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Abstract

Subdivision provides an efficient method to generate smooth curves and surfaces. Recently matrix-

valued subdivision schemes were introduced to provide more flexibility and smaller subdivision templates

for curve and surface design. For matrix-valued subdivision, the input is a set of vectors with the first

components being the vertices of the control polygon (or the control net for surface subdivision) and the

other components being the so-called control (or shape) parameters. It was observed that the control

parameters can change the shape of limiting curve/surfaces significantly. However, how to choose

these parameters has not been fully discussed in the literature. In this paper we address this issue for

matrix-valued curve subdivision by providing easy-to-implement formulas for normals and curvature of

subdivision curves and a method for defining shape parameters. We also do some analysis using data

from a sample planar curve.

1. Introduction

Subdivision is an efficient method to generate smooth curves and surfaces [21, 23, 26]. To con-
struct a smooth curve/surface, the subdivision process is carried out iteratively, starting from
an initial polygon/polyhedron, to generate a sequence of finer and finer polygons/polyhedra
that eventually converges to the desired limiting curve/surface, called the subdivision (lim-
iting) curve/surface. During each iteration step of a (dyadic) subdivision, to form the finer
polygon/polyhedron, new vertices (also called “odd” vertices) are inserted among old vertices
(also called “even” vertices) on the coarser polygon/polyhedron and the positions of “even”
vertices may be updated. If all the vertices (nodes) of each coarser polygon/polyhedron are
among the vertices of the finer polygon/polyhedron, then the subdivision scheme is called an
interpolatory subdivision scheme. Otherwise, it is called an approximating subdivision scheme.
The exact positions of the new vertices and old vertices in the finer polygon/polyhedron are
given by the local averaging rule.

A curve subdivision scheme is in general related to a refinement equation

φ(x) =
∑
`∈Z

p`φ(2x− `), x ∈ R,

where φ(x) is called the refinable function, and {p`}`∈Z is called the refinement mask. The
refinement of φ results in the subdivision scheme:

vmk =
∑
j

vm−1j pk−2j , m = 1, 2, · · · , (1.1)

where v0k, k ∈ Z are given real numbers. In practice, when (1.1) is applied to curve subdivisions,
v0k (where k belongs to a finite set in Z) are vertices of the given control polygon. Hence these
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v0k are 2 × 1 vectors in R2 (for planar curve subdivision) or 3 × 1 vectors in R3 (for 3-D
curve subdivision). In this case, (1.1) is applied to each component of v0k, and the resulting
v1k, v

2
k, · · · are also column vectors. Then the finer and finer polygons with vertices {vmk }k

provide an accurate discrete approximation to the limiting subdivision curve.

Recently matrix-valued subdivision schemes were introduced in [2, 3, 4, 13, 14] to provide
more flexibility and smaller subdivision templates for curve/surface design. For matrix-valued
curve subdivision, the refinement mask is a sequence {P`}`∈Z of matrices P` with only finitely
many of them being nonzero matrices. In this paper, for simplicity of presentation, we assume
P` are 2×2 matrices although they could be matrices of larger sizes. The associated refinement
equation is

Φ(x) =
∑
`∈Z

P`Φ(2x− `), x ∈ R, (1.2)

where Φ(x) =

[
φ0(x)
φ1(x)

]
is called the refinable function vector.

For given initial vectors v0
k = [v0k, s

0
k], k ∈ Z, where v0k, s

0
k ∈ R, (1.2) leads to the subdivision

scheme:
vmk =

∑
j

vm−1j Pk−2j , m = 1, 2, · · · , (1.3)

where vmk are 1×2 vectors, and we use vmk and smk to denote their first and second components:
vmk =: [vmk , s

m
k ]. Like the conventional (or scalar) curve subdivision, when matrix-valued

subdivision (1.3) is applied to curve subdivision, v0k, s
0
k are column vectors in R2 or R3, and

(1.3) is applied to each row of v0
k = [v0k, s

0
k], then to each row of v1

k,v
2
k, · · · iteratively. In the

following we assume v0k, s
0
k and hence vmk , s

m
k ,m ≥ 1 to be real numbers unless it is specifically

indicated.

Observe that for matrix-valued subdivision, the input is a (finite or infinite) sequence of
vectors v0

k = [v0k, s
0
k]. We can use the first components v0k of v0

k as the vertices of the initial
control polygon, and the first components vmk of vmk as the vertices of the subdivision polygons
generated after m-step subdivision iterations. The other component, s0k of v0

k, can be used to
control the geometric shape of the limiting curve. Then one can show as in [3], that the vertices
vmk provide an accurate discrete approximation of the target subdivision (limiting) curve. The
limiting curve depends on not only the initial vertices v0k, but also on s0k which are called shape
control parameters.

In this paper we discuss how to choose shape control parameters s0k. We will investigate the
relationship between shape control parameters and some geometric property such as tangents,
normals and curvatures of the limiting curves. In particular we obtain formulas for the normals
and curvatures of the limiting curves in terms of the shape control parameters and the initial
control polygon. With these formulas, we can design our shape parameters such that the
resulting subdivision curve has specific normals and curvatures.

The rest of this paper is organized as follows. In § 2, we recall some C2 matrix-valued
curve subdivision schemes introduced in [4], and discuss the difference between matrix-valued
interpolatory schemes and the Hermite type schemes studied by other researchers. In § 3 we
derive the first and second derivatives of the limiting curve. In § 4 we provide the tangents
and curvatures of the subdivision curves generated by 3-point and 4-point schemes. Finally,
in § 5, we define our shape parameters and apply these formulas to curve design.
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2. C2 matrix-valued approximating scheme and C2 matrix-valued interpo-
latory scheme

In this section, we recall some matrix-valued curve subdivision schemes obtained in [4]. Tan-
gents and curvatures of the subdivision curves generated by these schemes will be analyzed in
later sections. In this section we also have a look at the difference between these schemes and
the Hermite type schemes investigated in the literature.

The subdivision scheme (also called the local averaging rule) (1.3) can be described and
represented in a straight line along with a set of subdivision matrix-valued templates. For
example, Fig. 1 shows the templates for a 4-point matrix-valued scheme of a mask {P`}`=−3,··· ,3,
where P0 = W,P1 = P−1 = X,P2 = P−2 = Z,P3 = P−3 = Y , with the local averaging rule:

vm2k = vm−1k−1 Z + vm−1k W + vm−1k+1 Z, (2.1)

vm2k+1 = vm−1k−1 Y + vm−1k X + vm−1k+1 X + vm−1k+2 Y, m ≥ 1.

Z X XY YWZ

Figure 1: Matrix-valued 4-point scheme

An example of a matrix-valued 3-point approximating scheme in [4] with corresponding
scaling functions φ0, φ1 in C2 is:

W =
1

20

[
18 −2
2 −3

]
, X =

1

8

[
4 0
−3 1

]
, Z =

1

20

[
1 1
−1 −1

]
, Y = 0. (2.2)

Two more examples from [4] are a 3-point matrix-valued scheme with corresponding φ0, φ1 in
C2:

W =
1

32

[
32 −21
0 −6

]
, X =

1

8

[
4 0
−1 1

]
, Z =

1

64

[
0 21
0 −7

]
, Y = 0; (2.3)

and a 4-point scheme with the corresponding scaling functions φ0, φ1 being compactly sup-
ported C2 cubic splines:

W =
1

4

[
4 1
0 −1

]
, X =

1

48

[
25 −1
13 11

]
, Z =

1

8

[
0 −1
0 −1

]
, Y =

1

48

[
−1 1
−1 1

]
. (2.4)

Observe that for the schemes in both (2.3) and (2.4), the (1, 1)-entry and (2, 1)-entry of W
are 1 and 0 respectively, and the first column of Z is the zero vector, thus with the formula in
(2.1), we know that the first component vm2k of vm2k is

vm2k = vm−1k−1

[
0
0

]
+ vm−1k

[
1
0

]
+ vm−1k+1

[
0
0

]
= vm−1k , m = 1, 2, · · · .

This means that the positions of vertices v0k are not changed during the matrix-valued subdivi-
sion scheme (recall that we use the first components vmk of vmk as the vertices of the subdivision
polygons generated after m-step matrix-valued subdivision iterations). Thus these two schemes
are “interpolatory”. This is the definition for matrix-valued interpolatory scheme introduced
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in [2, 4]. It was shown in [4] that the refinable function vector Φ = [φ0, φ1]
T corresponding a

matrix-valued interpolatory scheme satisfies

φ0(k) = δ(k), φ1(k) = 0, k ∈ Z, (2.5)

where δ(k) is the Dirac-delta sequence.

