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Abstract:

The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable
properties. Here it is extended to the construction of multiwavelets. It is shown that any set of compactly
supported biorthogonal multiwavelets can be obtained from the Lazy matrix filters with a finite number of lifting
steps. As an illustration of the general theory, compactly supported biorthogonal multiwavelets with optimum
time-frequency resolution are constructed. In addition, experimental results of applying these multiwavelets to

image compression are presented.

1. INTRODUCTION

Multiwavelets is a recent topic of active research in the field of wavelets. There is much research conducted
on the construction of orthonormal and biorthogonal multiwavelets (see [7], [2], [17], [18], [8], [21], [12]-[15]),
and the application of these multiwavelets to signal and image processing is gaining interest as well (see [23],
[28], [25]). This paper deals with the construction of biorthogonal multiwavelets using an extension of the
lifting scheme in [24], a flexible tool for constructing biorthogonal scalar wavelets.

Fixing notations, let T be the unit circle, and . and 0, be the r x r identity matrix and zero matrix
respectively. For a matrix B, its conjugate transpose is denoted by B*, and its (m, u)-entry is written as By, ;.
We say that B is standard triangular if it is a triangular matrix whose diagonal entries are entirely 1’s,
and B is standard elementary if its diagonal entries are entirely 1’s, and all, except one, of its off-diagonal

1

entries are zero. The matrix product notation of H By refers to the expansion BBy, 1 --- Bj.
=L
The construction of biorthogonal multiwavelets of dilation factor 2 begins with a pair of r x r matrix filters

H, H of the form
H(z) =Y h(k)z™*, H(z) = h(k)z"",

keZ kez
satisfying

H(z)H(2)* + H(—z)H(—2)*=2I,, z€T.
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Suppose that & = (¢, ... ,¢T)T and & = (<;~51, - ,¢~ST)T are vector-valued functions in L?(R)" satisfying
=2 Z h(k)®(2z — k), =2 Z h(k 2m —
kEZ kEZ

Consider the subspaces
Vo(®) :=Span{pm(- — k) : 1 <m <r,k € Z}, Vo(®):=5pan{pm(-—k):1<m <rkeZ}
of L2(R). For j € Z, define closed subspaces V;(®), V;(®) of L*(R) by
Vi(®):={f € L*(R) : f(277:) € (@)}, V;(®):={f € L’(R) : f(277) € Vo(®)}.

Recall (see [9]) that a multiresolution analysis (MRA) of multiplicity r is a sequence of closed subspaces
(V;) in L*(R) satisfying (1°) V; C Vjt1,5 € Z; (2°) N;ez Vi = {0}, Ujez Vj is dense in L*(R); (3°) f €V &
f(2-) € V415 and (4°) there exist r functions ¢1,... , ¢, in L*(R) such that the collection of integer translates
{¢pm(-—k) : 1 <m <,k € Z} forms a Riesz basis of V. The vector-valued function ® = (¢y,... ,¢,)7T is called
a scaling function. Suppose that (V;(®)) and (V]((i)) are two MRAs of multiplicity  with scaling functions
® and ®. Let U = (1,... ,%,)T and T = ({[;1, e ,gr[)vr)T be the vector-valued functions whose components are
in Vi (®) and V1 (®) respectively, and defined by

=v2) g(k)®(2x — k), =v2) G(k)@Q2z —k (1.1)

kEZ kEZ
for some r X r matrix filters G(z Z g(k)z=F and G Z g(k)z=F. Then the construction of biorthog-
keZ kEZ

onal multiwavelets involves finding G, G such that {¢m(- — k), ¥m(- — k) : 1 <m <7, k € Z} and {¢m(- —
k), Um(-—k):1<m<r ke Z} form Riesz bases of V;(®) and V;(®) respectively, with

<¢ma (Zm’(' - k)) = ("pmﬂzm’ ( - k)) 6( )6(m - ml)a

<¢m7’$m’(' - k)) = (ng, (o ( - k)) 0,
for all m,m’ = 1,...,r, k € Z. The corresponding collections {27/%¢,,(29 - =k) : 1 < m < r, j,k € Z} and
{20/2pn (29 - —k) : 1 <m <, j, k € Z} constitute a pair of dual Riesz bases of L2(R), and ¥, ¥ in (1.1) is said

to form a set of biorthogonal multiwavelets. Consequently, H, G, H , G satisfy the perfect reconstruction
(PR) conditions:

H(2)H(z)* + H(—2)H(—2)* = 2I,,

H(2)G(z)* + H(—2)G(—2)* =0y, 1)
G(2)H(2)* + G(=2)H(—2)* =0, '
G(2)G(2)* + G(-2)G(=2)*=2I,, z€T

In this case, we say that H ,G,H,G are PR and form a 2-channel multiwavelet filter bank, or in short, a
multifilter bank.

