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Optimal multifilter banks: Design, related
symmetric extension transtorm and application to
1mage compression

Tao Xial and Qingtang Jiang!

Abstract— The design of optimal multifilter banks and op-
timum time—frequency resolution multiwavelets with differ-
ent objective functions is discussed. The symmetric exten-
sion transform related to multifilter banks with the sym-
metric properties is presented. It is shown that such a
symmetric extension transform is nonexpansive. More opti-
mal multifilter banks for image compression are constructed
and some of them are used in image compression. Experi-
ments show that optimal multifilter banks have better per-
formances in image compression than Daubechies’ orthogo-
nal wavelet filters and Daubechies’ least asymmetric wavelet
filters, and for some images, they even have better per-
formances than the scalar (9,7)-tap biorthogonal wavelet
filters. Experiments also show that the symmetric exten-
sion transform provided in this paper improves the rate—
distortion performance, compared with the periodic exten-
sion transform.
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I. INTRODUCTION

Multiwavelets, wavelets generated by a finite set of scal-
ing functions, have several advantages in comparison to
scalar wavelets (see [18]). One of the advantages is that a
multiwavelet can possess the orthogonality and symmetry
simultaneously, while except for the Haar system, a scalar
wavelet can not have these two properties at the same time
([4] and [17]). Thus, as stated in [18], multiwavelets offer
the possibility of superior performance for image processing
applications, compared with the scalar wavelets. As it was
shown in [18], the DGHM multiwavelet, which was con-
structed by Donovan, Geronimo, Hardin and Massopust
in [5] and [7], has a good performance in signal denois-
ing. However for image compression, the DGHM multi-
wavelet does not have a good performance as one expected
[18], and more multiwavelets which are more suitable for
image compression are desired. In [11], the construction
of optimum time—frequency resolution (OPTFR) multi-
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wavelets was proposed and the optimal multiwavelet fil-
ter banks suitable for image compression were designed in
[12]. In this paper, we discuss the design of OPTFR mul-
tiwavelets with different objective functions and provide
more optimal multiwavelet filter banks. The constructed
optimal multiwavelet filter banks have the symmetric prop-
erties. For symmetric multiwavelet filter banks, a symmet-
ric extension transform of the finite-length input signals
is desired. This paper provides such a symmetric exten-
sion transform and proves that the symmetric extension
transform is nonexpansive. Based on the symmetric exten-
sion transform, we use optimal multiwavelet filter banks
in image compression. Experiments show that OPTFR
multiwavelets have better performances in image compres-
sion than Daubechies’ orthogonal wavelets and Daubechies’
least asymmetric wavelets, and for some images, OPTFR
multiwavelets even have better performance than the scalar
(9, 7)-tap biorthogonal wavelet.

This paper is organized as follows. In Section 2, we
review the definition of multiwavelets, the discrete multi-
wavelet transform, and the procedure to construct OPTFR
multiwavelets. In Section 3, we develop the nonexpan-
sive symmetric extension transform for multiwavelet fil-
ter banks with the symmetric property. In Section 4,
first we discuss the objective functions for the construc-
tion of OPTFR multiwavelets for image compression, then
we give the implementation of OPTFR multiwavelets for
image compression and provide the image compression re-
sults with scalar wavelets and OPTFR multiwavelets. The
conclusions are given in Sections 5.

II. MULTIFILTER BANKS AND MULTIWAVELETS

In this section, we review the definitions of multiwavelet
filter banks and multiwavelets, the discrete multiwavelet
transform and the procedure to construct OPTFR multi-
wavelets.

A. Discrete multiwavelet transform

A vector-valued function ¥ := (¢y,---,%,)T is called
a multiwavelet if the collections of the integer translates
and the dilations of factor 2 of 1,:--,%, form an or-

thonormal basis of L?(R). To construct a compactly sup-
ported multiwavelet, we begin with two r x r matrices
Hw) = Y,c,Hre ™ and G(w) = Yo, Gre™#* of
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trigonometric polynomials satisfying

HwH*(w) + Hw+7)H*(w+7) =1,,
H(w)G*(w) + Hw + 7)G*(w + 7) = 0y, (1)
Gw)G*(w)+ Gw+7)G*(w+7) =1,,

where —7 < w < 7. Throughout this paper, B* denotes
the Hermitian adjoint of the matrix B, and I, and 0, de-
note the r X r identity matrix and zero matrix respectively.
If the transition operator 7y associated with H satisfies
Condition E (A matrix D is said to satisfy Condition E
if 1 is a simple eigenvalue of D and all other eigenvalues
lie inside the open unit disk), then there exists a unique
compactly supported solution @ with 3(0) # 0 of the re-
finement equation

B(x) =2 Hp®(2z — k). (2)
keZ

Furthermore @ is a scaling function, i.e., & generates a
multiresolution analysis of multiplicity r, and ¥ defined by

U(z) =2 Gy®(2z—k), (3)

keZ

is a multiwavelet, see e.g., [12]. In this case we say that
{H, G} generates the scaling function ® and the multi-
wavelet . The pair {H, G} is called a multiwavelet filter
bank (this is often abbreviated multifilter bank), and
H (G, respectively) is called a matrix lowpass filter
(matrix highpass filter, respectively). For a multifilter
bank {H, G}, it is said to be a finite impulse response
(FIR) multifilter bank if there exists an integer N such
that H, = 0,Gy = 0, |k| > N. A multifilter bank {H, G}
is said to be orthogonal if it satisfies (1). In this paper,
scaling functions, multiwavelets, and the filter coefficients
of the multifilter banks discussed are real.

