MULTIVARIATE MATRIX REFINABLE FUNCTIONS
WITH ARBITRARY MATRIX DILATION

QINGTANG JIANG

ABSTRACT. The characterizations of the stability and orthonormality of the
multivariate matrix refinable functions ® with arbitrary matrix dilation M
are provided in terms of the eigenvalue and 1l-eigenvector properties of the
restricted transition operator. Under mild conditions, it is obtained that the
approximation order of @ is equivalent to the order of the vanishing moment
conditions of the matrix refinement mask {Py}. The restricted transition
operator associated with the matrix refinement mask {P } is represented by a
finite matrix (Apz;—;)s,; with A; = [det(M)|71 Y, Pr_;®P, and P,,_; QP
being the Kronecker product of matrices P,—; and P,. The spectral property
of the transition operator are studied. The Sobolev regularity estimate of
the matrix refinable function ® is given in terms of the spectral radius of
the restricted transition operator to an invariant subspace. This estimate is
analyzed in an example.

1. INTRODUCTION

Let {P,} be a finitely supported r x r matrix sequence. The vectors ®, r-
dimensional column functions on R?, considered in this paper are solutions to func-
tional equations of the type

(1.1) o= P,®M-—a),
a€Zd

where M is d x d integer matrix with m = |det(M)| > 2 and all eigenvalues of
modulus > 1. Define

1 .
P(w) = — %dPaexp(—zaw).
(o3

Then P is an r X r matrix with trigonometric polynomial entries. In the Fourier
domain, functional equations (1.1) can be written as

(1.2) d(w) =P( M 'w)d(* M w).

Throughout this paper, *A4 and A* denote the transpose and the Hermitian adjoint
of a matrix A respectively.
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Equations of type (1.1) or (1.2) are called matrix (vector) refinement equa-
tions; the matrix M is called the dilation matrix; P ({P,}) is called the (ma-
trix) refinement mask and any solution ® of (1.1) is called an (M, P) matrix
refinable function (or an (M, P) refinable vector).

For M = 21, r > 1, where I, is the r x r identity matrix, the characterizations
of the stability and orthonormality of the matrix refinable function ¢ were provided
in terms of mask in [26], the regularity estimates of ® were studied in [26], [19], and
in [3], [24] for the case d = 1, the existence of the distribution solution of (1.1) and
the characterization of the weak stability of solutions of (1.1) were discussed in [21].
In the construction of multivariate wavelets, the dilation matrix M is involved. For
r = 1, the characterizations of the stability and orthonormality of &, the refinable
function with matrix dilation, were provided in terms of mask in [22], the optimal
Sobolev regularity estimate of ® was obtained in [15]. Our goal in this paper is to
provide the characterizations of the stability, orthonormality and the approximation
order of the (M,P) refinable vector @ in terms of mask, and give the regularity
estimate of ® in terms of the spectral radius of the restricted transition operator.

Before going further, we introduce some notations used in this paper. Let Z
denote the set of all nonnegative integers, and let Zi denote the set of all d-tuples
of nonnegative integers. We shall adopt the multi-index notations

W= Wit wft, Bli= Byl Bal, |8l = Bu+ oo + Ba

forw ="*t(wy, -+ ,wq) € R, B="1(B1,--,Ba) € ZL. If o, B € Z%satisfy f—a € Z1,
we shall write a < 8 and denote

For 8 ="'(B1,--- ,Ba) € Z4%, denote
ob1 B

D = —
o 9P

where 9; = % is the partial derivative operator with respect to the jth coordinate,
1 < j < d. Except in some special cases, for w,( € R, we would use (w (not *(w)
to denote their scalar product.

For a finitely supported complex sequence ¢ on Z¢, its support is defined by
suppe := {8 € Z%: ¢(B) # 0}, and for a finitely supported r x r matrix sequence C
on Z4 its support is defined by suppC := Usuppc;;, where c;; is the (4, j)-entry of
C. Throughout this paper, we assume that the matrix refinement mask P satisfying
supp{P,} C [0, N]? for some positive integer N.

Let ||z|| denote the Euclidean norm in R?, and let dist(x,y) := ||z — y|| be the
distance of two point z,y € R?. For two subsets S;, S» of R?, denote

dist(S1, S2) :=inf{dist(z,y) : © € S1,y € S2}.

For any subset S of R?, denote [S] := S N Z% and if S is a finite set of Z4, let | S|
denote the number of elements in S.

For j =1,---,r, let e; := (0,(k));,—, denote the standard unit vectors in R".
In this paper, for an r x 1 vector-valued function or sequence f = *(f1,---, fr),
f is in a space on R? or Z? means that every component f; of f is in this space.
Especially, f = ‘(fi,---, fr) € L*(R?) (or ¢ = (¢1,--- ,¢,) € 12(Z?) means that
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fi € L2(R?) (or ¢; € 12(Z%),i=1,---,r, and we will use the norms
11l = O il Zema) s lella = O lleill za) -
i=1 i1

For a matrix A (or an operator A defined on a finite dimensional linear space),
we say A satisfies Condition E if p(4) <1, 1 is the unique eigenvalue on the unit
circle and 1 is simple (the spectra radius of A is denoted by p(A)).

Let M be a fixed dilation matrix with m = |det(M)|. Then the coset spaces
ZY(MZ% and Z/(*MZ?) consist of m elements. Let v + MZ%L,0 <k <m —1,
and n; + ‘MZ%j = 0,--- ,m — 1, are the m distinct elements of Z¢/(MZ? and
Z*/(*MZ*) respectively with 7o = 0,m9 = 0. Let Co(T%) denote the space of all
r x r matrix functions with trigonometric polynomial entries. For a given matrix
refinement mask P, the transition operator T associated with P is defined on
Co (Td) by

(1.3)
m—1
TOW) := Y P(M™(w+2mn;))C("M ™ (w + 2mm;))P* ("M~ (w + 2mmy)).
j=0

Assume that the support of the mask {P,} is in [0, N]¢, denote

(1.4) Q:={> M Utg;: z;€[-N,N"VjeZ}.
7=0
Let H denote the subspace of Cy(T?) defined by
(1.5) H:= {H(w) € Co(T?) : Hw) = ZHae*m“,supp{Ha} C [Q]}.