A sufficient condition for ¥, T to be a set of biorthogonal multiwavelets is available in terms of the transition
operators associated to H and H. For an FIR matrix filter H, define N := max{|k| : h(k) # 0}. Let Vy denote
the space of all » x r matrices with trigonometric polynomial entries whose Fourier coefficients are supported
in [1 = N, N —1]. Then the transition operator Ty associated to H is the linear operator on Vy defined by

1. . : 1 : )
TeV (w) := 5H(ewﬂ)V(g)ﬂ(ewﬂ)* + 5ler(—ew/z)V(g +m)H(—e™/?)* Ve Vy, wel0,2n).

We say that an operator on a finite dimensional linear space satisfies Condition E if its spectral radius is 1,
and 1 is a simple eigenvalue as well as the unique eigenvalue on the unit circle. Now, suppose that the FIR
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matrix filters H, G, H, G are PR, and the transition operators Ty, Tg associated to H and H satisfy Condition
E. Then ¥, ¥ defined by (1.1) form a set of biorthogonal multiwavelets (see [11]).

In [24], the lifting scheme was introduced as a flexible method for constructing biorthogonal scalar wavelets
with desirable properties. Subsequently, it was shown (see [5]) that any pair of compactly supported biorthog-
onal scalar wavelets can be obtained from the Lazy filters with a finite number of lifting steps. This leads to
the construction of wavelet transforms that map integers to integers (see [1]).

In Section 2, we extend the lifting scheme in [24] to the multiwavelet setting. Using the Smith factorization
theorem on polynomial matrices, we also show that any PR FIR multifilter bank can be factorized into finite
steps of lifting, starting from the Lazy matrix filters H(®, G, H(©® G© given by

HO@Z)=HO () =1, G9(z)=G9(z)=2""1,. (1.3)

In other words, any set of compactly supported biorthogonal multiwavelets can be obtained from lifting. In
Section 3, we apply the lifting scheme to obtain parametric expressions of PR FIR multifilter banks. These
parametric expressions are used to construct biorthogonal multiwavelets with optimum time-frequency local-
ization. The paper concludes in Section 4 with experimental results of applying these multiwavelets to image

compression.

2. THE LIFTING SCHEME FOR MULTIWAVELETS
Assume that H,G, H,G form a FIR multifilter bank. Write
H(2) = H(2*) + 27 ' Hy(2%), G(2) = Go(2%) + 271G, (2?),

where

Ho(z) ==Y h(2k)2™%, H,(2):=> h(2k+1)z7%,

kEZ ez
Ge(2) = Zg(Zk)z*k, Go(z) = Zg(Zk + 1)z k.
keZ keZ

Then the polyphase matrix P(z) of H,G is defined by

() = l He(z) Ho(2)

= G.(2) Go(z)]’ zeT.

The polyphase matrix 13(2) of H ,C:’ is defined similarly. It is easy to verify that the FIR multifilter bank
H,G,H,G is PR if and only if

P(2)P(2)* = I,, z€T. (2.1)

As indicated in [26], for FIR matrix filters H, G, there exist FIR matrix filters H,G such that (2.1) holds if
and only if the determinant of the polyphase matrix P(z) is a monomial in z. If the determinant of P(z) is 1
for all z € T, the pair (H, Q) is said to be complementary.

