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Admissible Wavelets on the Siegel
Domain of Type One

1

Qingtang Jiang and Lizhong Peng

Abstract. Let Sp(n,R) be the symplectic group, and K∗
n its maximal compact sub-

group. Then G = Sp(n,R)/K∗
n can be realized as the Siegel domain of type one. The

square-integrable representation of G gives the admissible wavelets AW and wavelet
transform. The characterization of admissibility condition in terms of the Fourier trans-
form is given. The Bergman kernel follows from the viewpoint of coherent state. With
the Laguerre polynomials, Hermite polynomials and Jacobi polynomials, two kinds of
orthogonal bases for AW are given, and they then give orthogonal decompositions of
L2-space on the Siegel domain of type one L2(Hn, |y|αdxdy).

1 introduction

Let G be a locally compact group with left Haar measure dx. Let x→ U(x)(x ∈ G) be
an irreducible unitary representation of G in a Hilbert space H. If there is a vector ψ
satisfying the following “admissibility condition”:

0 < cψ :=
∫
G
|(ψ,U(x)ψ)|2dx/(ψ, ψ) <∞, (1.1)

where (·, ·) is the inner product ofH, then the representation U is called square-integrable
and f → (f, U(x)ψ) is called “continuous wavelet transform” and ψ is called an admis-
sible wavelet (cf [3]).

A. Grossman and J. Morlet [4] introduced the wavelet transform in the one dimension
case, where the group G is the affine group “ax + b”. It consists of all couples {(x, y) :
y > 0, x ∈ R} with the law (x1, y1)(x, y) = (y1x + x1, y1y). It is a locally compact
nonunimodular group with left Haar measure dµL(x, y) = dxdy/y2. In fact it is the
quotient group of SL(2, R) by K := SO(2, R), here SL(2, R) is the special linear group.

11991 Mathematical Subject Classification: Primary 22D10, 81R30. Key words and phrases: Sym-
plectic group, Siegel domain of type one, admissibility condition, wavelet transform, coherent state,
Bergman kernel, orthogonal decomposition. Research was supported in part by the National Nat-
ural Science Foundation of China.
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The identification is made by (see [13], [16])

g = (x, y) ↔
[ √

y x/
√
y

0 1/
√
y

]
, (1.2)

and [ √
y x/

√
y

0 1/
√
y

]−1

=

[
1/
√
y −x/√y

0
√
y

]
.

Let

f(x,y)(x
′) := U(x, y)f(x′) =

1
√
y
f(
x′ − x

y
) (1.3)

be the representation of G on the Hardy space H2(R). Then the (affine) wavelet trans-
form Wψ for f in H2(R) associated with an admissible wavelet ψ is given by

Wψf(b, a) := (f, ψ(b.a)) =
1√
a

∫
R
ψ(
x− b

a
)f(x)dx. (1.4)

The map f → Wψf(b, a) gives an isometry (up to a constant) fromH2(R) into L2(U, dbda
a2

),
here U is the upper half plane, and the following reconstruction formula holds:

f(x) =
1

cψ

∫
U
Wψf(b, a)ψ(b,a)(x)

dbda

a2
. (1.5)

R. Murenzi in [12] considered wavelet transform associated to IG(n), the “n-dimensional
Euclidean group with dilations”. In this paper insteal of SL(2, R) or IG(n), we will
consider the continuous wavelet associated the symplectic group Sp(n,R) modulo its
maximal subgroup.

Let Pn denote the space of positive definite n× n matrices and let

Hn := {z|z = x+ iy, y ∈ Pn, x ∈ GL(n,R) and are symmetric}.

Hn is an (unbounded) upper half-plane realization of the classical domain of type
three, see [6], [18]. The homomorphism of Hn is symplectic group Sp(n,R). Let
K∗
n := SO(2n)∩Sp(n,R), then the quotient group G = Sp(n,R)/K∗

n has one to one cor-
respondence to Hn. We will consider the square-integrable representation of G in next
section and wavelet transform associated to G in §3. By this wavelet transform, the
Bergman kernel of Hn is given in §4 and the orthogonal decompositions of the function
space L2(Hn, |y|αdxdy) are derived in §5.

2 Square-integrable group representation

In order to give the correspondence from the group G = Sp(n,R)/K∗
n onto Hn, let us

first give a new look at the arguments from (1.2) to (1.3).
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Let JP2 := {P ∈ R2×2|P positive definite symmetric matrix of deterimant 1}. Then
the following maps are identifications and preserve the group action of SL(2, R) on the
three homogeneous spaces (see [16, p.125]):

SL(2, R)/K → JP2 → U

Kg → gtg = P → z ∈ U with P

[
1
−z

]
= 0,

where tg is the transpose of g, SL(2, R)/K denotes the homogeneous space of cosets gK,
and it is just the affine group G. We can write any element P in the JP2 as follows:

P =

[
y 0
0 y−1

]
[
1 0
x 1

] :=

[
1 x
0 1

] [
y 0
0 y−1

] [
1 0
x 1

]

=

[
1 x
0 1

] [ √
y 0
0 1/

√
y

] [ √
y 0
0 1/

√
y

] [
1 0
x 1

]

=

[ √
y x/

√
y

0 1/
√
y

] [ √
y 0

x/
√
y 1/

√
y

]
.