Assume that {H,G} is an orthogonal FIR multifil-
ter bank and it generates a compactly supported scal-
ing function ® = (¢1,---,¢,)7 and a multiwavelet ¥ =
(¥1,--+,%,)T. Let (V;) be the multiresolution analysis gen-
erated by ®, i.e., V; =span{¢,(2/ - —k),1 <{<r k€ Z}.
Denote W; := V;41 © V;,j € Z, the orthogonal comple-
ment of V, in V}_H. Then {2%¢g(2j - —k‘)}lsggr,a,kez and
{254¢(27 - —k)}1<e<rrez are orthonormal bases of V; and
W;, j € Z, respectively. For any continuous function f(t)
in Vj, it can be expanded as

ZZC nOe(t —n).

n (=1

The function f is completely determined by the sequence

{(cﬁ“}b,- ,c&",{)T}. Let J be a negative integer. By the
fact o =W, 0Vay=---=W_16---0W;®V;, and

the orthonormality of 2% ¢, (27 - —k) and 22¢,(27 - —k), f
also can be expanded as

= Tyl ey

n (=1

1 t
DIWEE TR
= ZZ 9% $o(27t — n)

n (=1
ZZZd({'}g%w(?t—n),
j=J n (=1

where cff) d(J ) € R are given by

&) = [ fotoue—ma
:/f(t)2%¢e(2jt—k)dt.

Denote c¥) := (cﬂ,- ,cgj%)T dy) .= (dg’;,---,d(rf%)T.
Then we have

3 ()28 827t —n)

=3 ()2 T 82 Mt ) (4)

+ (@9 D) T2 T w (2t — ).

Multiplying both sides of (4) with 2j_Tl<I>(2j_1t — k)T and
taking integral over R, we have

(J 1) _ \/_ZH" aweld). (5)

Similarly by multiplying both sides of (4) with
2];\11(21 1t — k)T and taking integral over R, one has

QI = VB Grsecld). (©)

Finally, multiply both sides of (4) with 2% ®(2/¢ — k)7 and
take integral over R, we have

(J) = \/_ZHT 2nci Y + \/—Z Gi_z,d ™. ()

Equations (5) and (6) are the discrete multiwavelet trans-
form decomposition algorithm, while (7) is the reconstruc-
tion algorithm (see also [18] and [22]). Thus to determine
cg,']) and d%j_l), J < j < —1, we need only to determine
¢t from f@).

For the scalar wavelet transform, since the scaling func-
tion ¢ satisfies <$( 0) =1, Y s close to f(n/Ny) and
we simply let i) to be f(n/No), where f(n/Ng) are
samples of f(t) with sampling rate 1/N,. However for
the multiwavelet transform, ®(0) is a normalized right 1-
eigenvector of H(0) (see [12]), and ®(0) needs not have to
be %( ,---,1)T. In this case, we can not simply deter-
(0) .

mine ¢y’ in such a way as in the scalar case. There are
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two methods to deal with this problem. One method is
the pre/postfilter techniques carried out in [18], [21] and
[22]. Another method is to use another pair of multifil-
ter bank {H’ G} constructed from {H,G}. This new
multifilter bank {H® G®} generates the scaling function
o’ and multiwa:zelet U with ®%(0) = %E\l,---i\l)T (see
[15]). In fact if ®(0) € R is a vector with ®(0)T®(0) = 1,
then there exists a 7 X r orthogonal matrix U such that
Ud(0) = %(1,---,1)? Let {H?, G’} be the multifilter
bank defined by
H'=UHU", G’'=U,GU",
where Uj is an orthogonal matrix. Then {H® G°} is or-
thogonal and generates the scaling function ®’ and the
multiwavelet ¥® with ®°(0) = %(1, -, )T, where ®° =
U®, ¥ = U;¥. As in [15], multiwavelet ¥° is said to be
balanced if its corresponding scaling function P satisfies
®b(0) = %(1, ---,1)T. In this paper, we will use the sec-
ond method and we will design the balanced multiwavelets.
Consider the case r = 2. From the decomposition algo-
rithm (5) with multifilter bank {H® G?®}, the normalized
lowpass frequency responses for this system are (see [19])

N
Bh(w) == 3 H(a, e 2 4 H (0, 2)e D2 (3)
k=0

where o = 1,2; and for a matrix B, B(¢,j) denotes the
(¢,§)-entry of B. The filters h%, h} act as lowpass filters.
Thus it is required that |[h%(0)| = 1,R8(7) = 0,0 = 1,2.
It was shown in [12] that if {H®, G°} generates a balanced
wavelet of multiplicity 2, then A% (0) = 1,a = 1,2. Thus in
this case what in our design are the requirements:

nb(m) =0, h5(x)=0. (9)

B. Optimum time—frequency resolution multiwavelets

The design of OPTFR multiwavelets were studied in [11]
and [12]. In this subsection, we review the procedure to
design OPTFR multiwavelets.

The time-duration Ay of a window function f is de-
fined by

A= /R (t = 02| (t)dt/ E)*,

where

%::/Rt|f(t)|2dt/E, E::/R|f(t)|2dt.

The frequency-bandwidth of f denoted by A;;is defined

in the same way with f replaced by f. Then AfAr> i
This inequality is called the uncertainty principle, and the
product A fA}.‘ is called the resolution cell.

Since every component 1); of a multiwavelet ¥ is a band-
pass function (see [11]), i.e., ©;(0) = 0, as in the scalar

case, we also consider the frequency-bandwidth A:’;_ of ¥,
defined by ([8], [6]) ’

¥

+o0 _ . +oo .
A% = ([ -0 )P / | ipast,
where

G [ el / | iwrde.

In [11], formulas to compute the energy moments of scaling
functions and multiwavelets in the time—frequency plane
were provided. In the following we use Oy and D’} to denote

AfArand Ay A[;? , respectively.