As we know, conventional interpolatory subdivision schemes cannot achieve such smooth-
ness and small template size simultaneously as the schemes in (2.3) and (2.4). For example the
4-point (scalar) interpolatory scheme in [9] is C1 only, and to have C2 interpolatory schemes,
one needs to use a 6-point scheme or a ternary scheme [24, 15]. In addition, except for the hat
function, the compactly supported refinable function associated with an interpolatory scheme
cannot be a spline function. In contrast, for matrix-valued schemes, it is possible to have
3-point C2 interpolatory schemes and even a 4-point C2 interpolatory scheme with spline
functions as the refinable functions.

The curve subdivision templates considered in this paper, such as the one in Fig. 1, are
symmetric (with mask elements P` = P−` for ` ∈ Z), and therefore they can be readily adopted
as boundary subdivision templates for matrix-valued surface subdivision.

The minimum-supported Hermite interpolatory C1 cubic splines φ0, φ1 produce a matrix-
valued curve subdivision using the following mask (see [5]):

P0 =

[
1 0
0 1

2

]
, P1 =

1

8

[
4 6
−1 −1

]
, P−1 =

1

8

[
4 −6
1 −1

]
, P` = 0, |`| ≥ 2.

The refinable functions (C1 piecewise cubic polynomials supported on [−1, 1]) φ0, φ1 satisfy
not only (2.5) but also φ′0(k) = 0, φ′1(k) = δ(k), k ∈ Z. However, the subdivision mask does
not have the symmetry of P` = P−`. Hence it is hard to use this scheme as a boundary
subdivision scheme for matrix-valued surface subdivision. Hermite-type interpolatory curve
subdivision schemes have been studied in [10, 6, 7]. In these papers the constructed φ0, φ1
satisfy φ1(x) = φ′0(x). Again, the corresponding masks do not meet the symmetry specification.
In addition, since Hermite-type interpolatory schemes require the restriction φ1(x) = φ′0(x),
the constructed schemes have larger templates than the matrix-valued interpolatory schemes.
[18] and [19] discuss classes of 4-point Hermite subdivision schemes that generate C2 functions
and the masks consist of eight 2× 2 matrices.

As mentioned in § 1, we will study the normals and curvatures of subdivision curves. Since
the curvature involves the second derivative, in the following we assume that the refinable
function vector Φ = [φ0, φ1]

T is in C2(R), namely φ0, φ1 ∈ C2(R). We assume that the
associated subdivision mask P = {P`}`∈Z is supported in [−N,N ] for some N > 0, meaning
P` = 0 for |`| > N , and that it has sum rule of order 3, namely, there exist constant vectors
y0 = [1, 0], y1 = [c1, c2],y2 = [d1, d2] such that

y0

∑
k

P2k = y0

∑
k

P2k+1 = y0,∑
k

(
2y1 + (−2k)y0

)
P2k =

∑
k

(
2y1 + (−2k − 1)y0

)
P2k+1 = y1∑

k

(
4y2 + 4(−2k)y1 + (−2k)2y0

)
P2k

=
∑
k

(
4y2 + 4(−2k − 1)y1 + (−2k − 1)2y0

)
P2k+1 = y2.
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Sum rule order of P implies the accuracy order of the associated Φ. More precisely, with

y0(j) = y0, y1(j) = y1 + jy0, y2(j) = y2 + 2jy1 + j2y0, j ∈ Z,

we have (see [16, 17] and the references therein) for n = 0, 1, 2,

xn =
∑
j∈Z

yn(j)Φ(x− j), x ∈ R. (2.6)

That is, the polynomials of degree ≤ 2 can be reproduced by φ0(x−j), φ1(x−j), j ∈ Z
when P has sum rule order 3.

Let l0, l1, l2 be 1× 2(2N + 1) vectors defined by

l0 = [y0(j)]−N≤j≤N = [y0, · · · ,y0, · · · ,y0],

l1 = [y1(j)]−N≤j≤N = [y1 −Ny0, · · · ,y1 − y0,y1,y1 + y0, · · · ,y1 +Ny0], (2.7)

l2 = [y2(j)]−N≤j≤N = [y2 + 2jy1 + j2y0]−N≤j≤N .

Then l0, l1, l2 are left (row) eigenvectors of eigenvalues 1, 12 ,
1
4 resp. for the subdivision matrix:

S =
[
Pk−2j

]
−N≤j≤N,−N≤k≤N

. (2.8)

In this paper we assume 1, 12 ,
1
4 are simple eigenvalues of S and other eigenvalues λ of S satisfy

|λ| < 1
4 . The reader refers to [8] on the relation between the convergence of Hermite subdivision

schemes and the eigenvalues of S.

For an initial sequence of control vectors v0 = {v0
k}, let vmk = [vmk , s

m
k ] be the vectors

derived by the local averaging rule (1.3) after m steps of iterations with a subdivision mask
P = {P`}`. We say the scheme with mask P is convergent if for each v0, there exists a
continuous function f (f is a function vector if v0k are vectors in R2 or R3) such that f 6≡ 0 for
at least one v0 and

lim
m→∞

sup
k

∣∣vmk − f(
k

2m
)
∣∣ = 0.

3. Derivatives

In this section we derive the first and second derivatives of the limiting curve f at an initial
point, k0. Here we derive the formulas for 3-D curve subdivision. Thus v0

k = [v0k, s
0
k] are given

3 × 2 matrices with v0k being the vertices of the control polygon in 3-D, and f is a function
vector with 3 components. We will follow the approach used in [22] where the formula was
obtained for the normals of limiting surfaces generated by the butterfly scheme [11].

For simplicity, let umj ,−N ≤ j ≤ N , denote the vectors of vmj after m iterations around

v0
k0

:
umj := vm2mk0+j , −N ≤ j ≤ N.

Then, with Um0 = [um−N , · · · ,um−1,um0 ,um1 , · · · ,unN ], we have

Um0 = Um−10 S, m = 1, 2, · · · .

We consider interpolatory and approximation schemes in the following two subsections.
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3.1 Interpolatory schemes

For an interpolatory scheme, the first components of umj , namely, vm2mk0+j lie on the limiting

curve, denoted by f(x). Thus vm2mk0+j = f(k0 + j
2m ). Therefore, we have

lim
m→∞

2m(vm2mk0+1 − vm2mk0) = lim
m→∞

2m(f(k0 +
1

2m
)− f(k0)) = f ′(k0),

lim
m→∞

22m(vm2mk0+1 + vm2mk0−1 − 2vm2mk0) = (3.1)

lim
m→∞

22m
(
f(k0 +

1

2m
) + f(k0 −

1

2m
)− 2f(k0)

)
= f ′′(k0).

Let {lj : 0 ≤ j ≤ 4N + 1} be a set of linearly independent generalized eigenvectors of S
with l0,l1, l2 the eigenvectors of 1, 1/2, 1/4 given in (2.7). So U0

0 can be written as

U0
0 = α0l0 + α1l1 + α2l2 +

4N+1∑
j=3

αjlj , (3.2)

where αj ∈ R3, 0 ≤ j ≤ 4N + 1.

Theorem 1 Suppose an interpolatory scheme is convergent with limiting curve in C2. Let
f be the limiting curve of an initial control vector “polygon” {v0

k}k. Let α1, α2 ∈ R3 be the
column vectors in (3.2). Then

f ′(k0) = α1, f
′′(k0) = 2α2. (3.3)

Proof. By the assumption that other eigenvalues excluding 1, 12 ,
1
4 of S are smaller in

modulus than 1
4 , we have

Um0 = U0
0Sm = α0l0 + α12

−ml1 + α22
−2ml2 + o(2−2m). (3.4)

Thus

um1 − um0 = α0(y0 − y0) + 2−mα1(y1 + y0 − y1) + o(2−m) = 2−mα1y0 + o(2−m).

Since the first component of y0 is 1,

2m(vm2mk0+1 − vm2mk0) = α1 + o(1).

Hence,
lim
m→∞

2m(vm2mk0+1 − vm2mk0) = α1.