Now, suppose that H© G© H© GO form a PR FIR multifilter bank with (H® G(©) and (H©®,G©)
both complementary. For 1 < £ < L, let S(®(2), S®(2) be r x r Laurent polynomial matrices, and TI(Z) (2),
Tz(e)(z) be r x r standard triangular Laurent polynomial matrices. We shall construct PR FIR multifilters
HO g® HO GO via PO(z) and P®(z), the polyphase matrices of H(®) ,G® and H® G® respectively.
For 1 < /¢ < L, define

I
P(Z) (Z) = l T Or

_§(Z)(z)* I,

@) o, I SO | Luny
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and

PO(z) := l I 59()

07‘ IT‘

T,l(ﬁ)(z) 0r I, 0, p(e—1
0. T ] l 50 1. ]p(é )(2), (2.3)

where f,,(e)(z) = (T,,(e)(z)*)*1 for v = 1,2. Since det(Tl(e)(z)) = det(T2(€) (z)) = 1 for all z € T, the matrices
Tvl(e)(z), @(4) (2) are still standard triangular Laurent polynomial matrices. Thus for 1 < £ < L, both (H®), G®)
and (H®,G®) are complementary, and H® GO, H® G® are PR. In terms of matrix filters, (2.2) and (2.3)

are equivalent to

H® (2) = Tl(l)(z2)(H“*1)(Z) +5® (ZQ)G(ZA) (z)), ”
- 2.
GO (2) = TV ()G (2) - 5O (2 HO (),

and

GO) = T{0() (GUD(2) - $OE) HED(),
_ N N B N (2.5)
HO(z) = TO2)HED (2) + SO (22)GO (2).
Analogous to the terminologies in [5], (2.4) is called lifting, while (2.5) is known as dual lifting.
Let us begin with the Lazy matrix filters (H(© G(@) in (1.3). The polyphase matrix of H® G© is I,
and so (H©, G(®) is complementary. Consequently, the matrix filter pair (H,G) with polyphase matrix

T L o |[1%) o I SO
P(Z)_ellq—g“’(z)* I 0, Té”(z)Hor I (2.6)

is also complementary. The following theorem shows that the polyphase matrix of any complementary FIR
matrix filter pair (H,G) can always be factorized into the form (2.6) which is equivalent to a finite number of
lifting steps starting from the Lazy matrix filters.

Theorem 2.1. Given any complementary FIR matriz filter pair (H,G), there exist a nonnegative integer L,
r x r Laurent polynomial matrices S (z), S (2), and r x r standard triangular Laurent polynomial matrices
Tl(f)(z), Tz(f) (2) for 1 < £ < L, such that the polyphase matriz of H,G can be factorized into the form (2.6).

The proof of Theorem 2.1 is based on the Smith factorization theorem on polynomial matrices (see, for
instance, [26]) which says that any s X s polynomial matrix M (z) can be factorized into a product of simple
s X s matrices such as triangular and diagonal polynomial matrices. Such simple matrices are obtained by
performing elementary row and column operations on the given polynomial matrix. The elementary row
operations on M (z) are as follows:

Type 1:  Interchange two rows.

Type 2:  Multiply a row with a nonzero constant c.

Type 3:  Add a polynomial multiple of a row to another row.

Similarly, elementary column operations on M (z) are defined.

An elementary row (column respectively) operation of Type 3 on M(z) is performed by left (right respec-
tively) multiplying M (z) with an s X s standard elementary polynomial matrix. It is easily seen that the
row (column respectively) operation of Type 1 on M(z) is performed by left (right respectively) multiplying
M(z) with an s x s exchange matrix which can be written as a product of a diagonal matrix of the form
diag(+1, ... ,£1) and standard elementary constant matrices.

Proof of Theorem 2.1. Let P(z) be the polyphase matrix of H,G, and n be an integer such that 2" P(z) is
a polynomial matrix. Then as in the proof of the Smith factorization theorem (Theorem 13.5.1) in [26], by
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performing elementary row and column operations of Type 1 and Type 3 on 2" P(z), we see that 2" P(z) can

be written in the form

2"P(z) = W(z)diag(71(2),- .. ,v2r(2))diag(cy, . .. ,c2.)U(2),

where W (z),U(z) are products of standard elementary polynomial matrices, v1(2),... ,72-(z) are polynomi-
als whose highest powers have coefficients 1, and ¢i,... ,co, are constants. Since ¢y ---cor71(2) -+ - 72, (2) =

det(2"P(z)) = 22™, we have ¢; --- ¢, = 1, y;(2) = 2™ for some n;, and 212;1 n; = 2rn. Consequently,
P(z) = W(z)diag(z™™",..., 2™ " ")diag(ci,. .. ,co)U(2).

