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Abstract

This paper discusses the construction of compactly supported biorthogonal multiwavelets based on the parametric expressions
of symmetric FIR multifilter banks satisfying the perfect reconstruction (PR) conditions. Explicit expressions of M—channel PR
multifilter banks for symmetric/antisymmetric scaling functions and biorthogonal multiwavelets are obtained. Expressions of the
2—channel symmetric PR multifilter banks with high sum rule orders and high balancing orders is discussed. In particular, we
give the expressions of the 2—channel symmetric PR multifilter banks with the sum rules of order 2 and symmetric PR multifilter
banks with balancing order 2. Based on expressions of the symmetric PR multifilter banks, constructions of smooth, high balanced
biorthogonal multiwavelets and optimum time—frequency resolution biorthogonal multiwavelets which are more suitable for image

applications are discussed.
EDICS No: SP 2.4.4.
Keywords

Approximation order, balanced biorthogonal multiwavelet, biorthogonal multiwavelet, multifilter bank, scaling function, smooth-

ness, symmetry, parametrization, time-frequency resolution.

I. INTRODUCTION

Recently, much work has been done on the construction and applications of multiwavelets (see e.g. [1], [3], [4],
[6], [11]-[13], [15], [19], [23], [25] and [29]). This paper is about the construction of biorthogonal multiwavelets.
Biorthogonal multiwavelets have some advantages over the orthogonal multiwavelets. In particular, biorthogonal
multiwavelets will provide flexibility in their construction and applications. So their construction deserves a
systematic study.

For integer M > 2, the construction of biorthogonal multiwavelets of dilation factor M starts with matrix filters

Ho, ﬁo satisfying
M=

—

Ho(w + 2kr/M)Hp(w + 2kn/M)* =1, w € [0,2n). (1)
k=0

Throughout this paper, B* (BT respectively) denotes the Hermitian adjoint (transpose respectively) of the matrix
B; and I, and 0, denote the 7 x r identity matrix and zero matrix respectively. Suppose ¥o = (¢1,0,---,%r0)" and
\Tlo = (@Zl,o, e @ZT,O)T are the (M,Hy) and (M, ﬁo) refinable vectors respectively, i.e., ¥o and \Tlo are vector-valued
functions satisfying

To(w) =MD ho(k)To(Mz —k), To(x)=M > ho(k)To(Mz — k), (2)

= kez
or equivalently satisfying
o (w) = Ho(w/M)¥o(w/M), Fo(w) = Ho(w/M)To(w/M). 3)

Suppose Wo, ¥y € L2(R)". Define the closed subspaces V; (o), Vj(\flo) of L*(R) by

Vo(Wo) == span{yio(z — k), 1 <i<rk€Z}, Vo(¥o):=span{yo(z—k),1<i<rkeZ},

and Vj(Wo) == {f : fF(M~7z) € Vo(¥o)}, V;(Wo) := {f : (M) € Vo(T0)},5 € Z. Let Uy = (1,0, ,pe)"
and U, = (@Zu, .- -,@ZM)T, 1< ¢ < M —1, be the vectors defined by

To(z) = MY he(k)To(Mz —k), Te(z) =My he(k)To(Mz — k), (4)
kez kez
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or by
i (w) = Hy(w/M)¥o(w/M), ¥ (w) = He(w/M)To(w/M) (5)
for some matrix filters Hy and H;. Then the components of ¥, and ¥, are in Vi (¥o) and Vi(¥p) respectively. If

(V;(®o)) and (Vj(\flo)) are two multiresolution analyses (MRA) of multiplicity 7, then to construct biorthogonal
multiwavelets is to find Hy, ﬁ(, 1<¢< M —1 such that ¥y, \le defined by (4) satisfy that

(Y- —k),1<j<r0< <M —1keZ}
and
{0 —k),1<j<r0< <M —1keZ}

form the Riesz bases of Vi(¥y) and Vi(\io) respectively with the property that
(W0, 00 (- = B)) = 8(k)S(j — 5)6(¢ =€), 1<4 <r0< Ll <M-1keZ (6)

For such functions ¥, U, 1 <0< M —1, {th; (M%s —k),1 <j<r,1 <0< M—1,d,k € Z} and {¢); ,(M%z —
E),1<j<r1<¢<M-1,dk € Z} constitute dual Riesz bases of L?(R), and we call such functions a set
of biorthogonal multiwavelets (abbreviated BIO multiwavelets in this paper). A necessary condition for
Wy, \le, 1 <¢< M —1 to be BIO multiwavelets is that Hy, ﬁz, 0 < ¢ < M satisfy the perfect reconstruction
(PR) (or biorthogonal) conditions:

S

Hy(w + 2kn/M)YH, (w + 2k /M) = §(6 — 0)L,, 0<,0 < M. (7)

Sl
Il

0

For matrix filters H[,ﬁg,O < ¢ < M, we say that Ho (ﬁo respectively) generates a scaling function ¥y (\Tlo
respectively) if (V;(¥y)) ((V](\flo)) respectively) is an MRA, and say Hy, H;,0 < £ < M generate a set of BIO
multiwavelets (or generate biorthogonal multiwavelet bases) if Ho, ﬁo generate scaling functions ¥y, \Tlo and ¥y, \le,
1 < ¢ < M —1 defined by (4) are a set of BIO multiwavelets. The set of matrix filters {H(,ﬁ[,o <l < M}
is called an M—channel multiwavelet filter bank (often abbreviated multifilter bank), {H,,0 < ¢ < M} and
{ﬁg, 0 < /¢ < M} are called the analysis bank and synthesis bank respectively.

By (4), ¥, (\fll respectively), 1 < £ < M — 1 have the same regularity with g (\flo respectively). Thus in
general, the procedure to construct BIO multiwavelets with good regularity is that, first to find Ho and H), such
that they satisfy (1) and generate scaling functions ¥y, T, with good regularity, then to find by matrix extension
H,, H;,1 < ¢ < M such that {H,, H,0< (< M} is PR. In some cases, e.g., in the construction of multiwavelets
with good time-frequency localization, multiwavelets and scaling functions are constructed simultaneously, and
hence the analysis/synthesis banks are needed to be provided in terms of some parameters. This paper discusses
the parametric expressions of the PR multifilter banks and the construction of BIO multiwavelets based on such
expressions.