This and the first equation in (3.1) imply that f ′(k0) = α1.
Similarly, from (3.4), we have

um1 + um−1 − 2um0

= α0(y0 + y0 − 2y0) + α12
−m(y1 + y0 + y1 − y0 − 2y1) +

α22
−2m(y2 − 2y1 + y0 + y2 + 2y1 + y0 − 2y2) + o(2−2m)

= 2−2m2α2y0 + o(2−2m).
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Thus,
vm2mk0+1 + vm2mk0−1 − 2vm2mk0 = 2−2m2α2 + o(2−2m),

and therefore,
lim
m→∞

22m(vm2mk0+1 + vm2mk0−1 − 2vm2mk0) = 2α2.

This, together with the second equation in (3.1), implies that f ′′(k0) = 2α2. �

We can similarly obtain the derivatives of f at point

k0 +
i

2n

for k0, i, n ∈ Z with i 6= 0 and n > 0. In this case, let u0
j ,−N ≤ j ≤ N , denote the vectors of

vnj around the point k0 + i
2n :

u0
j = vn2nk0+i+j , −N ≤ j ≤ N.

In general, denote umj = vn+m
2n+mk0+2mi+j

, −N ≤ j ≤ N . Then, with

Umi = [um−N , · · · ,um−1,um0 ,um1 , · · · ,unN ],

we have Umi = Um−1i S,m = 1, 2, · · · . Expand U0
i in the form of (3.2), namely,

[
vn2nk0+i+j

]
−N≤j≤N

= α̃0l0 + α̃1l1 + α̃2l2 +

4N+1∑
j=3

α̃jlj , (3.5)

where lj are (generalized) eigenvectors of S and α̃j ∈ R3, 0 ≤ j ≤ 4N + 1. Then as shown
above we have

α̃1 = lim
m→∞

2m(um1 − um0 ), 2α̃2 = lim
m→∞

22m(um1 + um−1 − 2um0 ),

where each umj denotes the first column of umj . On the other hand,

2m(um1 − um0 ) = 2m(vm+n
2m+nk0+2mi+1

− vm+n
2m+nk0+2mi

)

= 2m
(
f(k0 +

i

2n
+

1

2m+n
)− f(k0 +

i

2n
)
)

→ 1

2n
f ′(k0 +

i

2n
), as m→∞,

22m(um1 + um−1 − 2um0 ) = 22m(vm+n
2m+nk0+2mi+1

+ vm+n
2m+nk0+2mi−1 − 2vm+n

2m+nk0+2mi
)

= 22m
(
f(k0 +

i

2n
+

1

2m+n
) + f(k0 +

i

2n
− 1

2m+n
)− 2f(k0 +

i

2n
)
)

→ 1

22n
f ′′(k0 +

i

2n
), as m→∞.

Therefore, we have the following corollary.
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Corollary 1 Suppose an interpolatory scheme is convergent with limiting curve in C2. Let
f be the limiting curve of an initial control vector “polygon” {v0

k}k. Let α̃1, α̃2 ∈ R3 be the
column vectors in (3.5). Then

f ′(k0 +
i

2n
) = 2nα̃1, f

′′(k0 +
i

2n
) = 22n+1α̃2.

To calculate α1, α2 in (3.2) and α̃1, α̃2 in (3.5), we use the right eigenvectors of S. For
k = 0, 1, 2, let rk be the right (column) eigenvectors of eigenvalues 1, 12 ,

1
4 resp. of S such that

ljrk = δj,k, 0 ≤ k ≤ 2, 0 ≤ j ≤ 4N + 1. Denote rk as

rk = [rk−N , t
k
−N , r

k
1−N , t

k
1−N , ..., r

k
0 , t

k
0, ..., r

k
N , t

k
N ]T .

Then

Um0 rk = U0
0S

m rk

= α0l0 rk + α1

(
1

2

)m
l1 rk + α2

(
1

4

)m
l2 rk +

4N+1∑
j=3

cj,mlj rk

= αk

(
1

2k

)m
,

where cj,m are some points in R3. Thus, α1 = 2mUm0 r1 and α2 = 22mUm0 r2.

Similarly, for nonzero i ∈ Z, α̃1 = 2mUmi r1 and α̃2 = 22mUmi r2. In particular, letting
m = 0, we have

α1 = U0
0 r1, α̃1 = U0

i r1,

α2 = U0
0 r2, α̃2 = U0

i r2.

Hence, we have the following result.

Corollary 2 Suppose an interpolatory scheme is convergent with limiting curve in C2. Let f
be the limiting curve of an initial control vector“polygon” {v0

k}k. Then for i ∈ Z

f ′(k0 +
i

2n
) = 2nU0

i r1 = 2n
( N∑
j=−N

vn2nk0+i+j r
1
j +

N∑
j=−N

sn2nk0+i+j t
1
j

)
, (3.6)

f ′′(k0 +
i

2n
) = 22n+1U0

i r2 = 22n+1
( N∑
j=−N

vn2nk0+i+j r
2
j +

N∑
j=−N

sn2nk0+i+j t
2
j

)
. (3.7)

Before we move on to the next subsection, we remark that (3.3) can be derived
in the following way.

Assume Φ is in C2. Taking the nth derivative of the both sides of (1.2), we have

Φ(n)(x) = 2n
∑
`

P`Φ
(n)(2x− `), n = 0, 1, 2.

Thus

Φ(n)(−j) = 2n
∑
`

P`Φ
(n)(−2j − `) = 2n

∑
`

P`−2jΦ
(n)(−`) = 2n

N∑
`=−N

P`−2jΦ
(n)(−`),
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where the last equality follows from the fact that both φ0 and φ1 are supported in
[−N,N ]. Therefore,

[Φ(n)(−j)]−Nj=N = 2n
[
P`−2j

]
−N≤j≤N,−N≤`≤N [Φ(n)(−`)]−N`=N .

That is [Φ(n)(−j)]−Nj=N is a right 2−n-eigenvector of the subdivision matrix S de-

fined by (2.8). Since we assume that 1, 12 ,
1
4 are simple eigenvalues of S and other

eigenvalues λ of S satisfy |λ| < 1
4 , we have that for n = 0, 1, 2,

lk[Φ
(n)(−j)]−Nj=N = 0, for all k = 0, 1, · · · , 4N + 1 with k 6= n. (3.8)

Furthermore, taking the nth derivative of the both sides of (2.6), we have

n! =
∑
j

yn(j)Φ(n)(x− j), n = 0, 1, 2.

Hence, letting x = 0, we have

n! =
∑
j

yn(j)Φ(n)(−j) =
N∑

j=−N
yn(j)Φ(n)(−j) = ln[Φ(n)(−j)]−Nj=N , n = 0, 1, 2. (3.9)

The limiting curve f in Theorem 1 is given by (refer to [3])

f(x) =
∑
k

v0
kΦ(x− k).

Thus, with U0
0 = [v0

k+k0
]−N≤k≤N expanded as (3.2), we have

f (n)(k0) =
∑
k

v0
kΦ

(n)(k0 − k) =
∑
k

v0
k+k0Φ(n)(−k) =

N∑
k=−N

v0
k+k0Φ(n)(−k)

= U0
0 [Φ(n)(−k)]−Nj=N =

(
α0l0 + α1l1 + α2l2 +

4N+1∑
j=3

αjlj

)
[Φ(n)(−k)]−Nj=N

= αnn!,

where the last equality follows from (3.8) and (3.9). This proves (3.3) .

3.2 Approximation schemes

In this subsection, we consider approximation schemes. To derive formulas for f ′(k0), f
′′(k0)

similar to those in (3.1), we consider the C1 and C2 convergence of the cascade algorithm.

For a subdivision mask P = {Pk}, let TP denote the cascade algorithm operator defined
by

(TPΦ0)(x) =
∑
k

PkΦ0(2x− k),

where Φ0 is a compactly supported function vector. Clearly, the refinable function vector Φ
associated with P is a fixed-point of TP , and if {TmP Φ0}m converges to a nonzero limit function,
then the limiting function is Φ. In addition, for any control vector “polygon” {v0

k}k, we have∑
k

v0
k (TmP Φ0)(x− k) =

∑
k

vmk Φ0(2
mx− k), (3.10)
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where vmk , k ∈ Z are exactly the vectors defined by the subdivision algorithm in (1.3). There-
fore, if we choose Φ0(x) = [h(x), 0]T , where h(x) is the hat function h(x) = (1− |x|)χ[−1,1](x),
then

∑
k vmk Φ0(2

mx−k) =
∑

k v
m
k h(2mx−k) is the refined polygon after m step of subdivision

iterations with vertices vmk . Hence, the convergence of the subdivision scheme is equivalent to
the uniform convergence of the cascade algorithm sequence {TmP Φ0}m.