Let

g =

[ √
y x/

√
y

0 1/
√
y

]
,

then g is regarded as an element in “ax + b”, and write g = {x, y}. In this way we
give the identification (1.2). Such correspondence also can be gotten from the Iwasawa
decomposition of SL(2, R).

Let U = {z = x + iy|y > 0} denote the upper half-plane, its homomorphlism is

SL(2, R). For g ∈ SL(2, R), g−1 =

[
a b
c d

]
, then SL(2, R) gives the action on U by

z → g(z) = az+b
cz+d

. Especially for g ∈ “ax+ b′′ given as above it gives an action on R by

x′ ∈ R → g(x′) =

1√
y
x′ − 1√

y
x

√
y

=
x′ − x

y
.

This action induces another action of G on L2(R) by

f(x′) → {g′(x′)}
1
2f(g(x′)) =

1
√
y
f(
x′ − x

y
), (2.1)

which is (1.3). In fact, (2.1) can be gotten from the (projection) representation of
SL(2, R) on L2(R).

Now let us consider in the similar way about the correspondence from G to Hn. As
in §1 Pn denotes the space of positive definite n × n real matrices and let S denote
the symmetric space of the general linear group GL(n,R) of non-singular n × n real
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matrices. S can be considered as the Shilov boundary of the Siegel domain Hn via
S = Hn ∩ (Imz = 0). Denote

A = {a ∈ GL(n,R)|a is positive and diagonal},
N = {n ∈ GL(n,R)|n is upper triangular with ones on the diagonal}.

For y ∈ Pn, y can be written uniquely as

y = t(an)(an) = tna2n, with a ∈ A, n ∈ N, (2.2)

and a can be given by a2i = |yi|/|yi−1|, here yk is the upper left hand k× k corner of the
matrix y(cf [17, p.14]).

In the rest part of this paper, still let tg denote the transpose of g and use the
notation

|y| := determinant(y).

Denote P∗
n := P2n∩Sp(n,R), then the following map gives the identifications of Sp(n,R)/K∗

n,
P∗
n and Hn (see [17, p.286]),

Sp(n,R)/K∗
n → P∗

n → Hn

gK∗
n → tgg = p→ z ∈ Hn with p

[
I
−z

]
= 0. (2.3)

For p ∈ P∗
n, p can be written

p =

[
y 0
0 y−1

]
[
I 0
x I

] =

[
I x
0 I

] [
y 0
0 y−1

] [
I 0
x I

]
,

where y ∈ Pn, and x ∈ S. Then (I,−z)p
(

I
−z

)
= 0 implies z = x+ iy.

For y ∈ Pn, it can be written uniquely in the form (2.2). Thus p is expressed as

p =

[
I x
0 I

] [
t(an) 0
0 (an)−1

] [
an 0
0 t(an)−1

] [
I 0
x I

]
,

Let

g =

[
I x
0 I

] [
t(an) 0
0 (an)−1

]
=

[
t(an) x(an)−1

0 (an)−1

]
, (2.4)

then every element in Sp(n,R)/K∗
n can be written uniquely in the form of (2.4) and all

such g form a group. Define

G := {
[
t(an) x(an)−1

0 (an)−1

]
|a ∈ A, n ∈ N, x ∈ S}.

Elements g in G also can be written as

g = (a, n, x), a ∈ A, n ∈ N, x ∈ S, (2.5)
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with the group operation:

g · g1 = (a, n, x) · (a1, n1, x1) = (aa1, a
−1n1an,

t(an)x1an+ x).

We can get the left invariant measure dµ(g) of group G is

dµ(g) =
α(a)

|a|n+1
dadndx, (2.6)

where α(a) = Πn
i=1a

n−2i+1
i , da = da1

a1
· · · dan

an
and dn, dx are the Lebesque measures (up to

a constant) on N,S respectively:

dx := cnΠ1≤i≤j≤ndxij, dn := c′nΠ1≤i<j≤ndxij,

where cn = 2n(2π)
n(n+1)

4 , c′n = 2n−1(2π)
(n−1)n

4 . In the case n = 1, G is just the affine
group “ax+ b′′. In this way, we can give an identification of G with Hn by

(a, n, x) ↔ x+ t(an)(an)i ∈ Hn.