The rest of this paper is organized as follows. In Section II, we review some results about the biorthogonality,
symmetry and regularity of BIO multiwavelets. In the first subsection of Section III, we discuss the parametric
expressions of M—channel PR multifilter banks, and present expressions of a group of symmetric PR multifilter
banks. Two-channel PR multifilter banks are discussed in more details in the second subsection of Section III. Based

on the parametric expressions of the symmetric PR multifilter banks, we discuss in Section IV the construction
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of the scaling functions and BIO multiwavelets with good smoothness and approximation properties, with high
balancing orders and with optimum time-frequency resolution. The proofs of some lemmas and propositions
in Section II-IV are presented in Appendix. Matrix filters Hy, H, discussed in this paper are finite impulse

response (FIR) filters, and the corresponding filter coefficients are real.

II. PRELIMINARIES

In this section, we review some results about the biorthogonality, symmetry and regularity of the scaling functions
and BIO multiwavelets. Most of the results in this section have been known. Propositions 1-3 and Lemma 1 are

new, and their proofs are provided in Appendix.

A. Biorthogonality

Recall that an MRA of multiplicity r is a nested sequence of closed subspace V; in L?(R) satisfying the
following conditions (see [5]): (1°) V; C Vj41,5 € Z; (2°) ﬂjEZVj = {0}, U].EZV]- is dense in L>(R); (3°)f €
Vi & f(M-) € Vjq1; (4°) there exist r functions @1, - - -, ¢, such that the collection of integer translates {¢; (- —k) :
1< j <rk € Z} is a Riesz basis of V5. Vector-valued function ¢ := (¢1,--+,¢,)7 is called a scaling function
and said to generate the MRA (V).

Let H be an FIR matrix filter. Assume that h(k) = 0 if £ < 0 or ¥ > N for some positive integer N. For
positive integers N, M > 2, let N(M) denote the largest integer smaller than N/(M — 1). Let Vy(ar) denote
the space of all r x r matrices with each entry a trigonometric polynomial whose Fourier coefficients are real and

supported in [-N(M), N(M)]. The transition operator Ty associated with H is defined on Vy(ar) by

w + 2km
M

w + 2km
M

TuV(w) = Y HEZT )y @A g @20y ) e vy, (®)
k=0

Tu leaves Vy () invariant. It was shown in [21] (see [10] for M > 2) that: if ¢ is L°-stable, then Tw satisfies
Conditions E and the l-eigenvector of Ty is positive (or negative) definite everywhere. For a matrix B (or an
operator B defined on a finite dimensional linear space), we say B satisfies Condition E if 1 is a simple eigenvalue
of B and other eigenvalues of B lie inside the open unit disk.

For two matrices A = (a;;) and B = (b;5), let A ® B := (a;;B) denote the Kronecker product of A, B. Then
the representation matrix of the operator Ty is (see [9], [10] and [18])

Tu = (MAMi—j) - N(M)<i,j<N(M)s (9)

where A; is the r® x r? matrix defined by A; := Zgzo h(k — j) ® h(x).

Assume that {H,, H,,0< (< M} is a PR FIR multifilter bank. Then the condition that both 7u and 7 satisfy
Condition E is enough for Hy, H, to generate scaling functions and BIO multiwavelets (see [8] for M = 2, and this
result can be generalized easily to the general case). Thus for a PR FIR multifilter bank {Hp,, H;,0< (< M}, to

check it generates biorthogonal multiwavelet bases, we need only to check both Tu and 7 satisfy Condition E.

B. Symmetry

In this subsection we consider the symmetry of the scaling functions and BIO multiwavelets. For a vector

¢ = (c1,-+, ¢ ) with real numbers ¢;, denote

D.(w) := diag(de 1@/ (M=1) Jo—icow/(M=1) 4 o—ierw/(M=1)) (10)
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We have the following two propositions about the symmetry of the scaling functions and BIO multiwavelets.
Proposition 1: Assume that H is an FIR matrix filter and ¢ = (¢1,--+,¢,)T is a compactly supported (M, H)
refinable vector with p(0) # 0. If H satisfies

D.(Mw)H(—w)D¢(—w) = H(w), (11)
for some ¢ = (c1,--+,¢r) € R, then ; is symmetric/antisymmetric about %, ie.
¢ .
o (g — ) = *ps(e), 1<j<r (12

Conversely, if ¢ is L?-stable, and Mc; = ¢;mod(M — 1), 1 < 4,4, < r, then (12) implies (11).

Proposition 2: Assume that H is an FIR matrix filter satisfying (11) for some ¢ = (c1,---,¢r) € R, and
0= (p1,---,¢-)7T is a compactly supported (M, H) refinable vector with $(0) # 0. Let G be an FIR matrix filter,
and ¥ = (¢1,---,9,)7 be the vector-valued function defined by

U(z) =My g(k)p(Mz — k).
k

If G satisfies

D4 (Mw)G(—w)De(—w) = G(w), (13)
for some d = (d1,---,d,) € R", then
Vil — @) = (@), 1<j<r (14)

Conversely, if ¢ is L>-stable, Md; = ¢;mod(M — 1), 1 < i, j, < r, then (14) implies (13).

In Propositions 1 and 2, the sign + (or —) in D¢ and Dg coincide with + (or —) in (12) and (14) respectively.
For FIR matrix filters H, G, (11) and (13) also imply that Mc¢; = ¢;mod(M — 1) and Md; = ¢;mod(M — 1)
respectively.

The symmetry of the scaling functions and multiwavelets is also considered in [1] and [24]. Comparing with
their results, more conditions such as M¢; = ¢;mod(M — 1) are added here. We find in some cases such conditions

cannot be dropped.

C. Approzimation and smoothness

The approximation order of a scaling function is related to the sum rules of the corresponding filter. For a given

FIR matrix filter H, if there exists a positive integer k£ and some 1 X r vectors y;,0 < j < k with yo # 0, such that

> (J) (iM)S*fyst*SH(%‘) =8(O)M Vy;, 0< (<M, (15)
0<s<j y

for all 0 < j < k, we say that the refinement mask H has the sum rules of order k or H satisfies the vanishing
moment conditions of order k. Here D' H(w) denote the matrix formed by the jth derivatives of the entries of

H(w). For an FIR matrix filter H, if H generates a scaling function ®, then ® provides approximation of order k

if and only if H has the sum rules of order k (see e.g., [7], [17], and [10]). In this case,

Z Z <i> nj78YS<b(m - TL) = mj’ 0<j<k (16)

n€Z s=0
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Therefore to construct scaling function with good approximation, we need only to construct H satisfying addition
conditions (15).