Note that the diagonal matrices diag(z™~",..., 2"~ ™) and diag(ci, ... ,ca2r) can be written as a product of
standard elementary matrices. Hence, P(z) is of the form (2.6). O

Remark 2.1. (i) For the case r = 1, we have T,Sl)(z) =1for1<¢<L,v=1,2, and Theorem 2.1 reduces to
the factorization theorem (Theorem 7) in [5].

(if) The factorization in Theorem 2.1 is not unique. Indeed, even for the case r = 1, there can be more than
one way of factorizing a polyphase matrix. We refer the reader to [5] for a series of examples on this.

(iii) Although we are only dealing with multiwavelets with dilation factor 2 here, similar arguments can be

used to extend our results to multiwavelets with dilation factor M, where M is an integer greater than 1.

In practice, for a PR FIR multifilter bank H, G,INI ,é, the matrix filters H ,CNv’ are used to decompose a
r X 1 vector-valued signal into two r x 1 vector-valued signals, while the matrix filters H,G are applied in
the reconstruction process (see, for instance, [27] or [22]). (Note that the roles of H,G and H,G can be
interchanged in the implementation of the multifilter bank.) For further decomposition, H , G act on the first
decomposed r x 1 vector-valued signal. This is different from the effect of a 2r-channel filter bank in the sense
that in a 2r-channel filter bank, a scalar signal is decomposed into 2r scalar signals with further decomposition
being carried out on only the first channel.

The lifting and dual lifting steps (2.4) and (2.5) give a recursive, and more efficient, procedure to implement
multifilter banks. This is similar to the scalar case in [24]. Indeed, for a given vector-valued signal {c!(k)},

first set
(k) =Y 1O (n—2k)c' (n), dOk) =GO (n - 2k)c" (n).
nez neEZ
Then for 1 < ¢ < L, define

d'(k) :==d (k) =D sk —n)"c " (n),

neEZ

2.7
dO (k Z Aﬂ k)d (n), @7)
neZ
and

ZA(‘Z) c(l 1)( ),

neZ (2.8)
O (k) := (k) + > 59 (n - k)d® (n),
NEL
where S(f) Z S(Z) P S(Z) Z ““) k and T(f) ZAU) “kforvy=1,2. If H = HD),
kEZ kEZ kEZ

G = G are used to decompose the signal {c'(k)} in a multifilter bank, the decomposed signals {c(k)} and
{d(k)} are given by c(k) = ¢ (k) and d(k) = d&) (k). The processes described by (2.7) and (2.8) are reversible,

and they define the lifted decomposition and reconstruction multiwavelet algorithms.
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Remark 2.2. By proceeding as in [1], the lifted multiwavelet algorithms yield multiwavelet transforms that
map integer vectors into integer vectors. Since the generalization from the scalar case is straightforward, we

shall omit the details here.

3. BIORTHOGONAL MULTIWAVELETS WITH OPTIMUM TIME-FREQUENCY RESOLUTION

The design of optimal time-frequency resolution (OPTFR) wavelets and multiwavelets was studied in [6], [29],
[19], [12]-[14]. In this section, we shall use the lifting scheme to construct biorthogonal OPTFR multiwavelets
for the vector case of r = 2. Thus we are concerned with 2 x 2 FIR matrix filters H ,G,I;T ,@ that generate
scaling functions ® = (¢1, 2)7, ® = (¢1, $2)T and biorthogonal multiwavelets ¥ = (1b1,102)7, ¥ = (1, 12)7.

First let us recall some terminologies on time-frequency resolutions. Let f € L?(R) be a function with the
property that both ¢f and wf are in L?(R), where f denotes the Fourier transform of f. The time-duration

Ay of f is defined by
ar= ([ a-wruor dt)w / (/1 dt)m, (3.)

where ¢y 1= / tlf(t) dt / / |f(t)|? dt. Similarly, the frequency-bandwidth A 7of fis defined by
—o0 —0o0

s ([T w-gpriforas) / ([ iera)”, (32

where wf::/ w|f(w)|* dw // |]/‘\(cu)|2 dw. In practice, if f is a bandpass function (that is, f(O) = 0),

then the frequency-bandwidth A‘}A of f is defined by

= ([Cw-mrferaw) / ([ 1eras)” 3)

where @% := / w|f(w)|2 dw / / |J?(w)|2 dw (see [6], [10]). The product of the time-duration and frequency-

A

%O

! 0 0
bandwidth is the area of the resolution cell of f. We shall use (3.2) to define the frequency-bandwidths of

¢1,¢2,$1,<;2. As for the frequency-bandwidths of wl,wg,%,%, we shall use (3.3) instead because these
functions are bandpass functions (see [14]).