For g ∈ Sp(n,R), with g−1 =

[
A B
C D

]
, then g acts on Hn by

z ∈ Hn → g(z) = (Az +B)(Cz +D)−1.

For g ∈ G, g =

[
t(an) x(an)−1

0 (an)−1

]
, then g−1 =

[
t(an)−1 −t(an)−1x

0 an

]
, it acts on the

Shilov boundary S of Hn by

g(x′) = t(an)−1(x′ − x)(an)−1.

Let L2(dx) = L2(S, dx) denote the function space square integrable on S with respect
to dx. We will consider the wavelet transform associated to G from the square-integrable
representation of G on L2(dx).

Define a unitary representation of G on L2(dx) by

Ugf(x
′) := |a|−

n+1
2 f(g(x′)) = |a|−

n+1
2 f(t(an)−1(x′ − x)(an)−1). (2.7)

In fact this unitary representation Ug can be gotten from the (projection) representation
of Sp(n,R) (cf [9]). In [9], Kashiwara and Verane considered the irreducible representa-
tions of a group similar to G. Now let us give the irreducible representations of G.

For function f on S, let f̂(ξ) denote the Fourier transform of f defined by

f̂(ξ) :=
∫
S
e−itrxξf(x)dx,

here trx denote the trace of matrix x. Then the representation (2.7) of G is given by

(Ugf)
∧(ξ) = |a|

n+1
2 e−itrxξf̂(anξt(an)). (2.8)
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Let M denote the subgroup of Pn consisting of diagonal matrices with entries 1 or −1.
For any m ∈ M , with similar denotations in [9], let Om denote the open subset of S
which consisting of elements being similar tom and let L2

m denote the subspace of L2(dx)
consisting of functions whose Fourier transforms are supported in Om. We can get L2

m

is an irreducible invariant subspace of the representation of U and let Um denote the
restriction of U to the subspace L2

m. Then we have

U =
∑
m∈M

⊕
Um,

where each representation Um is an irreducible representation of G and they are different.
For any m ∈M , if there exists a vector ψ ∈ L2

m such that

0 <
∫
G
|(Um

g ψ, ψ)|2dµ(g) <∞, (2.9)

where dµ(g) is given in (2.6), then Um is called square-integrable and the map f →
(Um

g ψ, f) is called the wavelet transform for f ∈ L2
m. In fact we can get in next section

that all Um are square-integrable and we would pay more attention to the case m =
I = diag(1, 1, · · · , 1). The admissibility condition (2.9) will be computed and the related
wavelet transform will be considered.

3 Wavelet transform

Let Hn be the Siegel domain given by (1.1), it is of type one and in fact it is the tube
of real n × n symmetric matrices over the cone Pn. The dual cone P∗

n of Pn is itself.
Thus the Hardy space H2(Hn) has the following correspondence to L2(P∗

n)=L
2(Pn)(see

[1], [18]):

L2(Pn) → H2(Hn)

ϕ→ F (z) =
∫
Pn
eitrzλϕ(λ)dλ.

Thus the function space L2
I given in §2 is just the boundary values of the Hardy space

H2(Hn) and L
2
−I is the boundary values of the conjugate Hardy space H

2
(Hn). Denote

H2 = L2
I , H

2
= L2

−I ,

then H2, H
2
are the usual real Hardy space and conjugate Hardy space respectively for

the case n = 1. In this section the continuous wavelet transform onH2 will be considered
in detail since it connect tight to the Bergman space on Hn.

Let T = U I be the representation of G on H2 given in §2. One can get T is square-
integrable by calculating the “admissibility condition” (2.9). In fact, for ψ ∈ H2,∫

G
|(ψ, Tgψ)|2dµ(g) =

∫
G
|
∫
ψ̂(ξ)eitrξx|a|

n+1
2 ψ̂(anξt(an))dξ|2 α(a)

|a|n+1
dadndx
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=
∫
A

∫
N

∫
S
|
∫
ψ̂(ξ)ψ̂(anξt(an))eitrξxdξ|2dxα(a)dxdnda

=
∫
A

∫
N

∫
Pn

|ψ̂(ξ)ψ̂(anξt(an))|2dξα(a)dnda

=
∫
Pn

∫
A

∫
N
|ψ̂(anξt(an))|2α(a)dnda|ψ̂(ξ)|2dξ.