We say a subdivision scheme with mask P converges in Ck if for any compactly supported
Φ0 ∈ Ck the sequences {TmP Φ0(x)}m, {(TmP Φ0)

′(x)}m, · · · , {(TmP Φ0)
(k)(x)}m converge uni-

formly (to Φ,Φ′, · · · ,Φ(k)). Note that such a subdivision scheme will have sum rule order of
(at least) k + 1 and Φ0 will have accuracy of order (at least) k + 1 (see [1]). The characteri-
zation of cascade algorithm convergence in the Sobolev norm is provided in some papers, see
e.g. [1, 14]. The convergence of cascade algorithm in Ck can be characterized by the spectral
radius of S|Vk and S̃|Vk , where S is the subdivision matrix in (2.8), S̃ =

[
Pk−2j+1

]
j,k

, and Vk is

a subspace of R4N+2 determined by the vectors y0, · · · ,yk for the sum rule order k + 1 of P .
Since our basic task in this paper is to study tangents and curvatures of the limiting curves,
we will not discuss the characterization for Ck convergence here.

Proposition 1 Suppose a subdivision scheme with mask P converges in C1. For an initial
control vector “polygon” v0 = {v0

k}k, let f be the limiting curve. Then

limm→∞ 2m(vm2mk0+1 − vm2mk0) = f ′(k0). (3.11)

If in addition, the scheme is also C2 convergent, then

limm→∞ 22m(vm2mk0+1 + vm2mk0−1 − 2vm2mk0) = f ′′(k0), (3.12)

Proof. Let ϕ0(x) = χ[−1, 0]∗h(x), the convolution of the characteristic function χ[−1, 0](x)
of [−1, 0] and the hat function h(x). Then ϕ0(x) is the C1 quadratical B-spline function. Thus
ϕ0(x) has accuracy of order 3. Furthermore, one can verify directly

ϕ′0(x) = h(x+ 1)− h(x). (3.13)

Let Φ0 = [ϕ0, 0]T . Then Φ0 also has accuracy of order 3. Let fm(x) =
∑

k vmk Φ0(2
mx − k).

By (3.10), fm(x) =
∑

k v0
k(T

m
P Φ0)(x − k). Thus by the C1 convergence assumption, f ′m(x) =∑

k v0
k(T

m
P Φ0)

′(x− k) →
∑

k v0
kΦ
′(x− k) = f ′(x), as m→∞. On the other hand, by (3.13),

f ′m(x) =
∑
k

vmk 2mΦ′0(2
mx− k) =

∑
k

2mvmk [ϕ′0(2
mx− k), 0]T

=
∑
k

2mvmk (h(2mx− k + 1)− h(2mx− k))

=
∑
k

2m(vmk+1 − vmk )h(2mx− k).

Let x = k0. Then f ′m(k0) = 2m(vm2mk0+1 − vm2mk0). Thus

2m(vm2mk0+1 − vm2mk0)→ f ′(k0), as m→∞

To obtain (3.12), we choose Φ0 = [ϕ̃0, 0]T , where ϕ̃0(x) = χ[0, 1] ∗ χ[−1, 0] ∗ h(x). ϕ̃0(x) is
the C2 cubic B-spline function, and it has accuracy of order 4. Furthermore,

ϕ̃′′0(x) = h(x+ 1) + h(x− 1)− 2h(x). (3.14)
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With this initial function vector Φ0 and the formula (3.14), one can show similarly as above
that

f ′′m(k0) = 22m(vm2mk0+1 + vm2mk0−1 − 2vm2mk0)→ f ′′(k0),

as m→∞. �

Theorem 2 Suppose that an (approximation) subdivision scheme is convergent in C2. Let
f be the limiting curve of an initial control vector “polygon” {v0

k}k. Let α̃1, α̃2 ∈ R3 be the
column vectors in (3.5). Then for integer i 6= 0

f ′(k0 +
i

2n
) = 2nα̃1, f

′′(k0 +
i

2n
) = 22n+1α̃2.

Using (3.11) and (3.12), one can give the proof of Theorem 2 as that for Corollary 1.
Again, as before, we use the right eigenvectors rk of S to get α̃1, α̃2.

Corollary 3 Suppose an (approximation) scheme is convergent in C2. Let f be the limiting
curve of an initial control vector “polygon” {v0

k}k. Then for i ∈ Z f ′(k0 + i
2n ) and f ′′(k0 + i

2n )
are given by the formulas in (3.6) and (3.7) resp.

From [
vm2mk0+j

]
−N≤j≤N

= α0l0 + α12
−ml1 + 2−2mα2l2 + o(2−2m), (3.15)

we know [
vm2mk0+j

]
−N≤j≤N

→ α0l0 = α0[y0, · · · ,y0] as m→∞.

Thus
vm2mk0+j = [vm2mk0+j , s

m
2mk0+j ]→ α0y0.

Since y0 = [1, 0], we have

lim
m→∞

vm2mk0+j = α0, lim
m→∞

sm2mk0+j = 0. (3.16)

By definition, limm→∞ v
m
2mk0

= f(k0). Thus α0 = f(k0) and hence, limm→∞ v
m
2mk0+j

=
f(k0), |j| ≤ N . The second limit in (3.16) implies smk → 0 as m → ∞ for k ∈ [2mk0 −
N, 2mk0 + N ]. Since the limit of the second components smk of vmk is zero, it is reasonable to
the use the first components vmk as the vertices of the refined the polygon.

With α0 = f(k0), α1 = f ′(k0), α2 = 1
2f
′′(k0), from (3.15), we have

2m
([

vm2mk0+j
]
−N≤j≤N − f(k0)l0

)
= f ′(k0)l1 + o(1),

22m
([

vm2mk0+j
]
−N≤j≤N − f(k0)l0 − 2−mf ′(k0)l1

)
= 1

2f
′′(k0)l2 + o(1).

These and the structures of l0, l1, l2 in (2.7) immediately yield the formulas shown in the
following corollary.

Corollary 4 Suppose an (approximation) scheme is convergent in C2. Let f be the limiting
curve of an initial control vector “polygon” {v0

k}k. Then for |j| ≤ N ,

lim
m→∞

2m
(
vm2mk0+j − f(k0)

)
= (j + c1)f

′(k0),

lim
m→∞

22m
(
vm2mk0+j − f(k0)− 2−m(j + c1)f

′(k0)
)

=
1

2
(d1 + 2jc1 + j2)f ′′(k0),

where c1 and d1 are the first components of y1 and y2 resp. for sum rule order 3 of the mask
P .
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4. Tangents and curvatures of 3-point and 4-point matrix-valued subdivision
curves

For an initial control vector “polygon” v0 = {v0
k}k, with derivatives f ′(k0) and f ′′(k0) at v0k0

given by (3.6) and (3.7), we have the unit tangent and normal vectors and curvature of f at
this point. Here and below we assume that f is not singular at each x, namely, ‖f ′(x)‖ 6= 0.
Then, the unit tangent vector at v0k0 , denoted as T (k0), is

T (k0) =
f ′(k0)

‖f ′(k0)‖
.

The formula for the principal normal (vector) N of a curve α(t) in R3 is

N =
(α′ × α′′

)× α′

‖α′ × α′′‖ ‖α′‖

and the curvature τ of α(t) is

τ =
‖α′ × α′′‖
‖α′‖3

where for u = [u1, u2, u3]
T , w = [w1, w2, w3]

T ∈ R3, the cross product u × w of u and w is
defined as

u× w = [u2w3 − u3w2, u3w1 − u1w3, u1w2 − u2w1]
T .

The reader may refer to some textbooks, e.g. [20], for the formulas of N and τ . With f ′

and f ′′ of the subdivision curve at v0k0 , we have the normals and curvature of f at this point.
In the following we focus on the tangent and curvature of f generated by the 3-point and 4-
point matrix-valued C2 interpolatory schemes and the 3-point matrix-valued C2 approximating
scheme with templates given by (2.3), (2.4) and (2.2).

