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Abstract

Vanishing moments of sufficiently high order and compact supports of
reasonable size contribute to the great success of wavelets in various areas
of applications, particularly in signal and image processing. However, for
multi-wavelets, polynomial preservation of the refinable function vectors
does not necessarily imply annihilation of discrete polynomials by the
high-pass filters of the corresponding orthogonal or bi-orthogonal multi-
wavelets. This led to the introduction of the notion of “balanced” multi-
wavelets by Lebrun and Vertterli, and later, generalization to higher-
order balancing by Selesnick. Selesnick’s work is concerned only with
orthonormal refinable function vectors and orthonormal multi-wavelets.
In this paper after giving a brief overview of the state-of-the-art of vector-
valued refinable functions in the preliminary section, we will discuss our
most recent contribution to this research area. Our goal is to derive a
set of necessary and sufficient conditions that characterize the balancing
property of any order for the general multivariate matrix-dilation setting.
We will end the second section by demonstrating our theory with examples
of univariate splines and bivariate splines on the four-directional mesh.

Introduction

Orthonormal multi-wavelets associated with certain refinable function vec-
tors (also called scaling function vectors) have several advantages in com-
parison with scalar wavelets. For example, an orthonormal multi-wavelet
can possess all the desirable properties of orthogonality, short support, high
order of smoothness and vanishing moments, and symmetry/anti-symmetry
[8, 10, 11, 12, 33]. Thus, orthonormal multi-wavelets offer the possibility of
superior performance for signal/image processing applications, particularly for
feature extraction, pattern recognition, and noise reduction (removal) [52, 53].

However, various mathematical difficulties arise in applying multi-wavelets to
process scalar-valued data. Although pre-filtering methods have been sug-
gested and work well for some applications [1, 16, 37, 52, 53, 57, 58], the extra
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effort requires additional computational cost and often leads to other compli-
cations. More recently, the notion of “balanced” orthonormal multi-wavelets
was introduced in [40] in an attempt to eliminate the need of pre-filtering. Af-
ter a follow-up work [48] was completed, the terminology “balancing” in [40]
is now called “1-balancing,” since this notion is generalized to “K-balancing”
for any K > 1 for better performance. However, with the exception of a few
examples constructed in [48, 49], all the balanced orthonormal multi-wavelets
in the open literature are only 1-balanced [19, 43, 54, 55, 56].

Nonetheless, as compared with scalar-valued wavelets, even 1-balanced multi-
wavelets already achieve at least comparable results when applied to image
compression. For example, it was demonstrated in [19, 43, 56], that 1-balanced
orthonormal multi-wavelets already perform better than scalar-valued orthog-
onal wavelets in several comparison tests among a wide variety of natural im-
ages, and even outperform the bi-orthogonal 9/7 wavelet for certain images
such as “Barbara”. It is therefore convincing that K-balanced wavelets, for
K > 2, should provide a much more powerful tool. In this regard, it should be
mentioned that the bi-orthogonal 9/7 wavelet was adopted by the JPEG-2000
standard for image compression and by the MPEG-4 standard as an option for
compression of I-frames for videos.

In this paper we generalize the notion of K-balanced multi-wavelets from the
orthonormal setting in [48] to the bi-orthogonal and multivariate settings in
order to give more flexibility for construction (particularly for the univariate
setting) and to allow for a broader range of applications (when multivariate
multi-wavelets are preferred). More precisely, suppose that a;j,---,a, € IR’.
A compactly supported vector-valued function F' = [fi,---, f,]7 € (L?)" :=
(L2(IR®))" is said to be K-balanced relative to (aj,---,a,), if

/Rs filx)(x —ay)%dx = /Rs fi(x)(x — a;)“dx,

for 1 < I,i < r|a] < K. Let ® & be refinable function vectors that are
bi-orthogonal duals to each other. We will give several characterizations for
K-balancing of ®. In particular, a characterization formulation in terms of
the vectors y, in the definition of the sum rule order of the mask of ® (see
§1.3 about sum rule order) will be given. More precisely, we will see that d
is K-balanced relative to (ai,---,a,) C R® if and only if o = (Ya,1," > Ya,r)
satisfy

(0%
Yod = D (ﬂ) (a1 — a1)’Ya—p1, 2<1<m|af <K.

pa



This condition enables us to decide easily the balancing order K of the bi-
orthogonal dual of a refinable function vector, and helps us to construct or-
thonormal and biothogonal refinable function vectors.

This paper is organized as follows. We will first discuss preliminary results
on refinable function vectors in Section 1. K-balancing of the refinable func-
tion vectors and its characterizations are discussed in Section 2, where some
examples of balanced refinable function vectors are also given.

1 Preliminary Results

The study of polynomial preservation (or polynomial reproduction) in the lin-
ear algebraic span of integer-shifts of a finite number of compactly supported
functions has been a popular area of investigation in the Approximation The-
ory community. We first give a very brief summary in §1.1 of several equivalent
statements of this problem in the distribution setting in IR*, s > 1. A general
approach for constructing such compactly supported distributions that are re-
finable relative to a given expansive dilation matrix and some matrix-valued
Laurent polynomial symbol P(z) is discussed in §1.2. The notion of sum rules
to be satisfied by P(z) is introduced in §1.3, where sum rules and polyno-
mial preservation are shown to be intimately related for compactly supported
refinable distributions. In §1.4, we show that these distributions are indeed
functions in L2, provided that the transition operator associated with P(z)
satisfies Condition E and that P(z) itself satisfies the sum rule of at least the
first order. Smoothness of these L? functions and methods, along with avail-
able software, to determine the order of Sobolev and Holder smoothness are
discussed in §1.5. Finally, the characterization of bi-orthogonal duals by the
bi-orthogonal condition of their corresponding two-scale Laurent polynomial
symbols is formulated in terms of the sum rule and Condition E in §1.6.

