G for 7‘§b0 and 7‘1’1)0:

H. = [ —.00021301558643 —.00186927059418
0= | —-00021282865831  .00186929188640 |’
H. — [ —.00209035969785 —.00023821013302
1= | -00209038350841  —.00023800109586 |’
H, — [ .00966240240680 .06082475346760
2= | -00965631988315 —.06082571940372 |’
H. — 49264097287748  .05919369300644
3 | —-49264688978357 .05914442861318 |’

and H; = SoH7_;S0, 4 < j <7, Gy = (=1)MHJ»,0 <
k<T. N N
7H, 7G for 7q)bo and 7\I’b02

H. — | —00107171534355
O~ | .00107176578967

—.00050451477624
—.00050440760218 |’

H. — [ .00368435270613  .00782648499544 |
t= | -00368357003920 —.00782685339158 |’

H, — [ .00812402691514  —.06809947882033
2= | —-00811721692664 —.06810029088252 |’

H. — [ .48926333572228 —.07643047859201 |
8- | -48927097632382 .07638155187628 |’

and H; = SgH7_;S, 4 < j <7, G, = (-1)F1HJ2,0 <
k<T.
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Fig. 2. The magnitude responses |3h%| and |3q%| corresponding to
the optimal multifilter bank generating 3®®° and 3 Wb,

Fig. 3. OPTFR-scaling function pair &% (on the left) and multi-
wavelet pair 5% (on the right).
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Fig. 4. The magnitude responses |sh%| and |5¢%| corresponding to the
optimal multifilter bank generating 5®%°(5 — -) and 5¥%°(5 — -).
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6o 01 ) 03

.00010000000017 .25200271611776
.78549816339761 | 2.85341425815471
.00010000000017 .32865488725439 | -2.58876752016828
-2.35629449019251 | -.38893951271608 | 2.98074180633618
.00010000000017 | 1.45914057145477 | -1.70226608079784 | .22683410549091

OO W2

TABLE 1. The parameters for the optimal multifilter
bank generating y®°°, y¥b°.

0o 01 ) 03

-.00010000000017 .25993723804186
.78549816339761 | 2.84191811629411
.00010000000017 .51129213165796 | -2.39634484202025
-2.35629449019251 | -.63531529405017 | 2.74303786280756
3.14149265358963 | 2.86951654391665 | 2.29813695533660 | -.87985732107116

O Uk WA

TABLE 2. The parameters for the optimal multifilter
bank generating y®°, yWb°.

N AN¢1170A1;¢\1;0 AN"/)i,OA]\;[)?O AN%‘{OA]@ AN’(Z‘{GAJ@
3 .67464 2.11477 .67464 .81788
4 .68200 2.12525 .68380 .84363
) 67665 2.12357 .68764 72582
6 .68533 2.14327 .69285 77665
7 67719 2.11694 .66186 .68065

TABLE 3. The areas of the resolution cells of
OPTFR-scaling function pairs and multiwavelet pairs.



