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Abstract

Surface multiresolution processing is an important subject in CAGD. It also poses many
challenging problems including the design of multiresolution algorithms. Unlike images which
are in general sampled on a regular square or hexagonal lattice, the meshes in surfaces process-
ing could have an arbitrary topology, namely, they consist of not only regular vertices but also
extraordinary vertices, which requires the multiresolution algorithms have high symmetry.

With the idea of lifting scheme, [1] introduces a novel triangle surface multiresolution
algorithm which works for both regular and extraordinary vertices. This method is also suc-
cessfully used to develop multiresolution algorithms for quad surface and

√
3 triangle surface

processing in [35] and [36] respectively. When considering the biorthogonality, these papers do
not use the conventional L2(IR2) inner product, and they do not consider the corresponding
lowpass filter, highpass filters, scaling function and wavelets. Hence, some basic properties
such as smoothness and approximation power of the scaling functions and wavelets for regular
vertices are unclear. On the other hand, the symmetry of subdivision masks (namely, the
lowpass filters of filter banks) for surface subdivision is well studied, while the symmetry of
the highpass filters for surface processing is rarely considered in the literature.

In this paper we introduce the notion of 4-fold symmetry for biorthogonal filter banks.
We demonstrate that 4-fold symmetric filter banks result in multiresolution algorithms with
the required symmetry for quad surface processing. In addition, we provide 4-fold symmetric
biorthogonal FIR filter banks and construct the associated wavelets, with both the dyadic
and
√

2 refinements. Furthermore, we show that some filter banks constructed in this paper
result in very simple multiresolution decomposition and reconstruction algorithms as those
in [1, 35, 36]. Our method can provide the filter banks corresponding to the multiresolution
algorithms in [35] for dyadic multiresolution quad surface processing. Therefore, the properties
of the scaling functions and wavelets corresponding to those algorithms can be obtained by
analyzing the corresponding filter banks.

Key words and phrases: 4-fold symmetry, biorthogonal filter banks, biorthogonal wavelets,
biorthogonal

√
2-refinement wavelets, surface multiresolution processing, surface multiresolu-

tion decomposition/reconstruction.
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1 Introduction

This paper is about the design of symmetric filter banks and wavelets for surface multiresolution
processing. The filter banks and their symmetry considered in this paper are closely related to
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the surface subdivision masks (local averaging rule templates) and their symmetry. To facilitate
the explanation of the symmetry of filter banks required for surface multiresolution processing,
first we briefly recall subdivision rules and the symmetry of subdivision masks.

Subdivision is an efficient method to generate smooth surfaces with arbitrary topology and
it has been successfully used in animation movie production, see e.g. [30, 37]. To construct a
smooth surface, the subdivision process is carried out iteratively, starting from an initial triangle
or quadrilateral (quad) mesh, called control mesh/net, to generate a sequence of finer and finer
meshes that eventually converges to the desirable limiting surface. The rule how to insert new
vertices to a coarse mesh and how to connect the new vertices and old vertices to generate a
finer mesh is called the subdivision topological rule. The rule to give the exact positions of the
new inserted vertices (and probably to update old vertices) in 3-D space is called the subdivision
local averaging rule. The dyadic (or 1-to-4 split) rule is the most commonly used topological rule.
Other topological rules include

√
2,
√

3,
√

5 and
√

7 refinements, see e.g. [4, 5, 12, 18, 19, 20, 23,
24, 27, 28, 33, 34].

After one iteration of a dyadic quad surface subdivision, a quad in the coarse mesh is split
into 4 quads by connecting appropriately the inserted vertices and the updated old vertices. For
example, the left of Fig. 1 is a coarse quad mesh. New vertices are added on the edges and
faces of quads in the coarse mesh (these new vertices are called edge vertices and face vertices
respectively), and then, each face vertex is connected to its nearest four edge vertices to form
a finer mesh as shown in the middle of Fig. 1. The exact positions of the added vertices and
formula to update the old vertices are given by the local averaging rules which are usually given
by templates.
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Figure 1: Left: 3-D quad mesh; Middle: Finer mesh; Right: 2-D representation

A vertex is said to be regular if its valence (the number of edges connecting the vertex to other
vertices) is 6 for triangle mesh and is 4 for quad mesh. Otherwise, it is called an extraordinary
vertex. For example, E in the left picture of Fig. 1 is an extraordinary vertex since its valence
is 3. A vertex and its nearby vertices in a 3-D mesh are expressed locally in a 2-D plane which
makes it easier to express the subdivision topological rule and local averaging rule. For example,
the neighborhood of the extraordinary vertex E in the middle of Fig. 1 is expressed in the right
picture of Fig. 1.

The local averaging rule (for regular vertices) is associated with some refinement equation.
More precisely, the refinement equation

φ(x) =
∑

k∈Z2

pkφ(2x− k), x ∈ IR2, (1)

2



yields the local averaging rule:

vj+1
k =

∑

n∈Z2

vjnpk−2n, k ∈ Z2, j = 0, 1, · · · , (2)

where vj+1
k are the vertices of the finer mesh obtained after j + 1 steps of subdivision iterations.

The (finite) sequence {pk} is called the refinement mask or subdivision mask, and the compactly
supported function φ(x) of (1) is called the refinable (or scaling) function. The local averaging
rule (2) is sometimes described and represented in the plane with a set of subdivision templates
(or stencils). The smoothness of the limiting surface near a regular vertex is determined by that
of φ, which in turn can be characterized by the associated refinement mask {pk}. It is common
that one first designs the local averaging rule for regular vertices, namely, one constructs {pk}
first. After that, one designs the local averaging rule for extraordinary vertices. In order that
one can design compatible local averaging rule for extraordinary vertices, the local averaging rule
templates for regular vertices must have high symmetry. Roughly speaking, these templates are
independent of the orientations and reflections of vertices. For example, the templates for edge
vertices e1, e2, e3 around an extraordinary vertex E in the right picture of Fig. 1 must be identical,
and that for face vertices f1, f2, f3 are the same. The required symmetry of the templates are
well-known and the commonly used subdivision schemes do have such a symmetry. For example,
Fig. 2 shows the Catmull-Clark scheme [2] to update regular vertices (left), to calculate the
positions of the face vertex (middle) and the edge vertex (right). The templates are orientation
and reflection invariant.
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Figure 2: Catmull-Clark scheme

For a pair of (dyadic refinement) filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}, the
(dyadic refinement) multiresolution decomposition algorithm for an input image/data C = {c0

k}
is

cj+1
n =

1
4

∑

k∈Z2

pk−2nc
j
k, d

(`,j+1)
n =

1
4

∑

k∈Z2

q
(`)
k−2nc

j
k, (3)

with ` = 1, 2, 3,n ∈ Z2 for j = 0, 1, · · · , J − 1, where J is a positive integer. The multiresolution
reconstruction algorithm is given by

c̃jk =
∑

n∈Z2

p̃k−2nc̃
j+1
n +

∑

1≤`≤3

∑

n∈Z2

q̃
(`)
k−2nd

(`,j+1)
n (4)

with k ∈ Z2 for j = J − 1, J − 2, · · · , 0, where c̃n,J = cn,J . Filter banks {p, q(1), q(2), q(3)} and
{p̃, q̃(1), q̃(2), q̃(3)} are said to be the perfect reconstruction filter banks if c̃jk = cjk, 0 ≤ j ≤
J − 1 for any input C. {p, q(1), q(2), q(3)} is called the analysis filter bank and {p̃, q̃(1), q̃(2), q̃(3)}
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the synthesis filter bank. {cjk}, {d(`,j)
k } are called the “smooth part” (or “approximation”) and

the “details” of C.
When (3) and (4) are used for surface multiresolution processing, C = {c0

k} is the input
regular mesh with vertices c0

k in IR3. Observe that when d
(`,j+1)
k = 0, (4) is reduced to c̃jk =∑

n∈Z2 p̃k−2nc̃
j+1
n , j = J − 1, J − 2, · · ·. This is the subdivision algorithm with subdivision mask

{p̃k}k starting with the initial control net with vertices c̃Jk. The decomposition and reconstruction
algorithms (3) and (4) are for regular vertices only. One needs to design the corresponding
multiresolution algorithms for extraordinary vertices. In order that one can design compatible
decomposition and reconstruction algorithms for extraordinary vertices, not only p and p̃ have
high symmetry, but also do q(`) and q̃(`), 1 ≤ ` ≤ 3. Clearly, p and p̃ should possess the same
symmetry as that when they are considered as subdivision masks. The question needed to be
answered is which kind of symmetry the highpass filters q(`), q̃(`), 1 ≤ ` ≤ 3 should have.

In our study of wavelets for surface multiresolution processing, we realize that for triangle
surface, the filter bank should have 6-fold axial symmetry, while for quad surface, the filter
bank should have 4-fold axial symmetry which is introduced below. The construction of 6-fold
symmetric filter banks and the associated wavelets is considered in our very recent paper [17]. In
this paper we consider 4-fold symmetric wavelets for quad surfaces. Next we give the definition
of 4-fold symmetry.

3
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Figure 3: 4 symmetric axes (lines)

Definition 1. Let Tk, 0 ≤ k ≤ 3 be the axes in Fig. 3. A (dyadic refinement) filter bank
{p, q(1), q(2), q(3)} is said to have 4-fold axial (line) symmetry if (i) its lowpass filter p(ω) is
symmetric around Tk, 0 ≤ k ≤ 3, (ii) e−i(ω1+ω2)q(1)(ω) is symmetric around the axes Tk, 0 ≤ k ≤
3, (iii) eiω1q(2)(ω) is symmetric around the axes T1 and T3, and (iv) q(3)(ω) is the reflection of
q(2)(ω) around the line ω2 = ω1.

In Definition 1 and throughout, for a dyadic refinement mask {pk}k∈Z2 of real numbers with
finitely many pk nonzero, its corresponding finite impulse response (FIR) filter p(ω) (p(ω) is also
called the symbol of {pk}) is defined by

p(ω) =
1
4

∑

k∈Z2

pke
−ik·!.

One of the main objectives of this paper is to construct 4-fold axial symmetric biorthogonal
FIR filter banks and the associated compactly supported biorthogonal wavelets. The construction
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of 4-fold axial symmetric subdivision mask p (namely, p is symmetric around lines Tk, 0 ≤ k ≤ 3)
and its dual mask p̃ which also has 4-fold axial symmetry is studied in [8]. To the author’s best
knowledge, the construction of filter banks which have a symmetry in Definition 1 for both lowpass
and highpass filters has not been considered in the literature. We will demonstrate that the 4-fold
symmetry of a filter bank is the symmetry required for quad surface multiresolution processing.

Linear spline and butterfly-scheme related semi-orthogonal wavelets for surface multiresolu-
tion processing have been studied in [25, 26], and Doo’s subdivision scheme based wavelets for
quad surfaces are constructed in [29]. With the idea of lifting scheme, [1] introduces a novel tri-
angle surface multiresolution algorithm which works for both regular and extraordinary vertices.
This method is also successfully adopted to develop multiresolution algorithms for quad surface
and

√
3-refinement triangle surface processing in [35] and [36] respectively. When considering

the biorthogonality, these papers do not use the conventional L2(IR2) inner product, and there-
fore, they do not consider the corresponding lowpass filter, highpass filters, scaling function and
wavelets. Hence, the properties on smoothness and approximation power of the scaling functions
and wavelets for regular vertices are unclear. We show that some filter banks constructed in this
paper also result in very simple multiresolution decomposition and reconstruction algorithms as
those in [1, 35, 36]. Therefore, the properties of the scaling functions and wavelets correspond-
ing to the quad surface algorithms for regular vertices in [35] can be obtained by analyzing the
corresponding filter banks which can be obtained by our method introduced in this paper.