It was shown in [2] (see also [14] and [10]) that if an FIR matrix filter H generates a compactly supported scaling
function, then H(0) satisfies Condition E and H has the sum rules of order at least 1, i.e. there exists 1 x r vector
yo such that

yoH27k/M) = 6(k)yo, 0<k< M -1 (17)

Based on this fact we have the following lemma and proposition.
Lemma 1: Suppose {Hz,ﬁz,O < ¢ < M} is a PR FIR multifilter bank generating biorthogonal multiwavelet

bases. Then for any right column 1-eigenvectors v and v of Hy and H, respectively,

VT Ho(2kn /M) = §(k)¥" , v  Ho(2kr/M) = §(k)v", 0<k < M, (18)
H,(0)v =0,H,(0)v=0, 1<(<DM. (19)
Proposition 3: Assume that PR FIR multifilter bank {H,, ﬁg, 0 < ¢ < M} generates scaling functions Uy, \f/o,
and BIO multiwavelets ¥y, \i(. Then
1) \/I\IO(O)T, \/I~\10(0)T are left 1-eigenvectors of ﬁo(O), H,(0) respectively; and EO(O)T\/I\IO(O) =1
1) each component of BIO multiwavelets ¥y, \le, 1< ¢ < M —1is a bandpass functions, i.e., the integral of each
component of ¥y, T, is zero.
The smoothness estimates of a refinable vector ® in terms of the filter H are discussed in several papers, and

the details are not provided here. Here we use the estimate provided in [9].
ITII. SymMmETRIC PR FIR MULTIFILTER BANKS
In this section, we discuss the symmetric PR FIR multifilter banks. In Section ITI.A we consider the case for
the general M, and in Section III.B we study in more details for M = 2.
A. M—channel symmetric PR multifilter banks

For M > 2, denote W := ¢~ 2"/M and z := ¢*“. For an FIR matrix filter H, we use H(z) = Y res h(k)z~*
to denote H(w). Suppose {Hz,ﬁz,O < ¢ < M} is an M—channel FIR multifilter bank. Let H,, denote the
modulation matrix of the analysis bank H,,0 < ¢ < M defined by (see [22] and [27] for r = 1)

H,, (w) := (H(zW")) (20)

0<l,k<M—1"

and let H,, denote the modulation matrix of the synthesis bank ﬁg,O < ¢ < M —1 defined similarly. Then
{H,,H,,0 < ¢ < M} is PR if and only if H,, and H,, satisfy

Hm(w)ﬁm(w)* =L um. (21)
Write
M-1
Ho(z) = Y 2 "Huu(z"), ) =h(Mn+k), 0<L<M-—1.
k=0

Define the polyphase matrix E,(w) of Hy,0 < £ < M by

Ep(w) = (H(Lk)(z))ogz,kgM—l'
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The relation of the modulation and polyphase matrices of H;,0 < ¢ < M are given by
Hy, (w) = VME,(Mw)Un(2),

where Uas(2) is the rM by rM unitary matrix defined by

Un(z) = @((zwk)*m)

M 0<t,k<M—1"

Let Ep(w) be the polyphase matrix of ﬁ(, 0</¢< M, then
H,,(w) = VME,(Mw)U y(2).
Thus {H[,ﬁ(,o < ¢ < M} is PR if and only if
(VME, (@) (VMEy(@))" =Tur. (22)

Therefore to construct a PR FIR multifilter bank {Hy,, H;0< /< M}, we need only to find E,(w) and ]Ep(w)
such that they satisfy (22). Assume that E,(w) and E,(w) are defined by

%vv(zm_l(z) VAU By) = YV, () V() T,

E,(w) = Vi

where z = ¢, Uy, I~Jo are some rM X rM real matrices; and
Vi(2) =L+ (¢7' = 1)Bi, Vi(z) =Ly + ("' = 1)By, (23)

for some rM x rM real matrices By, By,. If UgUJ = I,M,Vk(z)({/'k(z_l))T =ILm,1 <k <4, then E,(w) and
Ep(w) satisfy (22). One can show Vk(z)({/k(zfl))T =1,y if and only if By = B} B} = B;. Once U and By
are determined, then {Hy,, H,0</(< M} defined by

[H @)y, = %Wﬂ)vw-l(z% ViU [, (24)

is PR, where z = e'“.

The lattice structures such as (24) and (25) give the factorization of the M x M FIR lossless systems (see [27],
[28] and references therein). The parametrization of orthogonal FIR multifilter banks also can be provided in
such a lattice structure, see [12], [13] and [19]. In this paper, we will use such a structure to construct PR FIR
multifilter banks.

Theorem 1: Assume that Uy is a non-singular matrix and By, 1 < k < v are matrices satisfying B = By.
Then {Hy, H;, 0< (< M} defined by (24) and (25) with V, defined by (23) is PR.

Next, we consider PR multifilter banks for the symmetry BIO multiwavelets. In the following, we assume that
Mr is even, i.e. M =: 2n for some positive integer n. We will discuss parametric expressions for such PR
multifilter banks that if they generate the scaling functions ¥y, T, and BIO multiwavelets Wy, \le, 1<i4<M-1,
then half of all components of {¥,,0 < ¢ < M —1} are symmetric and the other half components are antisymmetric,
and the dual scaling functions and BIO multiwavelets T, have the same symmetric property.