Recall that for a vector-valued function ¥ = ¥(¢y,--- ,4,.), ¥ is called stable (or-
thogonal) if the integer translates of ¥1, - - - , 1, form a Riesz basis (an orthonormal
basis) of their closed linear span in L?(R). It was shown that an (M, P) refinable
vector @ is stable if and only if for all w € T?¢, Gg(w) > cl, for some positive
constant ¢, and that @ is orthogonal if and only if Ge(w) = I.,w € T, see e.g. [6],
[10], [16] and [23]. Here G (w) is the Gram matrix of ® defined by

(1.6) Go(w) =Y B(w+2ma)®* (w + 2ma).
acZ?

In the first part of Section 2, we will show that if the refinement equation (1.1) has
a compactly supported solution ® such that Ge(w) < co and det(Gs(0)) # 0, then
P(0) satisfies Condition E. Then we will provide a characterization of the existence
of the L?-solutions of (1.1) under the assumption that P(0) satisfies Condition E.
In the last part of Section 2, we will show that the (M, P) refinable vector ® is
stable if and only if the restricted operator T|g of the transition operator T to
H satisfies Condition E and the corresponding 1-eigenvector of T|y is positive (or
negative) definite on T¢, and show that the (M, P) refinable vector & is orthogonal
if and only if T|y satisfies Condition E and P is a Conjugate Quadrature Filter

(CQF), i.e.

m—1
(1.7) > POM N w+2mm))P* ("M (w + 2mm)) =1, w € T
=0
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The accuracy order of the (M,P) refinable vector ® = (¢, -- , ¢.) were con-
sidered in [11], [25] and [17] for the case d = 1 and M = (2), in [7] for M = 2I,
and in [1] for the multivariate case with arbitrary dilation matrix. In Section 3,
we will show that under mild conditions, ® provides approximation of order k,
k € Z,\{0} if and only if the matrix refinement mask P satisfies the vanishing
moment conditions of order k. We will also determine explicitly the coefficients
for the polynomial reproducing under the assumption that the integer shifts of ®
(¢i(-— k), k € Z41=1,---,r) are linearly independent.

Since the spectra (eigenvalues) of a matrix can be computed directly, it is useful
in practice to transfer equivalently the restricted operator T|g to be a finite matrix
and therefore transfer the spectral problems of T|g into those of a matrix. We will
show in Section 4 that the restricted transition operator T|g is equivalent to matrix
(Anmi—j)ije[q), where A; is the 2 x v matrix given by

1
Aj = ——=x P, ;®P,,
7 |det(M)] ne%;\l]d J

and P,_; ®P, is the Kronecker product of P,,_; and P,. And we will also consider
the spectral property of T in Section 4.

In the last part of this paper, Section 5, we will consider the regularity of the
(M,P) refinable vector ®. An invariant subspace H° of H under T is provided
and it is shown that & is in the Sobolev space W#—¢(R%) for any € > 0, where
so := —log p(T|mo)/(2log Amax), p(T|mo) is the spectral radius of the restricted
operator T|go of T to HP and Amax is the spectral radius of the dilation matrix
M. This estimate is analyzed in an example.

2. STABILITY AND ORTHONORMALITY

In this section, we will provide the characterizations of the stability and or-
thonormality of the refinable vector ®. We first prove some lemmas.

Lemma 2.1. Let v + MZ%1<k<m-1, and n; +‘MZ%j=0,--- ,m—1, are
the m distinct elements of the coset spaces Z¢/(MZ%) and Z2/(! MZ?) respectively
with v = 0,19 = 0, then

m—1

(2.1) 3 e M = s(j), 0<j<m-1;
k=0
m—1 .

(2.2) 2T mM T — mg(k), 0<k<m—1.
j=0

Proof. Let G be the finite abelian group consisting of v, + MZ%1 < k < m — 1.
For any j,0 < j < m — 1, define the functions on G, x,(g) := e2" M9 g € G.
Then x;(g),j =0,---,m —1, form the group G, the character group of G. By the
orthonormality relation of characters (see [4]), we have

m—1
(2.3) > xila)xi(g) =md;(j'), 0<j,5' <m—1.
k=0

Let j' =0, (2.3) leads to (2.1). Since the transpose of {M is M, (2.2) follows from
(2.1). O
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Let Q denote the domain defined by (1.4) and denote

o
Qp:={>_ MUtz . z;€[0,N%Vj €L}
3=0
The proof of the following lemma can be carried out by modifying that of Lemma
3.1 in [15] for the case r = 1.

Lemma 2.2. Assume that supp{P,} C [0, N]? and ® is a compactly supported
(M, P) matriz refinable function. Let T be the transition operator defined by (1.3)
and H is the space defined by (1.5). Then

(i) supp® C €y,

(i) H is invariant under T,

(iii) for any C(w) € Co(T?), there exist some n € Z such that T"C € H,

(i) the eigenvectors of T corresponding to nonzero eigenvalues belong to H.

Proof. (i) can be obtained similarly to that of Lemma 3.1 in [15]. Here we verify
(ii), (iii) and (iv).
For any H =, ;4 Hee™ " € Cy(T?), one has

P(w)H(w)P*(w) — m—2 Z Z Z PnHltPn—ne_iw(n—i—l) .

0€Z.4 k€[0,N]d neZd
Thus

—

TH(w) =m 2 i >y P H,/'P, e ("M (wh2mm)(n+e)
Jj=0 ¢€Z?neZ?ke[0,N]?

For any n € Z% ¢ € 74, write n + ¢ = Mt + ~y;, for some 7 € Z% and k € Z,,0 <
k <m —1. By Lemma 2.1,

(2.4) THw)=m 'Y | Y Y P.HP. (s | ™.