Figure 4: Left: Coarse mesh; Right: Finer mesh after
√

2 refinement

The quad surface subdivision allows not only the dyadic refinement but also
√

2 and
√

5
refinements as well, see [5, 12, 24, 33, 34]. The

√
2 topological rule is (1) first to insert a vertex

on each quad (face) of the coarse mesh, (2) then to remove the edges of the quad of the coarse
mesh, and (3) finally, to connect each new vertex to its near four old vertices. See Fig. 4, where
the left picture is the coarse mesh and the right picture is the finer mesh with black bullets
• denoting the inserted new vertices (called face vertices) and big circles � denoting the old
vertices (called vertex vertices). Compared with the dyadic refinement, the

√
2-refinement

generates more resolutions. Another main objective of this paper is to about the design of
√

2-
refinement (quincunx) biorthogonal FIR filter banks for quad surface multiresolution processing.
Next, we introduce the 4-fold symmetry of a

√
2-refinement filter bank {p, q}.

Definition 2. Let Tk, 0 ≤ k ≤ 3 be the axes in Fig. 3. A (
√

2-refinement) filter bank {p, q} is
said to have 4-fold axial (line) symmetry if (i) p(ω) is symmetric around Tk, 0 ≤ k ≤ 3, (ii)
e−iω1q(ω) is symmetric around the axes Tk, 0 ≤ k ≤ 3.
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The construction of
√

2-refinement wavelets (also called quincunx wavelets) are studied in [21],
[22] and [11]. In this paper we construct 4-fold symmetric

√
2-refinement biorthogonal FIR filter

banks and the associated compactly supported wavelets. The 4-fold symmetric filter banks lead
to the multiresolution algorithms with the symmetry required for quad surface processing. We
show that some of the constructed filter banks yield very simple multiresolution algorithms.

The work on 4-fold symmetric dyadic refinement filter banks and that on 4-fold symmetric√
2-refinement filter banks are carried out in §2 and §3 respectively.

2 Dyadic refinement wavelets with 4-fold axial symmetry

In this section, we study the dyadic refinement biorthogonal wavelets with 4-fold axial symmetry.
This section consists of two subsections. In the first subsection, §2.1, we obtain families of 4-fold
symmetric biorthogonal FIR filter banks and construct the associated wavelets. We also provide
results on the 4-fold symmetry of filter banks and the associated scaling functions and wavelets
in §2.1. In the second subsection, §2.2, we show that some filter banks presented in §2.1 result in
simple decomposition and reconstruction algorithms for quad surface multiresolution.

2.1 Biorthogonal FIR filter banks and wavelets with 4-fold axial symmetry

For a filter bank {p, q(1), q(2), q(3)}, denote

q(0)(ω) = p(ω).

It is well-known that {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are PR filter banks if and only if
∑

0≤j≤3

q(`′)(ω + πηj)q̃(`)(ω + πηj) = δ`′−`, (5)

for 0 ≤ `, `′ ≤ 3, ω ∈ IR2, where δk is the kronecker-delta sequence: δk = 1 if k = 0, and δk = 0 if
k 6= 0, and ηj , 0 ≤ j ≤ 3 are the representatives of the group Z2/(2Z2):

η0 = (0, 0), η1 = (−1,−1), η2 = (1, 0), η3 = (0, 1). (6)

{p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are also said to be biorthogonal if they satisfy (5).
For a pair of biorthogonal FIR filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}, let φ and φ̃

be the scaling functions associated with p and p̃ respectively. Then under ceratin mild conditions
(see e.g. [6, 14]), φ and φ̃ of L2(IR2) are biorthogonal duals:

∫
IR2 φ(x)φ̃(x− k) dx = δk1δk2 , k =

(k1, k2) ∈ Z2. In this case, ψ(`), ψ̃(`), ` = 1, 2, 3, defined by

ψ(`)(x) =
∑

k∈Z2 q
(`)
k φ(2x− k), ψ̃(`)(x) =

∑
k∈Z2 q̃

(`)
k φ̃(2x− k), (7)

are biorthogonal wavelets, namely they generate biorthogonal bases for L2(IR2).
Let

J0 =

[
0 1
1 0

]
, J1 =

[
1 0
0 −1

]
, J2 = −J0, J3 = −J1, (8)

and denote

O1 =

[
0 1
−1 0

]
.
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Then for each j, 0 ≤ j ≤ 3, {pk} is symmetric around the symmetry axis Tj in Fig. 3 if and
only if pJjk = pk; and {pO1k} is the π

2 (anticlockwise) rotation of {pk}. By Definition 1, one can
obtain that {p, q(1), q(2), q(3)} has 4-fold axial symmetry if and only if





p(Jkω) = p(ω), 0 ≤ k ≤ 3,
q(1)(J0ω) = e2iω2q(1)(J1ω) = e2i(ω1+ω2)q(1)(J2ω) = e2iω1q(1)(J3ω) = q(1)(ω),
q(2)(J1ω) = e−2iω1q(2)(J3ω) = q(2)(ω), q(3)(ω) = q(2)(J0ω).

(9)

In the above equations we have used the fact J−Tk = Jk, 0 ≤ k ≤ 3. This fact and that O−T1 = O1

will be used again in the rest of this paper.
Observe that

O1 = J0J3, Jk = Ok1J0, 0 ≤ k ≤ 3. (10)

Thus, when we discuss the 4-fold axial symmetry of a filter bank, we need only consider the oper-
ations with J0 and O1. First we have the following proposition to describe the 4-fold symmetry.

Proposition 1. A filter bank {p, q(1), q(2), q(3)} has 4-fold axial symmetry if and only if it satisfies

[p, q(1), q(2), q(3)]T (O1ω) =M1(2ω)[p, q(1), q(2), q(3)]T (ω), (11)
[p, q(1), q(2), q(3)]T (J0ω) =M0[p, q(1), q(2), q(3)]T (ω), (12)

where

M1(ω) =




1 0 0 0
0 e−iω1 0 0
0 0 0 1
0 0 eiω1 0


 , M0 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (13)

Proof. By (10) and direct calculations, one can easily obtain (11) and (12) are equivalent
to (9). Hence, the 4-fold axial symmetry of {p, q(1), q(2), q(3)} can be characterized by (11) and
(12). ♦

For an FIR filter bank {p, q(1), q(2), q(3)}, with notation q(0)(ω) = p(ω), write q(`)(ω), 0 ≤ ` ≤ 3
as

q(`)(ω) =
1
2

(q(`)
0 (2ω) + q

(`)
1 (2ω)ei(ω1+ω2) + q

(`)
2 (2ω)e−iω1 + q

(`)
3 (2ω)e−iω2),

where q
(`)
k (ω) are trigonometric polynomials. Then the polyphase matrix of {p(ω), q(1)(ω),

q(2)(ω), q(3)(ω)} is defined as
V (ω) =

[
q

(`)
k (ω)

]
0≤`,k≤3

. (14)

Clearly,

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1
2
V (2ω)I00(ω),

where I00(ω) is defined by

I00(ω) = [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T . (15)

Observe that 1-tap filter bank {1, ei(ω1+ω2), e−iω1 , e−iω2} has 4-fold symmetry. Thus, I00(ω)
defined above satisfies (11) and (12). The next proposition presents a characterization of the
4-fold axial symmetry of a filter bank in terms of its polyphase matrix.
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Proposition 2. An FIR filter bank {p, q(1), q(2), q(3)} has 4-fold axial symmetry if and only if its
polyphase matrix V (ω) satisfies

V (O1ω) =M1(ω)V (ω)M2(ω), (16)
V (J0ω) =M0V (ω)M0, (17)

where M1 and M0 are given by (13) and M2(ω) =M1(ω)−1:

M2(ω) =




1 0 0 0
0 eiω1 0 0
0 0 0 e−iω1

0 0 1 0


 . (18)

Proof. From the definition of V (ω),

[p, q(1), q(2), q(3)](O1ω) =
1
2
V (2O1ω)I00(O1ω) =

1
2
V (2O1ω)M1(2ω)I00(ω).

Thus (11) is equivalent to

1
2
V (2O1ω)M1(2ω)I00(ω) =M1(2ω)

1
2
V (2ω)I00(ω),

or,
V (2O1ω)M1(2ω) =M1(2ω)V (2ω),

that is
V (O1ω) =M1(ω)V (ω)M1(ω)−1,

which is (16).
Similarly, we have that (12) is equivalent to

V (2J0ω)M0 =M0V (2ω),

which is (17). Therefore, (11) and (12) are equivalent to (16) and (17). Hence, from Proposition
1, we know {p, q(1), q(2), q(3)} has 4-fold axial symmetry if and only if its polyphase matrix V (ω)
satisfies both (16) and (17). ♦

In the next proposition we provide the symmetry of the scaling function and wavelets associ-
ated with a 4-fold symmetric filter bank.

Proposition 3. Suppose an FIR filter bank {p, q(1), q(2), q(3)} has 4-fold axial symmetry. Let φ be
the associated scaling function and ψ(`), ` = 1, 2, 3 be the functions define by (7) with q(`). Then

φ(Jkx) = φ(x), 0 ≤ k ≤ 3, (19)
ψ(3)(x) = ψ(2)(J0x), (20)
ψ(2)(J1x) = ψ(2)(x), ψ(2)(J3x) = ψ(2)(x + (1, 0)), (21){
ψ(1)(J0x) = ψ(1)(x), ψ(1)(J1x) = ψ(1)(x− (0, 1)),
ψ(1)(J2x) = ψ(1)(x− (1, 1)), ψ(1)(J3x) = ψ(1)(x− (1, 0)).

(22)
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Proof. From (1), we have φ̂(ω) = p(!2 )φ̂(!2 ). Thus φ̂(ω) = Π∞n=1p(2
−nω)φ̂(0). Therefore,

p(Jkω) = p(ω), 0 ≤ k ≤ 3, imply

φ̂(Jkω) = Π∞n=1p(2
−nJkω)φ̂(0) = Π∞n=1p(2

−nω)φ̂(0) = φ̂(ω),

which is (19).
From (7), we have ψ̂(`)(ω) = q(`)(!2 )φ̂(!2 ), ` = 1, 2, 3. Thus

ψ̂(2)(J0ω) = q(2)(J0ω/2)φ̂(J0ω/2) = q(3)(ω/2)φ̂(ω/2) = ψ̂(3)(ω),

which implies (20).
Next we prove (21). From q(2)(J1ω) = q(2)(ω) and φ̂(J1x) = φ̂(x), we have

ψ̂(2)(J1ω) = q(2)(J1ω/2)φ̂(J1ω/2) = q(2)(ω/2)φ̂(ω/2) = ψ̂(2)(ω),

which is the first equation in (21). The proof of the second equation is similar. Indeed, q(2)(J3ω) =
e2iω1q(2)(ω) lead to that

ψ̂(2)(J3ω) = q(2)(J3ω/2)φ̂(J3ω/2) = eiω1q(2)(ω/2)φ̂(ω/2) = eiω1ψ̂(2)(ω).