The third equation is gotten by the Plancherel formula. For any ξ ∈ Pn, it can be
written uniquely as (cf §2)

ξ = t(a0n0)a0n0, with a0 ∈ A, n0 ∈ N,

thus ∫
A

∫
N
|ψ̂(anξt(an))|2α(a)dnda =

∫
A

∫
N
|ψ̂(antn0a

2
0n0

tna)|2α(a)dnda

=
∫
A

∫
N
|ψ̂(ana20tna)|2α(a)dnda =

∫
A

∫
N
|ψ̂(aa0a−1

0 na0
t(a−1

0 na)a0a)|2α(a)dnda

=
∫
A

∫
N
|ψ̂(aa0ntna0a)|2α(a)α(a0)dnda =

∫
A

∫
N
|ψ̂(antna)|2α(a)dnda.

In above calculations, the facts d(ntn0) = dn, d(a−1
0 na0) = α(a0)

−1dn, d(a0a) = da are
used. Thus the admissibility condition becomes

0 < cψ :=
∫
A

∫
N
|ψ̂(antna)|2α(a)dnda <∞. (3.1)

Let ψ ∈ H2 defined by

ψ̂(ξ) := |ξ|
n+1
2 e−c0trξ

2

,

where c0 is a positive constant. It is easy to get that ψ satisfies the condition (3.1) and
it is called the Mexican hat as in the case n = 1. Thus the representation T of G is
square-integrable. Let AAW denote the set of all such “ analyzing admissible wavelet”
, i.e.

AAW := {ψ : ψ̂ is real, ψ ∈ H2 and ψ satisfies (3.1)}.

For ψ ∈ AAW , the continuous wavelet transform Wψ for f ∈ H2 is defined by

f → Wψf(g) := (f, Tgψ). (3.2)

Theorem 1 For ψ ∈ AAW , then for any f, h ∈ H2,

< Wψf,Wψh >= cψ(f, h),

where <,> is the inner product of L2(G, dµ).
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The proof of Theorem 1 is given by using the Plancherel formula as in calculating
the admissible condition. In fact,

< Wψf,Wψh >=
∫
G
Wψf(x, y)Wψh(x, y)dµ(g)

=
∫
N

∫
A

∫
Pn
(Wψf)

∧(a, n, ξ)(Wψh)∧(a, n, ξ)dξ
α(a)

|a|n+1
dadn

=
∫
N

∫
A

∫
Pn
f̂(ξ)ψ̂(anξtna)ĥ(ξ)ψ̂(anξtna)dξα(a)dadn

=
∫
Pn

∫
N

∫
A
|ψ̂(anξtna)|2α(a)dadnf̂(ξ)ĥ(ξ)dξ

= cψ

∫
Pn
f̂(ξ)ĥ(ξ)dξ = cψ(f, h).

it completes the proof of Theorem 1.
Theorem 2. For ψ ∈ AAW , then there exists the reconstruction formula for any

f ∈ H2

f(x) =
1

cψ

∫
G
(f, Tgψ)Tgψ(x)dµ(g). (3.3)

For ψ ∈ AAW , it is a state in L2(dx) which can be written as |ψ >. Then {Tgψ}g∈G =
{Tg|ψ >}g∈G is a coherent state system [14]. Denote

Aψ := {Wψf(g) : f ∈ H2} := {< f |Tgψ >: f ∈ H2},

then Aψ is a Hilbert space with reproducing kernel.
Theorem 3. Let Kψ(g, g

′) be the reproducing kernel of Aψ, then

Kψ(g, g
′) =

1

cψ
(Tg′ψ, Tgψ).

The reconstruction formula (3.3) in Theorem 2 holds with convergence of the integral
at least “in the weak sense”, i.e. taking the inner product of both side of (3.3) with any
g ∈ H2, and commuting the inner product with integral over G, leading to a true
formula. This is just Theorem 1. In fact, the convergence also holds “in stronger sense”
as in [2], we omit details here. Theorem 3 can be gotten by Theorem 2. In fact, from
Theorem 2,

Wψf(g) = (f, Tgψ) =
1

cψ

∫
G
(f, T ′

gψ)(Tg′ψ, Tgψ)dµ(g
′)

=
1

cψ

∫
G
(Tg′ψ, Tgψ)Wψf(g

′)dµ(g′),

thus Kψ(g, g
′) = 1

cψ
(Tg′ψ, Tgψ).

For other irreducible representations Um of G, the admissibility condition (2.9) is
similar to (3.1):

0 < cmψ :=
∫
A

∫
N
|ψ̂(anmtna)|2α(a)dnda <∞,
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and one can get each Um is square-integrable. Let AWm denote the set of the related
admissible wavelets. For ψ ∈ AWm, we can define similarly the related wavelet transform
Wm
ψ f for f ∈ L2

m and can establish theorems similar to Theorem 1, 2, 3, details omitted
here.

4 Coherent state and Bergman kernel

Recalling for z = x+ iy ∈ Hn, z corresponds to an element g ∈ G given in §2, i.e. it can
be written as

z = (a, n, x) ∈ G with y = t(an)an (4.1)

Let Uz = Tg = U I
g given in §3. For ψ or state |ψ >∈ AAW , appling Uz to it, we get

a coherent state system. In this section the Bergman kernel will be gotten from this
viewpoint [14].