To construct OPTFR multiwavelets, since the scaling
functions and multiwavelets with good time—frequency lo-
calization are constructed simultaneously, the parametric
expressions for the matrix coefficients Hy, Gy of multifilter
banks are required. In [12], several forms of factorizations
for orthogonal causal FIR multifilter banks are provided
based on the lattice structures for M x M FIR lossless
systems. (About M x M FIR lossless systems, see, e.g.,
[20] and the references therein.) The factorization for or-
thogonal causal FIR multifilter banks which generate sym-
metric/antisymmetric scaling functions and multiwavelets
is discussed in [13]. In the following we review the para-
metric expressions for the multifilter banks which generate
wavelets of multiplicity 2 with symmetry property.

For a vector-valued function f = (f1, fo)7, we say f is
symmetric/antisymmetric about a symmetry center ¢y € R
if fi (f2, respectively) is symmetric (antisymmetric, re-
spectively) about the center ¢yp. Let {yH,nyG} with
vHW) = Yn_ Hee #* yG(w) = Y i, Gre ™ be
an orthogonal FIR multifilter bank. If {yH, G} gen-
erates symmetric/antisymmetric scaling function y® and
multiwavelet 5 ¥ about the symmetry center % , then
{H 3N o, {Gr}Y, satisfy (see, e.g., [3]):

DoHy_ Do = Hg, DoGn_1Do = G;,0 < k< N, (10)

where
Dy := diag(1,-1).

If Nisodd, N =2v+1, v € Z; to say, then it was shown
in [13] that {5,4+1H,2,4+1G} is orthogonal and satisfies (10)
if and only if

2y 1Hw) | _
e |- an
MoV, () Vi | TGl |

where z = ™,
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with v € 0(2),

1 0
1H(w) | 1| cosfly Fsinby (13)
1G(w) | 7 0 +1
sinfy =+ cosb
1 0
+1 —cosfy Fsinby —iw
2 0 F1 ’
—sinfy = cosby
with —7 < 6y < 7, and
1 000
0010
Mo:=1¢9 1 9 0
0 001

Here O(2) denotes the set consisting of all 2 x 2 orthogonal

matrices. For vy € O(2), 0 < k < ~, vy, are given by
vi, = R(0y)diag(1,£1), —7 < 6} < m, where
| cosBr —sinby
R(6k) = [ sinf;, cosOy

If N = 2v for some positive integer «y, a family of or-
thogonal multifilter banks {2,H,2,G} which satisfy (10)
are provided in [12]:

e |- o

M0V7_1(z2)V7_2(z2) .. 'Vl(Zz)Mo [ 2H(w) :| ’

where Vy, are given by (12) for some v € O(2) and

-1
2H(w) 2(:0500 V2 cos 6y (15)
2G(w) F1
2s1n00 V/25sin 6,
[ 1
1 0 :F\/_smﬁo _1
AR 0 ?
0 +£v2cosb,
[ 1 1
+1 V2cos6y V2cosb 9
1 +1 +1 z
| V2sinfy  /2siné

with —7 < 8y < 7,2 = e,
The scaling functions y® and multiwavelets y¥ gen-
erated by {vH, yG} which are given in (11) and (14)
are symmetric/antisymmetric. Thus N&)(O) = (1,0)T and
hence y ¥ is not balanced. By a rotation of the angle 7/4,
we get the balanced scaling function x®° and multiwavelet

NP by
=Ron®, N’ =

R(O)n ¥, (16)

where 6 € [—m, ) and

ﬂ_ﬁ[l—l]‘ a7)

=321 1

The problem is how to choose the number §. In [15] and
[19], @ is chosen to be 0, while in [12] 6 is 7. In our experi-
ments about image compression, we find that for most cases
we will get a little better results for the choice of § = 0 than
for § = 7. In the following, we set = 0. In this case, the
scale functions y®° = (n¢?, n¢5)T satisfy yob(N —t) =
~#8(t) and multiwavelets ¥ = (y11, N92)T are symmet-
ric/antisymmetric. The corresponding multifilter banks,
denoted by {yH?, yGP’}, are given by

vH (w) =

It is shown in [12] that for N = 2y + 1, the constrained
conditions (9) for yH? are

RovHW)RY, NGP(w)= nyG(w)RE. (18)

sinfy =~ 0. (19)
while for N = 2, the constrained conditions (9) are
cos(fg + 7/4) = 0. (20)

Using the parametric expression of {yH’ yG'}, we
construct the balanced OPTFR multiwavelets by mini-
mizing the objective function xS(1) = Oy, + Oy,
or yS(2) := 0%, + 0%, or by minimizing the sum
~NS(3) = 20,40 + Oyy, + Hyy,, or the sum yS(4) :=
20, g0 +0° ,, +0°% ,, under condition (19) (for N = 2y+1)
or (20) (for N = 2v). In the first part of Section 4, we will
determine which objective function we shall choose to con-
struct OPTFR multiwavelets based on the image compres-
sion results. In [12], OPTFR balanced multiwavelets were

.« . . . b
constructed by minimizing Oygt + 0y and O g+ DN¢,1,,
where yU = Ron 0.

ITI. NONEXPANSIVE SYMMETRIC EXTENSION
TRANSFORM

When we apply filter banks to image compression, we
encounter the boundary conditions at the ends of the sig-
nals since in practice all signals are finite-length. In other
words, we should extend the signal to the infinite inter-
val. The extension approaches should satisfy the following
conditions:

(1). Easy to implement. Due to the demand for time
complexity, we can not design too complicated means
to extend signals.

(2). Perfect reconstruction. If no error exists in the cod-
ing and quantization stages, the original signals can
be perfectly reconstructed.

(8). Smoothness. No discontinuity is introduced by the
extension process.

(4). Nonexpansive. That means no extra space over-
heads are imposed for the perfect reconstruction of
the extended signals.

The most popular method for extension is the periodic

extension. It works for any perfect reconstruction multirate
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filter bank. However, condition (3) can not be met anymore
due to the differences between the first samples and the last
samples of image signals.