Therefore, ψ(2)(J3x) = ψ(2)(x + (1, 0)), as desired.
Using the formulas for q(1) in (9), one can show (22) similarly. The details are omitted here.

♦
In the rest of this subsection we present biorthogonal FIR filter banks with 4-fold symmetry,

and construct a few sets of the associated biorthogonal wavelets. We are interested in the filter
banks which have block structures, namely, they are given by simple blocks and a simple initial
filter bank. As mentioned above, 1-tap filter bank {1, ei(ω1+ω2), e−iω1 , e−iω2} has 4-fold symmetry
and hence, it could be used as the initial filter bank. So the key to obtain the block structures
is to find suitable blocks which satisfy both (16) and (17). In the following we present two types
of such blocks. First observe that two filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are
biorthogonal if and only if

V (ω)Ṽ (ω)∗ = I4, ω ∈ IR2, (23)

where V (ω) and Ṽ (ω) are their polyphase matrices defined by (14).
In the following we use the notations:

x = e−iω1 , y = e−iω2 . (24)

With x, y in (24), an FIR filter p(ω) can be written as a (Laurent) polynomial of x, y. We may
use the following block to build the symmetric filter banks:

G(ω) =


κ+ %(x+ y)(1 + 1
xy ) + ι(x+ 1

x )(y + 1
y ) λ(1 + x)(1 + y) (1 + 1

x )(µ+ νy + ν
y ) (1 + 1

y )(µ+ νx+ ν
x )

n(1 + 1
x )(1 + 1

y ) 1 0 0
m(1 + x) 0 1 0
m(1 + y) 0 0 1




(25)
where

κ = j + 4mµ+ 4nλ, ρ = m(µ+ 2ν) + 2nλ, ι = 2mν + nλ,
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j,m, n, λ, µ, ν are constants with j 6= 0. One can verify that G(ω) satisfies (16) and (17). Thus
filter banks built by G(ω) have 4-fold axial symmetry. For example, the filter bank given by
1
4G(2ω)I00(ω) has 4-fold axial symmetry. Furthermore, the determinant of G(ω) is j, a nonzero
constant. Thus, the inverse of G(ω) is a matrix whose entries are also (Laurent) polynomials of
x, y. More precisely, G̃(ω) = (G(ω)−1)∗ is given by

G̃(!) = 1
j
×


1 −n(1 + x)(1 + y) −m(1 + 1

x
) −m(1 + 1

y
)

−λ(1 + 1
x

)(1 + 1
y

) A(x, y) mλ(1 + 1
x

)2(1 + 1
y

) mλ(1 + 1
x

)(1 + 1
y

)2

−(1 + x)(µ + νy + ν
y

) n(1 + x)2((µ + ν)(1 + y) + νy2 + ν
y

) B(x, y) m(1 + x)((µ + ν)(1 + 1
y

) + νy + ν
y2 )

−(1 + y)(µ + νx + ν
x

) n(1 + y)2((µ + ν)(1 + x) + νx2 + ν
x

) m(1 + y)((µ + ν)(1 + 1
x

) + νx + ν
x2 ) B(y, x)




(26)

where
A(x, y) = j + 4nλ+ 2nλ(x+ y)(1 + 1

xy ) + nλ(x+ 1
x )(y + 1

y ),
B(x, y) = j + 2mµ+mµ(x+ 1

x ) +mν(2 + x+ 1
x )(y + 1

y ).

One can verify that G̃(ω) also satisfies (16) and (17).
We may also use block

H(ω) =




1 −o(1 + x)(1 + y) −(1 + 1
x)(g + hy + h

y ) −(1 + 1
y )(g + hx+ h

x)
0 1 0 0
0 0 1 0
0 0 0 1


 . (27)

Actually H(ω) is G(ω) with j = 1,m = n = 0, λ = −o, µ = −g, ν = −h. In this case H̃(ω) =
(H(ω)−1)∗ is given by

H̃(ω) =




1 0 0 0
o(1 + 1

x)(1 + 1
y ) 1 0 0

(1 + x)(g + hy + h
y )) 0 1 0

(1 + y)(g + hx+ h
x)) 0 0 1


 . (28)

Based on the above discussion, we have the following block structure of 4-fold symmetric
biorthogonal FIR filter banks.

Theorem 1. Suppose FIR filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are given by

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = VK(2ω)VK−1(2ω) · · ·V0(2ω)I00(ω), (29)

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
4
ṼK(2ω)ṼK−1(2ω) · · · Ṽ0(2ω)I00(ω)

for some K ∈ Z+, where I00(ω) is defined by (15), each Vk(ω) is a G(ω) in (25) or a G̃(ω) in (26)
for some parameters µk, νk, λk,mk, nk, or an H(ω) in (27) or a H̃(ω) in (28) for some parameters
gk, hk, ok, and Ṽk(ω) = (Vk(ω)−1)∗ is the corresponding G̃(ω) in (26) (G(ω) in (25), H̃(ω) in
(28), H(ω) in (27) accordingly). Then {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are biorthogonal
FIR filter banks with 4-fold axial symmetry.

Proof. The polyphase matrices V (ω) and Ṽ (ω) of {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
are respectively

V (ω) = 2VK(ω)VK−1(ω) · · ·V0(ω), Ṽ (ω) =
1
2
ṼK(ω)ṼK−1(ω) · · · Ṽ0(ω).
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Clearly, V (ω) and Ṽ (ω) satisfy (23). Furthermore, since Vj(ω), Ṽj(ω) satisfy both (16) and (17),
so do V (ω) and Ṽ (ω). Hence, {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are biorthogonal to each
other, and both of them have 4-fold axial symmetry. ♦

The method to build a pair of biorthogonal filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
from another pair of biorthogonal filter banks with H(ω) or H̃(ω) is called the lifting scheme
method, see [32, 7]. In the following we construct biorthogonal wavelets associated with the
above filter banks. When we construct biorthogonal wavelets, we will construct one scaling
function smoother than its dual scaling function. The filter bank with smoother scaling function
should be used as the synthesis filter bank. In this paper we consider the Sobolev smoothness
of scaling functions and wavelets. We say a function f on IR2 to be in the Sobolev space W s

for some s > 0 if its Fourier transform f̂ satisfies
∫

IR2(1 + |ω|2)s|f̂(ω)|2dω < ∞. The Sobolev
smoothness of a scaling function φ can be given by the eigenvalues of the transition operator
matrix Tp associated with the corresponding lowpass filter p, see [15, 16].

To construct a smooth wavelet basis, the corresponding scaling function φ must have certain
approximation power (see e.g. [13]). In addition, if φ has approximation order K, then the
decomposition algorithm with highpass filters q(1), q(2), q(3) annihilates (discrete) polynomials of
total degree < K, see e.g. [31, 3]. The approximation order of a refinable φ can be described by
the sum rule order of the associated subdivision mask p(ω), see [13]. We say p(ω) to have sum
rule order K if it satisfies that p(0, 0) = 1 and

∂α1+α2

∂ωα1
1 ∂ωα2

2

p(πηj) = 0, 1 ≤ j ≤ 3, (30)

for all (α1, α2) ∈ Z2
+ with α1 + α2 < K, where ηj , 1 ≤ j ≤ 3 are defined by (6).

Example 1. Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} be the biorthogonal filter banks given by
(29) for K = 1 with

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = G̃1(2ω)G̃0(2ω)I00(ω), (31)

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
4
G1(2ω)G0(2ω)I00(ω),

where G0(ω) and G1(ω) are given by (25) for parameters j, µ, ν, λ,m, n and µ1, ν1, λ1,m1, n1,
j1 = 1 respectively, and G̃0(ω) = (G0(ω)−1)∗, G̃1(ω) = (G1(ω)−1)∗. Solving the system of the
equations for sum rule order 1 of both p(ω) and p̃(ω), we have

j = 4(1 + 4n1 + 4m1)/(1 + 8µ1m1 + 16n1λ1 + 16m1ν1), m = −1
2 − 4m1, n = −1

4 − 4n1,
λ = (1

4 − λ1)/(1 + 8µ1m1 + 16n1λ1 + 16m1ν1),
µ = −2ν + (1

2 − 2ν1 − µ1)/(1 + 8µ1m1 + 16n1λ1 + 16m1ν1).
(32)

Because of the symmetry of p(ω), p̃(ω), the conditions in (30) for p(ω), p̃(ω) with (α1, α2) =
(1, 0), (0, 1) are automatically satisfied. Thus the resulting p(ω) and p̃(ω) actually have sum rule
order 2. If we choose

[λ1,m1, n1, µ1, ν, ν1] = [
33
64
,

43
256

,
5
32
,
83
64
,

1
16
,− 9

64
]; (33)

then the resulting φ is in W 1.40893, and φ̃ in W 1.61625. If we select

[λ1,m1, n1, µ1, ν, ν1] = [
33
64
,

3
16
,

17
128

,
2452781
1850112

,
776117

13478355
,− 544853

3700224
],
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then the resulting φ and φ̃ are in W 1.40330 and W 1.48950 respectively. In latter case p̃ has sum rule
order 4. For either case, the resulting p, p̃ are supported on [−3, 3]2 and [−4, 4]2 respectively. Here
and below, an FIR filter h being supported on [−N,N ]2 for some positive integer N > 0 means
that its coefficient hk satisfy that hk = 0 for any k /∈ [−N,N ]2 (hk could be zero for some k in
[−N,N ]2). One may choose other values for the parameters such that the resulting φ̃ is smoother.
However, we cannot adjust the parameters such that φ̃ has much higher smoothness order with its
dual φ in L2(IR2). ♦
Example 2. Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} be the biorthogonal filter banks given by
(29) for K = 1 with

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = H0(2ω)G̃0(2ω)I00(ω), (34)

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
4
H̃0(2ω)G0(2ω)I00(ω),

where G0(ω) and H0(ω) are given by (25) and (27) with parameters j, µ, ν, λ,m, n and g0, h0, o0

respectively, and G̃0(ω) = (G0(ω)−1)∗, H̃0(ω) = (H0(ω)−1)∗. In this case, p and p̃ are supported
on [−5, 5]2 and [−2, 2]2 respectively with

p4,4 = p−4,4 = p−4,−4 = p4,−4 = p5,5 = p−5,5 = p−5,−5 = p5,−5

= p5,4 = p−5,4 = p−5,−4 = p5,−4 = p4,5 = p−4,5 = p−4,−5 = p4,−5 = 0.

Solving the system of the equations for sum rule order 1 of both p(ω) and p̃(ω), we have

o0 = − 1
16
− 1

4
n, g0 = −1

8
− 1

4
m− 2h0, λ =

1
4
, µ =

1
2
− 2ν, j = 1− 4m− 4n.