Assume that {H(,ﬁ(,o < ¢ < M} is a PR FIR multifilter back generating scaling functions Ty, T and
BIO multiwavelets ¥,, ,,1 < ¢ < M — 1. Suppose h,(k) = 0,h,(k) = 0 if k ¢ [0,(y + 1)M — 1] for some
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v € Z;\{0}, then ¥, and T, are supported in [0,1 4 v + 57-5]. By Proposition 1 and Proposition 2, ¥, T, are

symmetric/antisymmetric about 3(1+ v + 575 ) if and only if H; and H, satisfy
z~(OHOM DD H)(—w)Do = Hy(w), 2~ OFOM DD, Hy(—w)Dy = Hy(w), 2 = e, (26)
or equivalently

Dih((y+1)M —1—k)Dg = h((k),D(Ez((’y +1)M —-1—-k)Do = ﬁz(k),() <k<(y+1)M, (27)

where D;,0 < ¢ < M — 1, are some r X r diagonal matrices with diagonal elements +1. Note that the sign + (or

—) in the (4, j) entry of Dy means that the j—th components of ¥y, T, are symmetric (or antisymmetric). Denote
So := diag(Dyo, -+, Ds_1).
Then by our assumption, the trace of So is zero. Thus there exists an rM x rM exchange matrix such that
MoSoM{ = diag(L,, —I,,).
For rM x rM real matrices Ug, define
A(w) :=UoL, 2 'L, -, 2" "ML]T, Aj(w):=Up [L,, 2 'L, -+, 2" M1,)7. (28)
Then 2~ M~Y8,A;(—w)Do = A (w) if and only if Uy can be written as
Uy = [Uy, Uy, -+, SoU2Do, SoU;1 Dy, (29)

for some rM x r real matrices U;. If we choose Vj(z) defined by (23) satisfying 2 'SoVi(271)So = Vi(2), or
equivalently

2~ 'diag(I,, —I, )MoV (2 ")Mg diag(IL,, —I,) = MoV (2)Mg (30)

and choose Uy having the form of (29), then Hy,0 < £ < M defined by (24) satisfy (26). In this case, H, defined
by (25) also satisfy (26).

We now decide By such that Bf = By, and V(z) defined by (23) satisfies (30).

Lemma 2: Assume that Vi(z) is defined by

Vi(z) := Mj (ITM +(z ' = ]-)Bk:)M07 (31)

for some By with B = Bj,. Then V(2) satisfies (30) if and only if

I. b
Bi = l no ] (32)
bl I,

for some non-singular n x n real matrices by.

Proof: Clearly if By, is given by (32), then Vi (z) satisfies (30). Conversely, by (30), Bx can be written as

1| I. b
By = = .
2 c I,
for some n x n real matrices b, c. By B = By, one has c =b™ % ]
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Note that if V(z) satisfies (30), then so does Vi (z)7.

Theorem 2: Assume that Ug is a non-singular matrix with the form of (29), and By are matrices given by
(32) for some non-singular n x n real matrices by, 1 < k < 7. Then {H,, H;,0 < £ < M} defined by (24) and
(25) with 'V}, defined by (31) is PR and satisfies (26). Furthermore if Ty, and Tﬁo satisfy Condition E, then
{H;,H;,0 < ¢ < M} generates a set of symmetric/antisymmetric BIO multiwavelets.

Next, we discuss the two-channel symmetric PR multifilter banks in more details.

B. Two-channel symmetric PR multifilter banks

In this subsection we consider the two-channel PR multifilter banks with the sum rules of order 1. In this case,
we use H, H to denote the matrix filters for the scaling functions @, 5, and use G, G to denote the matrix filters
for BIO multiwavelets ¥, 7.

Suppose {H, ﬁ, G, (~3‘r} is an FIR multifilter bank. For arbitrary non-singular real matrices ui, uz, define

- (33)

{ H,(w) = wH(w)u;  Hi(0) = uy TH(w)u],
G1(w) = usG(w)uj ', él(w) =u; " G(w)uf.

Then {H, ﬁ, G, é} is PR if and only if {H;, ﬁ1, G, (~}1} is PR; and {H, ﬁ, G, é} generates scaling functions ®, 3
and BIO multiwavelets ¥, T if and only if {Hq, ﬁl, Gy, (~3‘r1} generates scaling functions &, 51 and biorthogonal

multiwavelets ¥, ¥, with
~ _rx ~ _r
‘}1 = 111@, ‘}1 = u ‘}, \1/1 = 112\1/, ‘Pl = u, v,

Denote i := (1,0,---,0)7 € R".

Lemma 3: Assume that x,y € R" are two vectors with xTy = 1. Then there exists a non-singular real matrix
u; such that

ui; = x, ul_Ti1 =y.

By Proposition 3 i), for any biorthogonal scaling functions ®1, 3, @1(0)11%1(0) = 1. Thus to construct scaling
functions &, ®; with @1(0) =x, 21(0) =y for some x, y € R", xTy = 1, by (33) with u; given in Lemma 3, we
need only to construct scaling functions @, & with @(0) =i, g(O) = i1. In the following, we give expressions for
the PR multifilter banks with the sum rules of order 1 and scaling functions &, & satisfying ?{;(0) = %(0) =1i. In

this case by Lemma 1,

if H(0) = i], ijH(x)=0, i{H(0)=i;, ijH(r)=0, G(0)i; =0, G(0)i; =0. (34)
Let H,, (w) and H,, (w) be the modulation matrices of H, G and H, G respectively. By (34),

1 0
o U,

1 0
0o U,

Hm(O): ) m 0 =

)

for some 2r — 1 by 27 — 1 real matrices Uy, Uy. Thus the polyphase matrices E,(w) for H, G, and ]N‘Jp (w) for H,G
satisfy
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By Hm(O)ITIZI(O) =TIy, UyUT = Iy, ie. Uy = U;T. Suppose Vi(z) is defined by (23) for M = 2 and some
B), with B = By, then {2,41H,2,41G, 2,41H, 2,41 G} defined by

[ 27+1H(w) 1 0

o U

1 2 2
VA7) Vi)

2y+1G(w)

2y 41 H(w)

27+1 G (w)

1 2T___1Z2T 1 0 I
5V ()T Vi) [0 UlTH

where z = ¢’ is PR and 2,41 H, 2,,+1ITI satisfy the sum rules of order 1.

Usually, the support lengths of the scaling functions and BIO multiwavelets constructed based on (35) and (36)
are 2y + 1. To construct scaling functions and BIO multiwavelets with even integer support lengths we would use
another form of parametric expression for multifilter banks. Let {-H, > G, ,H, 2@} be PR FIR filter bank defined
by (35) and (36) with v = 1 for some B;. We want to choose B; such that the degrees of sH, »G and 2ﬁ, 2(~} as

polynomials of 2~} are smaller than 3. To this end, choose B; such that

1 0
o U,

I,
-1,

1 0
o u;”

] :027‘><7‘7 B?

[ IT ]
= 027‘ X7 (37)
_Ir

Then one has that B} = B; and B, satisfies (37) if and only if

1 1 0 b b
B =-
210 U, b b
for some 7 X r real matrices b with b2 = b.

If B; is given by (38), then

1 0
o uU!