Another extension approach is the symmetric extension.
In comparison with the periodic extension, the symmetric
extension improves the rate—distortion performance about
0.1-1.0dB in image compression. However its drawback is
that it works only for the linear phase filters. As mentioned
in the introduction, 2—channel orthogonal scalar wavelet
filters can not be linear phases except for the trivial case
(Haar system) [4]. So for 2—channel scalar wavelet orthog-
onal filters, periodic extension is the most used extension
method for perfect reconstruction. Other method includes
linear extrapolation of boundary samples [14].

Brislawn investigated the symmetric extension for the
perfect reconstruction filter banks thoroughly [2]. A 2-
channel orthogonal multifilter bank can be regarded as a
4—channel perfect reconstruction filter bank in some sense.
However Brislawn’s approach can not be applied or gener-
alized directly to our multifilter banks which generate sym-
metric/antisymmetric multiwavelets. Strela et al have con-
sidered this issue for multifilter banks. But their method
can only deal with the DGHM multifilter bank [18]. In this
section we give our scheme for symmetric extension of the
finite—length vector signals for the multifilter banks with
the symmetric property. The finite-length vector signals v
considered in this section are

V= (VO;VI;"';VZ—l),

where £ is the length of the signal v, and v; = (v;1,v;2)7 €
R2,0<i<(—1.

In the following we consider the symmetric extension
transform for the matrix filters with a more general sym-
metry. Assume throughout that S is a 2 x 2 real matrix
satisfying

S?2 =1, det(S)=—1.

Clearly Dy is a matrix satisfying (21).

Definition 1 (Symmetric multifilter). A matrix filter
H is said to be symmetric under S with the symmetric
center & for some integer N if

(21)

SHy_;S = Hy, keZ (22)

If a matrix filter H is symmetric (under S) with the

symmetric center 5, then we denote it by cen(H) = &

For a matrix filter H(w) = ZkNiNl Hye % with Hy # 0
for k = N1, N2, we use len(H) := Ny — N; + 1 to denote
the filter length of H.

For 2—hannel filter banks, the translations of filters with
2k,k € Z do not affect the performance (see [2]). This
property still holds for multifilter banks. So, without loss
of the generality, we classify the symmetric matrix filters
H into 4 types:

o Type I: len(H) = 2N; + 1,N; € Z, and cen(H) = 0,

ie.

N1
H(w)= Y Hge ™, H,=SH_S;
k=—N;

5
o Type II: len(H) = 2N; +1,N; € Z, and cen(H) =1,
ie.
Ni1+1
H(w) = Z Hpe *  Hj = SH,_;S.
k=1—N;

o Type IIL: len(H) = 2Ny, Ny € Z, and cen(H) = —1,
ie.

Ni—1

Hw)= )  Hye ™,

k=—Ny

H; = SH_,_;S.
o Type IV:len(H) = 2Ny, N; € Z, and cen(H) = 3, i.e.

N;
H= Z Hpe ™ Hj, = SH;_;S.
k=1—N;

Definition 2 (Symmetric signal). For an infinite vector
signal v = (---,v_1,Vg, V1, Va,---), where v;, € R%,k € Z,
if there exists an integer m such that Sv,,_; = vi,Vk €
Z, then we say that v is symmetric (under S) with the
symmetric center 7. If v has two symmetric centers ¢;
and ¢z with ¢; < ¢z, we denote it by cen(v) = (¢1, ¢2).

Definition 8 (Symmetric extension). For a finite vec-
tor signal v = (vg, vy, -+,Vy,), an infinite signal ve,; =
(-, (Vewt) =1, (Vext)o, (Vext)1, - - -) is said to be the exten-
sion of v, if (Vegt)p = Vi, 0 < k < m. If vy is symmetric
with the symmetric centers ¢y, ¢z, i.e., cen(veyt) = (c1, c2),
then v.,; is said to be the symmetric extension of v with
the left symmetric center ¢; and the right symmetric center
co. Let vege(cr,ca) denote veyy to emphasize the symmetric
centers of Veyg.

As pointed out in [2], for subband coding, symmetric
extensions of scalar signals can be reduced to two different
types of extension depending on the parities of the lengths
of the scalar filters considered. For the vector case, the
extension of a vector signal also depends on the parities of
the lengths of the matrix filters. However the vector signals
are extended symmetrically in a slight different way. It
depends also on the matrix S in (22).

Assume that the input finite-length vector signal is
(vo,Vv1,---,ve—1). For the even length matrix filters, the
symmetric extension v, of v is given by

1 1
ex __7é__ = 2
v t( 9 2) (3)
('",SVQ,SVl,SV(),V(],Vl,'",V[_l,SV[_l,SV[_z,'"),

while for the odd length matrix filters, the symmetric ex-
tension v¢gy of v is given by

Vert(0,£—1) = (24)
(' T SV27 SV1,V0,V1, T, Ve—2,Vy—1, SV€—27 o )

For the symmetric extension (24), it is required that the
input signal satisfies
(25)

Svo=vo, Svi1=ve .
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The map from v to its symmetric extension v,; defined
by (23) or (24) is called the symmetric extension trans-
form. We have the following two theorems about the sym-
metric extension transform.

Theorem 1: Suppose H is a matrix filter of Type
I or Type II. Assume that the input signal v(® =

(v(()o), e ,vgo_)l) satisfies Sv(()o) = vf)o),Svg)_)1 = vﬁo_)l. Let
vg‘;)t(o,e — 1) be the symmetric extension of v(®) defined
by (24). Let v(-1 be the output of subband filter H:

vi_l) =23, Hn_zk(vgg)t)n. Then v(~1) is symmetric
about 0 and 2 if cen(H) = 0, and v(~Y is symmetric
about —1 and £ — 1 if cen(H) = 1.

Proof: Ifcen(H) =0, then SH_;S = H;,i € Z. Thus

iU = VA E, = VaY SHoSVR,
- v@i:SHﬁvﬁg z
- ﬁszz Hv),,, = sv(,),
i
and
vi) = V2Y HWE = VS Hsv)
7 i

0 -1
V28 Z Hivgf)—2—2k+z' = Sv&—l)—k‘

That is v(~!) is symmetric about 0 and 2.