T€Z4 \LeZ Kke[O,N]4
If H € H, then H = 37 (o) Hee ™ and
THw) =m™" > > Y PHP, ( pe ™.
TEZILE[Q] KE[O,N]4

If TH(w) # 0, then M7 — £ € [N, N]? for some £ € [©)], i.e. M7 € [-N, N]¢ + Q.
Thus 7 € M~[-N, N + M~1Q = Q, and we have

(2.5) THW) =m™"' > [ > Y P.HPe (arp | 7.

TE[Q] \L€[Q] ke[0,N]2

Hence H is invariant under T.
For C € Cy(T%) and j € Z, denote TIC =: Y __,.CY(1)e~™7. By (2.4),

supp{CV (1)} ¢ M~'[-N, N]¢ + M~suppC.
Thus
supp{CU) (1)} € M~1[-N, N]? + M~ tsupp{CU~(r)} C ---
CM '[-N,N]¢+-..+ M I[=N,N])¢ + M IsuppC C Q+ M IsuppC.
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Since dist(, Z4\[Q]) > 0 and lim;_,o, M 7 = 0, there exists n € Z such that
dist({0}, M ~"suppC) < dist(£, Z\[Q2]).

Thus supp{C (1)} € [)] and T"C € H.
Finally, if C € Co(T?) is an eigenvector of T with corresponding eigenvalue
Xo #0. By (iii), C = A\'TC =--- = \,"T"C € L 0

Lemma 2.3. Let ® be a compactly supported (M,P) matriz refinable function and
Gs be its Gram matriz defined by (1.6). If Ga(w) < oo for all w € T?, then

(2.6) TG = Go,
and if ® € L?>(R?), then Go € H.
Proof. By (1.2) and the definitions of T, Gg, we have

m—

TGe(w) = Z Z P( w + 2mm;))@ (P M~ w + 27n;) + 27l -
7=0 ¢

P9<>

MY (w + 2mn;) + 200)P* (P M (w + 27m;))
= Z Z w + 21 + 27t MO)®* (w + 27, + 27t ME)
7=0 tez
= Z B (w + 27l)®* (w + 27') = Go(w).
vezd
By Lemma 2.2 and Poisson summation formula, G¢ € H if ® € L2(R?). O

In (2.6), the transition operator T is defined by (1.3) on the function space con-
sisting of r x r matrix functions with every entry a 2m-periodic function.

We will show that if there is a compactly supported solution @ of (1.1) satisfying
Go(w) < 0o and det G (0) # 0, then P(0) satisfies Condition E. For this, we first
have

Proposition 2.4. Let ® be a compactly supported matriz refinable function of (1.1)
and let 1 be a left (row) eigenvector of an eigenvalue \g of P(0) with |Ao| > 1. If
Ga(w) < 00, for w € T?, then

(2.7) 12(2n8) =0, B e Z\{0}.
Proof. By (2.6),
1G4 (0)1* = 1T G4 (0)1*

m—1
= Ao ’1Ga(0)1* + Y IP(2n' M 'n;)Ge(2n' M ~'n;)P* (20" M ' n;)1*
j=1
m—1
>1Gs (0)1* + Y IP(20' M " 5;)Go(2r" M ;) P* (20" M~ )",
j=1

Thus

m—1
> 1P 2r' M~ 'n;)Ge (20 M~ )P (20 M~ my)I* = 0.
j=1
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By (1.2), we have
m—1

1 (277, + 27* M a)|?

Jj=1 a€Zd
m—1

= 1P (27" M ;)@ (2n' M ~'n; + 27a) @ (20 M~ ' + 2ma)P (2t M~ ') 1*
j=1 acZd
m—1

= 1P(27' M ~'n;)Ga (27 M~ )P* (20' M ~'n;)1* = 0.
Jj=1

Therefore,

18(2mn; + 20t Ma) =0,1<j <m—1,a € Z%
For any 3 € Z4\{0}, there exist j € Z,,1 < j<m—1,n € Z,,a € Z% such that
B =(CFM)"(n; +*Ma). Thus
18(2n8) = IP(27* M~ 8) - - P(2n! M~"B)&(2r* M~"B)
= lP(O)"@(mej +2rtMa) = )\313(27%- + 27t Ma) = 0.
This shows (2.7). O

We shall note that if A\g is an eigenvalue of P(0) with |Ao| > 1 and A¢ # 1, then for
any left Ag-eigenvector 1 of P(0), 12(278) = 0 for all 8 € Z2.

By Proposition 2.4, the following proposition can be obtained as in [21] and its
proof is presented here for the sake of completeness.

Proposition 2.5. Let & be a compactly supported (M,P) refinable vector with
Go(w) < 0. If det(Go(0)) # 0, then P(0) satisfies Condition E.

Proof. Let Ag be an eigenvalue of P(0) with |Ag| > 1 and 1 be a corresponding left
(row) eigenvector. If Ag # 1, by Proposition 2.4, 1G4 (0)1* = 18(0)3*(0)1* = 0. On
the other hand, since ® # 0, the spectral radius of P(0) > 1. These two facts imply
that if det(Gs(0)) # 0, 1 is the only eigenvalue of P(0) on the unit circle with @(0)
being a corresponding right eigenvector and all other eigenvalues are in the unit
circle. If 1 is not simple, since ®(0) is a right 1-eigenvector of P(0), then one can
find a left (row) 1-eigenvector 1 of P(0) such that 18(0) = 0, which again leads to
1G4(0)1* = 0. Therefore, 1 has to be a simple eigenvalue of P(0), and hence P(0)
satisfies Condition E. O

Proposition 2.6. Assume that (1.1) has a compactly supported solution ® with
Go(w) < oo, If det(Go(2n*M~1n;)) # 0, 5 = 0,---m — 1, then P(0) satisfies
Condition E and satisfies the vanishing moment conditions of order at least one,
i.€.

(2.8) IP2r'M~'n;)=0,1<j<m-1,

where 1 is the left 1-eigenvector of P(0).