For f ∈ L1(Pn), we have (see [17, p.35])∫
Pn
f(y)

dy

|y|n+1
2

= 2n
∫
A

∫
N
f(tna2n)α(a)dnda,

here we still denote α(a) = Πn
i=1a

n−2i+1
i , da = da1

a1
· · · dan

an
and dn be the Lebesque mea-

sures on N as above. Thus for appropriate functions F (z) on Hn, we have

2n
∫
Hn

F (z)
dz

|y|n+1
=
∫
S

∫
A

∫
N
F (x+itna2n)α(a)

dndadx

|a|n+1
=
∫
G
F (x+itna2n)dµ(g). (4.2)

Recall for α > −1, Lα2(Hn) denotes function space on Hn square integrable with
respect to the measure |y|αdxdy and Aα2 denotes the homomorphic part of Lα2(Hn), i.e.
the (weighted) Bergman space. For ψ ∈ AAW , let Wψ be the wavelet transform given
by (3.2), then Wψ is an isometry (up to a constant) from H2 into L2(G, dµ(g)).

If we define functionsW α
ψ f(z) on Hn via this wavelet transform for functions f ∈ H2:

W α
ψ f(z) := |y|−

α+n+1
2 (f, Uzψ), (4.3)

then from (4.2), for ψ ∈ AAW , such map is an isometry (up to a constant) from H2

into Lα2(Hn). Denote A
α
ψ to be the set

Aαψ := {W α
ψ f(z) = |y|−

α+n+1
2 (f, Uzψ) : f ∈ H2}. (4.4)

We will choose a special ψ such that Wα
ψ f(z) are homomorpholic functions on Hn and

Aαψ is just the Bergman space.
Let ψ0(x) ∈ H2 defined by

ψ̂0(ξ) :=

{
|ξ|se−trξ, for ξ ∈ Pn,
0, elsewhere,

(4.5)
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with s = 2α+n+1
4

, then for f ∈ H2,

W α
ψ0
f(z) = |y|−

α+n+1
2 (f, Uzψ0) = |y|−

α+n+1
2

∫
f̂(ξ)|a|

n+1
2 eitrxξψ̂0(anξ

tna)dξ

= |y|−
α+n+1

2

∫
Pn
f̂(ξ)|a|

n+1
2 eitrxξ|yξ|se−tryξdξ =

∫
f̂(ξ)|ξ|

2α+n+1
4 e−itrzξdξ.

Thus W α
ψ0
f(z) is homomorphlic on Hn. In fact W α

ψ0
f ∈ Aα2 and W α

ψ0
is an isometry (up

a constant) from H2 onto Aα2, i.e. Aψ0 is just the Bergman space. Thus the Bergman
kernel is gotten by calculating the reproducing kernel of Aψ0 .

For z, z′ ∈ Hn, they can be written as in (4.1): z = (a, n, x), z′ = (a′, n′, x′) ∈ G. By
Theorem 3, the reproducing kernel K(z, z′) for Aαψ0

is given as follows:

K(z, z′) = c−1
ψ0
|y′y|−

n+α+1
2 (Uz′ψ0, Uzψ0).

And

(Uz′ψ0, Uzψ0) = |y|
n+1
4

+s
∫
Pn

|ξ|s(Uz′ψ0)
∧(ξ)eitr(x+iy)ξdξ

= |y|
n+1
4

+s
∫
Pn

|ξ|se−itrx′ξ|y′|
n+1
4 ψ̂0(a

′n′ξtn′a′)eitr(x+iy)ξdξ

= |yy′|
n+1
4

+s
∫
Pn

|ξ|2se−itrx′ξe−try′ξeitr(x+iy)ξdξ

= |yy′|
n+1
4

+s
∫
Pn

|ξ|2seitr(z−z′)ξdξ.

Since s = 2α+n+1
4

, then

K(z, z′) =
1

cψ0

∫
Pn

|ξ|α+n+1eitr(z−z
′)ξ dξ

|ξ|n+1
2

.

The last integral was given in [1], and finally

K(z, z′) = Cn|z − z′|−(α+n+1),

where Cn is a constant. By Cayley transform, K(z, z′) is just the Bergman kernel of
classical domain of class three gotten by Hua for the case α = 0, see [6, p.84].