For the case that cen(H) = 1, the symmetry of v(~!
can be shown in a similar way, and the details are omitted
here. |

Theorem 2: Suppose H is a matrix filter of Type III or
Type IV. Let v\*) (—%,£— %) be the symmetric extension

ext

of v(9) defined by (23) and v(=1) be the output of subband
filter H: vi ™Y = ﬁz[‘ Hn_gk(vg(;)t)n. Then v(=1) is
symmetric about 0 and § if cen(H) = —3, and vi=1) is
symmetric about —% and 51 if cen(H) = 1.

Theorem 2 can be established as Theorem 1, and here
we would not provide the details.

For ¢ € R, let [c] denotes the largest integer not greater
than ¢. In the following, we define the storage length of a
symmetric signal.

Definition / (Storage length). Suppose v(cq,cs)
is an infinite signal with the left symmetric center ¢;
and the right symmetric center c;. Denote v0 =
(Ver, Ve +1, Vey 42,7+, Vi, ), where £ = [er + %]162 = [ea].
Define storl(ve, ) ==  if ¢ is an integer and storl(ve,) =1
if ¢; is not an integer, and define storl(vy,) in a similar way.
Define storl(v?) := €y — €1 — 1+ storl(vy, ) + storl(vy,) and
storl(v) := storl(v°).

Remark 1: In Definition 4, if the left center ¢; is an in-
teger, i.e., ¢c; = {1 for some integer ¢;, then v,, satisfies
Svy, = vy,. Thus vy, = kvg, where k is a constant and vg
is the normalized real right eigenvector of S corresponding
to eigenvalue 1. Therefore one parameter k is enough to de-
termine vector vy, . Thus in this case, compared with other

vectors v;,£; < j < £, half storage is needed to store vy, ;

and we define storl(vy,) to be 1. For the same reason, if

co = £y for some integer £o, then we define storl(vy,) = %
The number storl(v) is the actual number we need to store
the vector signal v.

By a direct calculation, we have the following proposi-
tion.

Proposition 1: Let v(c1,c2) be an infinite vector signal
with the left symmetric center ¢; and the right symmetric
center ¢a. Then storl(v) = ¢z —¢;.

In the symmetric extension of a finite—length vector sig-
nal for the odd length matrix filter, (25) imposes an ex-
tra constraint on the original vector signal. However, most
vector signals do not meet this condition automatically. To
overcome this problem, we develop a transform to generate
the input vector signal from the original scalar signal, and
the vector signal derived can be used as the input signal
for a matrix filter no matter the length of the matrix filter
is odd or even.

If S is a matrix satisfying (21), then 1 and —1 are eigen-
values of S. Thus there is a non—singular matrix U such
that

U~!SU = D,.
Recall Dy = diag(1,—1). Let Ry be the matrix defined by

(17). In the following we define the transform Tg associated
with S.

Tmnsform Ts. Suppose f = (fO: fla f2> B f2f71) is the
sample of the original scalar signal.

(1) If the length of the matrix filter is even, define the
vector signal v = (vg,vy,va, -+, vy_1) of length £ by

fai
f2i—1

(2) Tf the length of the matrix filter is odd, define the
vector signal v = (vg, vy, Ve, -+, ve_1,vs) of length
£+ 1 by

-W=UR§( )mgige—L (26)

(27)

vo = URJ (), ve = UR{ (}7!), and
1<i<e-1.

fae—1
v; = -U-:R,g1 (fzf;:l) ,

Let Ts denote the transform from the original scalar signal
f to the vector signal v, i.e., Tgf := v.

Proposition 2: Suppose f = (fo,f1,"* ", f2e_1) I8
the sample of the original signal. Let Tsf =
(vo,V1,Va, -+, Ve_1,Ve) be the vector signal defined by
(27), then Tsf satisfies (25).

Proof: Since SU = UDy, one has

2
Svp = [H%Rg(ﬁjzzlnb(vrh)
fo 0
= URT(h):zv.
\f)
Similarly we have Sv, = vy. [ ]

Proposition 2 ensures that the vector signal derived by
transform Ts meets the requirement of the symmetric ex-
tension for the odd-length matrix filters. Since UR] is a
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linear operator, transform Tg preserves the continuity of
the input signal.

Theorems 1, 2 and Proposition 1 lead to the following
theorem.

Theorem 3: Suppose that {H, G} is a multifilter bank,
H, G are symmetric under S and the lengths of H, G
have the same parity. For a scalar input signal f =
(fos f1,- -+, fae—1), let v(O = Tgf be the vector signal de-
fined by (26) if the length of H is even and by (27) if the

length of H is odd. Let vg‘;)t be the symmetric extension
of v(% defined (23) or (24) and v(=Y u(~Y be the the
subband outputs of the input vector signal vfj;)t with mul-

tifilters H, G, respectively. Then

storl(v™V) + storl(u(~Y) = £. (28)
Proof: First we consider the case that len(H) is even.
In this case vg(;)t is the symmetric extension of v(%) by (24).
Theorem 2 shows that cen(v(~V) = (0, £) if H is of Type
IT1, while cen(v(~V) = (-1, 551) if His of Type IV. Propo-
sition 1 implies that for both cases,

storl(v(—1)) = g

Since len(G) is also even, we also have storl(u(~Y) = £.
Thus storl(v(=1) + storl(u(~1)) = £. That is (28) holds
true for the case that len(H) is even.