1.1 Polynomial preservation

Let ¢¢,f = 1,---,r, be compactly supported distributions in R*, s > 1, and
® := [¢1,---,¢r]7. We say that ® has the property of polynomial preser-
vation of order m (or ® € PP, for short) if there exists a (finite) linear
combination ¢ of integer shifts of ¢, -, ¢, such that

Y qke(-—k)=q, qem, 4,
keZs



4 Charles K. Chui, Qingtang Jiang

holds in the distribution sense (i.e. equality holds upon taking inner product
with any test function), where 7;,_; denotes the space of all polynomials of
total degree < m in R®. Tt follows from the Poisson summation formula that
the above formulation is equivalent to the (modified) Strang-Fix conditions:

Da(ﬁ(27{'k) = 60,a50,k |a| <m, ke Z°. (11)

It is also easily seen that ® satisfies (1.1) if and only if there exists a 1 X r
vector t(w) = > jaj<m ta€ " of trigonometric polynomials such that

D*(t®)(21k) = 8,000 k; la| < m,k € Z°, (1.2)
which, in turn, is equivalent to
« —
x% = Z {Z (ﬁ) k® Byg}ti)(x -k), |a| <m, (1.3)
keZ® p<a

in the distribution sense, with
Yo = (—iD)*t(0), |a| <m. (1.4)

For r = 1, this formula was discussed in [6], and for arbitrary r > 1, the reader
is referred to [25].

1.2 Construction of compactly supported ®

Let A be an expansive matrix (i.e. all eigenvalues A of A satisfy |A| > 1) with
integer entries. For any finite sequence {Px} of square matrices of dimension
T, we consider its corresponding matrix-valued Laurent polynomial symbol

1
P(z) =~ 3" PBz*,  a:=|det(A)], (1.5)
keZ?®

and say that P(1), 1 := (1,---,1), satisfies Condition E (or P(1) € E for
short [51]), if the value 1 is a simple eigenvalue of the matrix P(1) and all
other eigenvalues of P(1) lie in |2| < 1. Under the assumption that P(1) € E,
it follows that the infinite product

T —i(AT) I w
10, P(e )

converges uniformly on every compact subset of IR®. This was first proved in
[17] for s =1 and A = [2], and extended to A = 2I; in [42]. The proof for our



more general matrix A follows the same argument given in [42]. Let vy be the
right eigen-vector of P(1) corresponding to the eigenvalue 1, i.e.

P(l)VO = Vy,
such that |vo| = 1, and define
B(w) = I P(e A7 w)y,. (1.6)
i=

Then its inverse Fourier transform ® is a compactly supported distribution
that satisfies the so-called refinement equation

d(x) = > Pc®(Ax —k). (1.7)
keZ?

We call the sequence {Px} and its corresponding symbol P(z) the mask and
two-scale symbol of ®, respectively. We also call ® a normalized solution of
the refinement equation (1.7).

On the other hand, if ® is a compactly supported distribution vector that satis-
fies (1.7) for some finite sequence { Px }, we say that & is a refinable distribution
vector. For such @, if each entry of the matrix Zkezs(&;&)*)(w) is a bounded
function and that the matrix

3 (83%)(2k)

keZ®
is non-singular, then the symbol P(z) defined by (1.5) satisfies P(1) € E (see
e.g. [34]).

1.3 Sum rules

In this section, we will always assume that P(1) € E. We will study conditions
on the finite sequence { P} under which the compactly supported distribution
® introduced in (1.6) satisfies ® € PP, as discussed in §1.1.

Let A be defined as in §1.2, and let wy, with wg = 0 and 0 < h < a, be the
representors of Z°/ATZS. We say that P satisfies the sum rule of order m
(or P € SR,, for short) if there exist constant vectors y*, with yo # 0, such
that

Y (=p (g)ia_g(fg,% = [ 3 (A‘lﬂ)ﬂth] yr (1.8)

' 7
T!
B<La |T|=|e| L|Bl=|c]



6 Charles K. Chui, Qingtang Jiang

for all |a| < m,~y, € Z°/ATZ*, where

B = Z(k + Ail'}’h)ﬂPAk+'ym
k

and [ gT] is the inverse of the matrix [’BT—:] For the case A = 2I;, (1.8)

e Il,1B1=lal
can be simplified to be

> (=¥ (g) Ya-gJ8y =27 Ya, (1.9)

B<La

for all y € {0,1}%, |a| < m, with

Ty =Y (k+27'9)" Py,
k

Of course when r = 1, we can further simplify (1.9) to

> kezs P = 2%,
Yokezs 2k +7)*Poxyy = Ykezs (2k)* Pox, v € {0,1}°,]al <m,

for some suitable choice of {7, }.

Now, consider an r-vector t(w) = Y kez tre "8 of trigonometric polynomials
that gives yo = (—iD)?t(0) for all |a| < m. It was shown in [25] that (1.8) is
equivalent to

D*(¥(A"w) P(e™™))lu=2ra 7w, = On,0DE(0), ol <m, (1.10)

forall0 < h < a.

The following result shows that if P € SR,,, then the normalized solution & of
(1.7) has the property of polynomial preservation of order m (® €PP,,).

Theorem 1.1. Let P € SRy, for some integer m > 1 and ® be a compactly
supported normalized solution of (1.7). Then ® satisfies (1.3) with yo = Ya;
or equivalently, ® € PP,,.