5 Orthogonal admissible wavelets

Let Hα2 := {f : f ∈ Lα2(Hn), f̂(ξ, y) = 0, for ξ /∈ Pn}. It is obvious that Aα2 ⊂
Hα2. If we choose an appropriate orthogonal basis {ψk}k of AAW , then each state ψk
gives a coherent state system {Uz|ψk >}z∈Hn and spaces Aαψk = {(f, Uzψk) : f ∈ H2}. We
can get Aαψk are orthogonal to each other and

∑
k

⊕
Aαψk = Hα2. Choosing appropriate

orthogonal basis of AWm for each m ∈M , then can gotten an orthogonal decomposition
of Lα2(Hn).
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From (3.1), for two admissible wavelets ϕ(y), ϕ̃(y) ∈ AAW , we say that they are
orthogonal to each other if they satisfy∫

A

∫
N

ˆ̃ϕ(antna)ϕ̂(antna)α(a)dnda = 0. (5.1)

We now want to give an orthogonal basis of AAW with the first function just being ψ0

given by (4.5). Let ϕ(y) ∈ AAW defined by

ϕ̂l,k(an
tna) := gl(a)hk(an)|a|2se−tr(

tna2n), (5.2)

where s = 2α+n+1
4

, gl(a), hk(n) are some real polynomials of n variables (a1, · · · , an) and
(n−1)n

2
variables (nij)1≤i<j≤n respectively and here an denotes (without rising confusions)

(a1n12, · · · , a1n1n, a2n23, · · · , a2n2n, · · · , an−1nn−1n).

Then for such wavelets, (5.1) becomes∫
A

∫
N
gl(a)hk(an)gl′(a)hk′(an)|a|4se−tr(

tna2n)α(a)dadn = cδll′δkk′ . (5.3)

Use d(an) = Π1≤i<j≤nd(ainij) = Πn−1
i=1 a

n−i
i · Π1≤i<j≤ndnij, we know the left hand side of

(5.3) is ∫
A

∫
N
gl(a)gl′(a)hk(n)hk′(n)|a|4sΠn−1

i=1 a
1−i
i Exp(−2

n∑
i=1

a2i − 2
∑

1≤i<j≤n
n2
ij)dadn

=
∫
ai>0

gl(a)gl′(a)Π
n−1
i=1 a

2α+n+1−i
i Exp(−2

n∑
i=1

a2i )da1 · · · dan ·∫
nij∈R

hk(n)hk′(n)Exp(−2
∑

1≤i<j≤n
n2
ij)Π1≤i<j≤ndnij.

Let L
(α)
l (x) and Hk(x) be the Laguerre polynomial of degree l and the Hermite polyno-

mial of degree k respectively, i.e.

L
(α)
l (x) =

l∑
ν=0

(
l + α

l − ν

)
(−x)ν

ν!
,

Hk(x) = k!

[ k
2
]∑

m=0

(−1)k(2x)k−2m

m!(k − 2m)!
.

For l = (l1, · · · , ln) ∈ Zn
+, k = (k12, · · · , k1n, k23, · · · , k2n, · · · , kn−1n) ∈ Z

(n−1)n
2

+ , we define

gl(x) := Π1≤i≤nL
(α+n−i

2
)

li
(2a2i ) hk(n) := Π1≤i<j≤nHkij(

√
2nij). (5.4)

Then from (5.4) and the orthogonal properties of Laguerre polynomials and Hermite
polynomials, we know ϕl,k defined by (5.2) with gl(a), hk(n) given by (5.5) are orthog-
onal to each other. And by the completeness of Laguerre polynomials and Hermite
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polynomials in L2(R+, x
αe−xdx) and L2(R, e−x

2
dx), we know ϕl,k, l ∈ Zn

+, l ∈ Z
(n−1)n

2
+ ,

form an orthogonal basis of AAW .
Let

Al,k := {W α
ϕl,k

= |y|−
α+n+1

2 (f, Uzϕl,k) : f ∈ H2},

then Al,k are orthogonal subspaces of the Hilbert space Hα2 and in fact they form an
orthogonal decomposition of Hα2.

For m ∈M , let ϕml,k ∈ AWm (with ϕIl,k = ϕl,k) defined by

ϕ̂ml,k(anm
tna) := gl(a)hk(an)|a|α+

n+1
2 e−tr(

tna2n), (5.5)

where gl(a), hk(n) given by (5.5), then ϕml,k, l ∈ Zn
+, k ∈ Z

(n−1)n
2

+ , form an orthogonal basis
of AWm. Define Aml,k similarly

Aml,k := {W α
ϕm
l,k

= |y|−
α+n+1

2 (f, Uzϕ
m
l,k) : f ∈ L2

m}, (5.6)

we have
Theorem 4. Let Aml,k defined by (5.7), then

Lα2(Hn) =
∑
m∈M

∑
l∈Zn+

∑
k∈Z

(n−1)n
2

+

⊕
Amk,l.