Proof. By Proposition 2.5, P(0) satisfies Condition E; and by (2.6),

1G5 (0)1* = ITG5(0)1*
m—1

= 1G4 (0)1* + Z 1P(27" M ~'n;)Ge (2r' M~ n;)P* (20" M~ ;)1*.
j=1
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Hence,

IP(2n' M 'n;)Go (21 M ') AP (20" M ~';))* = 0,1 < j <m — 1.
Since G (2* M ~1n;) > 0, we have IP(2r*M ~1n;) =0,1<j <m — 1. O
By Proposition 2.6, we have the following corollary.

Corollary 2.7. If (1.1) has a compactly supported solution ® which is stable, then
P(0) satisfies Condition E and P satisfies the vanishing moment conditions of order
one (2.8).

Here we shall note that the vanishing moment conditions (2.8) is equivalent to

(2.9) 1) Puatyn =1, 1<k<m-—L1
acZd
In fact if (2.9) holds, then for any j € Z4, 0 < j <m —1, by (2.1)

_ 1 ot et
IP(2r' M~ ;) = El Z Pae 2mmiM ™o

a€Zd
-1 m—1
1% oty M=l 1 oty M1
~ 3 T T Pt = L85 g e
k=0 pBezd k=0 pezd
—1
1'% S _
— E e—z27rthM Te — 5('7)
k=0

Conversely, if (2.8) holds, then for any k € Z1, 0 < k <m — 1, by (2.2)
m—1

1= 3" 1P@rtM~lyy)eim M
1 ot —1 ot —1
I 1 P e—zZ7r n; M 736127r n M~ v
m Z MB+s
1 P sy Z e 2wty M~ (va =)

1 P gy, mp(s) =1 Z Py
Bezd s=0 Bez

and therefore (2.9) holds.

Corollary 2.8. If (1.1) has a compactly supported solution ® which is stable, then
P(0) satisfies Condition E and P satisfies

IZPMQ"F’WC:]’ ngsm—l.
a€Zd

where 1 is the left 1-eigenvector of P(0).

In the following we will assume that P(0) satisfies Condition E and let r be the
unit right (column) 1-eigenvector of P(0). Let 1 be left (row) 1-eigenvector of P(0)
with Ir = 1. Let U be an r X r inverse matrix such that the first column of U is r
and U 1P(0)U is the Jordan canonical form of P(0) with its (1,1)-entry 1. Then
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te;U 1 is a left (row) 1-eigenvector of P(0) with te;U 'r = te;U 'Ue; = 1. Thus
telU*1 =1

Denote

I, (w) := X[,,r’,r]d(tM_nw)Hg‘zlP(tM_jw), Mw) := H?’;lP(tM_jw).

Then, if P(0) satisfies Condition E, II,, converges to II pointwise with

(2.10) M(w)U = (3(w),0,- ,0),
where
(2.11) ®(w) := 12, P M w)r,

and any other compactly supported solution ¥ of (1.1) with l/I\I(O) # 0 is give by
(2.11). About the convergence of the infinite product 152, P(*M /w), see [3], [23]
for M = 2I, and [20] for general dilation matrices M.

By (2.10), we have for any r X r matrix A,

M(w)ATl(w)* = (w)UU AU H)*U*TT* (w)
= B(w)eT U AU ) e13* (w) = (1A1*) (w) D(w)*.
We will provide in the next proposition a characterization of the existence of

the L?-solutions of (1.1) under the assumption that P(0) satisfies Condition E. For
this, we have the following lemma.

Lemma 2.9. For any H;(w), Ha(w) € Co(T9), and any positive integer n,

(2.12) @I H)@)do = | Hy ()L (w) Ha (* M~ "w)IT* (w) dow.

Proof. The proof of (2.12) can be carried out by induction. In fact for n = 1,

m—1
Hy(W)THy(w)dw =m [ Hi(*Mw) Z P(w + 27" M 1n;) -
Td Rd c
J:
Hy(w + 27t M 10, )P*(w + 270° M ') xpa(* Mw)dw
m—1
=m [ H(!Mw)P(w)Hs(w)P*(w) Z xra(*Mw — 2mn;)dw
Rd =0
m—1
=m | Hi('Mw)P(w)H(w)P*(w) > Y xra("Mw — 20" MB — 27n;)dw
Td BEZ j=0
=m [ H(*Mw)P(w)Hs(w)P*(w)dw
Td
= [ HwP(M ‘W H,(M 'w)P* (M 'w)xra(* M 'w)dw

R4

= Hl(w)Hl(w)HQ(thlw)Hf(w)dw.
Rd
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For n € Z4\{0}, assume that (2.12) holds for any positive integers smaller than n,
then

, Hi(w)(T"Hs)(w)dw = , Hy (W) q (w)(THs) (P M) (w)dw
T R
=m" [ Hi(*M"w),_1 (‘M "w)(TH)(*Mw)T}_,(* M"w)dw
Rd
m—1
=m" | H (!M"w) P(w + 27' M ;) Hy(w + 27° M ') -
Rd
_7:0

P+ 200 )y (M) (M)
=m" Z/ Hy(MP)P(M™ )+ P M) P() ()

pez?
m—1
P*(w)---P*(M™" tw ZXW (*Mw — 27 MB — 2mn;)dw

j=0

=m" [ H (M"W)P(M" 'w) - P Hy(w)(P(M™ W) P(w))*dw

T
= [ Hy(w),(w)Hy(* M "w)I} (w)dw.
Rd
Thus the proof by induction is completed. O

Proposition 2.10. Suppose that P(0) satisfies Condition E, then ® defined by
(2.11) is in L?(R?) if and only if there exists a positive semidefinite H € H such
that TH = H and 1H(0)1* > 0.

Proof. Suppose ® € L?(R?). Then the matrix H(w) := Gg(w) € H and H(w) > 0,
TH = H. By Proposition 2.4, 1H(0)1* = 1&(0)$*(0)1* = |Ir|?> = 1.