Conwversely, if ® is some compactly supported refinable distribution vector with
finite mask {Px} that satisfies PPy, such that the matrices Y, (®®*)(2km +
2rA~Twy,) are non-singular for all 0 < h < a, then P € SR, with Yo = Ya.

Theorem 1.1 was obtained in [21] for » = 1, and independently in [2] and
[34] for any r > 1. The equivalence of PP,, and SR,, in the vector setting



were derived earlier under certain stronger assumptions on ®, such as linear
independence of {¢/(- — k) : k€ Z°,£ =1,---,r} in [18] for s = 1 and [3, 4]
for s > 1, and stability of ® in [46] for s = 1.

For a given finite mask {Px} and dilation matrix A, (1.8) can be used to deter-

mine the maximum sum rule order m of P and to find the vectors y,, and hence,

the maximum polynomial preservation order and the vectors y, =y, in (1.3)

for generating 7, ;. Matlab routines for calculating sum rule orders can be

downloaded from the website of the second author at www.math.umsl.edu/~jiang.

1.4 From compactly supported distributions to function vec-
tors

To assure that the compactly supported distribution vector ® constructed in
§1.2 is a function vector in (L?)", we consider the transition operator Tp asso-
ciated with the symbol P(z) in (1.5). Let Co(T¥)"*" denote the space of all
r X r matrices with trigonometric polynomial entries. The transition operator
Tp associated with P is defined on Cy(T*)"*" as

TPF(LU) = Z P(eiiA_T(w+27Wh))F(A7T(w + Qth))P(efiA_T(w—f—%rwh))*’
0<h<a

The representation matrix of Tp, also denoted by Tp for convenience, is
Tp = [Bak—jlkj (1.11)

where

1 —
Bj = EZPk_j ® Py,
k

and ® denotes the Kronecker product of A and B, namely A® B = [a;;B] (see
e.g. [34]).
Next, consider the refinement operator

Upf:= Y PBf(A--k), fe(L?), (1.12)
keZ?

that defines the so-called cascade algorithm

(1.13)

@, :=UpPp-_1, n=1,2,---,
o, € (L2).
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It is known (see e.g. [5]) that for the cascade algorithm (1.13) with compactly
supported initial function vector ®; € (L?)" to converge in the (L2)"-norm, it
is necessary that ®q satisfies

> voPo(- —k) =co #0, (1.14)
keZe

where ¢y is a nonzero constant and yq is the left eigenvector of P(1) cor-
responding to the eigenvalue 1. The significance of the convergence of the
cascade algorithm is that the limit ®, which is necessary an (L?)" function
vector, is a refinable function vector that satisfies (1.7). The following result
is established in [5] for the more general Sobolev setting.

Theorem 1.2. A necessary and sufficient condition for the cascade algorithm
to converge in the (L2)"-norm for any initial compactly supported ®q € (L%)"
that satisfies (1.14) is that

Pe SRy and Tp € E. (1.15)

We remark that special cases of this theorem have been considered in earlier
works [14, 28, 39, 50, 51]. In particular, Theorem 1.2 itself was already es-
tablished in [50] for A = 2I;. The convergence in the LP-norm has also been
studied in [15, 20, 28].

The cascade algorithm (1.13) is closely related to the theory of stationary
vector subdivision. The vector subdivision operator Sp

(Spu)k = Z uij_Aj, k € Z° . (1.16)
jez?

defined on £o(Z*)'*", where u = (uj)jezs, is used to generate u” := Spu™ !,
n =1,2,---, with initial u® € 45(Z°*)'*". The characterization of L” conver-
gence of (u”) (for s = 1,7 > 1) was studied in [45].

To verify (1.15), the difficulty is to study Tp € E. In this regard, it is sufficient
to consider certain truncation of Tp. More precisely, consider

Q:={> A%z,: =z €[-N,NJ’keN}
k=1

where N = Ny — N1, with N; and N, denoting the lower and upper coordinate
degrees of P, respectively. Also, consider the invariant subspace

Hg:={F(w) € Co(T*)"™™": F(w)= Y  Fee ™},
keQNZs



of Co(T?®) under Tp. It was shown in [22] and [34] that eigenfunctions of
Tp corresponding to the nonzero eigenvalues lie in Hg. Thus, to study the
eigenvalues and eigenfunctions of Tp, one needs only consider those of the
restriction Tp g of Tp to the finite-dimensional space Hq, or equivalently those
of

Tpa = [Bak—jlkje(onz®)-

For ® = [¢1,---,¢:]T € (L?)", we say that ® is (L?)"-stable, provided that
there exist positive constants 0 < C7 < Cy < oo such that

Cl“CHeZ(Zs)IXT S || Z CkCI)(- — k)||L2(]RS) S Cg”CHez(Zs)lxr, Ve € 62(Z5)1><1'_
keZ®

The following theorem is concerned with the stability of the refinable vector-
valued functions (see [50] for A = 21 and a straightforward generalization to
arbitrary A in [34]).

Theorem 1.3. The normalized solution ® of (1.7) is (L?)"-stable if and only
if (1.15) is satisfied and that the matriz-valued eigenfunction of Tp correspond-
ing to the eigenvalue 1 is either positive or negative definite.

From Theorems 1.2 and 1.3, we see that stability implies the convergence of
the cascade algorithm.