Now let us consider the case that len(H) is odd. Note

that in this case, vgg)t is the symmetric extension of v(®) =
(0) ,,(0)

(vo vy ,---,VEO)) given by (23). Theorem 1 shows that

cen(v(=V) = (0,%) if H is of Type I, while cen(v(~1)) =

(—%, % — %) if H is of Type II. From Proposition 1, for both

cases,
storl(vi—1) = {
2
In the same way, one has storl(u"V) = £. Thus
storl(vi=1) + storl(ul~1)) = £. That is (28) holds for the
case that len(H) is odd. [ |

Theorem 3 implies

Corollary 1: The symmetric extension transforms de-
fined by (23) and (24) are nonexpansive.

In the following let us consider two special cases. If
{H,G} is an FIR multifilter bank generating symmet-
ric/antisymmetric scaling functions and multiwavelets,
then H, G satisfy (22) with S = Dg. In this case, we
can choose U to be I,. Thus the corresponding transform
is given by (26) and (27) with U = I,. By Corollary 1,
for such a multifilter bank {H, G}, the symmetric exten-
sion transforms defined by (23) and (24) with S = Dg are
nonexpansive.

Assume that {H,G} is an FIR multifilter bank. Let
{H® G®} be the multifilter filter banks defined by

H’ = RyHR!, G!=R,GR]!.
Then one can show that both H and G are symmetric
under Dy if and only if H® and G% are symmetric under

E, where
01
B:= [ 10 ]
is the exchange matrix. For S = E, choose U = Ry.
Then U'EU = Dy. Thus in this case for the the original
scalar signal f = (fo, f1, f2, -, f2e_1), the corresponding

transform, denoted by Tg, is given by Tgf := v, where
v = (vg,V1,Va, -, Ve_1) with

v,:(f” ) 0<i<l-1
f2i71

if the length of the matrix filter is even, and v =
(V(),Vl,VQ,- o Jvf—lavf) with

_ (% _ (S _ _ [ f2imr o,
Vo—(f(]),vz—(fﬂ1>,vz—(f2i),1§zsf 1
(30)

if the length of the matrix filter is odd. Therefore, when
we use {H? G!} as the analysis and synthesis multifilter
banks, we use the transform T and the symmetric exten-
sion transforms given by (23) or (24) with S = E. Corollary
1 shows again that the symmetric extension transform with
matrix E is nonexpansive. The vector input from a scalar
signal defined by (29) and (26) with U = I, were also used
in [18] and [19], respectively.

(29)

IV. OPTIMAL MULTIFILTER BANKS FOR IMAGE
COMPRESSION

A. Objective function and optimal multifilter banks

Let {yH? yG®} be the orthogonal FIR multifilter filter
banks given by (18) with yH and xG given by (11) and
(14), and +, F in (13) and (15) being + and —, respec-
tively, and v € O(2) in (12) being R(6). Let y®°, xT
denote the scaling functions and multiwavelets generated
by {vH?, yG?}. To construct OPTFR multiwavelets, we
shall determine which objective function §S(j), 1 <j <4
we shall use. In the following the constrained conditions
(19) and (20) used are respectively

|cos(6o + 7/4)| < 10~4( for N = 29). U

{ |sinfp| < 107%( for N = 2y + 1),
We consider the case N = 9. By minimizing different ob-
jective functions under (31), we obtain the corresponding
parameters and hence the scaling functions ®® and multi-
wavelets ¥. In Table 1, we provide the areas of the resolu-
tion cells of ®® and ¥. All the resulting scaling functions ®°
provide approximation order 1. (About the approximation
order of functions, see [9].) Let Ort1o(j), denote the corre-
sponding optimal multifilter banks obtained by minimizing
NS(j),1 < j < 4. In Table 2, we list the compression re-
sults for 512 x 512 standard images Lena and Barbara using
Ort10(j),1 < j < 4 (see the implementation of Ortyg(j) for
image compression in the next subsection).
From Tables 2, the performances in image compression
of the optimal multifilter banks obtained by minimizing
different objective functions are comparable. The optimal
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multifilter bank obtained with ¢5(4) has a little better per-
formance. We also tested optimal multifilter banks of other
lengths. We find in some cases and for the Barbara im-
age, the optimal multifilter banks obtained by minimizing
~S9(3) also provide a good performance. However in gen-
eral, the optimal multifilter banks by minimizing nxS5(4)
provide a good and stable performance for both Lena im-
age and Barbara image. The reasons might be that in
the multiwavelet decomposition and reconstruction algo-
rithms, the lowpass filters yH? are used as the highpass
filters yGP®, and it plays the similar role as yG®. Thus
the scaling functions shall also have good time—frequency
localization as multiwavelets. In the following we choose
~S(4) as the objective function, and let Orty,; denote
the corresponding optimal multifilter banks.

In Table 3, we provide some parameters for the opti-
mal multifilter banks and the areas of the resolution cells
of the corresponding OPTFR scaling functions (denoted
by n®%° = (n¢!°, n#5°)T) and multiwavelets (denoted by
NP = (y¥?, y¥3)T). From Table 3, we find the scal-
ing functions and multiwavelets with longer lengths have
smaller areas of the resolution cells. By the parameters in
Table 3 and the expressions of the multifilter banks, one
can get the optimal multifilter banks. In Appendix, we
provide Orty 41 for N = 3,4,5.

B. Image compression

Let {vH? yG®} be the multifilter back given by (18).
Since nyG? does not satisfy the symmetric properties as
~H? and we cannot use directly the symmetric exten-
sion transform provided in the above section, we first dis-
cuss the implementation of the symmetric extension trans-
form for {yH?, yGb}. Define yG% = RoyG®. Then
~vH? yG! are symmetric under E. Thus for scalar sig-
nals, we generate the vector signals v by the transform
Tg defined by (29) and (30). Then we use the symmetric
extension transform of v for { yH® yG%} provided in Sec-
tion IIT to produce the symmetric vector signals and com-
pute v(=/) and w7 1 < j < J with the discrete multi-
wavelet decomposition algorithm. Since yG® = RIyGS,
the highpass outputs for {yH’, yG®} are RTw(=7). We
develop an algorithm based on embedded zero-tree wavelet
(EZW) (see [16]) with 5 level multiwavelet decomposition
(J = 5) for further quantization and coding of v(~% and
R7w(-9 1 < j < 5. The compression results for 512 x 512
standard images Lena and Barbara using different optimal
multifilter banks are listed in Table 4.