Conversely, since the matrix II,, (w) H (! M ~"w)II} (w) converges pointwise to the
matrix

I(w) H(O)TI(w)" = (LH(0)I")@(w)(w)",

we have

(1H(0)N ) w)|2dw = z lim inf ‘e;11,,(w) H (* M ~"w)II,, (w)*e;dw

R n—o0

< Zhnrgloréf » eI, (w) H(* M "w)Il, (w)*e;dw < oo.
The last inequality follows from the fact that
/ T, () H (LM ")TE () dow = / (T"H)(w)do = | H(w)dw.
Rd Td Td
([l

About the existence of L2-solution of (1.1) for M = 2I,, similar result was
obtained in [21]. For the special case r = 1 and d = 1, this result was given in [28].
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We will use the fact that if (1.1) has a compactly supported solution which is
stable, then for any H,,Hs € H,

(2.13)
lim Hn(w)Hl(tM*”w)Hn(w)*Hz(w)dw=/ II(w)H1 (0)II(w)* Ha (w)dw.

n—o0 Rd Rd
Equation (2.13) can be obtained as in [21] for the case M = 2I, and we omit the
details here.

The next theorem provides a characterization of the stability of the compactly
supported (M, P) refinable vector ®.

Theorem 2.11. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matriz P(0) satisfies Condition E,

(ii) for the left (row) 1-eigenvector 1 of P(0), IP(27tM~1n;) =0,1<j <m-1,

(iii) the restricted transition operator T to H satisfies Condition E and the cor-
responding 1-eigenvector is positive (or negative) definite on T4,

Proof. “<” Let Hy € H be the positive definite 1-eigenvector of T. By Proposition
2.10, the solution ® given by (2.11) is in L?(R?). Let H(w) = G¢(w), then H(w) €
H and TH = H. Since the restricted operator T|g of T to H satisfies Condition
E, H = cHy for some positive constant ¢. Thus Ge(w) = cHg(w) > 0 and hence ¢
is stable. R

“=” Let ® be a compactly supported solution which is stable, then ®(0) = cr
for some nonzero constant ¢. (i), (ii) follow from Proposition 2.6. To complete
the proof of Theorem 2.11, it is enough to show that the restricted operator T|yg
satisfies Condition E since Gg is a positive definite 1-eigenvector of T|g.

Let A¢ be an eigenvalue of T|g and H be a corresponding eigenvector. Since

N[ W) H @) dw = / T H (1) H (w)*dw
Td Td
— [ @) HCM ) ) H )" do
Rd
the limit lim,, oo A} exists. Thus |A¢| < 1 and 1 is the only eigenvalue of T|y on

the unit circle.
For an eigenvector H of eigenvalue 1 of T|y, denote ¢g = 1H(0)1*. Then

‘/Td(H - COG<I>)(H - CoG@)*dw
= /Rd I, (W) (H(M™"w) — coGa(* M~ "w))I,, (w)*(H(w) — coGa (w))*dw

— /Rdﬂ(w)(H(O) — oG (0)[I{w)* (H(w) — coGa (w))*dw

~

— 1(H(0) — coGla(0))I* / B (w)3* () (H(w) — coGa(w)) dw = 0.

R4

Thus H(w) = ¢oGa(w). This implies that the geometric multiplicity of eigenvalue
1 of Ty is 1.
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Finally we show that 1 is nondegenerate. Otherwise, there exists H € H such
that TH = Ge + H. Let H = H — ¢1Gg, where ¢; = 1H(0)1*. Then

T"Hl(w)Gq>(w)*dw:/ I, (W) Hy (*M "), (w)*Ga (w)*dw

Td R4

— IM(w)(H(0) — 1G4 (0)I(w)*Ge (w)*dw = 0.
Rd
On the other hand,

T"'H; =T"H — ¢1Gs = nGe + H — ¢1Go,
thus || [, T"H; (w)Ge(w)*dwl|| — oo as n — oo. This leads to a contradiction [

The next theorem provides a characterization of the orthonormality of the com-
pactly supported (M, P) refinable vector ®.

Theorem 2.12. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:
(i) the mask P is a CQF,
(i) the matriz P(0) satisfies Condition E,
(ii) for the left (row) 1-eigenvectorl of P(0), IP(2rtM~1n;) = 0,1 < j <m-—1,
(i) the restricted transition operator T to H satisfies Condition E.

Proof. “<” Since P is a CQF, TI, = I.. Therefore by Proposition 2.10, the
compactly supported solution ® given by (2.11) is in L?(R?). By (iv), Gg = cI,
for some positive constant ¢ and hence (1.1) has a compactly supported solution
which is orthogonal.

“=” (ii), (iii) and (iv) follow from the orthonormality of ® and Theorem 2.11.
By the orthonormality of ®, Gg(w) = I,.. Thus TIL, =1,, i.e.

m—1
3 POM (W + 2my) P (M w + 2my)) = 1,
j=0

and hence P is a CQF. O

3. APPROXIMATION ORDER

In this section we will consider the approximation order of the matrix refinable
function ®. Throughout this section, we will assume that eigenvalues of the dilation
matrix M are nondegenerate.

Let *M be the transpose of M and Aj, j = 1,---,r, be the eigenvalues of M.
By our assumptions, | A; |> 1 and every A; is nondegenerate. Thus, there exist d

linearly independent vectors v!,--- ,v¢ such that tMvi = \;v?, j=1,...,d. Let
(3.1) V= (v vY)
be the d x d matrix with column vectors v',...,v%. Then

EMV = (v oo Agv?) = VA,
where A := diag(\1,...,Aq). Denote
A=, A).
Then for any z € R?, 8 € Z4,
(Az)P = NP2P.
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For 1 < j <d, let D,; denote the derivative operator in direction v7, i.e.
D := (51,... ,6d)vj.
Then one has
Dy f(*Mw) = X\j(Dys f)(*Mw).
For 8 ='(By,--+ ,B) € Z4, denote
D} :=Df...Db.
Then we have
(3-2) DY f("Mw) = X (DL.f)('Mw), B € Z4.