In [5], similarly decomposition was given, but it is not clear if the first decomposition
component is the Bergman space. Here, for l = 0⃗, k = 0⃗, we know from the construction
of ϕml,k that ϕ0⃗,⃗0 = ψ0 given in §4. Thus from §4 we know the first component A0⃗,⃗0 = AI

0⃗,⃗0

is just the Bergman space.
One of the main motivations for the decomposition of L2 function space on Hn is for

the study of Hankel and Toeplitz type operators, as we did in [7], [8]. We would consider
Toeplitz type operators with symbol being rotation invariant or “radial” as in [8]. For
this purpose, we need to give another decomposition of L2 function space via the “polar
coordinates” of y ∈ Pn:

y = tkλk, k ∈ O(n), λ ∈ A. (5.7)

In this case, λi, 1 ≤ i ≤ n, are the eigenvalues of y. In fact, such decomposition of
y has been very useful in numerical analysis, multivariate statistics (see [15], [11]). In
the rest of this section, we will give an orthogonal decomposition of Lα2(Hn) by using
coordinates (5.8) and will consider the case n = 2 for simplicity.

For appropriate function f on Pn, we have (cf [17, p.35])∫
Pn
f(y)

dy

|y|n+1
2

= 2n
∫
A

∫
N
f̂(t(an)−1(an)−1)dnda, (5.8)

∫
Pn
f(y)

dy

|y|n+1
2

= cn

∫
K

∫
A
f̂(tkλk)γ(λ)dλdk, (5.9)
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where in (5.10), cn is a constant, K = O(n), dk is the invariant measure of K and

γ(λ) = Πn
i=1λ

−n−1
2

i Π1≤i<j≤n|λi − λj|, for λ = diag(λ1, · · · , λ) ∈ A.

For ϕ(y), ϕ̃(y) ∈ AAW , let φ, φ̃ defined by

ϕ̂(y) = α− 1
2 (a)φ̂(y−1), ˆ̃ϕ(y) = α− 1

2 (a)ˆ̃φ(y−1), (5.10)

with y = ant(an), α(a) = Πan−2i+1
i . If ϕ, ϕ̃ are orthogonal to each other, then φ, φ̃ shall

satisfy ∫
A

∫
N

ˆ̃φ(t(an)−1(an)−1)φ̂(t(an)−1(an)−1)dnda = 0. (5.11)

From (5.9), (5.10), the left hand side of (5.12) is∫
Pn

ˆ̃φ(y)φ̂(y)
dy

|y|n+1
2

= 2−ncn

∫
K

∫
A

ˆ̃φ(tkλk)φ̂(tkλk)γ(λ)dλdk. (5.12)

For n = 2, y =

[
y1 y2
y2 y3

]
∈ P2, we write y = ant(an) with

a1 = |y|
1
2/
√
y3, a2 =

√
y3, n12 = y2/

√
|y|,

and
α(a) = a1/a2 =

√
|y|/y3. (5.13)

We also can give polar coordinates of y by

y = tkθ

[
λ1 0
0 λ2

]
kθ, with kθ =

[
cos θ − sin θ
sin θ cos θ

]
. (5.14)

In fact, (5.15) give a one to one correspondence from P2 to (θ, λ1, λ2) with 0 ≤ θ <
π, 0 < λ1 < λ2, and the integral formula of (5.10) will be∫

P2

f(y)
dy

|y| 32
= c′n

∫ π

0

∫
0<λ1<λ2

f̂(tkθλkθ)γ(λ)
dλ1dλ2dθ

λ1λ2
,

with γ(λ) = (λ1λ2)
− 1

2 (λ2 − λ1). Thus from (5.13), we shall construct φ̃, φ satisfying∫ π

0

∫
0<λ1<λ2

ˆ̃φ(tkλk)φ̂(tkλk)(λ1λ2)
− 3

2 (λ2 − λ1)dλ1dλ2dθ = 0. (5.15)

Let ˆ̃φ(tkλk), φ̂(tkλk) be the functions of the following forms:

h(θ)q(λ−1
1 , λ−1

2 )|λ1λ2|−
2α+3

4 Exp(−λ−1
1 − λ−1

2 ),

where h(θ) are real functions of θ and q(t1, t2) are real polynomials of t1, t2. Then from
(5.16), we have∫ π

0
h(θ)h̃(θ)dθ ·

∫
0<t2<t1

q(t1, t2)q̃(t1, t2)(t1t2)
αe−2t1−2t2(t1 − t2)dt1dt2 = 0. (5.16)
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We can choose h1j(θ) = cos(2jθ), h2j(θ) = sin(2jθ). Then hij(θ), i = 1, 2, j ∈ Z form an
orthogonal basis of L2([0, π), dθ).