In Table 4, Orts(vind3) denotes the multifilter bank of
length 4 with the corresponding scaling function 3®° pro-
viding approximation order 3. The corresponding param-
eters are: 8y = —.025661167176,60; = .252680255142. The
areas of the resolution cells for 3®® and the correspond-
ing multiwavelet 3 are: 0,40 = -7T0136, D2¢1 = 1.51150

and Dg , = 1.58041. 3V is the multiwavelet constructed
in [3]. In Table 4, Orte(smth-v2) denotes the multifilter
bank of length 6 with the corresponding scaling function
5®® providing approximation order 2, 5®” as smooth as
possible and Ortg(smth-v2) satisfying (9). The correspond-

ing parameters are: 6y = .0001,6; = .459212307370,0, =
—2.456942624174. The scaling function 5®° and the corre-
sponding multiwavelet 5 ¥ are in C12752%(R) (here we use
the smoothness estimate provided in [10]). The areas of
the resolution cells for s®® and ;¥ are: 0,40 = 67903,

D’;wl = 1.15052 and D’;W = 1.04253. From Table 4, we
find that good smoothness and approximation do not pro-
vide good multifilter banks for image compression.

In Tables 4, we also provide the image compression
results with Daubechies’ wavelet filter of length 8, de-
noted by Dg, Daubechies’ least asymmetric wavelet filter of
length 8, denoted by L_asyms, and with the scalar (9, 7)-
tap biorthogonal wavelets filters, denoted by S_biorty 7.
(See [1] and [4] about Daubechies’ wavelet filters and
S_biortg 7.) We find that for both Lena and Barbara im-
ages, the optimal multifilter banks Orty have better per-
formances than Dg and L_asyms. For the Barbara im-
age, Ortny even have better performances than biorthogo-
nal wavelet S_biortg 7, and for the Lena image, Orts has a
better performance than S_biorty ; for compression ratio
(CR) 32 : 1. The original image of Barbara is shown in
Fig. 1. The reconstructed images with compression ratio
32 : 1 by filter L_asymsg, S_biortyg 7 and Ortg are shown in
Fig. 2, Fig. 3 and Fig. 4, respectively. From Fig. 1-4, one
can find that there is less distortion in texture parts of the
image by the optimal multifilters than other scalar filters.
See, for example, the scarf, trousers in Fig. 1-4. See also
Fig. 5, Fig. 6, Fig. 7 and Fig. 8, the zooming in images
of the right trousers in Fig. 1, Fig. 2, Fig. 3, and Fig. 4,
respectively.

In Tables 4, we also provide the compression results us-
ing the periodic extension transform for some multifilter
banks. From Tables 4, we conclude that the symmetric
extension transform presented in Section 3 improves the
rate—distortion performance, compared with the periodic
extension transform.

Finally let us discuss the time complexity for the mul-
tiwavelet decomposition and reconstruction algorithms.
For a scalar signal v of length L and a symmet-
ric/antisymmetric matrix filter of length M, by the sym-
metric property of the matrix filter one can obtain that
the time complexity for one level multiwavelet decompo-
sition algorithm (5) and (6) and for the symmetric ex-
tension transform is LM multiplications and L(2M — 1)
additions. The time complexity for the same length or-
thogonal scalar wavelet is about LM multiplications and
L(M —1) additions. In addition, the time complexity of the
scalar (9,7)-tap biorthogonal wavelet filter is 4.5L multi-
plications and 7L additions, higher than those for the sym-
metric/antisymmetric matrix filter of length 4. Thus the
time complexity for the multiwavelet decomposition and
reconstruction algorithms and for our symmetric extension
transform of the symmetric/antisymmetric matrix filters is
very still low.

V. CONCLUSIONS

The design of optimal multifilter banks and optimum
time—frequency resolution multiwavelets with different ob-
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jective functions is discussed. The symmetric extension
transform relate to multifilter banks with a more general
symmetric property is presented. We show that the sym-
metric extension transforms are nonexpansive. The sym-
metric extension transforms for two kinds of special in-
teresting multifilter banks, multifilter banks generate sym-
metric/antisymmetric multiwavelets and multifilter banks
generate balanced multiwavelets, are discussed. More op-
timal multifilter banks for image compression are con-
structed and some of them are used in image compres-
sion. The experiments show that optimum time-frequency
resolution multiwavelets have better performances in im-
age compression than Daubechies’ orthogonal wavelets and
Daubechies’ least asymmetric wavelets, and for some im-
ages, OPTFR multiwavelets even have better performances
than the scalar (9, 7)-tap biorthogonal wavelets. The ex-
periments also show that the symmetric extension trans-
form presented in this paper improves the rate—distortion
performance, compared with the periodic extension trans-
form.

APPENDIX

0
1
banks Ortyy; = {vH’ nGP} are given by yHb(w) =
RovH(W)RY, NGb(w) = NG (w)RT, where Ry is defined
by (17). In the following, we provide yH, yG with N =
3,4,5.

Denote J := [ _01 ] The optimal multifilter

For N = 3:
Ho. — .008533247511 .064759612742
07| 008526771507 —.064760465743 |’
H, — 1491466752489  .064759612742
L= | —.491473225993 .064710465743 |’

and Hj = D()Hg_jDo, 2 SJ S 3, Gk = (—1)k+1HkJ,0 S
k <3.