The respective low-pass frequency responses and the high-pass frequency responses of a PR FIR multifilter
bank H,G,I;T,C:Y are

(@) = 3 (hR)me™ 8 4 h(k) e CH2)

kEZ
I (W) = Z (ﬁ(k)m,le‘”’“" +ﬁ(k)m,2e—i(2k+1)w) C m=12,
\ keZ

and

(g () = Z <g(k)m,le—i2kw n g(k)mﬂe—i(zkﬂ)w) 7
kEZ

4 _ ) (3.5)
gm(w) = Z (g(k)myle*ﬂkw + fg’(k)mge*l(?k-{—l)w) , m= 1, 27
\ kEZ

where w € [0,2m) (see [25]). In image processing, balanced multiwavelets are useful (see [18] or [14]). The
biorthogonal multiwavelets ¥, ¥ are said to be balanced if their corresponding scaling functions ®, 3 satisfy
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8(0) = (1, 1)7/v/2, 8(0) = (1, 1)T/v/Z, where & := (31, d2)" and & := (dy, b,)”. In this case,
B (0) = hon(0) = V2, gm(0) = Gm(0) =0, m=1,2.
. From the practical point of view, one needs to further ensure that
hn(7) =0, |gm(7)| =V2, m=1,2, (3.6)
or

h(m) =0,  |gm(7)| =V2, m=1,2, (3.7

depending on whether H,G or H , G are used in the decomposition process.
As shown in [14], balanced multiwavelets can be constructed via symmetric/antisymmetric multiwavelets.
The procedure is as follows. Begin with H,G that satisfy

2 °DoH (2 Y)Do = H(2), 2z ?DoG(z )Do = G(2), (3.8)

for some integers c,d, where Dy := diag(1, —1). Together with some additional conditions, this gives ¢ and
¢2 which are symmetric and antisymmetric about ¢/2 respectively, and 1; and 1 which are symmetric and
antisymmetric about d/2 respectively. Let H,G also satisfy (3.8) for some integers &,d. It is known (see [3],
[16]) that if H, G, H,G generate biorthogonal multiwavelets, then H, H must satisfy the vanishing moment

conditions of order at least one:
(3.9)
Now, define H®, G®, H®, G* by

HY(2) = RH(2)RT, G%(z) = RG(2)RT, H"(z)=RH(2)RT, G'(2)=RG(2)R"

1 1 -1 ~
where R := — l . Then the corresponding biorthogonal multiwavelets ¥®, ¥® are balanced, and due

211 1
to the symm\e/t_ry/ antisymmetry of the original multifilter bank H, G, H , G , we have
$h(z) = gl(c—2), ¢3(a) =9i(d—2), Ph(2) =HRE—x), Ph(z)=1}d-a), (3.10)
and
By(@)] = WY (—w)l,  |gh(@)| = lgt (~w)l,  [h5(w)| = (B} (=w)l, [35(w)] = g} (=w)I, (3.11)

where w € [0,27). Furthermore,

B (@) = [H(LD2,2], g (7)] = [G(1)2,2], 3.12)
(M) = [HD)22], G (m)] = |G(L)22l, m=1,2. '
<G to denote the multifilter bank if the filter length of H is N

T be the scaling functions and biorthogonal multiwavelets

In the following, we use N, ~H
while that of H is N. Let N, K,(I)b, N
Gb

vN,ﬁGvNN » N,N
&b b
P \II,NN

~Gb. We shall construct biorthogonal OPTFR, multiwavelets by

’NN

corresponding to ~H

7NN 7NN 7NN

minimizing the sum

+A ~,¢,bA0 3

N N,N 71

= +A ¢bA° =, (3.13)

NP1 NN¢

N,NA = AN,ﬁd’t{AN T AN,]V(;PIIAN

where Ay, Az and A?? are as defined in (3.1)—(3.3), and the minimum is taken over all derived parametric

el ~G®. We shall let ~NFHYs § 76" N’ﬁfI ' N ~G" be the optimal

. _ b oy
expressions of N, ~H )N, ~H b NN

> N,N
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multifilter bank, and 5 5®%, N:I;b", N N N\f”" be the corresponding scaling functions and multi-
wavelets. Note that the areas of the resolution cells of ¢%, 1%, #8, 4% need not be considered in the sum (3.13)

because (3.10) shows that they are the same as those of ¢, 1", ¢t 4.