Again, because of the symmetry, the resulting p and p̃ actually have sum rule order 2. In addition,
if ν = 1

16 , n = 1
8 − 3

4m, then p̃ has sum rule order 4. Furthermore if m = 1
4 , then p̃(ω) =

1
256e

2i(ω1+ω2)(1 + e−iω1)4(1 + e−iω2)4, the mask for the Catmull-Clark scheme. However, if p̃ has
sum rule order 4, we cannot choose parameters h0,m (the resulting p depends on h0,m) such that
the corresponding φ is in L2(IR2). Thus we consider p and p̃ with both of them having sum rule
order 2 only. If we choose

[h0,m, ν, n] =
1

256
[14, 20, 9, 0], (35)

then the resulting φ is in W 0.01991 and φ̃ in W 1.84203, while if we choose,

[h0,m, ν, n] =
1

256
[14, 16, 9, 4],

then the resulting φ and φ̃ are in W 0.00793 and W 1.85883 respectively. ♦
Example 3. Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} be the biorthogonal filter banks given by
(29) for K = 2 with

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = H̃1(2ω)H0(2ω)G̃0(2ω)I00(ω), (36)

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
4
H1(2ω)H̃0(2ω)G0(2ω)I00(ω),

where G0(ω) is given by (25) with parameters j, µ, ν, λ,m, n, H0(ω) and H1(ω) are given by
(27) with parameters g0, h0, o0 and g1, h1, o1 respectively, and G̃0(ω) = (G0(ω)−1)∗, H̃j(ω) =
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(Hj(ω)−1)∗, j = 0, 1. Solving the system of the equations for sum rule orders 1 and 3 of p(ω) and
p̃(ω) respectively, we have that the resuting p and p̃ depend on h0,m, ν, µ1, ν1 (other parameters
are given in terms of these parameters), and that they actually have sum rule orders 2 and 4
respecively because of their symmetry. Then, we can choose parameters h0,m, ν, µ1, ν1 such that
the corresponidng φ̃ is in W 2 and φ has certain smoothness. Below we provide one set of the
selected parameters (and also other corresponding parameters for sum rules). If

[j, m, n, µ, ν, λ, g0, o0, h0, g1, h1, o1],
= [527

195 ,−23
16 ,

1045
5616 ,− 63

160 ,
9

256 ,− 207
1280 ,

5158981
29787264 ,− 2449

22464 ,
1822409
59574528 ,−5

4 ,
1
64 ,−39

64 ],
(37)

then the resulting φ is in W 0.52189 and φ̃ in W 2.20781 with p and p̃ having sum rule orders 2 and
4 respecively. We can also choose other numbers such that φ is in W 2. For example, if

[j, m, n, µ, ν, λ, g0, o0, h0, g1, h1, o1]
= [56

23 ,−5
2 ,−5

4 ,− 79
736 ,

31
1472 ,− 3

92 ,
17
32 ,

1
4 ,− 1

64 , −121
112 ,

17
224 ,−13

28 ],

then the resulting φ and φ̃ are in W 2.06421 and W 1.06992 respectively. In the latter case, both p and
p̃ have sum rule order 4. In the above two cases, p and p̃ are supported on [−5, 5]2 and [−6, 6]2

respectively. ♦
Here we remark that the wavelets constructed in the above are not separable. The projections

of p(ω) and p̃(ω) to the ω1 coordinate, p(ω1, 0) and p̃(ω1, 0), result in 1-D FIR filters with both
symmetric around 0. The reader refers to [9] for the relationship between the smoothness of a
scaling function and that of its projection.

2.2 Dyadic multiresolution algorithms for quad surface processing

As observed above, we have the fact O1 = J0J3. Thus if a filter p(ω) satisfies p(Jkω) = p(ω)
for all k, 0 ≤ k ≤ 3, then p(Ok1ω) = p(ω) for any 0 ≤ k ≤ 3. Namely, if p(ω) is reflection
invariant, then it is rotation invariant. Thus, the lowpass filter p(ω) of a 4-fold axial symmetric
filter bank {p, q(1), q(2), q(3)} is reflection and rotation invariant, which implies that the templates
resulted from either decomposition algorithm or reconstruction algorithm with p (in latter case
p is a subdivision mask) have the desired symmetry. In this subsection, we demonstrate that the
highpass filters q(`), 1 ≤ ` ≤ 3 also have the symmetry required for quad surface multiresolution
processing. The key is to associate appropriately d

(1,1)
k , d

(2,1)
k and d

(3,1)
k to the nodes of Z2 with

which a regular quad mesh is represented, where d(1,1)
k , d

(2,1)
k and d

(3,1)
k are the “details” of the

initial vertices c0
k,k ∈ Z2 after the decomposition algorithm with highpass filters q(1), q(2) and

q(3) respectively. To this regard, we first separate the nodes of Z2 into four groups.
For the square lattice Z2, 2Z2 = {(2k1, 2k2), (k1, k2) ∈ Z2} is the set of the labels for the

vertices of the coarse mesh. The nodes of Z2 with labels (2k1, 2k2) are called vertex nodes.
Next, we separate Z2\(2Z2) into face nodes with indices in {2k − (1, 1)}k∈Z2 and the edge
nodes with indices in {2k + (1, 0), 2k + (0, 1)}k∈Z2 . The edge nodes are further separated into
two groups with indices in {2k + (1, 0)}k∈Z2 and {2k + (0, 1)}k∈Z2 respectively. See the left of
Fig. 5, where the big circles, squares, 4 and ∇ denote vertex nodes, face nodes, and two groups
of edge nodes respectively.

Let C = {ck}k∈Z2 be the data sampled on Z2 or a regular quad mesh with vertices ck. Then
{c2k}k∈Z2 is the set of data/vertices associated with vertex nodes, {c2k−(1,1)}k∈Z2 is the set of
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data/vertices associated with face nodes, and {c2k+(1,0)}k∈Z2 and {c2k+(0,1)}k∈Z2 are the sets of
data/vertices associated with the above two groups of edge nodes. Denote

vk = c2k, fk = c2k−(1,1), e
(2)
k = c2k+(1,0), e

(3)
k = c2k+(0,1), k ∈ Z2. (38)

Refer to the middle picture of Fig. 5 for these four groups of data/vertices. Observe that each
set of nodes with indices {2k}k∈Z2 , {2k − (1, 1)}k∈Z2 , {2k + (1, 0)}k∈Z2 and {2k + (0, 1)}k∈Z2

respectively forms a coarse square lattice.

e

ev

f

e(2)
00

e(3)
00 e(3)

10

e(2)
01 e(2)

11

v0−1

f11e(3)
−10

e(3)
0−1

e(2)
−10

e(2)
0−1v−1−1 e(2)

−1−1

f00

e(3)
01 e(3)

11

v11

f01

v10 e(2)
10v00v−10

e(3)
−1−1 f10

v01

~

e(2)
00

e(3)
00 e(3)

10

e(2)
01 e(2)

11

f11

f00

e(3)
11

v11

f01

v10 e(2)
10v00

f10

v01

e(3)
01

~ ~

~~

~ ~ ~ ~

~

~ ~

~

~~

~

Figure 5: Left: Vertex nodes, face nodes, and two types of edges nodes; Middle: Original data/vertices
associated with four groups of nodes; Right: “Smooth part” and “details” associated with four groups of
nodes

The multiresolution decomposition algorithm is to decompose the original data/mesh C =
{ck}k with the analysis filter bank into the “smooth part” {c1

k}k and “the details” {d(1,1)
k }k

{d(2,1)
k }k and {d(3,1)

k }k, while the (prefect) multiresolution reconstruction algorithm is to recover
exactly C from {c1

k}k, {d(1,1)
k }k {d(2,1)

k }k and {d(3,1)
k }k with the synthesis filter bank. Denote

ṽk = c1
k, f̃k = d

(1,1)
k , ẽ

(2)
k = d

(2,1)
k , ẽ

(3)
k = d

(3,1)
k .

Then, the decomposition algorithm can be written as

ṽk =
1
4

∑

k′∈Z2

pk′−2kck′ , f̃k =
1
4

∑

k′∈Z2

q
(1)
k′−2kck′ , ẽ

(2)
k =

1
4

∑

k′∈Z2

q
(2)
k′−2kck′ , ẽ

(3)
k =

1
4

∑

k′∈Z2

q
(3)
k′−2kck′

(39)
for k ∈ Z2, and the reconstruction algorithm is

ck =
∑

k′∈Z2

{p̃k−2k′ ṽk′ + q̃
(1)
k−2k′ f̃k′ + q̃

(2)
k−2k′ ẽ

(2)
k′ + q̃

(3)
k−2k′ ẽ

(3)
k′ }, k ∈ Z2, (40)

where pk, q
(1)
k , q

(2)
k , q

(3)
k ,k ∈ Z2 and p̃k, q̃

(1)
k , q̃

(2)
k , q̃

(3)
k ,k ∈ Z2 are the coefficients of the analysis

filter bank and the synthesis filter banks respectively. Considering k in (40) with cases k =2j, 2j−
(1, 1), 2j + (1, 0), 2j + (0, 1), one can write (40) as

vk =
∑

n∈Z2{p̃2nṽk−n + q̃
(1)
2n f̃k−n + q̃

(2)
2n ẽ

(2)
k−n + q̃

(3)
2n ẽ

(3)
k−n},

fk =
∑

n∈Z2{p̃2n−(1,1)ṽk−n + q̃
(1)
2n−(1,1)f̃k−n + q̃

(2)
2n−(1,1)ẽ

(2)
k−n + q̃

(3)
2n−(1,1)ẽ

(3)
k−n},

e
(2)
k =

∑
n∈Z2{p̃2n+(1,0)ṽk−n + q̃

(1)
2n+(1,0)f̃k−n + q̃

(2)
2n+(1,0)ẽ

(2)
k−n + q̃

(3)
2n+(1,0)ẽ

(3)
k−n},

e
(3)
k =

∑
n∈Z2{p̃2n+(0,1)ṽk−n + q̃

(1)
2n+(0,1)f̃k−n + q̃

(2)
2n+(0,1)ẽ

(2)
k−n + q̃

(3)
2n+(0,1)ẽ

(3)
k−n}.

(41)
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Clearly, the “smooth part” {ṽk}k∈Z2 associates with the vertex nodes of 2Z2. We associate
the “detail” f̃k,k ∈ Z2 with face nodes (2k1 − 1, 2k2 − 1), and associate ẽ(2)

k and ẽ
(3)
k with the

edge nodes with labels (2k1 + 1, 2k2) and (2k1, 2k2 + 1) respectively, see the right of Fig. 5. Thus,
as the original data/mesh C={vk, fk, e

(2)
k , e

(3)
k }k which associates with Z2, the union of the sets

of nodes with which the decomposed data {ṽk}k, {f̃k}k, {ẽ(2)
k }k, {ẽ(3)

k }k associate is also Z2.
With such association, the multiresolution decomposition and reconstruction algorithms can be
described as templates. Furthermore, the 4-fold symmetric filter banks provided in §2.1 result in
templates with desired symmetry for quad surface multiresolution. Next, let us look at a very
simple example to illustrate this.

Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} be the filter banks defined by

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = G̃(2ω)I00(ω),

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
4
G(2ω)I00(ω),

where G(ω) is defined by (25) with parameters j, µ, ν, λ,m, n. Then the nonzero coefficients of
these two filter banks are




p−1,1 p0,1 p1,1

p−1,0 p0,0 p1,1

p−1,−1 p0,−1 p1,−1


 =

4
j



−n −m −n
−m 1 −m
−n −m −n


 ;




q
(1)
−3,1 q

(1)
−2,1 · · · q

(1)
1,1

q
(1)
−3,0 q

(1)
−2,0 · · · q

(1)
1,0

· · · · · · · · · · · ·
q

(1)
−3,−3 q

(1)
−2,−3 · · · q

(1)
1,−3




= 4




t4 t5 t2 t5 t4
t5 t3 t1 t3 t5
t2 t1 t0 t1 t2
t5 t3 t1 t3 t5
t4 t5 t2 t5 t4




;




q
(2)
−1,3 q

(2)
−2,3 · · · q

(2)
3,3

q
(2)
−1,2 q

(2)
−2,2 · · · q

(2)
3,2

· · · · · · · · · · · ·
q

(2)
−1,−3 q

(2)
−2,−3 · · · q

(2)
3,−3




= 4




s7 s4 2s7 s4 s7

s4 s6 2s4 s6 s4

s5 s3 2s5 s3 s5

s2 s1 s0 s1 s2

s5 s3 2s5 s3 s5

s4 s6 2s4 s6 s4

s7 s4 2s7 s4 s7




; q
(3)
j,k = q

(2)
k,j ;

and




p̃−2,2 · · · p̃2,2

· · · · · · · · ·
p̃−2,−2 · · · p̃2,−2


 =




r4 r5 r2 r5 r4

r5 r3 r1 r3 r5

r2 r1 r0 r1 r2

r5 r3 r1 r3 r5

r4 r5 r2 r5 r4




;

q̃
(1)
−1,−1 = 1, q̃(1)

0,0 = q̃
(1)
−2,0 = q̃

(1)
0,−2 = q̃

(1)
−2,−2 = n;

q̃
(2)
1,0 = 1, q̃(2)

0,0 = q̃
(1)
2,0 = m;

q̃
(3)
0,1 = 1, q̃(3)

0,0 = q̃
(3)
0,2 = m;

where

t0 = 1 +
4nλ
j
, t1 =

2mλ
j

, t2 =
2nλ
j
, t3 = −λ

j
, t4 =

nλ

j
, t5 =

mλ

j
; (42)
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s0 = 1 +
2mµ
j

, s1 = −µ
j
, s2 =

mµ

j
, s3 =

m(µ+ ν)
j

, s4 =
mν

j
, s5 =

n(µ+ ν)
j

, s6 = −ν
j
, s7 =

nν

j
(43)

r0 = j + 4mµ+ 4nλ, r1 = µ, r2 = 2nλ+m(µ+ 2ν), r3 = λ, r4 = 2mν + nλ, r5 = ν. (44)

In the above matrices, values for p(0,0), q
(1)
(−1,−1), q

(2)
(1,0), p̃(0,0) are bold-faced.

−m/j 1/j

−m/j

−n/j

−n/j−n/j

−n/j −m/j

−m/j

4

t3

t3t3

t5

t5

t5t2t5

t1t3

t1t1

t5

t4

t1

t0 t2

t5

t4

t5 t2 t4

t5

t2

t

7
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s3

0s
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2s4
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s4s7 s4 s7

s6s4

s5 s3 s5
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Figure 6: From left to right: Templates of decomposition algorithm with p, q(1) and q(2), where tj , sk are
defined by (42) and (43)

When {p, q(1), q(2), q(3)} is used as the analysis filter bank, the templates of the decomposition
algorithm with p, q(1) and q(2) are shown in Fig. 6, while the template with q(3) is the reflec-
tion (with the line ω2 = ω1) of that with q(2). Clearly, these analysis template are orientation
and reflection invariant with respect to the coarse mesh. When {p̃, q̃(1), q̃(2), q̃(3)} is used as the
synthesis filter bank, then the reconstruction algorithm is

vk = r0ṽk + n(f̃k + f̃k+(1,0) + f̃k+(1,1) + f̃k+(0,1)) +m(ẽ(2)
k + ẽ

(2)
k−(1,0) + ẽ

(3)
k + ẽ

(3)
k−(0,1))

+r2(ṽk+(1,0) + ṽk+(0,1) + ṽk−(1,0) + ṽk−(0,1)) + r4(ṽk+(1,1) + ṽk+(−1,1) + ṽk−(1,1) + ṽk+(1,−1)),
fk = f̃k + r3(ṽk + ṽk−(1,0) + ṽk−(1,1) + ṽk−(0,1)),
e

(2)
k = ẽ

(2)
k + r1(ṽk + ṽk+(1,0)) + r5(ṽk−(0,1) + ṽk+(1,1) + ṽk+(0,1) + ṽk−(1,1)),

e
(3)
k = ẽ

(3)
k + r1(ṽk + ṽk+(0,1)) + r5(ṽk−(1,0) + ṽk+(1,1) + ṽk+(1,0) + ṽk−(1,1)),

where r0, · · · , r5 are given by (44). Thus the reconstruction algorithms can be expressed by the
templates to calculate v, f and e as shown in Fig. 7. (Observe that the templates to calculate e(2)

k

and e
(3)
k are identical.) Clearly the templates are also orientation and reflection invariant. Also

observe that if we set details f̃k, e
(2)
k and e

(3)
k to be zero, then these templates are reduced to the

subdivision templates of the type of Catmull-Clark’s scheme in Fig. 2.
As illustrated by the above simple example, the biorthogonal filter banks provided in §2.1

result in analysis and synthesis templates both with the required symmetry. Thus, based on
these templates one can design the algorithms for extraordinary vertices. The design of the
corresponding multiresolution algorithms for extraordinary vertices will be considered elsewhere.
Next, we show that multiresolution algorithms resulted from some biorthogonal filter banks in
§2.1 can be described in a simpler way, as that in [1, 35, 36].

For a pair of 4-fold symmetric filter banks, since the corresponding decomposition templates
to calculate ẽ(2)

k and ẽ
(3)
k are the same, and the reconstruction templates to recover e(2)

k and e
(3)
k
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Figure 7: From left to right: Templates of reconstruction algorithm to recover vk, fk, e
(2)
k , e

(3)
k

are identical, in the following we may simply let e denote the original data/vertices associated
with the edge nodes, and use ẽ to denote the “details” associated with edge nodes. Therefore,
the decomposition algorithm is to decompose the original data {v} ∪ {f} ∪ {e} into {ṽ}, {f̃} and
{ẽ}, and the reconstruction algorithm to recover {v} ∪ {f} ∪ {e} from {ṽ}, {f̃} and {ẽ}.

For given data/mesh C (or equivalently, for given {v}, {f} and {e}), the multiresolution decom-
position algorithm is given by (45)-(48) and shown in Fig. 8, where j,m, n, µ, ν, λ, g0, o0, h0, µ1, ν1, λ1

are constants to be determined. More precisely, first we replace all v associated with vertex nodes
in 2Z2 by v′′ given by formula (45). Then, based on v′′ obtained, we replace all e, f associated
with edge and face nodes in Z2\(2Z2) by e′′ and f ′′ given in (46). After that, based on e′′, f ′′

obtained in Step 2, all v′′ in Step 1 are updated by ṽ given in formula (47). Finally, based on ṽ
obtained in Step 3, all e′′, f ′′ in Step 2 are updated by ẽ, f̃ given in formula (48).

Decomposition Algorithm:

Step 1. v′′ = 1
j {v −m(e0 + e1 + e2 + e3)− n(f0 + f1 + f2 + f3)}; (45)

Step 2. e′′ = e− µ(v′′0 + v′′1)− ν(v′′2 + v′′3 + v′′4 + v′′5), f ′′ = f − λ(v′′6 + v′′7 + v′′8 + v′′9); (46)

Step 3.
ṽ = v′′ − g0(e′′0 + e′′1 + e′′2 + e′′3)− o0(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

−h0(e′′4 + e′′5 + e′′6 + e′′7 + e′′8 + e′′9 + e′′10 + e′′11);
(47)

Step 4. ẽ = e′′ − µ1(ṽ0 + ṽ1)− ν1(ṽ2 + ṽ3 + ṽ4 + ṽ5), f̃ = f ′′ − λ1(ṽ6 + ṽ7 + ṽ8 + ṽ9).(48)

The multiresolution reconstruction algorithm is given by (49)-(52) and shown in Fig. 9, where
j,m, n, µ, ν, λ, g0, o0, h0, µ1, ν1, λ1 are the same constants in decomposition algorithm (45)-(48).
The reconstruction algorithm is the reverse algorithm of the decomposition algorithm.

Reconstruction Algorithm:

Step 1. e′′ = ẽ+ µ1(ṽ0 + ṽ1) + ν1(ṽ2 + ṽ3 + ṽ4 + ṽ5), f ′′ = f̃ + λ1(ṽ6 + ṽ7 + ṽ8 + ṽ9); (49)

Step 2.
v′′ = ṽ + g0(e′′0 + e′′1 + e′′2 + e′′3) + o0(f ′′0 + f ′′1 + f ′′2 + f ′′3 )

+h0(e′′4 + e′′5 + e′′6 + e′′7 + e′′8 + e′′9 + e′′10 + e′′11);
(50)

Step 3. e = e′′ + µ(v′′0 + v′′1) + ν(v′′2 + v′′3 + v′′4 + v′′5), f = f ′′ + λ(v′′6 + v′′7 + v′′8 + v′′9); (51)
Step 4. v = jv′′ +m(e0 + e1 + e2 + e3) + n(f0 + f1 + f2 + f3). (52)

When the constants j,m, n, µ, ν, λ, g0, o0, h0, µ1, ν1, λ1 are appropriately chosen, the decom-
posed {ṽ} is the “smooth part” of the initial data/mesh C, {f̃} and {ẽ} are the “details” of C.
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Figure 8: Top-left: Decomposition Alg. Step 1 with each v associated with a vertex node replaced by v′′

given in (45); Top-right: Decomposition Alg. Step 2 with each e and f associated with edge and face nodes
replaced by e′′ and f ′′ resp. given in (46); Bottom-left: Decomposition Alg. Step 3 with each v′′ obtained in
Step 1 replaced by ṽ given in (47); Bottom-right: Decomposition Alg. Step 4 with each e′′ and f ′′ obtained
in Step 2 replaced by ẽ and f̃ given in (48)

The decomposition algorithm can be applied iteratively to the smooth part to get further smooth
part and details of the data. The reconstruction algorithm recovers the original data/mesh from
the smooth part and details.

When f̃ = 0, ẽ = 0, the reconstruction algorithm is the subdivision algorithm to produce finer
and finer meshes from the initial mesh with vertices ṽ. Such subdivision schemes are called the
composite schemes. The

√
3 and

√
7 composite subdivision schemes are studied in [28] and [27]

respectively.
In the following let us give the filter banks corresponding to the above multiresolution algo-

rithms. First, we consider algorithms (45)-(52) with h0 = 0. With the formulas in (39) and (41),
and by careful calculations, we obtain the filter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
corresponding to the algorithms (45)-(52) with h0 = 0 are these given by (31) in Example 1 with
m1 = g0, n1 = o0. From Example 1, with choices of parameters in (33) and the values for other
parameters given by (32), the corresponding φ and φ̃ are in W 1.40893 and W 1.61625 respectively.