For a compactly supported vector-valued function ¥ = (yq,--- ,4,), we denote
by S(¥) the linear space of all functions with the form Y77, >, ;. c;(€);(- — £),
where {c¢;(£)}4cz4 are arbitrary sequences on ZA.

We say ¥ has accuracy of order k if all polynomials of total degree smaller than
k are contained in S(¥), i.e. for any 8 € Z%, |8] < k, there exist yg,;(¢) such that

r

27 =" ysi(Ovi(z + 0).

=1 ¢eZd

For ¥ € L*(R?) and h > 0, let
Sw(®):={/(3): feSE)NL R}

be the h-dilated of S(¥) N L2(R%). For k > 0, we say ¥ (or S(¥)) provides L2-
approximation of order k if for every sufficiently smooth function f € L?(R?) and
any h >0

dist(f, Sh(¥)) = O(h*),

where dist here is the L2-distance between a function and a subset of L2(R?).

An r x 1 vector-valued function ¥ is said satisfying the Strang-Fix conditions
of order k if there is a finitely supported 1 x r vector-valued sequence {gp }¢cz¢ such
that f:= 3", ,aqe¥(- — £) satisfies

(3.3) DPf(2rt) = 6(8)6(¢), for £ € 74 B € Z4,|8] < k.

About the relations among the orders of accuracy, L2-approximation and Strang-
Fix conditions of ¥, see [13] and the references therein. The next theorem was
obtained by Jia (see [13], [14]).

Theorem 3.1. ([Jia]). Let ¥ = *(yq,--- ,9,.) € L2(R?) be a compactly supported
vector-valued function. Assume that the sequences ({b} (27B))peza, j =1,---,r, are
linearly independent, then the following statements are equivalent:

(a) U provides Lo-approximation order k;

(b) ¥ has accuracy of order k;

(c) VU satisfies the Strang-Fiz conditions of order k.

For a compactly supported (M,P) refinable vector ®, we will provide the L2-
approximation order of ® in terms of the mask P. For a given mask P, if there
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exists a positive integer k£ and some 1 x r complex vectors 1{;‘ ,1B8] < k with 1 # 0,
such that

B ¥ (D) averpgeren iy = a0r g, 0<j<m-
0<a<p

we say that the refinement mask P satisfies the vanishing moment conditions
of order k.

We show in the next theorem that if P satisfies the vanishing moment conditions
of order k and ® € L?(R?) is a compactly supported (M, P) refinable vector with
185(0) # 0, then & satisfies the Strang-Fix conditions of order k.

Theorem 3.2. If P satisfies the vanishing moment conditions of order k, i.e. there
erist 1 X r complex vectors lg, |8 < k with 13 # 0 such that (3.4) holds, then for any
compactly supported (P, M) refinable vector ® € L?(R) with 186(0) # 0, ® satisfies
the Strang-Fix conditions of order k.

Proof. Let f be the vector-valued function in L2(R?) defined by
(3.5) F(w) == b(w)®(w)
where b(w) is the vector-valued function given by b(w) = 3=, ., beet® with
(3.6) (=) P'Dyb(0) = Y (VO b =15, 1B <k
|e|<k

We will show that f satisfies the Strang-Fix conditions of order k.

Since (8%, e ,%) = (Dy1,-++,D,a)V 7L it is enough to show
(3.7) DP f(2rt) = ¢6(B)3(¢), for £ €Z%and B € Z4 , |B| <k,

where ¢ is a nonzero constant.
One can check that (3.4) is equivalent to

DY (b(w)P( M7 W) lum2mn, = 6@G)APDEB0), 0<j<m—1,8€Z%, |8 <k.

For any £ € Z<, there exists j,0 < j < m — 1, such that £ € n; + 'MZ% By (3.2),
one has

- 5

I
]
e N N

=5(HrA " Y ( g )D%b(Zthlé)D?,“@(Zthlé)

= 6(j)A P DS fant M1e),
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the second last equality is because of that if j = 0, then D$¢b(2rt M ~14) = D b(0)
by 2m-periodic of b(w) and if j # 0, both sides are zero. So that we have

(3.8) Di f(2rt) = 5()NPDEFent M1e), €en;+tMZ

If ¢ #0, by repeating this procedure, we have DVf(27rE) =0. Andif£=0, 8 #0,
then by (3.8), DY f(0) = A=2D5 f(0). Thus D% f(0) = 0 since A% # 1. At last if
£=0,8 =0, then R R R

£(0) = (0)2(0) = 158(0) # 0.
Therefore we have (3.7) with ¢ = 18:1;(0) and proof of Theorem 3.2 is completed. [

Remark 3.3. We shall note that 1J in (3.4) is a left 1-eigenvector of P(0). Thus if
P(0) satisfies Condition E, then the solution ® € L2(R?) of (1.1) with 13®(0) # 0
is given by (2.11) and @ given by (2.11) satisfies 13®(0) # 0.

Remark 3.4. Note that for a compactly supported vector-valued function ¥ €
L*(R?), the condition that (¢;(27f))geza, j = 1,--- ,r, are linearly independent
in Theorem 3.1([Jia]) is equivalent to that det(G¢(0)) # 0. Theorem 4.2 in [7] says
that under the mild condition det(Gg(0)) # 0, ® providing L?-approximation of
order k implies that the finitely supported 1 x r vector-valued sequence {q;}¢cz4
with f:= 3", ,4q/®(- — £) satisfying (3.3) is unique.

Above two remarks lead to the following proposition about the uniqueness of the

vectors 13 satisfying (3.4).

Proposition 3.5. Assume that P satisfies the vanishing moment conditions of or-
der k with vectors lg,ﬂ € Z,|8] < k, 13 # 0 satisfying (3.4). If (1.1) has a
compactly supported solution ® € L?(R?) satisfying det(G$(0)) # 0, then up to a
same constant, the vectors lg,ﬂ € Zi, 18| < k, are unique.