1.5 Smoothness of refinable function vectors

The Sobolev smoothness of the refinable vector-valued functions was discussed
in [9, 27, 29, 34, 44, 47, 50]. The results for s = 1 in [9, 44] are based on the
factorization of the symbol P(z). In general, it is not possible to generalize
these results to the multivariate setting. On the other hand, the smoothness
estimates in [34, 50] for IR’ are related to both the eigenvalues and the cor-
responding eigenvectors of the transition operator Tp, while those in [27, 47]
are related to the spectral radius of the operator Tp restricted to an invariant
subspace of Tp. Since computation of the eigenvectors of a large matrix is not
as stable as that of the eigenvalues, it is difficulty to decide whether an eigen-
value of Tp should be kept or thrown away when the methods in [34, 50] are
used for matrices Tp o of high dimensions. On the other hand, due to roundoff
error, it is difficulty to find the invariant subspaces in [27, 29, 47] when the
size of matrix Tpq is large. A characterization of the Sobolev smoothness in
terms solely of the eigenvalues of the transition operator is desired. For the
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scalar case, such a characterization is available in [31] when the dilation ma-
trix A is isotropic, meaning that all eigenvalues of A have the same magnitude.
Recently a characterization of the smoothness for vector-valued @ in terms of
the eigenvalues of Tp was obtained in [26].

More precisely, suppose that A is istropic with eigenvalues o1, - - 0,, and that
the mask {Px} satisfies the sum rule of order m. Let o = (01,---,05), and
Aj, 1 <j<rwith \y =1 and |\;| <1,j =2,---r, be the eigenvalues of P(1).
Set _

Sm = spec(Tp)\Sm , (1.17)

with S, being the set of all
o\, J_az\j,a_ﬂ, a,B €L, | <m,|B] <2m,2<j <,

where multiplicities of the above a_o‘)\_j, oTa)\j,a_ﬁ are taken into account
in the definition of S,,,. Also let vo(®) denote its critical Sobolev exponent,
defined by

vp(®) :==sup{v: ¢; e WY(R®),j =1,---,r},

where WY (IR?) is the Sobolev space defined by
WIR) = {f 5 [ (1 )| f@)Pde < o).

Then we have following theorem [26].

Theorem 1.4. Let ® € (L?)" be the normalized solution of (1.7) with mask
{Px} and some isotropic dilation matriz A. Also, let m be the largest positive
integer for which P € SRy, and py = max{|\| : A € Sy}, where Sy, is defined
in (1.17). Then

s
2(®) > 2 log, po (118)
If, in addition, ® is (L?)"-stable, then
s
ve(®) = ~3 log, po - (1.19)

For the scalar case (r = 1), Sy, is given by
Sm={07%: 18| < 2m}.

Theorem 1.4 for r = 1 and s > 1 is contained in [31]. This theorem leads
to some efficient ways for computing highly accurate values for the Sobolev
smoothness v5(®) by standard eigenvalue solvers.
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The Holder smoothness of @ can be characterized in terms of the uniform joint
spectral radius of the family A, := {Ap,|v,.,7 € '}, where I is a fixed set of
representators for Z°/AZ’, and Ap,,v € I" are the operators defined by

(ApyV)k = Y Pryac—vi, k€%, vel(Z°),
jezs

and V, is the subspace of £y(Z*)" consisting of {vk} with support in an ap-
propriate finite set Q1 N Z*, and satisfying

DO (#(w)v(w))]w=0 =0, |a| <m, (1.20)

where v(w) := Yyeq,nzs Vke ' and t(w) is the vector in (1.10). (See Theo-
rem 5 in [36] for the details.) For s = 1, a different characterization of Hélder
smoothness of ® was obtained in [29] using an invariant subspace of Ap, dif-
ferent from V;,. For the subspace V;, defined in (1.20), since we know t(w), we
can easily give its basis. Therefore we can give the representating matrices of
the operators Ap,|yv,,. The reader is referred to [36] for the Matlab routines
for calculation of the order of smoothness.

1.6 Bi-orthogonal duals

Let ® = [¢1,---, ¢y]" € (L) and ® = [¢y,---, d,]" € (L?)" be compactly sup-
ported refinable vector-valued functions with dilation matrix A and with finite
masks {P} and {Gy}, respectively. We say that ® and & are bi-orthogonal
duals of each other if {®(x — k)} and {®(x — k)} are bi-orthogonal, meaning
that

/ ®(x)B(x — k)" dx = doxcl,, k€ B (1.21)

Hence, if o = ®, we say that ® is orthonormal.

A necessary condition for & and ® to be bi-orthogonal duals is that their
two-scale symbols satisfy

m—1
Z P(zefﬂﬂAiT“’”)G(zefiZWAiTw“)* =I, z=¢ “ wecRR’ (1.22)

n=0
Under certain mild conditions, this condition is also sufficient, as follows.

Theorem 1.5. A necessary and sufficient condition for ® and B, with finite
maskes { Py} and {Gyx}, respectively, to be bi-orthogonal duals is that
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(i) P(z) and Q(z) are bi-orthogonal matriz-valued Laurent polynomials as
defined in (1.22),

(i) P(1),G(1) € E,

(iii) P,G €SR1, and

(iv) Tp, T € E.
The proof this theorem can be formulated as a generalization of the proof in
[23] for s = 1,A = [2], and the proof in [24] for s > 1. When & = & and
P = @G, Theorem 1.5 gives a characterization of the orthonormality of ® in
terms of its mask {Pg}.