4.1. 3-point C2 interpolatory scheme

For this scheme, the nonzero coefficients Pk of the mask are P0 = W,P1 = P−1 = X,P2 =
P−2 = Z, where W,X,Z are defined by (2.3). Thus the subdivision matrix S =

[
Pk−2j

]
−2≤j,k≤2

is a 10× 10 matrix. This subdivision mask has sum rule order at least 3 (it has sum rule order
4 actually) with y0 = [1, 0],y1 = [0, 0],y2 = [0, 1]. Thus the left eigenvectors l0, l1, l2 defined
in (2.7) are

l0 = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

l1 = [−2, 0,−1, 0, 0, 0, 1, 0, 2, 0],

l2 = [4, 1, 1, 1, 0, 1, 1, 1, 4, 1].

1, 12 ,
1
4 are simple eigenvalues of S and other eigenvalues of S are smaller (in modulus) than 1

4 .
The appropriately normalized right eigenvectors r0, r1, r2 of eigenvalues 1, 12 ,

1
4 resp. of S are:

r0 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]T ,

r1 = [0, 0,−1

2
,
1

6
, 0, 0,

1

2
,−1

6
, 0, 0]T ,

r2 = [0, 0,
7

4
,− 7

12
,−7

2
,−4

3
,
7

4
,− 7

12
, 0, 0]T .
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These rk satisfy lj rk = δj,k, 0 ≤ k, j ≤ 2. Thus the first derivative f ′ at point vn2nk0+i after n

subdivision iterations, denoted as f ′(k0 + i
2n ), is

f ′(k0 +
i

2n
) = 2n

(
− 1

2
vn2nk0+i−1 +

1

6
sn2nk0+i−1 +

1

2
vn2nk0+i+1 −

1

6
sn2nk0+i+1

)
.

In particular, we have

f ′(k0) = −1

2
v0k0−1 +

1

6
s0k0−1 +

1

2
v0k0+1 −

1

6
s0k0+1. (4.1)

The second derivative f ′′ at point vn2nk0+i, denoted as f ′′(k0 + i
2n ), is

f ′′(k0 +
i

2n
) =

22n+1
(7

4
vn2nk0+i−1 −

7

12
sn2nk0+i−1 −

7

2
vn2nk0+i −

4

3
sn2nk0+i +

7

4
vn2nk0+i+1 −

7

12
sn2nk0+i+1

)
.

With i, n = 0, we have

f ′′(k0) =
7

2
v0k0−1 −

7

6
s0k0−1 − 7v0k0 −

8

3
s0k0 +

7

2
v0k0+1 −

7

6
s0k0+1. (4.2)

4.2. 4-point C2 interpolatory scheme

The nonzero coefficients Pk of the mask for this scheme are P0 = W,P1 = P−1 = X,P2 =
P−2 = Z,P3 = P−3 = Y , where W,X,Z, Y are defined by (2.4). Thus the subdivision matrix
S = [Pk−2j ]−3≤j≤3,−3≤k≤3 is a 14 × 14 matrix. This subdivision mask has sum rule order at
least 3 (it has sum rule order 4 actually) with y0 = [1, 0],y1 = [0, 0],y2 = [0,−1

3 ]. Thus the
left eigenvectors l0, l1, l2 defined in (2.7) are

l0 = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

l1 = [−3, 0,−2, 0,−1, 0, 0, 0, 1, 0, 2, 0, 3, 0],

l2 = [9,−1

3
, 4,−1

3
, 1,−1

3
, 0,−1

3
, 1,−1

3
, 4,−1

3
, 9,−1

3
].

1, 12 ,
1
4 are simple eigenvalues of S and other eigenvalues of S are smaller (in modulus) than 1

4 .
The appropriately normalized right eigenvectors r0, r1, r2 of eigenvalues 1, 12 ,

1
4 resp. of S are:

r0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T ,

r1 = [0, 0, 0, 0,−1

2
,−1

2
, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0]T ,

r2 = [0, 0, 0, 0,
3

2
,
3

2
,−3, 3,

3

2
,
3

2
, 0, 0, 0, 0]T .

These rk satisfy lj rk = δj,k, 0 ≤ k, j ≤ 2. Thus the first derivative f ′ at point vn2nk0+i after n

subdivision iterations, denoted as f ′(k0 + i
2n ), is

f ′(k0 +
i

2n
) = 2n

(
− 1

2
vn2nk0+i−1 −

1

2
sn2nk0+i−1 +

1

2
vn2nk0+i+1 +

1

2
sn2nk0+i+1

)
.
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In particular, we have

f ′(k0) = −1

2
v0k0−1 −

1

2
s0k0−1 +

1

2
v0k0+1 +

1

2
s0k0+1. (4.3)

The second derivative f ′′ at point vn2nk0+i, denoted as f ′′(k0 + i
2n ), is

f ′′(k0 +
i

2n
) =

22n+1
(3

2
vn2nk0+i−1 +

3

2
sn2nk0+i−1 − 3vn2nk0+i + 3sn2nk0+i +

3

2
vn2nk0+i+1 +

3

2
sn2nk0+i+1

)
.

With i, n = 0, we have

f ′′(k0) = 3v0k0−1 + 3s0k0−1 − 6v0k0 + 6s0k0 + 3v0k0+1 + 3s0k0+1. (4.4)

With f ′ and f ′′ given in (4.1) and (4.2) or in (4.3) and (4.4), we then have the normals
and curvature of f at a particular point. More precisely, using the 3-point C2 interpolatory
scheme, we obtain (assuming a planar curve):

Normal at k0 =[1

2
v0k0−1,2 −

1

6
s0k0−1,2 −

1

2
v0k0+1,2 +

1

6
s0k0+1,2,−

1

2
v0k0−1,1 +

1

6
s0k0−1,1 +

1

2
v0k0+1,1 −

1

6
s0k0+1,1

]T
,

Curvature at k0 =∣∣∣H3

∣∣∣/[(− 1

2
v0k0−1,1 +

1

6
s0k0−1,1 +

1

2
v0k0+1,1 −

1

6
s0k0+1,1

)2
+
(
− 1

2
v0k0−1,2 +

1

6
s0k0−1,2 +

1

2
v0k0+1,2 −

1

6
s0k0+1,2

)2]3/2
.

(4.5)

where

H3 =
(7

2
v0k0−1,1−

7

6
s0k0−1,1−7v0k0,1−

8

3
s0k0,1+

7

2
v0k0+1,1−

7

6
s0k0+1,1

)(
−1

2
v0k0−1,2+

1

6
s0k0−1,2+

1

2
v0k0+1,2−

1

6
s0k0+1,2

)
−
(7

2
v0k0−1,2−

7

6
s0k0−1,2−7v0k0,2−

8

3
s0k0,2+

7

2
v0k0+1,2−

7

6
s0k0+1,2

)(
−1

2
v0k0−1,1+

1

6
s0k0−1,1+

1

2
v0k0+1,1−

1

6
s0k0+1,1

)
.

(4.6)

Using the 4-point C2 interpolatory scheme, we obtain (assuming a planar curve):

Normal at k0 =[1

2
v0k0−1,2 +

1

2
s0k0−1,2 −

1

2
v0k0+1,2 −

1

2
s0k0+1,2,−

1

2
v0k0−1,1 −

1

2
s0k0−1,1 +

1

2
v0k0+1,1 +

1

2
s0k0+1,1

]T
,

Curvature at k0 =∣∣∣H4

∣∣∣/ [(
−1

2
v0k0−1,1−

1

2
s0k0−1,1+

1

2
v0k0+1,1+

1

2
s0k0+1,1

)2
+
(
−1

2
v0k0−1,2−

1

2
s0k0−1,2+

1

2
v0k0+1,2+

1

2
s0k0+1,2

)2]3/2
.

where

H4 =
(

3v0k0−1,1+3s0k0−1,1−6v0k0,1+6s0k0,1+3v0k0+1,1+3s0k0+1,1

)(
−1

2
v0k0−1,2−

1

2
s0k0−1,2+

1

2
v0k0+1,2+

1

2
s0k0+1,2

)
−
(

3v0k0−1,2+3s0k0−1,2−6v0k0,2+6s0k0,2+3v0k0+1,2+3s0k0+1,2

)(
−1

2
v0k0−1,1−

1

2
s0k0−1,1+

1

2
v0k0+1,1+

1

2
s0k0+1,1

)
.
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4.3 3-point C2 approximating scheme

The nonzero coefficients Pk of the mask for a C2 approximating scheme in [4] are P0 = W,P1 =
P−1 = X,P2 = P−2 = Z, where W,X,Z are defined by (2.2). Thus the subdivision matrix
S =

[
Pk−2j

]
−2≤j≤2,−2≤k≤2 is a 10 × 10 matrix. This subdivision mask has sum rule order at

least 3 (it has sum rule order 4 actually) with y0 = [1, 0],y1 = [0, 0],y2 = [− 2
15 ,

1
5 ]. Thus the

left eigenvectors l0, l1, l2 defined in (2.7) are

l0 = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

l1 = [−2, 0,−1, 0, 0, 0, 1, 0, 2, 0],

l2 =
1

15
[58, 3, 13, 3,−2, 3, 13, 3, 58, 3].