Proof. Assume that 15,5 € Z4,18| < k, 13 # 0 are vectors satisfying (3.4). By
det(Go(0)) # 0, P(0) satisfies Condition E with ®(0) being a right 1-eigenvector of
P(0). Hence 18@(0) # 0. Let f be the function defined by (3.5) with {b;} defined by
(3.6). As shown in the proof of Theorem 3.2, f satisfies (3.3). Since det(G4(0)) # 0,
by Theorem 4.2 in [7], the sequence {b;} is unique (up to a constant). Hence the
18

vectors Ijj are also unique. O

The next theorem will show that under mild conditions, P satisfying the vanish-
ing moment conditions of order k is also necessary for ® providing L?-approximation
order k.

Theorem 3.6. Assume that ® € L2>(R?) is a compactly supported (M, P) refin-
able vector and det(Ge(2rtM~'n;)) #0, j = 0,---,m — 1. Then the following
conditions are equivalent:

(i) ® provides approximation order of k;

(i) ® has accuracy of order k;

(#ii) ® satisfies the Strang-Fiz conditions of order k;

() matriz refinement mask P satisfies the vanishing moment conditions of order
k.

Proof. The equivalence of (i), (ii) and (iii) is provided in Theorem 3.1([Jia]). Since
det(G4(0)) # 0, by Proposition 2.5, P(0) satisfies Condition E. Thus by Remark
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3.3 and Theorem 3.2, we know (iv)= (iii), and we need only to show that (iii)=

(iv).
Let {g¢} be the finitely supported 1 x r vector-valued sequence such that f =
> reza2e®(- — L) satisfies (3.7) with ¢ = 1. Let ¢(w) denote the Fourier series of

~

{q¢}, then f(w) = §(w)®(w). We will prove by induction
(3.9
DY (@) P("M 'w)) lu=ann; = 8()APDG(0),0<j <m—1,8 € Z4,|8| <k,

which is equivalent to (3.4) with 15 = (—i)/#ID?g(0).

First we have f(0) = g(0)®(0) # 0, thus 13 = g(0) # 0. By f(27k) = §(k), K €
VA

GOPr* M~ k)®(2r M~ k) = §(k).
Hence for any j € Z,,0< j <m—1, and £ € Z9,
(3.10) GO)P 2t M ~1n;)®(2nl + 2x* M) = 6(£)8(5).
Multiplying both sides of (3.10) with </I;*(27T€+27rtM_1nj) and summing over £ € Z9,
we have
qOP(2n' M ;)G (20" M ) = 6(7)@7(0).

If j # 0, then by the invertibility of G¢ (27t M ~'n;), we have g(0)P (27t M ~1n;) = 0,
and if j = 0, then we have

G(0)P(0) = &*(0)Ga(0)~".

On the other hand, by f(27k) = 6(k), & € Z%, we have §(0)®(2rk) = &(x). This
again leads to §(0)Gg(0) = &*(0), i.e. §(0) = ®*(0)G(0) L. Therefore we have
g(0)P(0) = ¢(0) and (3.9) is true for 8 = 0.

For 8 € Z4\{0},|B| < k, assume that (3.9) is true any a < 8,a € Z% and we
want to prove that (3.9) holds for 3.

By D?,f(an) =0, for all kK € Z

5 (5) 0% @IPCM0) lomaen D @M )2 =,
0<a<p

and hence for any j € Z,,0<j<m—1,and £ € Z¢

> ( 5 ) DY (Gw)P(*M™'W)) wmznn; DY (B("M ™ w)) wmamt Metamn; = 0.
0<a<p

By (3.9) for a < 83,
DS (Gw)P(M™'W)) |umny; @2l + 20 M~ 17))

== > ( g )A_“5(j)D3§(0)A“‘ﬂD€°‘<T>(2w£+27rtM—1nj)_
0<a<s

If j # 0, then as above we have
DY (Gw)P(* M w)) |ymamn; Go (2t M~1n;) = 0
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and therefore DY, (§(w)P(*M 'w)) |uzary; = 0. If j = 0, then
Dy (@@)P(* M w)) lumo®(270) + A7 ( g ) Dg(0) D *®(2nf) = 0.
0<a<p
By f(w) = §(w)®(w) and D? f(2r) =0, € € Z°,
) ( " ) D2G(0)D58(2nt) = 0.
0<a<p
Thus
DY (Gw)P(M'w)) |u=o®(27L) = AP DL.§(0)®(278).
This leads to
Dy, (G(w)P(*"M'w)) lu=0Ge (0) = A" ?D}§(0)Ga (0)
and therefore
DY, (7(w)P("M 'w)) |0 = A DY4(0).
It follows that (3.9) holds for 8, so that the proof by induction is completed. O
Denote by ®(z) the bi-infinite column from the integer shifts of ®:
(z)="(,'B(x+0), )
and by L the bi-infinite matrix:

erd 7

L:= (PMafﬁ)a,BeZd .
Then the refinement equation (1.1) can be written as
Lo®(Mz) = &(z).

The characterization of the accuracy order of @ in terms of the eigenvalues and
eigenvector structures of the infinite matrix L were studied in [11], [25] and [17]
for the case d = 1. In [1], similar characterization of the accuracy order of &
was obtained based on the ergodic theorem for the multivariate case with arbitrary
matrix dilations M (no restriction on the diagonalization on M) and the coefficients
ys,i(k) for the polynomial reproducing 2° = Y7 | > .ys.i(k)di(x + k) were
determined explicitly. In the rest of this section, under the assumption that the
integer shifts of ® (¢;(z — £),1 < i < r,f € Z?% are linearly independent, we will
determine explicitly the coefficients yf for the polynomial reproducing

(3.11) Y oyie@+0)=("Va)’, zeR!, |8 <k,
tezd
where V is the matrix defined by (3.1).