Suppose Q"(z) and H"(z),1 < h < a, are matrix-valued Laurent polynomials
that satisfy

Yo<nca Plae 2T ) Hh (ge 2rA ) =0, 1< h<a
> 0<n<a QM (ze 2mAT W Tw )G(ze’iQWA_T“’”)* =0, 1<h<a
20<n<a Qh(ze_ZZWA )Hé(ze—iZWA_Twn)* = 5h,ZIra 1 S h,é < a,

. N (1.23)
for w € R®, where z = e~™. Let ", U" be the vector-valued functions defined
by

~ =h s

P(ATw) = Q)W) T (ATw) = H'(D)Bw).  (1.24)
Then {a~ 2 ¥" (A "x—k),a” 2U"(A "x—k),1 < h < a,n € %,k € Z*} forms
a bi-orthogonal system (cf. [30]).
We use {G,H",1 < h < a} and {P,Q",1 < h < a} for wavelet decomposition
and reconstruction respectively. More precisely, the decomposition algorithm
is given by

; 1 j i 1 ;
-1 1 h
cg:l? ) = \/’TTL ;Gk—Ancl(g)’ dglj,h, ) = \/m ;HkAncgc])a ne %s, (1'25)
and the reconstruction algorithm is given by

e \/_ZPT aeed ™Y +— Y S (@)l nem (1.26)

1<h<a k

2 Balanced Refinable Vectors

The notion of balancing is generalized to the multivariate bi-orthogonal setting
in this section. With balanced bi-orthogonal duals, discrete polynomials are
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preserved by the lowpass filters and annihilated by the highpass filters of the
corresponding multi-wavelets. Several important characterization results for
these two properties are discussed in this section. Examples are given in some
details, first for univariate quadratic and cubic spline function vectors, then
for continuous piecewise linear polynomials on the four-directional mesh A? in
IR?, and finally for C! cubic bivariate splines also on AZ2. Both the dilation
matrix 275 and the quincunx matrix are considered in the bivariate examples.

2.1 The notion of balancing

Let ai,---,a, € IR°. A compactly supported vector-valued function F =
[f1,--+, fr]T € (L?)" is said to be K-balanced, K > 1, relative to (aj,---,a,),
if

[ 5 —a)dx= [ | fix)(x = 2)7dx (2.1)

for 1 < 1,i < r/|al] < K. This is an extension of the notion of K-balancing
introduced for the orthonormal univariate setting by Lebrun and Vetterli [40]
for K = 1 and Selesnick [48] for K > 1. (See their other work [41, 49].) The
motivation of their consideration is for processing scalar-valued digital data
by r X r matrix-valued lowpass filters { P;} without the need of pre-filtering
as studied in [1, 16, 37, 52, 53, 57, 58], so that independent of shifts in the
formulation of the r-vector blocks of the scalar-valued input data, the filter-
ing process yields polynomial output upon lowpass filtering of any polynomial
input data in mg_; := 7k _,. This is significant in wavelet signal processing
to allow for the discrete wavelet transform (DWT), with vanishing moments
of order K or higher, to extract detailed features of the input signal. Our
extension from R! to R® and from orthogonal ® to the bi-orthogonal setting
facilitates the study of arbitrary dilation matrix A and achieving certain desir-
able filter and multi-wavelet design criteria. For example, the dilation matrix
A with determinant of A equal to +2 reduces implementation complexity and
contributes to memory and cost reduction.

For the univariate and orthonormal setting, Selesnick [48] gave a complete char-
acterization of compactly supported K-balanced orthonormal refinable func-
tion vector ® with two-scale symbol P(z) = [p;(2)] in terms of an associated
polynomial

(2.2)
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in that ® is K-balanced relative to centers

1 r—1
CI'l:Oa a2:;7 Tty ar = r

if and only if the polynomial (2.2) is divisible by (1 4 z + --- 22" ~1)K. Hence,
to construct P(z) and hence ®, it is necessary to solve for the coefficients of
p; k(%) so that the QMF condition

P(z)P(z)* + P(—2)P(—2)" =1, |z|=1,

is satisfied.

In the next section we will give a necessary and sufficient condition for (2.1)
in terms of an intimate relation between these centers and the vectors y, in
(1.8), or equivalently y, in (1.3), where K < m. We will also show that K-
balancing of o is equivalent to discrete polynomial preservation of total degree
K —1 by its mask {Gy}, and that K-balancing of ® implies discrete polynomial
annihilation of total degree K — 1 by the highpass filters { H{} corresponding
to their lowpass filter {G}-

2.2 Characterization Theorems

Suppose that & and d are compactly supported bi-orthogonal dual refinable
vector-valued functions in (L2)" with dilation matrix A and finite masks { Py}
and {Gy}, respectively. Let Q"(z) and H"(z),1 < h < a, be the matrix-valued
Laurent polynomials satisfying (1.23) and that ¥ T be the vector-valued
functions defined by (1.24).

Suppose @ satisfies the sum rule with order m and y,, |a| < m in (1.8). We
have the following characterizations of K-balancing for ®, K < m.

Theorem 2.1. & is K-balanced relative to (a1, --,a,) C R® if and only if
Ya = [ya,la Tt aya,r] Satisfy

(0%
INEDY (ﬁ) (a;—a1)Pyqp1, 2<1<rma <K. (2.3)
BLla

For the case s =1 with ap = %, (2.3) reduces to

-1
ya,l = Z <a> (e—)ﬂya—ﬂ,la 2 S l S 7',0 S a < K. (24)
fa\B) T
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Theorem 2.1 tells us that ® is K-balanced if and only if y, can be so cho-
sen that both (1.8) and (2.3) are satisfied for |a|] < K. Theorem 2.1 also
enables us to decide the possible balanced order of the bi-orthogonal dual scal-
ing vectors for a given refinable function vector, and tells us how to construct
high balancing orthogonal multi-wavelets and the masks of the primal refinable
function vectors with high balanced bi-orthogonal duals. We also have have
the following:

Theorem 2.2. & is K-balanced relative to (a1,---,a,) C R® if and only if

;[(k +a)* -, (k+a,)®(x—-k) € Wfa|,

for all o] < K.