1, 12 ,
1
4 are simple eigenvalues of S and other eigenvalues of S are smaller (in modulus) than 1

4 .
The appropriately normalized right eigenvectors r0, r1, r2 of eigenvalues 1, 12 ,

1
4 resp. of S are:

r0 =
1

12
[0, 0, 1,−1, 10, 0, 1,−1, 0, 0]T ,

r1 = [0, 0,−1

2
,
1

2
, 0, 0,

1

2
,−1

2
, 0, 0]T ,

r2 = [0, 0, 1,−1,−2,−3, 1,−1, 0, 0]T .

These rk satisfy lj rk = δj,k, 0 ≤ k, j ≤ 2. Thus using Theorem 2 we get

f ′(k0 +
i

2n
) = 2n

(
− 1

2
vn2nk0+i−1 +

1

2
sn2nk0+i−1 +

1

2
vn2nk0+i+1 −

1

2
sn2nk0+i+1

)
.

In particular, we have

f ′(k0) = −1

2
v0k0−1 +

1

2
s0k0−1 +

1

2
v0k0+1 −

1

2
s0k0+1.

Using Theorem 2 for f ′′ we obtain

f ′′(k0 +
i

2n
) = 22n+1

(
vn2nk0+i−1 − s

n
2nk0+i−1 − 2vn2nk0+i − 3sn2nk0+i + vn2nk0+i+1 − sn2nk0+i+1

)
.

With i, n = 0, we have

f ′′(k0) = v0k0−1 − s
0
k0−1 − 2v0k0 − 3s0k0 + v0k0+1 − s0k0+1.

As with the interpolating case, we can obtain the normals and curvature of f at a particular
point (assuming a planar curve):

Normal at k0 =[1

2
v0k0−1,2 −

1

2
s0k0−1,2 −

1

2
v0k0+1,2 +

1

2
s0k0+1,2,−

1

2
v0k0−1,1 +

1

2
s0k0−1,1 +

1

2
v0k0+1,1 −

1

2
s0k0+1,1

]T
,

Curvature at k0 =∣∣∣H5

∣∣∣/[(−1

2
v0k0−1,1+

1

2
s0k0−1,1+

1

2
v0k0+1,1−

1

2
s0k0+1,1

)2
+
(
−1

2
v0k0−1,2+

1

2
s0k0−1,2+

1

2
v0k0+1,2−

1

2
s0k0+1,2

)2]3/2
.

(4.7)
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where

H5 =
(
v0k0−1,1−s0k0−1,1−2v0k0,1−3s0k0,1+v0k0+1,1−s0k0+1,1

)(
−1

2
v0k0−1,2+

1

2
s0k0−1,2+

1

2
v0k0+1,2−

1

2
s0k0+1,2

)
−
(
v0k0−1,2−s0k0−1,2−2v0k0,2−3s0k0,2+v0k0+1,2−s0k0+1,2

)(
− 1

2
v0k0−1,1+

1

2
s0k0−1,1+

1

2
v0k0+1,1−

1

2
s0k0+1,1

)
.

(4.8)

5. Applications to curve design

In this section we consider the selection of the shape control parameters s0k for curve design.
In § 5.1, for a given initial control polygon with vertices v0k, we consider a selection of the
shape parameters s0k such that the normals of the resulting limiting curve at all vertices v0k
are equal or close to the well-defined discrete normals of the initial control polygon. In § 5.2
and § 5.3, we consider the cases where we are wanting the limiting curve f (generated from the
initial control vector “polygon” {[v0k, s0k]}k) to have a certain unit normal and/or curvature at
a vertex v0k0 of the initial points. In the following, we focus on planar curves and we use both
a 3-point C2 interpolatory scheme and a 3-point C2 approximating scheme for curve design.

5.1. General selection of s0k

For planar curve design we will select s0k so that there is only one free variable, ωk. Let
v0
k = [v0k, s

0
k], with v0k = [v0k,1, v

0
k,2]

T , s0k = [s0k,1, s
0
k,2]

T ∈ R2. For a polygon {v0k}k define, as in

[25], the unit tangent at v0k, denoted as Tk, to be

Tk =
T−k + T+

k

‖T−k + T+
k ‖

,

where

T−k =
v0k − v0k−1
‖v0k − v0k−1‖

, T+
k =

v0k+1 − v0k
‖v0k+1 − v0k‖

.

Assuming that v0k−1, v
0
k and v0k+1 are not collinear, we define the normal (vector) at v0k, denoted

as nk, to be a vector on the plane generated by T−k and T+
k and orthogonal to Tk. Therefore,

we may define

nk =
T−k − T

+
k

‖T−k − T
+
k ‖

. (5.1)

If v0k−1, v
0
k and v0k+1 are collinear, we define

nk =
[v0k,2 − v0k+1,2, v

0
k+1,1 − v0k,1]T

‖v0k+1 − v0k‖
. (5.2)

As in [25], we say that a line segment v0k−1v
0
k is convex if lkrk > 0, where lk and rk are the

projections of v0k−1v
0
k onto nk−1 and nk resp.:

lk = (v0k−1 − v0k)Tnk−1, rk = (v0k − v0k−1)Tnk.
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We say v0k−1v
0
k is an inflection line segment if lkrk < 0, and we say v0k−1v

0
k is a straight line

segment if lkrk = 0. Next, we define sk as follows, depending on the convexity of v0k−1v
0
k and

v0kv
0
k+1.

(i) If one or both of v0k−1v
0
k and v0kv

0
k+1 is a straight line segment, or if both of them are

inflective, then set s0k = 0;

(ii) If one of v0k−1v
0
k and v0kv

0
k+1 is convex and the other is inflective, then if v0k−1v

0
k is convex,

set s0k = ωk

(
(v0k − v0k−1)Tnk

)
nk and if v0kv

0
k+1 is convex, set s0k = ωk

(
(v0k − v0k+1)

Tnk

)
nk;

(iii) If both v0k−1v
0
k and v0kv

0
k+1 are convex, then if ‖v0k − v0k−1‖ ≤ ‖v0k+1 − v0k‖, set s0k =

ωk

(
(v0k−v0k−1)Tnk

)
nk and if ‖v0k−v0k−1‖ > ‖v0k+1−v0k‖, set s0k = ωk

(
(v0k−v0k+1)

Tnk

)
nk.

In (ii) and (iii), ωk is a scalar. Its range of values that produce curves free of waviness varies
according to the mask of the scheme.

Testing with values for ωk ranging from −3 to 1, the limiting curve appears satisfactory
for values of ωk between −0.5 and 0.3 for the scheme in (2.2). Similarly the limiting curve
appears nice for values of ωk between −1.5 and −0.1 for the scheme in (2.3). See Fig. 2 and
Fig. 3, where “unit normal” in Fig. 3 is the discrete normal to the initial polygon defined by
(5.1). We summarize the matrix-valued curve subdivision with the above described general
selection of s0k as Algorithm 1 below.

Algorithm 1

Step 1. For each point v0k on the initial control polygon, define nk as given in (5.1). If the points
are collinear, define nk using (5.2).

Step 2. Letting ωk = α (where one may choose α to be number between −0.5 to −0.1), define
s0k using the procedure given in (i) to (iii) immediately above.

Step 3. Apply the subdivision scheme (1.3) to these initial [v0k, s
0
k] and determine visually if the

limiting curve is suitable for one’s needs. If it isn’t suitable, then return to Step 2 and
adjust α.