3.1. Optimal multifilter banks of odd filter length. Let H® G H® GO be defined by (2.4) and
(2.5) with TS9(2) = I for 1 < £ < L, v = 1,2. Then

HO(z) = HE V(z) + 592GV (z),

GY(z) =G (z) - §9(*) HO(2), &1
and

GO(z) = GV (z) = SO B (2),

- - - ~ (3.15)

HO(z) = H D (2) + SO2)GO(2).

Now, choose H© , G© H©® GO to be the Lazy matrix filters in (1.3). Then (3.8) is satisfied with ¢ = 0 and
d=2. For 1 < ¢ < L, we shall construct H®), G(®) which satisfy (3.8) with ¢ =0 and d = 2.

Proposition 3.1. Suppose that H(O),G(O),ﬁ(o),é(o) are as in (1.3). For 1 < £ < L, let HY G be defined
by (3.14) for some Laurent polynomial matrices S©(z), S (2). Then HO,G® satisfy (3.8) with ¢ = 0 and
d=2 for 1 < £< L if and only if S (2), 5 (2) satisfy

2DeS®O (2 1Dy = SV (2), 2DeSY (2 1Dy = 59 (2) (3.16)
for 1 < £ < L. Furthermore, if HO ,G® are defined by (3.15) with S©(z2),50(2) satisfying (3.16) for
1< (<L, then HY GO qalso satisfy (3.8) withc=0andd=2 for 1 <{< L.

Proof. First, assume that H® G®) satisfy (3.8) with c =0and d =2 for 1 < ¢ < L. Then for 1 < ¢ < L, it
follows from (3.14) that
(ZQDOS(E) (z7%)Dg — S(l)(z2))G(£*1)(iz) =0.
Multiplying by G¢=1) (+2)*, we have
(22D S (272) Dy — 89 (22)) G~V (£2)G V) (£2)* = 0.
By (1.2), this implies that 2DoS® (27 1)Do = S®) (). Similarly, S (z) satisfies (3.16) for 1 < £ < L.
For the converse direction, based on (3.14) and (3.16), we use an inductive argument to conclude that

H® GO gatisty (3.8) with ¢ = 0 and d = 2 for 1 < £ < L. Similarly, we establish the last part of the
proposition on H®, GO, O

To obtain final matrix filters H, H that satisfy the vanishing moment conditions (3.9), we seek a formula
to compute H(O(1), HO(=1), HO (1), H®(=1). In this connection, the following lemma, which is easily
established, will be useful.

Lemma 3.1. For 1< (<L, let HO GO H® GO be defined by (3.14) and (3.15) for some Laurent polyno-
mial matrices S (z), S (z) satisfying (3.16), where HO ,G© H© GO gre g5 in (1.3). Then for1 << L,
GO =HO(-1), ¢Y(-1)=-HY1), Y1) =HY(-1), GY(-1)=-HOQ).

By Lemma 3.1, it follows from (3.14) and (3.15) that for 1 <¢< L,

HO1) HOC-1) | I, S (1) HED 1) HED(-1)
HO(-1) —HO@Q) | | -8O1) L-SO1)sOQ) | | HEY(-1) —HED()

This leads to
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Proposition 3.2. Under the hypothesis of Lemma 3.1, we have
HO@1) HE(-1 ! I s I, I
O HOCD (] S°0 S PG
HL)(-1) —HW(1) il S L—-SY1)s®() IL, -,

Now, for 1 < £ < L, we choose S((z), S (z) satisfying (3.16) to be

1 b 1 —b ~ 1|a b 1| a -b
SO (2):= = R R lz, §0@) =2 af Sl aﬁ Rl P
2 Cy dg 2 —Cy dg 2 Cy dg 2 —Cy dg
For the case L = 2, first consider S (2) = 02. Let 75H, 7,5G,7,5I§,7,5C~¥ be the corresponding matrix filters.
Using (3.17), we see that 7 5H, 7,51?1 satisfy (3.9) if and only if

a1:\/§—1, 61:\/5/2, a2:\/§—1.