The following result tells us that K-balancing of ) implies the preservation of
7y for G and the annihilation of 7§ for H h.

Theorem 2.3. ® is K-balanced relative to (ay,---,a,) C R® if and only if
(k+ap)” Pa(j+a1)
> Gr—aj : : . lo| < K,jeZ’,
k (k+ar)a pa(j +ar)

where pq, € wfa|. If & is K-balanced relative to (ai,---,a,) CR?, then

(k +ap)~ 0
> Hi_ : =|:|, lel<KjeZ1<h<a.
k (k+a,) 0

We also have the following result that gives the intimate relationship of poly-

nomial preservation of total degree K' —1 by the mask of ¢ and K-balancing
of its bi-orthogonal dual ®.

Theorem 2.4. ® is K-balanced relative to (ay,---,a,) C R® if and only if
(k +a;) ga(j +a1)
ZBiYLAk = , JEZR’,
k (k +a,)* 2( +ar)
for all |a| < K, where g, € Ty

The proofs of Theorems 2.1-2.4 are given in our paper [7].
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2.3 Univariate B-splines

In this section we discuss univariate balanced bi-orthogonal dual & (relative to
a1 = 0,a0 = %) of ® with spline components. We will use (1.8) to determine
the sum rule order of the masks. For bi-orthogonal filters P, G, we will apply
Theorem 1.5 to decide whether they generate bi-orthogonal refinabe function
vectors, and Theorem 1.4 to calculate the Sobolev smoothness of the refinable
function vectors.

Example 1. Let N3, N3 be the normalized quadratic B-splines with knots
0,0,1,1 and 0, 1,1, 2, respectively, i.e.,

Nso(z) = 22(1 —z)xq015,  Naa(z) = 2°xp0,1) + (2 — 2)°x,2-

Then ®; := [N3 g, N31]7 is refinable with two-scale symbol given by

112 2 2 0 00 9
Pl(z)_§(l0 1]+l24 Zt 21]“’
which satisfies the sum rule of order 3 with
1
Yo = [15 1]5 Y1 = [571]7 y2 = [Oa 1]a

(cf. [46]). It is clear that these vectors don’t satisfy (2.4) with K = 3, but
Yo, y1 satisfy (2.4) with K = 2. Thus it is possible to construct a 2-balanced
(but not 3-balanced) bi-orthogonal dual of ®; by applying Theorem 2.1.

On the other hand, for by
¢1 =3N30+ N3 1, ¢2=—N3o+ N3,

®, := [¢1, ¢2]7 is refinable with two-scale symbol given by

1 13 15 12 4 3 1 9
PQ(Z)_3_2(l—3 —1]+l4 12]Z+[3 1]2)’
which satisfies the sum rule of order 3 with

35 13

ZaZ]a Y2 = |3 _]-

YO:[lal]a Y1:[ 279

Onme can easily verify that these vectors satisfy (2.4) with K = 3. Therefore
it is possible to construct a 3-balanced bi-orthogonal dual ® of ®. Indeed, we
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can construct such a ®, in W1142(R) with supp(®s)=[—1,3]. Tts mask {G}}
is given by

G —0.18960780661003 —0.18960780661003]
-1 = )

0.24341593393929  0.24341593393929

Go — [ 0.81782419542379  0.58025231948912
07| —1.08301023392189 —0.64562424126293 |’

o _ | 107469506607298 —0.12015190410120 |
17| 1.14314871878723  1.68587976841759 |’
. _ | 0:12120349037547  —0.07884298044345

27 | 1.38787180492559 —0.86142245396542 |’
. _ | —0-04574279673035 0.03897822313370 |
37 | —0.58328696638954 0.46961173553079 |

where Gy =0fork < —lork >3. O

Example 2. Let Nyp,N4s; be the normalized cubic B-splines with knots
0,0,1,1,2 and 0,1, 1, 2,2, respectively, i.e.,

1 5 1
Nio(z) = 55%(3 = So)xpo + 72 = 2)°xp1 21
1 1 5
Nyq(z) = Z$3X[o,1} + 5(2 - :1:)2(555 = 2)X[1,2)-

Then ®3 := [Ny, Ny 1] is refinable with two-scale symbol given by

12 5 6 2 1 0],
PS(Z)_§(IO 1]+[26 Zt 52]“’
which satisfies the sum rule of order 4 with
2 4 15
=111 =12 = —1=.2 =0, 2].
Yo [7 ]7 Y1 [3a3]a Y2 [353]a Y3 [ ]

However, it is clear that yg,y; do not satisfy (2.4) with K = 2, but yo does
with K = 1. Thus we can only construct a 1-balanced (but not 2-balanced)
bi-orthogonal dual.

On the other hand, for

2
1 =2N4o+2Ny1, 2= §(N471 — Nap),
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that constitute the canonical Hermite cubic basis, the refinement mask corre-
sponding to ®4 := [p1, o] satisfies the sum rule of order 4 with

Yo = [110]1 y1 = [15 1]a Y2 = [112]1 y3 = [153]'
Hence, it follows from Theorem 2.1 that ®, does not have a balanced bi-
orthogonal dual.