2H(w) _ 1 1 0 I. _ L z_l I Z_2

[ .Gw) | 2o U (l I, l A ] " [ I, ] b .
Hw) [ 11 0 I o7 Lol Lo| r,-

[ G | 7o ur (l N ] @ -+ | ] + [ . ] b727?). (40)

Thus to construct scaling functions and multiwavelets with even integer support lengths, we use

2, H(w) 2 2 2H(w)
=V, (27) - Va(27) , (41)
2yG(w) 2G(w)
27ﬁ(w) INT 2T Qﬁ(w)
~ =V, (27)" - Va(27) ~ ; (42)
2yG(w) 2G(w)

where z = ™, V() are given by (23) with M = 2 and B, satisfying B} = By, 2»H, »G and H,,G are defined
by (39) and (40) with 7 x 7 real matrices b satisfying b? = b.

In the rest of this subsection, we consider the PR FIR multifilter banks for symmetric BIO multiwavelets. Here
for simplity, we consider the case that r = 2r; for some positive integer 71, and the first half components of the
scaling functions and BIO multiwavelets are symmetric while the other half components are antisymmetric. In

this case Do = Dy =daig(I,,,—1I,,), and here we choose the exchange matrix My to be

0 I.
M, = diag(L,, "L L) (43)
I, O
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MULTIFILTER BANKS AND BIORTHOGONAL MULTIWAVELETS 10

In the following we will provide a group of PR FIR multifilter banks H, G, ﬁ, G satisfying

~ (44)

2 VNDoH(—w)Do = H(w), 27 VDG (—w)Dg = G (w),
2 VDoH(~w)Do = H(w), 2" VDG (—w)Do = G(w),

where N € Z.\{0, 1}.
Assume that FIR matrix filters H, G are defined by (35) for some positive integer v and satisfy (44) with
N =2y + 1. Then by (44), one has
0 g
p O

a O 0 c
H(0) = [ l , H(m) = [ , G(m) =
for some 71 x r1 real matrices a, b, c,d, e, f,g and p. Thus the non-singular real matrix Uy in (35) has the form

,G<0)=[e°
0 f

0 b d 0

a 0 0 c

1 0 0 b d O
= (45)

0 U, e 0 0 g

o f p o

Similarly, if H, G are defined by (41) for some positive integer vy and satisfy (44) with N = 2+, then the

non-singular real matrix U, in (39) has the form

a 0 c¢c O

1 0 0 b 0 d
= (46)

0o U, e 0 g O

o f 0 p

Since we hope that H, G defined by (36) or by (42) also satifying (44), U ” in (36) and (40) shall have the
same form to Ui. Really, one can check that if Uy has the form (45) or (46), then U7 T has the same form to U;.

In the next lemma we give b in (39) and (40) such that -H, G and ,H,»G satisfy (44) with N = 2.

Lemma 4: Suppose 2 H, »G, 2ﬁ, »G are defined by (39) and (40) with U, having the form of (46). Then 2 H, 2 G,
,H,,G satisfy (44) for N = 2 if and only if o H, »G, ,H,,G are given by

2sH(w) _1 1 0 I I, —w
l ,G) | 4 l 0 U l ( I, ] l —wl I, " #7)
2[ O ] [ L, w 122)7
-1, I, w ! I,
Hw) | _1[1 0 I, I, -w !
l G (w) 4 l o U’ ([ I ] l —w ' I, " (49

for some non-singular real 71 x r1 matrix w, where z = e’.
Theorem, 3: Suppose FIR filters H, G, H, G are defined by (35) and (36) or by (41) and (42), where V(z) are
defined by (31) with M = 2 and By, given by (32) (n = r) for some non-singular r X 7 real matrices by, the real
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MULTIFILTER BANKS AND BIORTHOGONAL MULTIWAVELETS 11

matrix Uy in (35) and (36) has the form (45), and ,H,,G,,H, ,G are defined by (47), (48) for some 71 X 71
non-singular real matrix w and the real matrix U; with the form (46). Then {H, G, H, (~3‘r} is PR, has the sum
rules of order one and satisfies (44) for N = 2y + 1 or N = 2. Further, if Tu, Ty satisfy Condition E, then
{H, G, H, é} generates symmetric/antisymmetric BIO multiwavelets.

Proof: By Lemma 4, what remains to show is that 1H,1G, H,1G defined by (35) and (36) for v = 0 satisfy
(44) with N = 1, which follows immediately from the fact that U, and U7 T have the form (45). [ ]

IV. BIORTHOGONAL MULTIWAVELETS

In this section, we discuss the construction of BIO multiwavelets with good approximation and smoothness
properties, BIO multiwavelets with high balancing orders and BIO multiwavelets with good time-frequency local-
ization. Here we consider the case M = 2,r = 2. In this case, symmetric PR multifilter banks {xvH, v G, Nﬁ, N(~}}
are defined by (35) and (36) if N is odd and by (41) and (42) if N is even, where My is given by (43) with I, =1,
Vi(z) are defined by (31) with By, given by (32) (with n = 2) for some non-singular 2 X 2 real matrices by, Uy
in (35) and (36) is defined by (45) for some real numbers b,d, f, g, p with g # 0,bp # fd, and gH,gG,gﬁ,gé are
defined by (47) and (48) with I,;, =1 and w = w € R\{0}, and U; by (46).

A. Biorthogonal multiwavelets with good reqularity

Based on the explicit expressions, we can construct the symmetric/antisymmetric BIO multiwavelets with good
regularity. First we consider the sum rules of fileters. The next proposition gives the relation of parameters for

the fileters with sum rule order 2. Suppose by, is given by

Tr Yk
by = l l , |by| := xrtr — yrze # 0. (49)
Zr  tk

Proposition 4: Assume that 3,41 H and 2,H are the filters defined above with by given by (49) for some

Tky Yk 2k, te- Then 2,41 H has the sum rules of order 2 if and only if

[ glzk]:[b f]_l (Qb—l)n] o0
Z 1Yk d p % + 2dny
for some n € R with yo = (1,0),y1 = (v + ,7); 2yH has the sum rules of order 2 if and only if
-1
;':2 ze | | b f 2b—-1)n—7%
[Elﬂkl_ld Pl l 2dn — 5 l
for some n € R with yo = (1,0),y1 = (v,7m).
By the relationship of yH and Nﬁ, one has 274_1171 has 2 order sum rules if and only if
ez
o ﬁ fp 3 +2di

for some 7 € R with yo = (1,0),y1 = (v + 2,7]); gA,ITI has 2 order sum rules if and only if

Ex- R A g
fop 2dij — 5

?r'{ ?&"Q
e F‘
a?s-
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for some 7 € R with yo = (1,0),y1 = (v,7), where

S N |
b= tpd= =

We also can obtain relationship of the parameters for the filters with higher orders of the sum rules, and the

details are not provided here. From Propositions 4, we know if both yH and Nﬁ have the sum rules of 2, then
two parameters for the filters can be expressed by other parameters. In general, if yH and ~H have the sum rules
of m, then 2(m — 1) parameters for the filters will be reduced.