Since the filter length of 7 5H? is shorter than that of 7 5H?, we shall use 7 5H?,75G? in the decomposition
process. Based on the desired frequency responses of 7,5.7? b,7,5éb in (3.7) and the relations in (3.12), we set
7,5ﬁ(1)2,2 = 0, 7’56(1)2,2 = \/§ to obtain

di=1-v2, d=-v2/2.

There are 7 remaining free parameters to determine the balanced biorthogonal multiwavelets. By minimizing
7,54\, we obtain

b1 = .15634620515720, by = .54323724572972, be = .32070154678036,

c1 = —.58272635112124, ¢1 = —.94053105759286, co = —.65586372167406,

dy = —.42725496310644.
It can be checked that the transition operators T, peo, T7’5 jbo

75H, 7 s HY satisfy Condition E, and therefore the resulting 7 59, 7 ;¥ defined by (1.1) form a set of

biorthogonal multiwavelets. The areas of the resolution cells for 7 568, 7,508, 7 50°, 7 59%° are respectively

associated to the optimal matrix filters

.679146, .637900, .634317, .571908.

Next, consider the case L = 2 with S (2) # 09. Let 7 9H,7,9G, 7,9ﬁ-, 7,95 denote the corresponding matrix
filters. In this case, by (3.17), 790H, 7,9151 satisfy (3.9) if and only if

agz(l—al)/\/i, 62:1—\/561, (01—1)61:1—\/5.

Here, we shall use the matrix filters 7 9H®, 7 9G® in the decomposition process. To have the desired frequency
responses of 7 9H® 7 9G® in (3.6), according to (3.12), we select 7 9H (1)22 = 0, 79G(1)2.2 = v/2. This leads to

V2 V2o s V2
Mg =X =1-YZ
ds + 5 dy 5 d2d; 5
There are 11 free parameters to determine the balanced biorthogonal multiwavelets. By minimizing 7 9A, we
obtain
[ a1 b | [ .59934321549133  .41885175827122 |
| o di || —.63687209098656 —.52853412945938 |
[ @ b | [ 1.03383638662464 1.23426452221818 |
| & di | | —-90678404033140 —.87856531777820 |’
[ > by | [ .28330712925448  .10410822340904 |
| o dy | | —.66679368845088 —.33337671415729 |
[ G by | [ —.46206543923936 —.87412095509012 |
| & db | | —.02184709361176 .23622223713642 |
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Again, the resulting 7 0%, 7,9lﬂI}b° defined by (1.1) form a set of biorthogonal multiwavelets. The areas of the

resolution cells for 7 9¢%°, 7 918, 7,9511"’, 7,91%’" are respectively
664638, .579071, .656291, .588506.

Figure 1 contains the graphs of 7,92, 7912, 7 9%, 7 9902, and the plots of the magnitudes of the frequency
responses 7.0h%°, 7 992, 7 0h%°, 7 93t as defined in (3.4) and (3.5). The graphs of 7965, 7,995, 7,005, 7,095,
and the plots of the magnitudes of 79h5%, 7,995, 79h%%,7,095° can be obtained from Figure 1 via (3.10) and
(3.11).

3.2. Optimal multifilter banks of even filter length. As in the previous case of odd filter length, we
use (3.14) and (3.15) to define HO, GO, H® GO for 1 < ¢ < L. However, we begin with the matrix filters
H® GO HO GO given by

HO(z) = HO(2) = KO0) + i (1), GO(z) = GO(2) = g0 (-1)z + ¢(0),

where

h(o)(O) :g(O)(_l) :% [ 1 i ] , h(o)(l) :g(O)(O) = % [ _11 _11 ] .

These initial matrix filters form a PR multifilter bank, and they satisfy (3.8) with ¢ = 1 and d = —1. For
1 < ¢ < L, select Laurent polynomial matrices S (2), g(‘f)(z) that satisfy

2 1DeSO (2" NDg = 8U(2), 27'DeS® (271)Dy = SO (2).