Next, consider the splines

1 1
1 = 6(7N4’0 —Nu1), ¢2= 5(_N4’0 + 7Ny,1),

and @5 := [¢1, $2]T with two-scale symbol given by

. 1 11 21 24 8 1 -1 2
P5(z)_3_2(l—1 1]+[8 24]z+[21 11]2)’
which satisfies the sum rule of order 4 with

3 5 13 17
y0:[1al]a YI:[Z’Z]’ y2:[§a§]a y3:[Z,Z]

One can easily verify that these vectors don’t satisfy (2.4) with K = 4, but
Y0,¥1,y2 satisfy (2.4) with K = 3. Tt is therefore possible to construct a 3-
balanced bi-orthogonal dual ®5 of ®5. Indeed we can construct such a @5 in
WO-8252(R) with supp(®s5)=[—1, 3] and mask given by

1 133 277 1 | —161 815
-1 ’ GO ’

T 52| —29 61 52| 33 175
o o 1 [ 395 —83 a1 [-175 33
V=956 | —83 395 |° 27 512| 815 -—161 |’
1 61 —29
Gs = 1 l _o77 133 1 , Gp=0,kecZ\{-1,0,1,2,3}.

2.4 The parametric approach

The following two examples are based on the parametric expression of the bi-
orthogonal two-scale symbols P(z),G(z) in [32]. For the parametric expression
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of the symmetric filters which could generate high balanced orthonormal ®, the
reader is referred to [35].

Example 3. Consider the bi-orthogonal two-scale symbols

P(z):%l_&g][d,—c]—ké ﬁ%]w%[%][d,c}za,
G(z):%[_ab‘|[c,—d]+%lg 2]z+%l§][c,d]z2’

with b = 7/(16dcb). If we choose

~ 1 1 .
e:ezl,f:fzE,ac:ﬁdzi,c:dﬂ/(db—l),

then P, G satisfy the sum rule of order 2 with the vectors yg,y; for P given by

1
Yo = [150]5 Y1 = [607 Z]a

for some ¢y € IR. Let

Ry := 5 11

V2 [ Lo- ]

Then for suitable choices of b, d, the symbols RyG (2)RY, IEOP(z)Rg" generate a
2-balanced bi-orthogonal dual ® of a 1-balanced ®. For (b,d) = —(6/13,3/2),
O ¢ WOBR2YR) & € W65 (R), and for (b,d) = (3/10,13/6), ® €
W0'4421(]R), P c W1'6027(]R). 0

Example 4. Let P = %22:0 P2k, G = %22:0 Grz* be bi-orthogonal two-
scale symbols with

1-— £E1b —I9 1 1+ IElb —I9
Gy = e ,
0 lb—xs/y xz/y] ' 2[ ]

1+ z1b To ] 1
;O3

b+z3/y —z2/y D)

1—.’171b Z9
—b+zs/y z2/y |’
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(-1, 0) 0 (,0) 0,0 (1,0)

Figure 1: Bézier-nets for ¢ and ¢o

By setting

- b+1 . 166+ 1 3b-1 x9
= ro — ———m = _——
3 , 1 2 b(4b—|— 5)7 Yy =1T1r3 47

2 ~ 2b(4b+5)’
P, G satisfy the sum rule of order 3 and 2 respectively, and the vectors
Yo,y1,y2 for RoPR] have the structure (2.3) for K = 3. With b = 28/13,
® € WOP2(R),® € W2'5524~(]R), and with b = 2, ® € WO (R),® ¢
W24559(R). In both cases, Ry® is 3-balanced. O

2.5 Bivariate linear splines

Example 5. Let A? denote the four-directional mesh with grid lines given
by £ = j,y = ko +y = ¥4, and x —y = m, where j,k,¢,m € Z. Let
¢1 denote the bivariate piecewise linear hat function with ¢;(0,0) = 1 and
support given by the square with vertices (1,0),(0,1),(—1,0) and (0,—1), and
¢2 be the bivariate piecewise linear hat function with ¢2(%, %) = 1 and support
given by the square [0, 1] x [0, 1]. See Fig.1 for the Bézier-nets of ¢1, ¢2. Then
{¢e(- = k) : £ = 1,2,k € #?} is a basis of the space S?(A?) of continuous
bivariate piecewise linear splines on A%, Then ® = [¢1, ¢o]? is refinable with
respect to the quincunx dilation matrix

A:“ _11] (2.5)

See Fig.2 for the Bézier-nets of ¢1(A 1), p2(A1). The two-scale symbol of ®
is given by

1 5 +270)(1+2")
z1 0 )
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12 12

-1,0) 0 10 ©.0) @0
12 12

0 0

Figure 2: Bézier-nets for ¢ (A1), ¢o(A71)

One can easily verify that P satisfies the sum rule of order 2 with

yoo = [L,1],  yo1 =10, %], y1,0 = [0, %]

By Theorem 2.1, it is possible to construct a 2-balanced bi-orthogonal dual d
with balanced centers a; = 0,ay = (%, %) Indeed we can construct such ®
in W15420(IR?) with mask {Gy} supported in [-2,2]2 N Z2. The mask is not
provided here. O

Example 6. Consider the two-scale symbol P4(z) in Example 5, and observe
that ® = [¢1, ¢2]7 is also refinable with respect to the dilation matrix 21, (cf.
[13]), with two-scale symbol P(z) given by

P(z) = Py(e "“)\Py(z), z=e .