For N = 4:
g _ | —031578613037 031578613037 |
07 | —.042947457421 042947457421 |’
—_ 25 —.164111400451 ]
17| 313173635648 —.250024998750 |’
H, — | -563157226074 0
27 0 414055082657 |’
G — [.042944299775 —.042944299775 |
07 | 031574318449 —.031574318449 |’
G — [ -.25 .313157226074 |
17| —.164080083907 .249974998750 |’
G, — | -414111400451 0
2T 0 563198634398 |’

and H]‘ = D0H4,jD0, GJ‘ = DOG4,jD0, 3 Sj S 4.

For N = 5:

g — | —015579570720
07 | —.015580250391

006797482939
—.006795924948 |’

9
H. — | 02247412948533 —.051509844576
L= | —.022468978389 —.051512091732 |’
H, — | 493105441235 —.058307327515
27| 493111269502 .058258016680 |’

and H; = DgH;_;Dg, 3 < j <5, G, = (-1)F11HJ,0 <
k <5.
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Objective | O g 0,4, 0, , D’; " Dg Ve
0S(1) .66557 | 3.07060 | 3.45151
05(2) .66942 1.02006 | .82241
05(3) .66293 | 3.06795 | 3.45695
05(4) .66746 1.01963 | .82467

TABLE 1. The areas of the resolution cells of the OPTFR
scaling functions and multiwavelets by different objective

functions.
Filter Lena Barbara
32:1 64:1 100:1 16:1 32:1 64:1
Ort1o(1) || 34.063 | 31.016 | 29.360 || 31.208 | 27.435 | 25.676
Ort10(2) || 34.077 | 31.020 | 29.369 || 31.253 | 27.437 | 25.686
Ort1o(3) || 34.046 | 31.013 | 29.363 || 31.214 | 27.429 | 25.680
Ortyo(4) || 34.084 | 81.026 | 29.372 || 31.257 | 27.448 | 25.692

TABLE 2. Compression results for different optimal
multifilter banks derived by different objective functions.
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Fig. 1. Original Barbara image.

Fig. 2. Reconstructed image using L_asymg, compression ratio=32 :
1, PSNR=26.444dB.

Fig. 3. Reconstructed image using S_biortg,7, compression ratio=32 :
1, PSNR=26.738dB.
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Fig. 4. Reconstructed image using optimal multifilter bank Ortg,
compression ratio=32 : 1, PSNR=27.488dB.

Fig. 6. A zooming in part of Fig. 2.

Fig. 7. A zooming in part of Fig. 3.

Fig. 8. A zooming in part of Fig. 4.

11
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N 00/64 01/65 02 /66 03 /67 O gt wa; D?vwg
3 .0001 .261926540380 67576 | 1.25556 | 1.19626
4 785498163398 | 2.838799865083 .68524 | 1.29019 | 1.23735
5 ..0001 587320842748 | -2.318874548904 69372 | 1.07752 | .90340
6 | -2.356294490193 | -.798110754670 | 2.580483297003 71321 | 1.16062 | 1.04136
7 | 3.141492653590 | 2.881761219789 | -2.690949062435 | .415045976633 | .66821 | 1.03470 | .84620
8 785498163398 273839049271 | -2.824701076199 | 2.816782968532 | .68166 | 1.05012 | .87351
9 | 3.141492653590 | -2.726999719581 | .169573490290 | 1.693031112209 | .66746 | 1.01963 | .82467
-1.526677145135
11 .0001 1.563683228715 | -1.626880780781 | .233293866030 | .67908 | .98271 | .75431
1.175553687028 | -1.928629589939
13 .0001 1.494520214546 | -1.946989428993 | .407727304898 | .70022 | .87458 | .61632
-2.200455533167 | -2.730009960499 | .513113220909
15 .0001 084486838817 | -.680782317254 | 2.179624036642 | .77111 | .84374 | .60237
-2.970957854756 | .450131447798 | -.320017962926 | 3.088460965915
TABLE 3. The parameters for the optimal multifilter
banks and the areas of the resolution cells of the
corresponding OPTFR scaling functions and
multiwavelets.
Filter Lena Barbara
32:1 64:1 100:1 16:1 32:1 64:1
Orty Sym. || 33.978 | 30.945 | 29.288 || 31.066 | 27.410 | 25.650
Per. || 33.702 | 30.734 | 28.924 || 30.812 | 27.107 | 25.588
Orty Sym. || 33.903 | 30.902 | 29.219 || 30.886 | 27.241 | 25.592
(vmd3) Per. | 33.660 | 30.671 | 28.904 || 30.633 | 27.010 | 25.479
Orty Sym. || 34.000 | 30.973 | 29.205 || 31.068 | 27.279 | 25.622
Per. 33.240 | 30.226 | 28.324 || 30.851 | 27.028 | 25.499
Ortg Sym. || 33.814 | 30.864 | 29.256 || 31.037 | 27.488 | 25.638
Per. || 33.644 | 30.651 | 28.908 || 30.785 | 27.165 | 25.600
Ortg Sym. || 33.783 | 30.838 | 29.236 || 30.933 | 27.407 | 25.612
(smth-v2) | Per. | 33.601 | 30.634 | 28.896 || 30.705 | 27.110 | 25.583
Orty Sym. || 33.887 | 30.921 | 29.315 || 31.163 | 27.693 | 25.678
Per. 32.871 | 29.964 | 28.198 || 30.291 | 26.615 | 25.002
Ortg 34.028 | 30.989 | 29.347 || 31.198 | 27.463 | 25.685
Ortqg 34.114 | 31.099 | 29.473 || 31.627 | 27.999 | 25.791
Dy 33.086 | 30.051 | 28.355 || 30.174 | 26.277 | 24.674
L_asymg 33.409 | 30.405 | 28.894 || 30.295 | 26.444 | 24.988
S biortg 7 34.108 | 31.154 | 29.789 || 30.827 | 26.738 | 25.206

TABLE 4. Compression results for images "Lena’ and

"Barbara’ with multifilter banks (symmetric extension

and periodic extension) and scalar wavelet filters Dy,
L_asymg and S_biorthg 7.