When we construct BIO multiwavelets with good approximation and smoothness properties, we find the pa-
rameters for the expressions of {vH, v G, Nﬁ, Né} given above are redundant. In the following we reduce the
“redundant” parameters.

Note that for a PR FIR filter bank generating scaling functions and BIO multiwavelets, with the change of the
PR FIR banks by (33) for some non-singular matrices u;, us, the corresponding new scaling functions and BIO
multiwavelets have the same approximation and smoothness properties to the old ones. In particular by choosing
u; =diag(1, u1), us =diag(usz, us) for some u; # 0, we can assume that d, f, g of U; in (45) to be £1, and f, g, w
in (47) and (48) to be £1. Such special choices of d, f, g and f, g, w have no influence to the construction of scaling

functions and BIO multiwavelets with good approximation and smoothness properties. In the following we choose

b 1 0 b 0 d
U=|0 0 1 |(forodd N) and U;=|0 1 0 | (foreven N), (52)
1 p O 1.0 p

with det(U;) # 0, and choose w in (47) and (48) to be 1. In this case there are 2N (2N — 1 respectively)
free parameters for {vH, v G, ~vH, Né} for odd N (for even N respectively), and 2(N —m +1) (2(N —m) + 1
respectively) free parameters for the filter bank with xyH and Nﬁ having the sum rules of order m for odd N (for
even N respectively).

Let {sH,3G,3H, 3G} be the PR FIR multifilter bank given above for v = 1 with U; given by (52). By

Proposition 4, the condition for sH having the sum rules of order 2 is

z1 = (26 —1)(y1p — 1/2) — 2y1;
and the addition condition for both 3sH and 3ﬁ having the sum rules of order 2 is

4y = 207+ (b —1/2)( — 2)
d+(b—1/2)x:

zZ1, (53)

L_l. Thus there are 4 free parameters for sH, 3ﬁ having the sum rules

h.o— _P 7.— _1 A | S
where b := bp_l,d = 1_bp,f =10 P =

of order 2. One can check the addition condition for sH and sH having the sum rules of order 3 are 4y; + |b1| =0
and z; = i respectively. We find if both sH and 3ﬁ have the sum rules of order 3, we cannot construct the scaling
functions with good smoothness. We will construct smooth scaling functions with sH and sH having the sum

rules of order 3 and order 2 respectively. In this case, there are 3 free parameters y1, b, p for the filters. For
1 =-1/8, b=-3/16, p=1/16,

then z1 = 971/1024, 21 = 18502/36033,t; = 241727/2306112, and the corresponding ;& € W?33%(R), and
2® € WhA182(R). For
ypo=-5/32, b=-7/32, p=1/64,
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then x1 = 33907/32768, z1 = 1507055/2571237, t; = 311843975/2632946688, and the corresponding 3& € W8 (R),

and 35 € Wi-6569 (R). 3®,37 and 35, 3&1 are shown in Fig. 1 and Fig. 2 respectively. In this way we can construct
more BIO multiwavelets with good regularity.

For orthogonal scaling function ® and multiwavelet ¥ with the same symmetry and support to 3®,3¥, we
can only construct & ¥ € W% (R) with & providing approximation order 2 (see [11]). Thus there are more

flexibilities for the construction of BIO multiwavelets than the orthogonal ones.

B. High balanced BIO multiwavelets

In image processing applications, the balanced orthogonal multiwavelets are required (see [15]). In [16], [20],
high balanced (k—balanced) orthogonal multiwavelets are introduced. Suppose {H, G, H, é} is a PR multifilter
bank generating scaling functions and BIO multiwavelets @, & and v, . When we use {H, G} as the analysis
filter bank, we say ¥ and ¥ or H is k—balanced (balanced for k = 1) if H has the sum rules of order at least k

with some vectors y; = (yj,1,9;,2) and
/¢1 1)t dt = /¢2 t——]dt 0<j<k. (54)

By (16), y; = fg(t)thdt. Thus (54) is equivalent to (see [16] and [20] for other equivalent forms)

j s—J .
Yj,2 — Yj,1 = E <s> 2°ysa, 0<j<k. (55)
0<s<y

In this case, we have
i) [oFdt=0, 0<j<Fk;
i) Y, (2n j¢1 t—n)+ (2n+ 1) 2 (t — n) € Pj(R), the space of polynomials of degree < j over R, 0<j <k;
ii1) E ,(2n + 1)) Hy s, = (p(20), p(2¢ + 1)) for some p € Pj(R), 0<j<k;
i) ¥ ((2n)7,(2n+1))GL_,, = (0,0), 0<j<k.
Thus a k-balanced multifilter bank has the properties: Annihilation of Px(R) and P(Z); preservation of Py (R)
and P (Z) (see also [20]).
For the multifilter bank {vH, v G, Nﬁ, N(~}} defined above, it would generate scaling functions with N@(O) =

~

[1,0]7, N%(O) = [1,0]7. So that the biorthogonal multiwavelets ¥, ~U cannot be balanced. Let vH?, yG?, yH?, vG?
be the PR multifilter bank defined by
{ vH (W) = Ro yHW)RY, ~H’(w) = Ro yH(w)RY, 56)
NG (w) =1 vG(W)RG, ~G'(w)=u," NG(w)R],

where Ry is the matrix defined by

Ro:ﬁll —11,
11

and up is a non-singular matrix. Then the corresponding scaling functions and BIO multiwavelets denoted
N‘I‘b, NP and N\Ilb, N\f/b are balanced and satisfy

NB' =Ron®, N =Ron® nU’ =un¥, NT =u;7 5T (57)

Suppose vH has the sum rules of order m with y;,0 < m — 1, then ~H? has the sum rules of order m with

v;,0 <m — 1 given by v; = y;Ro. Thus yH” is k-balanced (k < m) if and only if

we-ma = 3 ()2”@/ 1Y), 0<j<k.