Next, let us consider algorithms (45)-(52) with µ1 = ν1 = λ1 = 0. In this case, the algorithms
are reduced to 3 step algorithms (45)-(47) and (50)-(52) with ẽ = e′′, f̃ = f ′′. One can obtain the
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Figure 9: Top-left: Reconstruction Alg. Step 1 with each ẽ and f̃ associated with edge and face nodes
replaced by e′′ and f ′′ given in (49); Top-right: Reconstruction Alg. Step 2 with each ṽ associated with
a vertex node replaced by v′′ given in (50); Bottom-left: Reconstruction Alg. Step 3 with each e′′ and f ′′

obtained in Step 1 replaced by e and f given in (51); Bottom-right: Reconstruction Alg. Step 4 with each
v′′ obtained in Step 2 replaced by v given in (52)

corresponding filter banks are those given by (34) in Example 2. From Example 2, with choices
of parameters in (35), the corresponding φ and φ̃ are in W 0.01991 and φ̃ in W 1.84203 respectively.
Here we provide all selected numbers:

[j, m, n, µ, ν, λ, g0, o0, h0] = [
11
16
,

5
64
, 0,

55
128

,
9

256
,

1
4
, − 65

256
, − 1

16
,

7
128

].

Finally, let us consider the filter banks corresponding to algorithms (45)-(52). In this case,
the corresponding filter banks are those given by (36) in Example 3 with

g1 = −µ1, h1 = −ν1, , o1 = −λ1.

From Example 3, with the choice of parameters given by (37) (and hence [µ1, ν1, λ1] =
[5
4 , − 1

64 ,
39
64 ]), we have φ in W 0.52189 and φ̃ in W 2.20781 with p and p̃ having sum rule orders

2 and 4 respectively.
To obtain scaling functions and wavelets with a high approximation order or smooth order, we

may use more steps in the above algorithms (45)-(52) with more parameters. The corresponding
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filter banks are given as those in Examples 2 and 3 but with more blocks H(2ω) and/or H̃(2ω).
With the filter banks available, then one may use the method discussed in Examples 1-3 to choose
suitable parameters.

3
√

2-refinement wavelets with 4-fold axial symmetry

In this section, we study
√

2-refinement biorthogonal wavelets with 4-fold axial symmetry. This
section consists of two subsections. In the first subsection, §3.1, we first obtain characterizations of
the 4-fold symmetry of

√
2-refinement filter banks. Then we provide families of 4-fold symmetric

biorthogonal FIR filter banks. Finally, in this subsection, we construct the associated wavelets. In
§3.2, we show that some filter banks presented in §3.1 yield simple

√
2-refinement decomposition

and reconstruction algorithms for quad surface multiresolution.

3.1 Biorthogonal
√

2-refinement FIR filter banks and wavelets with 4-fold axial
symmetry

As above, let the 2-D square mesh with vertices Z2 represent a regular quad mesh. Let Z2√
2

denote the finer mesh with vertices {
√

2
2 (k1 + k2, k2 − k1)}(k1,k2)∈Z2 , see the right picture of Fig.

4. To provide the
√

2 multiresolution algorithms, first we need to choose a dilation matrix M
such that M−1 maps Z2 onto its finer mesh Z2√

2
. We may choose M to be one of the following

matrices:

M1 =

[
1 −1
1 1

]
, M2 =

[
1 1
1 −1

]
. (53)

In this paper, we choose M = M1. Since the filter banks we consider in this paper have 4-fold
symmetry, from Theorem 2.3 in [10], we know the scaling functions with dilation matrices M1

and M2 are actually the same. The reader refers to [10] for the details.
For a pair of

√
2-refinement filter banks {p(ω), q(ω)} and {p̃(ω), q̃(ω)}, the multiresolution

decomposition algorithm with a dilation matrix M for an input data or regular quad mesh C =
{c0

k} is

cj+1
n =

1
2

∑

k∈Z2

pk−Mnc
j
k, d

j+1
n =

1
2

∑

k∈Z2

qk−Mnc
j
k, n ∈ Z2, (54)

for j = 0, 1, · · · , J − 1, and the multiresolution reconstruction algorithm is given by

c̃jk =
∑

n∈Z2

p̃k−Mnc̃
j+1
n +

∑

n∈Z2

q̃k−Mnd
j+1
n (55)

with k ∈ Z2 for j = J−1, J−2, · · · , 0, where c̃n,J = cn,J . Analogously we say a pair of filter banks
{p, q} and {p̃, q̃} to be the perfect reconstruction filter banks or to be biorthogonal if c̃jk = cjk,
0 ≤ j ≤ J − 1 for any input C = {c0

k}. Again, {p, q} is called the analysis filter bank, {p̃, q̃} the
synthesis filter bank, and {cjk}, {djk} are called the “smooth part” (or “approximation”) and the
“detail” of C. When djk = 0, (55) is reduced to c̃jk =

∑
n∈Z2 p̃k−Mnc̃

j+1
n , j = J − 1, J − 2, · · ·. This

is the
√

2 subdivision algorithm with subdivision mask {p̃k}k.
For
√

2-refinement, the biorthogonal conditions with M = M1 or M = M2 are

p(ω)p̃(ω) + p(ω + (π, π))p̃(ω + (π, π)) = 1, (56)
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p(ω)q̃(ω) + p(ω + (π, π))q̃(ω + (π, π)) = 0, (57)
q(ω)q̃(ω) + q(ω + (π, π))q̃(ω + (π, π)) = 1, (58)

where for a
√

2-refinement filter (mask) {pk}k∈Z2 , the corresponding finite impulse response filter
p(ω) is defined by

p(ω) =
1
2

∑

k∈Z2

pke
−ik·!.

We say p(ω) has sum rule order K (with M = M1) if it satisfies that p(0, 0) = 1 and

∂α1+α2

∂ωα1
1 ∂ωα2

2

p(π, π) = 0, ∀(α1, α2) ∈ Z2
+, α1 + α2 < K. (59)

The sum rule order K of p implies that φ has the approximation order K, where φ is the scaling
function satisfying the refinement equation

φ(x) =
∑

k∈Z2

pkφ(Mx− k). (60)

In this case, the corresponding wavelet ψ is defined by

ψ(x) =
∑

k∈Z2 qkφ(Mx− k). (61)

For a pair of biorthogonal FIR filter banks {p, q} and {p̃, q̃}, under mild conditions, φ and φ̃
are biorthogonal duals, and ψ and ψ̃ defined by (61) with q(ω) and q̃(ω) respectively generate
biorthogonal bases for L2(IR2).

Observe that if two
√

2-refinement lowpass FIR filters p and p̃ are biorthogonal, that is, they
satisfy (56), then with q and q̃ defined by

q(ω) = se−iω1 p̃(ω + (π, π)), q̃(ω) =
1
s
e−iω1p(ω + (π, π)),

where s is a nonzero constant, {p, q} and {p̃, q̃} form a pair of
√

2-refinement biorthogonal filter
banks. Furthermore, if p and p̃ are 4-fold symmetric, namely, they are invariant under Tk, 0 ≤
k ≤ 3, then both {p, q} and {p̃, q̃} have 4-fold symmetry. Thus to construct 4-fold symmetric

√
2-

refinement biorthogonal filter banks, one needs to consider the lowpass filters only. However, here
we still use the approach in the above section with both lowpass and highpass filters considered
together. Next, we give the characterizations of the 4-fold symmetry of

√
2-refinement filter banks.

Proposition 4. A (
√

2-refinement) filter bank {p, q} has 4-fold axial symmetry if and only if it
satisfies

p(O1ω) = p(J0ω) = p(ω), (62)
q(O1ω) = q(J0ω) = ei(ω1−ω2)q(ω). (63)

Proof. Let h(ω) = eiω1(ω). Then the definition of 4-fold symmetry and the fact O1, J0

generate Jk, 0 ≤ k ≤ 3 imply that {p, q} has 4-fold axial symmetry if and only if

p(O1ω) = p(J0ω) = p(ω), h(O1ω) = h(J0ω) = h(ω).
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With O1ω = (ω2,−ω1) and J0ω = (ω2, ω1), one easily get h(O1ω) = h(J0ω) = h(ω) is equivalent
to (63). ♦

For a
√

2-refinement FIR filter bank {p, q}, let V (ω) be its polyphase matrix, a 2× 2 trigono-
metric polynomial matrix, defined by

[p(ω), q(ω)]T =
1√
2
V (MTω)I0(ω),

where I0(ω) defined by
I0(ω) = [1, e−iω1 ]T , ω = (ω1, ω2) ∈ IR2. (64)

Proposition 5. An FIR filter bank {p, q} has 4-fold axial symmetry if and only if its polyphase
matrix V (ω) (with dilation matrix M = M1) satisfies

V (O1ω) = diag(1, e−iω2)V (ω)diag(1, eiω2), (65)
V (L0ω) = diag(1, ei(ω1−ω2))V (ω)diag(1, ei(ω2−ω1)). (66)

Proof. Suppose {p, q} has 4-fold axial symmetry. From MTO1 = O1M
T , we have

[p, q]T (O1ω) = 1√
2
V (MTO1ω)I0(O1ω) = 1√

2
V (O1M

Tω)[1, e−iω2 ]T

= 1√
2
V (O1M

Tω)diag(1, ei(ω1−ω2))I0(ω).

From (62) and (63), we have

[p, q]T (O1ω) = diag(1, ei(ω1−ω2))[p, q]T (ω) =
1√
2

diag(1, ei(ω1−ω2))V (MTω)I0(ω).

Thus, the 4-fold symmetry of {p, q} implies

1√
2
V (O1M

Tω)diag(1, ei(ω1−ω2))I0(ω) =
1√
2

diag(1, ei(ω1−ω2))V (MTω)I0(ω),

or equivalently,

V (O1M
Tω) = diag(1, ei(ω1−ω2))V (MTω)diag(1, e−i(ω1−ω2)).

With MTω replaced by ω, the above equation is

V (O1ω) = diag(1, e−iω2)V (ω)diag(1, eiω2).

One can show (66) similarly. Indeed, from J0M
T = MTJ3, we have

[p, q]T (J3ω) = 1√
2
V (MTJ3ω)I0(O1ω) = 1√

2
V (J0M

Tω)[1, eiω1 ]T

= 1√
2
V (J0M

Tω)diag(1, e2iω1)I0(ω).

From the definition of 4-fold symmetry, one can get p(J3ω) = p(ω), q(J3ω) = e2iω1q(ω). Thus

[p, q]T (J3ω) = diag(1, e2iω1)[p, q]T (ω) = 1√
2
diag(1, e2iω1)V (MTω)I0(ω).

Therefore, the 4-fold symmetry of {p, q} also implies

1√
2

diag(1, e2iω1)V (MTω)I0(ω) =
1√
2
V (J0M

Tω)diag(1, e2iω1)I0(ω),
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or
V (J0M

Tω) = diag(1, e2iω1)V (J0M
Tω)diag(1, e−2iω1),

which is (66) when MTω is replaced by ω.
Clearly, the above procedures are reversible. Therefore, the 4-fold symmetry can be charac-

terized by (65) and (66). ♦
The next proposition provides the symmetry of the scaling function and wavelets associated

with a symmetric filter bank.