More specifically, let

1 a b 1 a —b ~ 1
(0 — et hl ¢ ¢ 1 0 —
S (z): 2[% e]+2l o Z]z , SW(z): 5

a b 1| a -b

af pogl I af e Pl

¢ dg 2 —Ccy dy

Then proceeding as in Subsection 3.1, we see that H®, GO, H® G® satisfy (3.8) with ¢ = 1 and d = —1.
The case L = 2 with 52 (2) = 02 leads to optimal balanced biorthogonal multiwavelets S,G\I’bO,S,G{Iv’bO, while

the case L = 2 with S®(2) # 0, gives 8,100, sylo‘ibo. All the multifilter banks of these multiwavelets are of

even length.

4. APPLICATION TO IMAGE COMPRESSION

Using the multiwavelet decomposition frame for image compression in [25], we develop a zerotree (see [20])
based algorithm for applying biorthogonal multiwavelets to image compression. In our implementation, we
use the symmetric extension transform provided in [27] to extend the original image over its boundaries. All
the biorthogonal OPTFR multiwavelets constructed in Section 3 are implemented. Let Biort NN denote the
optimal balanced multifilter bank y H", v 3G, v <HY, N, ~G". Thus the multifilter banks considered are
Biorty 5, Biorty g, Biortg g, Biortg 1. Since all these multfilter banks are obtained from balanced multiwavelets,
no prefiltering is needed in their application (see [18]).

To compare and evaluate the performance of these multifilter banks, we use two standard test images of
size 512 x 512, namely “Lena” and “Barbara”. The compression ratios (CR) of “Lena” are 32:1, 64:1 and
100:1, while that of “Barbara” are 16:1, 32:1 and 64:1. We use the Peak Signal to Noise Ratio (PSNR) to
measure the quality of the reconstructed image. The reconstruction results are given in Tables 1 and 2. As
a basis of comparison, the reconstruction results by several popular scalar wavelets are also included. The
scalar wavelets considered are the 8-tap orthonormal Daubechies wavelet (Dg, see [4, p. 195]), the 8-tap least
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asymmetric orthonormal wavelet (L-asyms, see [4, p. 198]), and the (9, 7)-tap biorthogonal scalar wavelet (S-
biortg 7, see [4, p. 279]). Each of these wavelets is chosen because the total length of the corresponding filters
is approximately equal to that of the multifilter banks constructed.

The biorthogonal multiwavelets designed in this paper generally perform better than the orthonormal scalar
wavelets Dg and L-asymg (see Tables 1 and 2). In some cases, for instance, images with more high frequency
components such as “Barbara”, our biorthogonal multiwavelets even outperform the biorthogonal scalar wavelet
S-biortg 7. Figures 2-4 show the original image, and the reconstructed images of “Barbara” with the scalar
wavelet S-biortg 7 and the multiwavelet Biort7 g at a compression ratio of 32:1. Note that the reconstructed
image using Biorty g preserves details, such as texture, of the picture better.

Acknowledgments: We would like to thank the anonymous referees for helpful suggestions.
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CR | Biortys | Biorty g | Biortse | Biorts,io Dg L-asymg | S-biortg 7
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TABLE 1. PSNRs (in dB) of compressing the image “Lena” with different multiwavelets and wavelets at
compression ratios of 32:1, 64:1, 100:1.

CR | Biortr s | Biort7 g | Biortge | Biorts 1o Dg L-asymg | S-biortg 7
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64:1| 25.682 | 25.735 | 25.673 | 25.766 | 24.674 | 24.988 25.206

TABLE 2. PSNRs (in dB) of compressing the image “Barbara” with different multiwavelets and wavelets at
compression ratios of 16:1, 32:1, 64:1.

FIGURE 1. (a) Graphs of (i) 7,0¢5° (solid line) and 7,1?° (dashed line), (ii) 7,9&1"’ (solid line)
and 7,99 (dashed line). (b) Plots of the magnitudes of (i) 7,0h%° (solid line) and 7,9¢?° (dashed

line), (i) 7.9h%° (solid line) and 7.9g%° (dashed line).
s 1 ,9d1

FIGURE 2. The original “Barbara” image.
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FIGURE 3. Reconstructed image using the biorthogonal scalar wavelet S-biortg7 at a com-
pression ratio of 32:1 with PSNR=26.738 dB.

FIGURE 4. Reconstructed image using the biorthogonal multiwavelet Biort; g9 at a compression
ratio of 32:1 with PSNR=27.817 dB.
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