0<s<j
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In particular, y1,2 —y11 = @ is equivalent to yH® being 2-balanced. Thus from Prop. 4, by just letting

n=v+ % + @ orn=-v+ %, we have the parametric expression for the 2-balanced yH?®.

If we want to construct BIO multiwavelets with high balancing orders, again the parameters for yH?, v G?, Nﬁb, ~NG?
given above are redundant. As in the above subsection, we can let f, g in U; to be %1.

Let {sH, 3G, 3ﬁ, 3(~3‘r} be the PR FIR multifilter bank given above for v = 1 with f, g in U; to be —1, and let
sH?, 3Gb sH?, 5GP be the filters defined by (56). If 1,41 are given by (50) (for v = 1) with p = 2 + %, then

sH? is 2-balanced. Let ¢; be given by (53) with b= bp%vfi:: ﬁ, fi= bp‘id,ﬁ = bp%, then 3H® has the sum

rules of order 2. For

b=-27/128, d=17/128, p=-5/8192, 2z = —31/256,
the resulting 2-balanced ® € W'?9*¥(R), and e W (R). Based on the parametric expressions of yH, Nﬁ,
we can construct more high order balanced BIO multiwavelets.
C. Biorthogonal multiwavelets with optimum time-frequency resolution

In this subsection, we will construct BIO multiwavelets with better time-frequency resolution. The OPTFR
orthonormal multiwavelets were studied and constructed in [11] and [12]. Here we will design the OPTFR BIO
multiwavelets which will be more suitable for image processing.

Recall for a window function f, the time-duration Ay of f is defined by

A} = /R(t—f)2|f(t)|2dt/E, with £:= [ t|f(t)|’dt/E, E:= [ |f(t)]dt.

The frequency-bandwidth of f is defined as A?. The product of time-duration and frequency-bandwidth
Oy := AfAJ/; is called resolution cell.
Since Proposition 3 shows that every component denoted by f; of BIO multiwavelets is a bandpass function, we

shall also consider the frequency-bandwidth A% of f; defined by
J

+o0 N +oo
(a%)? =/ (w—ng)Qlfj(w)Ide//o |F ()] de

f;
+oo N “+o0 N
o= | w|fj(w)|2dw// )P
0 0

One can check that for real fj, (A%‘,)Q = A% — (EE)Q. We denote 04 := AfA%\
J J

with

For M = 2, formulas to compute the time-durations and frequency-bandwidths of scaling functions and BIO
multiwavelets are provided in [11]. Such results can be generalized to the case M > 2 and we would not give the
details here.

Assume that {H, G, ﬁ, (N}} is a PR FIR multifilter bank. Then the lowpass frequency responses and highpass

frequency responses for this system are (see [26])

ha (@) i= Y7 B(R)aae "™ + h(k)ape  GFFDY, (58)
ha(@) = ey BR)ane™ ™ + h(k)ape CHDe 0 =12,

and
Ga (W) := Ek€z g(k.)a,lef%ku + g(k)aﬂefi(2k+1)w7 (59)
ga (w) = Zk€Z ’é(k_)a‘le—%kw + g(k)axQG_i(2k+1)u7 a=12,
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where A, ; denotes the (¢, j)-entry of the matrix A. ha,ﬁa act as lowpass filters, while go,qs act as highpass
filters. Thus it is required that

17 (0)] = [ha (0)] = |ga(m)| = da(®)| =1, ha(m) = ha(r) = 32 (0) = 72 (0) =0, a=1,2.

Assume that H and H generate scaling functions ® and ® respectively. By Lemma 1 and the facts that
[h1(0), h2(0)]T = H(0)(1,1)7, [q1(0), 22(0)]T = G(0)(1,1)7, we have that if ®(0) = c0(1,1)T,$(0) = &(1,1)7,
then ha(0) = 1,¢a(0) = 0, a = 1,2. Similarly we have 7a(0) = 1,3.(0) =0, o = 1, 2.

Proposition 5: Let {H, G, H, é} be a PR FIR multifilter bank with H, H balanced. Then

ha(0) =ha(0) =1, ¢a(0) =Gu(0) =0, a=1,2.

From Proposition 5, what we need to design is the requirements:
ha () = ha(m) =0, |ga(m)| =lga(m)| =1, a=1,2. (60)

Proposition 6: Let yH®, yG® be the filters defined by (56) with u» = Ry and yH, nG satisfying (44). Let
~vhe, ngh,a=1,2, be the corresponding frequency responses defined by (58) and (59) respectively, then

vh3(w) = e N R (—w),  Ng3(w) = e NI ygl (—w), (61)

and xhY (1) = NH(0)2.2, n¢2 (1) = NG(0)2,2, here NH(0)2,2 and xyG(0)2,2 denote the (2, 2)-entries of xyH(0) and
~G(0) respectively.

On can show Proposition 6 as in [12].

We now use the parametric expressions for PR FIR multifilter banks provided in Section III.B to construct the
balanced BIO multiwavelets with good time-frequency localization under the constrained conditions (60). Assume
that the PR multifilter bank {NH,NG,Nﬁ,Né} defined by (35), (36) or by (41), (42) with r = 2, generates
N®, v® and N, v U. Let {yH’ yG’ yH’, G’} be the PR multifilter bank defined by (56) with u, = Ro;
and let N‘I‘b, N<I'b and N\Ilb, N\T/b denote the corresponding balanced scaling functions and BIO multiwavelets. For
NB = (nv¢?, n¢3)T and NTP = (np?, N8, they lost symmetry, but they possess another property: the first

components are the reflections of the second components about their center point N/2, i.e.

NO3(N —z) = Nl (2), ~NYS(N —z) = Nyl (2).