Proposition 6. Suppose an FIR filter bank {p, q} has 4-fold axial symmetry. Let φ be the asso-
ciated scaling function with dilation matrix M = M1 and ψ be the functions define by (61) with
q. Then

φ(Jkx) = φ(x), 0 ≤ k ≤ 3, (67)

and

ψ(1)(J0x) = ψ(1)(x + (1,−1)), ψ(1)(J1x) = ψ(1)(x− (0, 1)),
ψ(1)(J2x) = ψ(1)(x), ψ(1)(J3x) = ψ(1)(x + (1, 0)).

(68)

Let
ψ0(ω) = ψ(x + (

1
2
,−1

2
)). (69)

Then (68) is equivalent to ψ0(Jkx) = ψ0(x), 0 ≤ k ≤ 3.
Proof. For (67), we need only to prove φ(O1x) = φ(x) and φ(J0x) = φ(x). From (60), we

have φ̂(ω) = p(M−Tω)φ̂(M−Tω). Thus φ̂(ω) = Π∞k=1p((M
−T )kω)φ̂(0). When M = M1 given in

(53), MO1 = O1M, MJ0 = J0O1M . Thus

MkO1 = O1M
k, MkJ0 = J0O

k
1M

k,

which implies (M−T )kO1 = O1(M−T )k, (M−T )kJ0 = J0O
k
1(M−T )k. Therefore,

φ̂(O1ω) = Π∞k=1p((M
−T )kO1ω)φ̂(0)

= Π∞k=1p(O1(M−T )kω)φ̂(0)
= Π∞k=1p((M

−T )kω)φ̂(0) = φ̂(ω),

and
φ̂(J0ω) = Π∞k=1p((M

−T )kJ0ω)φ̂(0)
= Π∞k=1p(J0O

k
1(M−T )kω)φ̂(0)

= Π∞k=1p((M
−T )kω)φ̂(0) = φ̂(ω).

Hence, φ(O1x) = φ(x) and φ(J0x) = φ(x). Thus, (67) holds.
Next, we prove (68). It is enough to show ψ0(Jkx) = ψ0(x), where ψ0 is the function defined

by (69). Let h(ω) = eiω1q(ω). Then

ψ̂0(ω) = e
i
2

(ω1−ω2)ψ̂(ω) = e
i
2

(ω1−ω2)q(M−Tω)φ̂(M−Tω) = h(M−Tω)φ̂(M−Tω).

Observe that

M−TJ0 = J1M
−T , M−TJ1 = J2M

−T , M−TJ2 = J3M
−T , M−TJ3 = J0M

−T .
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Thus for each k, 0 ≤ k ≤ 3, M−TJk = Jk′M
−T for some k′, 0 ≤ k′ ≤ 3. This and h(Jk′ω) = h(ω)

(from the definition of 4-fold symmetry) imply

ψ̂0(Jkω) = h(M−TJkω)φ̂(M−TJkω) = h(Jk′M−Tω)φ̂(Jk′M−Tω) = h(M−Tω)φ̂(M−Tω) = ψ̂0(ω).

Hence ψ0(Jkx) = ψ0(x), as desired. ♦
Based on Proposition 5, one can easily construct blocks to build symmetric filter banks. For

example, one may use

X(ω) =

[
j + 4nλ+ 2nλ(x+ y + 1

x + 1
y ) + nλ(xy + 1

xy + x
y + y

x) λ(1 + 1
x + y + y

x)
n(1 + x+ 1

y + x
y ) 1

]
. (70)

where j, n, λ are constants with j 6= 0. X(ω) satisfies (65) and (66). Furthermore, det(X(ω)) = j,
a nonzero constant. Thus, the inverses of X(ω) is a matrix whose entries are also polynomials of
x, y. One can easily get that X̃(ω) = (X(ω)−1)∗ is

X̃(ω) = 1
j

[
1 −n(1 + 1

x + y + y
x)

−λ(1 + x+ 1
y + x

y ) j + 4nλ+ 2nλ(x+ y + 1
x + 1

y ) + nλ(xy + 1
xy + x

y + y
x)

]
.

(71)
X̃(ω) also satisfies (65) and (66). One may use other blocks. For example, Y (ω) defined by

Y (!) =[
j + 4nλ + 2λ(n +m)(x + y)(1 + 1

xy
) + λ(n + 2m)(x + 1

x
)(y + 1

y
) + λm(x + 2 + 1

x
)(y2 + 1

y2 ) + λm(y + 2 + 1
y

)(x2 + 1
x2 ) λ(1 + 1

x
+ y +

y
x

)

n(1 + x)(1 + 1
y

) +m(1 + x)(y + 1
y2 ) +m(1 + 1

y
)(x2 + 1

x
) 1

]
.

(72)

where j, n, λ are constants with j 6= 0, also satisfies (65) and (66), and the inverses of Y (ω) is a
matrix whose entries are also polynomials of x, y with Ỹ (ω) = (Y (ω)−1)∗ given by

Ỹ (!) =

1
j

[
1 −n(1 + 1

x
)(1 + y)−m(1 + 1

x
)(y2 + 1

y
)−m(1 + y)(x + 1

x2 )

−λ(1 + x)(1 + 1
y

) j + 4nλ + 2λ(n +m)( 1
x

+ 1
y

)(1 + xy) + λ(n + 2m)(x + 1
x

)(y + 1
y

) + λm(x + 2 + 1
x

)(y2 + 1
y2 ) + λm(y + 2 + 1

y
)(x2 + 1

x2 )

]
.

(73)

Ỹ (ω) also satisfies (65) and (66). Therefore, we have the following family of 4-fold symmetric
biorthogonal filter banks.

Theorem 2. Suppose FIR filter banks {p, q} and {p̃, q̃} are given by

[p(ω), q(ω)]T = UK(MTω)UK−1(MTω) · · ·U0(MTω)I0(ω), (74)

[p̃(ω), q̃(ω)]T =
1
2
ŨK(MTω)ŨK−1(MTω) · · · Ũ0(MTω)I0(ω)

for some K ∈ Z+, where I0(ω) is defined by (64), each Uk(ω) is an X(ω) in (70) or a X̃(ω) in
(71) for some parameters jk, nk, λk, or a Y (ω) in (72) or a Ỹ (ω) in (73) for some parameters
jk, nk,mk, λk, and Ũk(ω) = (Uk(ω)−1)∗ is the corresponding X̃(ω) in (71) (or X(ω) in (70),
Ỹ (ω) in (73), Y (ω) in (72) accordingly). Then {p, q} and {p̃, q̃} are biorthogonal FIR filter
banks and both have 4-fold axial symmetry.

Example 4. Let {p, q} and {p̃, q̃} be the biorthogonal filter banks given by (74) for K = 1 with

[p(ω), q(ω)]T = X̃1(MTω)X̃0(MTω)I0(ω), (75)

[p̃(ω), q̃(ω)]T =
1
2
X1(MTω)X0(MTω)I0(ω),
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where X0(ω) and X1(ω) are given by (70) with parameters j, n, λ and n1, λ1, j1 = 1 respectively,
and X̃0(ω), X̃1(ω) are given by (71). Solving the system of the equations for sum rule order 1 of
both p(ω) and p̃(ω), we have

n = −1
4
− 2n1, j =

2(1 + 4n1)
1 + 16n1λ1

, λ =
1− 4λ1

4(1 + 16n1λ1)
.

The resulting p and p̃ actually have sum rule order 2 because of their symmetry. For this pair of
biorthogonal filter banks, p yields smoother scaling functions than p̃. It is possible to construct φ
associated with p in W 2 with φ̃ associated with p̃ in L2(IR2), while it is impossible to construct
φ̃ with such a smoothness order. When n1 = 0.14122198675290, λ1 = 0.49080484105305, the
resulting φ and φ̃ are in W 1.33388 and W 1.21860 respectively, and if n1 = −0.13593823458298, λ1 =
0.09071891834880, then φ ∈ W 0.01449 and φ̃ ∈ W 1.34094. It seems that in the latter case φ̃ gains
the best smoothness with φ ∈ L2(IR2).

In order that φ ∈W 2, p must has sum rule order of at least 3. If

λ1 =
15
64

+ (
1
8

+
1

16n1
)2,

then p has sum rule order 4. If we choose n1 = 1, then the corresponding φ is in W 2.18087 and
φ̃ in W 0.03026; and if we select n1 = 29

32 , then the resulting φ and φ̃ are in W 2.16374 and W 0.05496

respectively. For either choice of these n1, we should use {p, q} as the synthesis filter bank and
{p̃, q̃} the analysis filter bank. The resulting p and p̃ are supported on [−3, 3]2 and [−4, 4]2. ♦
Example 5. Let {p, q} and {p̃, q̃} be the biorthogonal filter banks given by (74) for K = 1 with

[p(ω), q(ω)]T = Ỹ1(MTω)X̃0(MTω)I0(ω), [p̃(ω), q̃(ω)]T =
1
2
Y1(MTω)X0(MTω)I0(ω). (76)

where X0(ω) and Y1(ω) are given by (70) and (72) for some parameters j, n, λ and n1, λ1,m1,
j1 = 1 respectively, and X̃0(ω), Ỹ1(ω) are given by (71) and (73).

First we consider the case λ1 = 0. Solving the system of the equations for sum rule order 1
for both p(ω) and p̃(ω), we have that if

λ =
1
4
, j = 1− 4n, n1 = −1

8
− 1

2
n− 2m1, (77)

then the resulting p, p̃ have sum rule order 2. Furthermore, if n = 1
8 , then p̃ has sum rule order 4.

However, in this case, we cannot choose the remaining parameter m1 such that φ is in L2(IR2).
Thus we consider the p and p̃ with sum rule order 2. If n = 3

64 ,m1 = 11
256 , then the resulting φ

and φ̃ are in W 0.00589 and W 1.91822 respectively, with the resulting p and p̃ supported on [−4, 4]2

and [−2, 2]2.
Next let us consider the case λ1 6= 0. Solving the system of the equations for sum rule orders

1 and 3 for both p(ω) and p̃(ω) respectively, we have that if

j = 1−4n
1−2λ1−8nλ1

, λ = 1−4λ1
4(1−2λ1−8nλ1) ,

m1 = 1
32 + n

8 + (8n−1)(2λ1+8nλ1−1)
512λ2

1(1−4n)
, n1 = −1

8 − 2m1 − n
2 ,

(78)

then resulting p and p̃ have sum rule orders 2 and 4 respectively. There are two parameters
n, λ1 left. We can choose different values for n, λ1 such that φ̃ associated with the resulting p̃ is
in W 2. For example, if n = 0.12577172209778, λ1 = 0.13650403059655, then the corresponding
φ ∈W 0.01449, φ̃ ∈W 2.91445; and if n = 1

8 , λ1 = 35
256 , then the resulting φ and φ̃ are in W 0.04400 and

W 2.89734 respectively. In either case, the resulting p and p̃ are supported on [−4, 4]2 and [−5, 5]2.
♦
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3.2
√

2-refinement multiresolution algorithms for quad surface processing
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Figure 10: From let to right: Square mesh with nodes Z2 (1st picture), vertex nodes and face nodes (2nd
picture), original data/vertices associated with vertex nodes and face nodes (3rd picture), “smooth part”
and “detail” associated with vertex nodes and face nodes (4th picture)

As dyadic filter banks,
√

2 multiresolution algorithms (for regular vertices) with the 4-fold
symmetric biorthogonal filter banks given in (74) can be expressed by symmetric templates which
are orientation and reflection invariant. Again, the key is to associate appropriately the detail d1

k

after decomposition algorithm with the nodes of Z2. To this regard, we separate nodes of Z2 into
two groups.