Then P satisfies the sum rule of order 2 with the same y,,|a| < 2. ® has a
2-balanced bi-orthogonal dual in W%273(IR?) with mask {Gyx} supported in
[-2,2>°NZ2. O

2.6 Bivariate C! cubic splines

Example 7. Let S1(A?) denote the bivariate C! cubic spline space on the four-
directional mesh A? and let ¢1, -, ¢5 be its basis functions, as constructed in
[38]. See Fig.3 for the Bézier-nets for ¢;, 1 < j < 5. In Fig.3A and Fig.3B,
only portions of the Bézier-nets of ¢1, ¢o are displayed due to the symmetry
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Q
o0
0
o
. q Q
2 0
“ o0 q )
12 4
& o 8 o
0.-1) .- ©,-1) @ -1
Fig.3A Fig.38
4 -4 >
©,0 (,0)

Fig.3C

Figure 3: Bézier-nets for ¢1, 24¢2 and 96¢4 with ¢3(z,y) = ¢2(y,z), ¢5(z,y) =
_¢4(_ya _3")

of ¢1, po: Here, ¢y is symmetric about lines £ = y,y = —z and x = 0, y = 0,
and ¢ is symmetric about the z-axis and anti-symmetric about the y-axis. In
Fig. 3C, the Bézier coeflicients that are not displayed are supposed to be zeros.
Then ® = [¢1,- -, $5]7 is refinable with respect to the quincunx dilation matrix
A given in (2.5). See Fig.4, Fig.5 and Fig.6 for the Bézier-nets for ¢;(A~ 1),
$2(A71-) and ¢4(A~L). Again due to the symmetric properties of ¢1, ¢, only
portions of the Bézier-nets of ¢; (A !-) and ¢o(A ') are displayed in Fig.4 and
Fig.5, while in Fig.6, the Bézier coefficients that are not displayed are supposed
to be zeros. This mask is given by

00000 4 12 0 -24 0
L |00020 L1312 2
Poo=1510 0020 ,Pyg=qe) -1 =3 -1 10 -2,
00010 0 0 0 0 0
00010 T 3 -3 1 -1
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-1

Figure 4: Bézier-nets for ¢;(A~1)

(U3
2
2
4 /2
4 3 3
U
3 2
1
1
-1

Figure 5: Bézier-nets for 24¢y (A1)
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Figure 6: Bézier-nets for 96¢, (A1)

}

-3

-24 0
10

2

0

0
0
0

000
0
0
0

000

—24
10
-2

1
3

0
10

12
-3
1
2

—24

00 0 24

0 8 8 10 10
—10

1
1

00 0 2
0 0 0 10
0 00
0 00

Pog = 0 8 —8 10

bl

—10
-3
-1

-3

0

1
1

P

6

| — |
_|_02J~10
< o N
o o
N = cooco o
cCo0O00C cooco o
coocoococ coocoo©
cCoooO0 ococooc oo
e — |
cooc oo ©
I | 1_1
l_w I
<

I ~

- &

—

A -

- o
o (2p]

MZ.I_.OO

<+ o

S v—~o
oNNO O

011__1_20
N»
.|___3OO

™~

lQ_un,‘_ul_QO
O - - O O _

Ao —[©
- oo ¥~ O
L ] L

© ©
1_1 1_1

I I

— (o)

o o

and Py = 0 for other indices k.
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Remark 2.1. Observe that for each j, supp(¢;(- —k) for k € Z? with k| =1
is not a subset of U?:lsupp(gbj (A~1)). However ® is still refinable with a finite
mask.

Of course ® = [¢1,---,¢s5]! is also refinable with 2I5. In this case the two-
scale symbol, denoted by R(z), is given by R(z) = P(e™*4“)P(z), where P is
the two-scale symbol for the quincunx dilation matrix A given above, and the
nonzero matrix coefficients Ry of R(z) are given by

000 6 0 2 3 3 -6 6
_ 11 _
000 10 A
Roo=g5)000 20, Rya=g|—3 -1 -3 2 -1
000 0 O 0 0 0 0 O
000 0 0 L 0 L+ o 1
(4 6 0 -6 0 4 0 6 0 —6
-1 -1 0 10 0 2 0 0 2
Rag=g| 0 0 2 =20 R 1=g|-10-10 11,
0 0 0 3 0 00 0 0 O
L0 0 -5 0 1 00 0 0 1
[ 2 3 -3 6 -6 4 0 -6 0 6
1 1
(-3 -5 1 -1 2 |0 2 0 0 -2
Roii=g o1 -1 o2 Bop=g 1 0 -10 1
1 1 1 1
o1 9 3 0 0 -3 0 10
[0 0 0 —6 0 2 -3 3 6 -6
_ 11 _
(000 -1 0 | 2112
R1,72:g 000 2 0 ,Rl’,lzg -1 1 -1 2 1|,
000 0 O 0 0 0 0 O
(000 0 0 0 0 0 0 O
4 -6 0 6 0 2 -3 -3 —6 6
_ O
1T -1 010 e 1 } 1 9
Rio=5|0 0 22 0, Ry=g| 5 -1 -3 =2 1],
1 1 1 1
00 0% 0 -5 1 0 1o
0 0 000 0O 0 0 0 0
0000 6 0000 —6
(0000 2 0000 -2
Roor=2 {0000 —1 |, Rou=g]0000 —1F},
0000 O 0000 O
0000 O 0000 O
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RO,O = diag(la %, %7 %’ %)

One can also verify that both P and R satisfy the sum rule of order 4 with the
same vectors

Yoo = [170307030]3 Yio = [Oa]-aOaOaO]a Yo,1 = [07()’170’0]’
¥2,0 = Y1,1 = ¥2,0 = ¥3,0 = ¥o,3 = [0,0,0,0,0],
y2,1 = [07030705 2]5 Yi,2 = [0’050a250]'

However, from the structure of y,, we know that ® does not have a balanced
bi-orthogonal dual. O

Acknowledgement. The research of the first author was supported by NSF
Grants #CCR-9988289 and #CCR-0098331 and ARO Grant # DAAD 19-00-
1-0512.
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