For the radial part, let qk,l(t1, t2) defined by

qk,l(t1, t2) = tk1pk(
t2
t1
)ql(t1 + t2),

where pk, ql are some polynomials of degree k, l respectively. Then pk, ql shall satisfy∫
0<t2<t1

pk(
t2
t1
)ql(t1 + t2)pk′(

t2
t1
)ql′(t1 + t2)t

k+k′+α
1 tα2 e

−2t1−2t2(t1 − t2)dt1dt2 = Cklδkk′δll′ .

By changes of variables, t = t2/t1, s = t1 + t2, we have

∫ 1

0
pk(t)pk′(t)

tα(1− t)

(1 + t)2α+k+k′+3
dt ·

∫ ∞

0
ql(s)ql′(s)s

2α+k+k′+2e−2sds = Cklδkk′δll′ .

We choose ql(t) = L
(2α+2k+2)
l (2t)–the Laguerre polynomial of degree l. And assume that

pk(t) = (1 + t)2kgk(
(
1− t

1 + t

)2

),

where gk(t) is a polynomial of degree k, then gk(t) shall satisfy∫ 1

0
gk(t)gk′(t)(1− t)αdt = Ckδkk′ . (5.17)

Let P
(α,β)
k (t) denote the Jacobi polynomial of degree k, they form an orthogonal basis

of function space L2([−1, 1], (1− t)α(1 + t)βdt). So that from (5.18), let

gk(t) = P
(α,0)
k (2t− 1).

Finally for k ∈ Z+, l ∈ Z+, let ψ
1
j,k,l, ψ

2
j,k,l be functions on P2 defined by

ψ̂1
j,k,l(y) := y

1
2
3 |y|

α+1
2 cos(2jθ)(try)2ke−tryL

(2α+2k+2)
l (2try)P

(α,0)
k (

(try)2 − 8|y|
(try)2

),(5.18)

ψ̂2
j,k,l(y) := y

1
2
3 |y|

α+1
2 sin(2jθ)(try)2ke−tryL

(2α+2k+2)
l (2try)P

(α,0)
k (

(try)2 − 8|y|
(try)2

),

where θ is given by tkθλkθ as in (5.15). Then from above construction, we know ψij,k,l ∈
AAW and all they form an orthogonal basis of AAW . Similarly as above, we define

Bi
j,k,l := {|y|−

α+3
2 Wψi

j,k,l
f(z) : f ∈ H2}, (5.19)

then Bi
j,k,l are orthogonal to each other with respect to the measure |y|αdxdy and form

an orthogonal decomposition of Hα2.

14



For other m =

[
1 0
0 −1

]
,

[
−1 0
0 1

]
or

[
−1 0
0 −1

]
, we can define ψi,mj,k,l ∈ AWm by

ψ̂i,mj,k,l(
tkθmλkθ) := ψ̂ij,k,l(

tkθλkθ),

and define Bi,m
j,k,l similarly as (5.20). Then we have

Theorem 5. Let Bi,m
j,l,k be subspaces of L

α2(Hn) defined as above with Bi,I
j,l,k = Bi

j,l,k,
then

Lα2(Hn) =
∑
m∈M

∑
i=1,2

∑
j∈Z

∑
l,k∈Z+

⊕
Bi,m
j,k,l.

For n > 2, we also can give an orthogonal decomposition of Lα2(Hn) as above by
using the polar coordinates of y ∈ Pn. We still assume ψ, ψ̃ given by (5.11), then φ, φ̃
shall satisfy (having a small change compared to (5.10) or (5.16))∫

SO(n)

∫
λi>0

ˆ̃φ(tkλk)φ̂(tkλk)γ(λ)λdk = 0.

We then assume φ, φ̃ have the following forms

h(k)q(λ−1
1 , · · · , λ−1

n )(λ1 · · ·λn)−
2α+n+1

4 Exp(−λ−1
1 − · · · − λ−1

n ),

then h, q, h̃, q̃ satisfy∫
SO(n)

h̃(k)h(k)dk ·
∫
ai>0

q(a1, · · · , an)q̃(a1, · · · , an) ·

(a1 · · · an)αExp(−
n∑
i=1

ai)Π1≤i<j≤n|ai − aj|dai · · · dan = 0.

We can choose h(k) = tnσKM(k), an orthogonal basis of L2(SO(n), dk) as in [19, Ch.10].
For the radial part, let

qk⃗(a1, · · · , an) := Lα
k⃗
(a1, · · · , an),

where Lα
k⃗
(a1, · · · , an) are generalized Laguerre polynomials in [10]. In such way, we can

give an orthogonal basis for AAW , even for AWm, m ∈ M . By theses wavelets and
their corresponding wavelet transforms, we define the orthogonal subspaces of Lα2(Hn)
and they all form an orthogonal decomposition of Lα2(Hn) as above (details omitted).
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