For the square lattice Z2 with which a regular quad mesh is represented, MZ2 = {Mk =
(k1 − k2, k1 + k2), (k1, k2) ∈ Z2} is the set of the labels for the vertices of the coarse mesh. For√

2-refinement, the nodes with labels Mk are called vertex nodes, and the other nodes face
nodes. Observe that the set of the labels for face nodes are MZ2 + (1, 0). See the second picture
of Fig. 10 for these two groups of nodes. Thus, for an initial data/mesh C = {ck}k∈Z2 , {cMk}k∈Z2

is the set of data/vertices associated with vertex nodes, {cMk+(1,0)}k∈Z2 is the set of data/vertices
associated with face nodes. Denote

vk = cMk, fk = cMk+(1,0), k ∈ Z2. (79)

See the third picture of Fig. 10 for these two groups of data/vertices and the labels for them.
The

√
2 multiresolution decomposition algorithm is to decompose the original data/mesh

C = {ck}k with the analysis filter bank into the “smooth part” {c1
k}k and “the detail” {d1

k}k,
while the reconstruction algorithm is to recover C from {c1

k}k, {d1
k}k with the synthesis filter

bank. Denote
ṽk = c1

k, f̃k = d1
k.

Then, the decomposition and reconstruction algorithms are respectively

ṽk =
1
2

∑

k′∈Z2

pk′−Mkck′ , f̃k =
1
2

∑

k′∈Z2

qk′−Mkck′ , k ∈ Z2, (80)

and
ck =

∑

k′∈Z2

{p̃k−Mk′ ṽk′ + q̃k−Mk′ f̃k′}, k ∈ Z2. (81)

Considering k in (81) with k = M j and k = M j+(1, 0), we can write the reconstruction algorithm
(81) further to be

vk =
∑

n∈Z2{p̃Mnṽk−n + q̃Mnf̃k−n},
fk =

∑
n∈Z2{p̃Mn+(1,0)ṽk−n + q̃Mn+(1,0)f̃k−n}.

(82)
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Associate the “smooth part” ṽk,k ∈ Z2 with the vertex nodes Mk, and the “detail” f̃k,k ∈ Z2

with face nodes Mk + (1, 0), see the fourth picture of Fig. 10. Thus, the decomposed data
{ṽk}k and {f̃k}k associate with the whole Z2 as the original data/mesh C={vk, fk}k. With
such association, the

√
2 multiresolution decomposition and reconstruction algorithms can be

described as templates. In addition, the 4-fold symmetric
√

2 filter banks provided in §3.1 result in
templates with desired symmetry for surface multiresolution. This makes it possible to design the
corresponding multiresolution algorithms for extraordinary vertices. In the rest of this subsection,
we show that some biorthogonal filter banks given in (74) lead to very simple multiresolution
algorithms.
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f 0v"

3v"

1v"

2v"

v"

f"1

f"3

f"2 f"0

v~3

v~1

v~2 v~0f"

Figure 11: Top-left: Decomposition Alg. Step 1 with each v associated with a vertex node replaced by v′′

given in (83); Top-right: Decomposition Alg. Step 2 with each f associated with a face node replaced by f ′′

given in (84); Bottom-left: Decomposition Alg. Step 3 with each v′′ obtained in Step 1 replaced by ṽ given
in (85); Bottom-right: Decomposition Alg. Step 4 with each f ′′ obtained in Step 2 replaced by f̃ given in
(86)

For given C (or equivalently, for given {v} and {f}), the multiresolution decomposition al-
gorithm is given by (83)-(86) and shown in Fig. 11, where j, n, λ, n1, λ1 are constants to be
determined. More precisely, first we replace all v associated with vertex nodes of MZ2 by v′′

given by formula (83). Then, based on v′′ obtained, we replace all f associated with face nodes
in MZ2 + (1, 0) by f ′′ given in formula (84). After that, based on f ′′ obtained in Step 2, all v′′ in
Step 1 are updated by ṽ given in formula (85). Finally, based on ṽ obtained in Step 3, all f ′′ in
Step 2 are updated by f̃ given in formula (86).

√
2-refinement Decomposition Algorithm:

Step 1. v′′ = 1
j {v − n(f0 + f1 + f2 + f3)}; (83)

Step 2. f ′′ = f − λ(v′′0 + v′′1 + v′′2 + v′′3); (84)
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Step 3. ṽ = v′′ − n1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ); (85)
Step 4. f̃ = f ′′ − λ1(ṽ6 + ṽ7 + ṽ8 + ṽ9). (86)
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Figure 12: Top-left: Reconstruction Alg. Step 1 with each ẽ associated with face node replaced by f ′′ given
in (87); Top-right: Reconstruction Alg. Step 2 with each ṽ associated with vertex node replaced by v′′ given
in (88); Bottom-left: Reconstruction Alg. Step 3 with each f ′′ obtained in Step 1 replaced by f given in
(89); Bottom-right: Reconstruction Alg. Step 4 with each v′′ obtained in Step 2 replaced by v given in (90)

The multiresolution reconstruction algorithm to recover C associated with Z2 (or equivalently,
v and f associated with MZ2 and MZ2 + (1, 0) respectively) from given ṽ associated with MZ2

and given f̃ associated with MZ2 + (1, 0). The algorithm is given by (87)-(90) and shown in Fig.
12, where j, n, λ, n1, λ1 are the same constants in the decomposition algorithm. More precisely,
first we update all f̃ associated with face nodes of MZ2 + (1, 0) with the resulting f ′′ given by
formula (87). Then, we update all ṽ associated with vertex nodes of MZ2 with the resulting v′′

given by formula (88). After that, based on v′′ obtained, we replace all f ′′ obtained in Step 1 by
f with formula in (89). Finally, based on f obtained in Step 3, all v′′ in Step 2 are updated with
the resulting v given by formula (90).

√
2-refinement Reconstruction Algorithm:

Step 1. f ′′ = f̃ + λ1(ṽ0 + ṽ1 + ṽ2 + ṽ3); (87)
Step 2. v′′ = ṽ + n1(f ′′0 + f ′′1 + f ′′2 + f ′′3 ); (88)
Step 3. f = f ′′ + λ(v′′6 + v′′7 + v′′8 + v′′9); (89)
Step 4. v = jv′′ + n(f0 + f1 + f2 + f3). (90)

Again, when the constants j, n, λ, n1, λ1 are appropriately chosen, the decomposed ṽ is the
“smooth part” of the initial data/mesh C, and f̃ is the “detail” of C. The decomposition algorithm
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can be applied repeatedly to the smooth part to get further smooth part and details of the data,
and reconstruction algorithm recovers the original data/mesh from the smooth part and details.

With the formulas in (80) and (82) and careful calculations, we find the filter banks {p, q} and
{p̃, q̃} corresponding to the algorithms (83)-(90) to be those given by (75) in Example 4. By the
results in Example 4, we know we cannot choose parameters such that φ̃ has a desirable smooth
order. To obtain smoother φ̃, we may use algorithms with more iterative steps. The corresponding
filter banks are given similarly to those in Examples 4 but with more blocks X(MTω) and/or
X̃(MTω). Then, we use the above method to choose the parameters.

Decomposition Algorithm Step 3′: ṽ = v′′ − n1

3∑

k=0

f ′′k −m1

11∑

k=4

f ′′k ; (91)

Reconstruction Algorithm Step 2′: v′′ = ṽ + n1

3∑

k=0

f ′′k +m1

11∑

k=4

f ′′k . (92)
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Figure 13: Left: New decomposition Alg. Step 3′ with each v′′ obtained in Step 1 replaced by ṽ given in
(91); Right: New reconstruction Alg. Step 2′ with each ṽ associated with vertex node replaced by v′′ given
in (92)

An alterative way to obtain smoother φ̃ is to modify some algorithms in (83)-(90). For
example, the decomposition algorithm Step 3 may be replaced by Step 3′ given in (91) and
shown on the left of Fig. 13. In this case, the corresponding reconstruction algorithm Step 2 is
replaced by reconstruction Step 2′ given in (92) and shown on the right of Fig. 13. For algorithms
(83)(84)(91)(86) and (87)(92)(89)(90), one can obtain the corresponding filter banks to be those
given by (76) in Example 5.

First we consider the case λ1 = 0. When λ1 = 0, the above algorithms are reduced to
3-step algorithms (83)(84)(91) and (92)(89)(90) with f̃ = f ′′. From Example 5, we may use
n = 3

64 ,m1 = 11
256 and other values for j, λ, n1 given by (77). With such choices of parameters, the

corresponding φ and φ̃ are in W 0.00589 and W 1.91822 respectively with both p and p̃ having sum
rule order 2. Here we provided all selected parameters:

[j, n, λ, n1, m1] = [
13
16
,

3
64
,

1
4
, −15

64
,

11
256

].

When λ1 6= 0, from Example 5, we may use n = 1
8 , λ1 = 35

256 and other values for j, λ, n1,m1

given by (78). In this case, as discussed in Example 5, the corresponding φ and φ̃ are in W 0.04400
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and W 2.89734 with p and p̃ have sum rule order 2 and 4 respectively. Here we provided all selected
parameters:

[j, n, λ, n1, m1, λ1] = [
128
151

,
1
8
,

29
151

, − 9
32
,

3
64
,

35
256

].
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[30] D. Zorin and P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and W. Sweldens, Subdivision
for Modeling and Animation, SIGGRAPH 2000 Course Notes.

[31] I.W. Selesnick: “Multiwavelets with extra approximation properties”, IEEE Trans. Signal
Proc., vol. 46, no. 11, 2898–2909, Nov. 1998.

[32] W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal wavelets”,
Appl. Comput. Harmonic Anal., vol. 3, no. 2, pp. 186–200, Apr. 1996.

[33] L. Velho, “Quasi 4-8 subdivision”, Comput. Aided Geom. Design, vol. 18, no. 4, pp. 345–357,
May 2001.

[34] L. Velho and D. Zorin, “4-8 subdivision”, Comput. Aided Geom. Design, vol. 18, no. 5, pp.
397–427, Jun. 2001.

[35] H.W. Wang, K.H. Qin, and K. Tang, “Efficient wavelet construction with Catmull-Clark
subdivision”, The Visual Computer, vol. 22, no. 9-11, pp. 874-884, Sep. 2006.

[36] H.W. Wang, K.H. Qin, and H.Q. Sun, “
√

3-subdivision-based biorthogonal wavelets”, IEEE
Trans. Visualization and Computer Graphics, vol. 13, no. 5, pp. 914–925, Sep./Oct. 2007.

[37] J. Warren and H. Weimer, Subdivision Methods For Geometric Gesign: A Constructive Ap-
proach, Morgan Kaufmann Publ., San Francisco, 2002.

32