5.2. Selection of s0k for specific unit normal

For a polygon
{
v0k
}
k
, if a normal unit vector nk0 = [nk0,1, nk0,2]

T is desired for the limiting
curve at the point v0k0 we will consider the necessary relationship between ωk0−1 and ωk0+1.
We will assume that for the adjoining points (v0k0−1 and v0k0+1) both the discrete unit nor-
mals (nk0−1, nk0+1) and the shape parameters (sk0−1, sk0+1) will be defined as in §5.1. We
will determine the corresponding ωk0−1 and ωk0+1. We will consider the 3-point interpolatory
scheme from §4.1 and the 3-point approximating scheme from §4.3.

In order that nk0 · f ′(k0) = 0, from (4.1), we have

nk0,1

(1

2

(
v0k0+1,1 − v0k0−1,1

)
+

1

6

(
s0k0−1,1 − s

0
k0+1,1

) )
+nk0,2

(1

2

(
v0k0+1,2 − v0k0−1,2

)
+

1

6

(
s0k0−1,2 − s

0
k0+1,2

) )
= 0.
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Figure 2: Top: Initial polygon; Middle: Subdivision curve with 3-point interpolatory scheme
where ωk = −1; Bottom: Subdivision curve with 3-point approximating scheme where ωk =
−0.4

So
2∑
j=1

nk0,js
0
k0−1,j =

2∑
j=1

nk0,js
0
k0+1,j + 3

2∑
j=1

nk0,j
(
v0k0−1,j − v

0
k0+1,j

)
In a similar fashion for the approximating scheme

2∑
j=1

nk0,js
0
k0−1,j =

2∑
j=1

nk0,js
0
k0+1,j +

2∑
j=1

nk0,j
(
v0k0−1,j − v

0
k0+1,j

)
Notice that sk0 does not appear. So we will define sk0 and its corresponding ωk0 as in §5.1.
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Figure 3: Upper Left: 3-point interpolating scheme showing segment of subdivision curve where
ωk = −1; Upper Right: Same interpolating scheme with a specific desired normal at vertex
v4: n4 = [−.7151,−.6990]T which varies 4.35◦ from the polygon normal Lower Left: 3-point
approximating showing same segment with ωk = −0.4; Lower Right: Same approx. scheme
with same specific desired normal at vertex v4: n4 = [−.7151,−.6990]T .

(However, contrast this with the treatment of ωk0 in §5.3.) Hence assuming that conditions
(ii) or (iii) from §5.1 apply for the determination of sk0+1 and sk0−1 we obtain for the inter-
polatory scheme

ωk0−1 =

ωk0+1(nk0,1α+ nk0,2β) + 3
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ

, (5.3)
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or alternatively

ωk0+1 =

ωk0−1(nk0,1γ + nk0,2τ)− 3
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1α+ nk0,2β

, (5.4)

where, depending on whether condition (ii) or condition (iii) in § 5.1 applies, α, β are the
respective components of either((

v0k0+1 − v0k0
)T
nk0+1

)
nk0+1 or

((
v0k0+1 − v0k0+2

)T
nk0+1

)
nk0+1

and γ, τ are the respective components of either((
v0k0−1 − v

0
k0−2

)T
nk0−1

)
nk0−1 or

((
v0k0−1 − v

0
k0

)T
nk0−1

)
nk0−1.

Similarly for the approximating case

ωk0−1 =

ωk0+1(nk0,1α+ nk0,2β) +
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ

, (5.5)

or alternatively

ωk0+1 =

ωk0−1(nk0,1γ + nk0,2τ)−
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1α+ nk0,2β

, (5.6)

Note that in (5.3) and (5.5) we assume that the desired nk0 is not orthogonal to nk0−1
and similarly in (5.4) and (5.6) we assume that nk0 is not orthogonal to nk0+1. Also note that
using (5.3) ((5.5) resp. for approx. scheme) ωk0−1 and ωk0+1 lay on a straight line with slope

a0 =
nk0,1

α+nk0,2
β

nk0,1
γ+nk0,2

τ and y-intercept

c0 =

3
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ(

c0 =

2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ

resp. for approx. scheme

)
.

We propose the following method to select the values for ωk0−1 and ωk0+1. Choose the point
on the straight line such that its distance from the origin is minimized. Notice that this point
will be the origin only if the y-intercept equals 0 (i.e. if nk0 is orthogonal to vk0−1 − vk0+1).
We obtain (different c0 for approximating case as given above)

ωk0−1 =
c0

a20 + 1
, ωk0+1 =

−a0c0
a20 + 1

,
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Using the initial polygon on the left side in Fig. 2 and looking at v7, we consider eight
different desired unit normals and examine the resulting curves and ω values. Our experiments
with both the 3-point interpolatory scheme and the 3-point approximating scheme show that
when the specifically chosen unit normals are close to the discrete normal to the initial polygon
at v7, the resulting curves look nice. The detailed experimental results can be found in a long
version of this paper which can be downloaded from the website of one of the authors. We also
observed that as it would be expected the subdivision curves by the approximating scheme in
general look better than those by the interpolatory scheme. See Fig. 4 for some of the limiting
curves.

v
7

unit

normal

v
7

unit

normal

v
7

unit

normal

v
7

unit

normal

Figure 4: Top Left: Interpolating scheme using n7 = [−.7677,−.6408]T ; Top Right: Inter-
polating scheme using same segment with n7 = [−.6977,−.7164]; Bottom Left: Approxi-
mating scheme using n7 = [−.7677,−.6408]T ; Bottom Right: Approximating scheme with
n7 = [−.6977,−.7164]; Blue (solid) line is limit curve. Unit normal in the pictures is
[−.7373,−.6755]T , which is the calculated discrete normal to the initial polygon at v7.

If condition (i) of § 5.1 applies to sk0+1 (sk0−1) but not to sk0−1 (sk0+1) then ωk0−1 (ωk0+1) is
predetermined. For instance, assume that condition (i) applies to sk0+1 but not to sk0−1. Then
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sk0+1 = 0 and we have (approximating case in parentheses)

ωk0−1 =

3
2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ

(
ωk0−1 =

2∑
j=1

nk0,j

(
v0k0−1,j − v

0
k0+1,j

)
nk0,1γ + nk0,2τ

)
.

5.3. Selection of s0k for specific curvature

We also want to consider how to select ω values so that we can obtain a desired curvature at
a particular vertex of our curve. Since we start with a control (planar) polygon, it would be
beneficial to have a method to define curvature at a vertex of a planar polygon. In Differential
Geometry there is a unique circle that most closely resembles the curve at any point P (the
osculating circle with radius R) and the curvature equals 1

R . So we will define the estimated
curvature at vertex vk0 as the reciprocal of the radius of the unique circle that vk0 and its two
adjacent vertices (vk0−1 and vk0+1) lay on:

Estimated curvature at vk0 =
1

R
(5.7)

where R is radius of circle on which vk0−1, vk0 , vk0+1 lay.

So for a polygon
{
v0k
}
k
, if we want not only a certain normal unit vector, nk0 = [nk0,1, nk0,2]

T

but also a certain curvature κk0 for the limiting curve at the point v0k0 we will consider how
to calculate a suitable ωk. Our basic procedure for calculating the shape parameters will only
vary from § 5.1 in the way corresponding ωk values are decided upon.

We will (initially) assume that conditions (ii) or (iii) as stated in § 5.1 apply for the calcu-
lation of the shape parameters sk0−1, sk0 and sk0+1. Since we are wanting a specific normal to
the limit curve at vk0 we will determine ωk0−1 and ωk0+1 as in § 5.2.