N%" and N\f/b also possess the same property.
Let Nﬁ";, NG, a = 1,2, be the frequency responses corresponding to Nﬁb, ~G?. Then by Proposition 6, they
also satisfy the relationship (61) and N (m) = Nﬁ(o)g,z, NE(7) = Né(O)z,g. Thus the requirements (60) for

Nh(’i,NE’i,ngyNaZ are
~vH(0)22 = ¥H(0)22 =0, |xG(0)22] = [vG(0)2,2] = 1. (62)

Constrained conditions (62) are equivalent to that U; in (35), (36) and in (47), (48) with » = 2 are given
respectively by

0 d 0 0 0 d
U, = 0 0 g | ({orodd N) and U= 0 g 0 | (foreven N). (63)
+1 0 0 +1 0 0

DRAFT



MULTIFILTER BANKS AND BIORTHOGONAL MULTIWAVELETS 16

In the following, U; in (35), (36) and in (47), (48) are given by (63) for g € R\{0}. In this case the number
of free parameters for NHb, Nﬁb, NGb, N(N}b is 2N — 1 if N is odd and is 2N — 2 if N is even. We construct the

OPTFR BIO multiwavelets by minimizing the sum

S .= o° b~ +0° ~ .
N vob T pr T H G

Let N<I>b°,N5b" and yU%, ~TP denote the resulting scaling functions and BIO multiwavelets. Of course, to

construct OPTFR BIO multiwavelets, we can use other objective functions, e.g. O o + 0 ,p +0 ~ +0 -,

N®y NV N7 NV

0° -, +0° -, or O° , +0O° - . The minimizations are performed as follows: First based on Propositions 4 and
N7 Ny NY¥Y NYY

on the parametric expressions of yH, nG, Nﬁ, ~G with Uy given by (63), to construct a group of smooth
scaling functions y®, ~® and BIO multiwavelets N, ~U with approximation order 2, then to use these ny®, NO
and v, N\Tl as starting values for the construction of the OPTFR scaling functions and BIO multiwavelets, and
finally to choose the best results. In Table 1, the areas of the resolution cells of &%, N%”", Nobo ~ U are listed
for 3< N < 6. 3@”", 30 and 3‘51"’, 3&/1"’ are shown in Fig. 3 and Fig. 4 respectively. The optimal filters are

available from the author.

V. CONCLUSION

In this paper, the explicit expressions of M—channel PR FIR multifilter banks for symmetric/antisymmetric
scaling functions and biorthogonal multiwavelets are discussed. The expressions of the 2—channel symmetric PR
FIR multifilter banks with high sum rule orders and high balancing orders are discussed in more details. In
particular, we give the expressions of the 2—channel symmetric PR FIR multifilter banks with the sum rules
of order 2 and symmetric PR FIR multifilter banks with balancing order 2. The constructions of smooth, high
balanced biorthogonal multiwavelets and the optimum time—frequency resolution biorthogonal multiwavelets which

are more suitable for image applications are discussed.

APPENDIX

Proof of Lemma 1. Since both Hy and ﬁo generate compactly supported scaling functions, they satisfy the
sum rules of order 1, and Ho(0), ﬁo (0) satisfy Condition E. Thus for any left row l-eigenvectors yo and yo of
H, (0) and Ho(0), respectively,

yoHo(2rk/M) = 6(k)yo, YoHo(2rk/M) = 6(k)yo, 0<k< M —1.
Applying 317" Ho(2kn/M)H, (2kn/M)* = 16(£), we have
yoH(0)" = yos(0), FoH:(0)" = F08(0).

Thus y4 and ¥4 are right 1-eigenvectors of Ho(0) and Ho(0) respectively. Since 1 is a simple eigenvalue of Ho(0)
and Ho(0), up to a constant, yg = v, yg = v. Thus (18) and (19) hold. [ |
Proof of Proposition 3. Since \/1\10(0) (Elo (0) respectively) is a right 1-eigenvector of Ho(0) (ﬁo(O) respectively),
@O(O)T :IN\JO(O)T satisfy (18). Thus (1\/0(0)T7 \/IN\IO(O)T are left 1-eigenvectors of ﬁo(O), H,(0) respectively.
Since ¥ and ¥ are biorthogonal to each other, i.e. [ ¥ (m)\flo(m — k)Tdxz = 8(k)I., we have by the Poisson
summation formula,

~

Z (1\10(271'16 +w)¥(2rk +w)" =1, we]0,2m). (64)
k
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For any left 1-eigenvector v of Hy(0), we have (see [14]) V\/I;o(Qﬂ'k‘) =0if k #0. Thus \’170(0)71\/1\/0(271']6) = 0 for any
k # 0. By (64), To(0)"T0(0)T0(0)” = To(0)”. Therefore ¥o(0)" To(0) = 1.

~ ~ ~

By Lemma 1, ¥o(0) and ¥o(0) satisfy (19). Thus by (5), ¥,(0) = ¥;(0) =0, 1< £ < M. [
Proof of Lemma 3. For any x # 0, there exists an orthogonal matrix g(™ such that (see [12]) x =
Ix|lgi1, where ||x|*> := Y oren 2. Let z = ||x||(g")Ty, then z = [1,2]]7 for some z; € R"~'. Denote
1 —Z{ 1 1 1 ZFIP . _T.
Ugo = ||x]| , then Uy = T . Let u; = g(T)UOO. Then wiiy =x,u; "i1 =y. ]
0 r—1 0 Irfl
Proof of Proposition 4. Here we give the proof for »,41H. The proof for »,H is similar. By the definition,
we have
Vk(z) _ l ur Vi + 1 DouiDg —Vi 271
2| w, Tk 2 —Wp DoT«Do
with )
1 — Tk 0 —Yk 0 —Zk 1 —tk
u, = . , Vi = " ,WE = . , T = . .
__IC Yk z _ xr
[b| 1 by | 0 d [bg| 0 [b| 1
Let 1H(w), 1G(w) be the filters defined by (35) with v = 0. Then
Dy H(lr i [ H(tx D H((r
2y 1 H({m) :ZDVA:(O) 1H(er) 1H(er) =01
Doy 11 G(4m) P | 1G(ém) D G(¢r)
Thus
-
Doy H(fr) = D H(fr) — i Z(DoukDo VH(lr) = vi1G(¢)), £ =0, 1.
k=1

Suppose y1 = (&, 7) for some £, € R. Then »,41H has the sum rules of order 2 is equivalent to
—iyo D 2741 H(Eﬂ') + 2y1 27+1H(Z7r) = 5(6)}’1,
where yo = (1,0). One can check this is equivalent to

{ (=1,0) = (7, X1, bare — fyu) +2(&,bn) = (€,7),
(3,0) — Q=7 dzk + pyx, 0) + 2(dn, 0) = 0.

Thus £ = v+ % and

by sk + 3 vk = (2b— 1),
dy ) _ T +DPY Uk 1 + 2dn.
That is zx, yr satisfy (50). |
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