Using the formula for curvature (4.5) and assuming that H3 in (4.6) is nonnegative we
obtain (for the interpolatory scheme)

ω+ =
κk0

((
d+ 1

6rωk0−1 −
1
6 tωk0+1

)2
+
(
b+ 1

6uωk0−1 −
1
6mωk0+1

)2)3/2(
4
9qm−

4
9pt
)
ωk0+1 +

(
−4

9uq + 4
9pr
)
ωk0−1 − 8

3qb+ 8
3pd

(5.8)

+
−ab+ cd−

(
1
6ua−

7
6rb−

1
6rc+ 7

6ud
)
ωk0−1(

4
9qm−

4
9pt
)
ωk0+1 +

(
−4

9uq + 4
9pr
)
ωk0−1 − 8

3qb+ 8
3pd

+
−
(
−1

6ma−
7
6 tb+ 1

6 tc+ 7
6md

)
ωk0+1 + 7

18 (tu−mr)ωk0−1ωk0+1(
4
9qm−

4
9pt
)
ωk0+1 +

(
−4

9uq + 4
9pr
)
ωk0−1 − 8

3qb+ 8
3pd

and using the formula for curvature (4.7) and assuming that H5 in (4.8) is nonnegative we
obtain for the 3-point approximating scheme

ω+ =
κk0

((
d+ 1

2rωk0−1 −
1
2 tωk0+1

)2
+
(
b+ 1

2uωk0−1 −
1
2mωk0+1

)2)3/2(
−3

2qm+ 3
2pt
)
ωk0+1 +

(
3
2uq −

3
2pr
)
ωk0−1 + 3qb− 3pd

(5.9)

+
ãb− c̃d+

(
1
2uã− rb−

1
2rc̃+ ud

)
ωk0−1(

−3
2qm+ 3

2pt
)
ωk0+1 +

(
3
2uq −

3
2pr
)
ωk0−1 + 3qb− 3pd

+

(
−1

2mã− tb+ 1
2 tc̃+md

)
ωk0+1 + (rm− tu)ωk0−1ωk0+1(

−3
2qm+ 3

2pt
)
ωk0+1 +

(
3
2uq −

3
2pr
)
ωk0−1 + 3qb− 3pd
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where κk0=desired curvature at v0k0 and

a =
7

2
v0k0−1,1 − 7v0k0,1 +

7

2
v0k0+1,1, ã = v0k0−1,1 − 2v0k0,1 + v0k0+1,1,

c =
7

2
v0k0−1,2 − 7v0k0,2 +

7

2
v0k0+1,2, c̃ = v0k0−1,2 − 2v0k0,2 + v0k0+1,2,

d = −1

2
v0k0−1,1 +

1

2
v0k0+1,1, b = −1

2
v0k0−1,2 +

1

2
v0k0+1,2,

and where, depending on whether condition (ii) or condition (iii) in § 5.1 applies, r, u are the
respective components of either((

v0k0−1 − v
0
k0−2

)T
nk0−1

)
nk0−1 or

((
v0k0−1 − v

0
k0

)T
nk0−1

)
nk0−1

and q, p are the respective components of either((
v0k0 − v

0
k0−1

)T
nk0

)
nk0 or

((
v0k0 − v

0
k0+1

)T
nk0

)
nk0

and t, m are the respective components of either((
v0k0+1 − v0k0

)T
nk0+1

)
nk0+1 or

((
v0k0+1 − v0k0+2

)T
nk0+1

)
nk0+1.

Alternatively, assuming that H3 in (4.6) is negative we obtain for the interpolatory scheme:

ω− =
κk0

((
d+ 1

6rωk0−1 −
1
6 tωk0+1

)2
+
(
b+ 1

6uωk0−1 −
1
6mωk0+1

)2)3/2
−
(
4
9qm−

4
9pt
)
ωk0+1 −

(
−4

9uq + 4
9pr
)
ωk0−1 + 8

3qb−
8
3pd

(5.10)

+
+ab− cd+

(
1
6ua−

7
6rb−

1
6rc+ 7

6ud
)
ωk0−1

−
(
4
9qm−

4
9pt
)
ωk0+1 −

(
−4

9uq + 4
9pr
)
ωk0−1 + 8

3qb−
8
3pd

+

(
−1

6ma−
7
6 tb+ 1

6 tc+ 7
6md

)
ωk0+1 − 7

18 (tu−mr)ωk0−1ωk0+1

−
(
4
9qm−

4
9pt
)
ωk0+1 −

(
−4

9uq + 4
9pr
)
ωk0−1 + 8

3qb−
8
3pd

.

If H5 in (4.8) is negative we obtain for the approximating scheme:

ω− =
κk0

((
d+ 1

2rωk0−1 −
1
2 tωk0+1

)2
+
(
b+ 1

2uωk0−1 −
1
2mωk0+1

)2)3/2(
3
2qm−

3
2pt
)
ωk0+1 −

(
3
2uq −

3
2pr
)
ωk0−1 − 3qb+ 3pd

(5.11)

+
−ãb+ c̃d−

(
1
2uã− rb−

1
2rc̃+ ud

)
ωk0−1(

3
2qm−

3
2pt
)
ωk0+1 −

(
3
2uq −

3
2pr
)
ωk0−1 − 3qb+ 3pd

+
−
(
−1

2mã− tb+ 1
2 tc̃+md

)
ωk0+1 + (tu− rm)ωk0−1ωk0+1(

3
2qm−

3
2pt
)
ωk0+1 −

(
3
2uq −

3
2pr
)
ωk0−1 − 3qb+ 3pd

.

Having obtained ω+ and ω− we choose ωk0 to be the one with smaller absolute value.

If condition (i) of § 5.1 applies to sk0+1 (sk0−1) then we need to modify (5.8), (5.10) or for
the approximating case (5.9), (5.11) by setting ωk0+1 (ωk0−1) equal to 0.

Using the initial polygon in Fig. 2, we carried out experiments with various curvatures at
two vertices, v7 that appears to have a small curvature and v44 that has a larger curvature
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Figure 5: Left: Subdivision curve by 3-point interpolating scheme with n7 = [−.7677,−.6408]T ,
curvature=.1592 (which is the discrete curvature to the initial polygon at v7); Right: Subdivision
curve by 3-point approximating scheme with n44 = [.9040, .4275]T and curvature =.7382 (which
is the discrete curvature to the initial polygon at v44). Unit normal in the pictures is the
calculated discrete normal to the initial polygon at vertex v7 or v44.

with 3-point interpolatory scheme and 3-point approximation scheme. For the approximating
scheme, if the desired curvature at v7 or v44 is close to the estimated discrete curvature, the
resulting curve looks very nice. For the interpolatory scheme, if the selected curvature at v7
is close to the estimated discrete curvature, the resulting curve looks good. At v44 which has
large curvature, the resulting curve with interpolatory scheme has some waviness if the resulted
curvature is close to the estimated (discrete) curvature. This is an area where more research
is needed. See Fig. 5 for the resulting curves at v7 with interpolatory scheme and at v44 with
approximation scheme.

6. Conclusions and future work

We have seen that we could obtain explicit formulas for both the first and second derivatives of
the limiting curve for both interpolatory and approximating matrix-valued curve subdivision
schemes whose refinement mask and subdivision matrix satisfied certain assumptions. Using
these formulas, we then could calculate the normals and curvature of the limiting curve. The
first components {v0k}k of the initial control vector net {v0

k}k represent the initial control
polygon and the second components {s0k}k are the so-called shape control parameters. We
used well-defined discrete normals to the control polygon based on [25] to guide us toward
some suitable selection of these shape parameters.

We presented an algorithm to formulate the shape parameters based on projections of
the polygon line segments onto these defined discrete normals. Depending on the outcome,
sk = [0, 0]T or sk = ωk times some calculated multiple of nk, where nk is the above-mentioned
discrete unit normal to the control polygon at vertex vk and where ωk is some scalar. One of
the benefits of such an approach is that we now just need to determine one variable (ωk) rather
than two when selecting a suitable shape parameter sk. Using a sample control polygon we
found that limiting curves were nice (i.e. relatively free of waviness) for ωk values between
−1.5 and .3.

We also presented a method for selecting ωk−1 and ωk+1 (and as a result the respective
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shape parameters) if we desired to have a specific unit normal to the limit curve at vertex vk.
In some cases the choice of a desired normal that is close to the above-mentioned discrete unit
normal can improve the appearance of the final curve. Other choices, however, can increase
the waviness. Such results reinforce the work done in [3] that showed how the selection of the
shape control parameters change the shapes of the limiting surfaces dramatically.

In addition we presented a method for the selection of ωk (and thus the shape parameter
sk) if we also wanted a specific desired curvature for the limit curve at vk. If dealing with a
point on the curve with relatively small curvature then selecting a curvature near an estimated
(discrete) curvature can produce a nice curve.

Future work will include finding explicit formulas for first and second partial derivatives of
a limiting surface for both interpolatory and approximating matrix-valued surface subdivision
schemes whose refinement mask and subdivision matrix satisfy certain assumptions. We will
then be able to calculate normals and curvature to the limit surface at both regular and
extraordinary vertices. We will explore how we can select shape parameters based on defined
discrete normals of the initial control polyhedron.
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manuscript.
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