Theorem 3.7. Assume that ® € L?>(R?) is a compactly supported (M, P) refinable
vector and the integer shifts of ® are linearly independent. If ® has accuracy of
order k with yf, teztpe Zi, |B| < k being the 1 x r complex vectors such that

(8.11) holds, then yf satisfy
0¥ = Sozass (1) V07055,

a
(i1) yPL = \=ByB  where y? := (- -- ,yf, - )eezd,
(%) vectors yoﬁ,ﬁ € 71, |B| < k, satisfy the vanishing moment conditions (3.4).
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Proof. Let y}, £ € Z% 8 € Z%,|8| < k, be the complex vectors such that (3.11)
holds. For any 7 € Z¢,

Z yf+T<I>(w +4) = Z yf@(:c —74+0) =V(z-1))°

tezd tezd

= Z (ﬂ)(—tVT)ﬂa(tV:c)a— Z (’8) tVT'Ei O‘Zy (x+20)
0<a<p “ 0<a<p A

=3 ¥ (g)(—tw)ﬁ—ayg (z +90).
£€740<a<lp

By the linearly independent property of the integer shifts of ®,
B — IB _t B—a o
(3.12) Yorr= D (a>( Vr)Peyg.
0<a<p

Let £ =0, (3.12) leads to (i).
For B € Z%,|B| < k, we have by (3.11)

(‘Vo)® = yP2(z) = y° L&(Mu)
and _
(V)P = AP (A V)P = APV M) = \TPyPe(Mz).
By the linear independence of the integer shifts of ® again ,
(3.13) YPL=XPy?, for B ezl |B| <k.
At last, we verify (iii). Note that (3.13) can be written equivalently as

Z nyM(_gl :)\’Byf,, for any ¢' € Z%, 8 € Z4, |8 < k,
tezd

and especially we have for any 7,0 <j <m —1,

314) APy =N Py, =Y > ( g ) (= V0P Y P psy;.

tezd ¢€Z40<a<pB

For any € Z4, || < k, multiplying both side of (3.14) with AP =% (=V~;)~=# ( g )
and summing over 8 < k, one has by (3.12) and A'V =tV M,

v 3 () v,
0<B<k
-y > z( ) () ¥ vy o P,
LEZA0<B<K 0<a<f
=Y X % (5) (58 ) e an i,

t€Z740<a<lk a<lpB<k

=x > ( )A“ DY (”2“)<—twj>~—a-7<—tVMery3PMe+w
0<7<Kk—a

Lezi0<Lalkr

- Z Z ( Z ))‘a_n(_tV(Me+’Yj))n_QY3PMe+w

(eZ10<a<lk
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Thus for any k € Z%, |k| < k,

(3.15) Z ( 2 ) )*"yo Z V(ML+ 7)™ “Pumery; =X "y5

0<a<k ez

For any s € Z, 0 < s < m—1, multiplying both side of (3.15) with =27 =M ~"7;

and summing over j = 0,--- ,m — 1, one has by Lemma 2.1,
K _ _ ot -1,
Z (a) anazz ME+7]) aPM(+’yje 2w ns M~ " y;

0<a<lk J=0 ¢z

m—1

t

=ATTyG Y TN = mATmY ()

=0

Thus we have

]. t —1
m 2 (Z)<—A)a-“y3 S (V) a2 M < xRy (s).

0<a<k ezl
On the other hand, one has

> (1) it e

0<a<lk
1 " _
_ 1 Z ( K > (z)\)a K a (_itve)nfapzefz ns M 1y
m o
0<a<k ez
_ 1 K a K a n a znsM 1
_Ez(a)(_x & 3 (Ve Pe e
0<a<k ez

Therefore for any s € Z;,0< s <m— 1,k € Z%,|x| < k,

> ( ] ) (iN"yg D P2 M 1y,) = 6(s)A "y,

0<a<k

and the proof of (iii) is completed. O

Remark 3.8. By Proposition 3.5, yg, B € Z4, |B| < k, are the unique vectors

satisfying (3.4). Thus the unique coefficients yf for the polynomial reproducing
are given by (i) of Theorem 3.7, and further they satisfy (ii) of Theorem 3.7.

4. THE RESTRICTED TRANSITION OPERATOR

Assume that P is a matrix refinement mask with supp{P,} C [0, N]¢ for some
positive integer N, and ® is a compactly supported (M, P) refinable vector. It is
shown in Section 2 that to decide whether @ is stable (orthogonal) or not, we need
only to check the properties of the spectra (eigenvalues) and the 1-eigenvector of
the restricted transition operator T|g of T to H, where H is the finite dimension
space defined by (1.5) and T is the transition operator defined by (1.3). It is useful
in practice to transfer equivalently the restricted operator T|g to be a finite matrix
since eigenvalues and eigenvectors of a finite matrix can be computed directly. In
this section, we give the representing matrix 7 of T|g, and then study the spectral
property of T.
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For H(w) = Y e[y Hee ™ € H, by (2.5), T transfers under the basis {e "} s¢[q)
of H the sequence {Hg}ge [@] into another sequence

Z Z P H'Py_(rrr—o) }real
Le[Q] kelo,N]d

Now let us have a look at the matrices of the form P, H,'P,. Let Q = (Q(1),---,Q(r))
be an 7 x r matrix with Q(j) the jth column, define 72 x 1 vector vec(Q) by

vec(Q) :="(*Q(1),---,'Q(r)).
Then we have the following lemma.
Lemma 4.1. Let P,Q,H be r x r matrices, then
(4.1) vec(PH'Q) = (Q ® P)vec(H),
where Q ® P = (¢;;P)1<i,j<r, the Kronecker product of matrices Q and P.

Proof. Let P(i), H(i) denote the ith column of P and H, respectively, and let g;;
be the (i, j)-entry of Q. Then the jth column of PH!Q) is

PH qu EQJzPH q]1P : >(Ij7‘P)t(tH(1)7" : 7tH(r))

Thus

vec(PH'Q) = "("(PH(q1i)i=1), - , "(PH(gri)—1))
= (qﬁp)1§j5r,1§i5r Y(*HQ), -+ ,'H(r)) = (Q ® P)vec(H).
O

About formula (4.1) for more general matrices, one can refer to [12], and in partic-
ular, one has that for any 1 x r vectors v,u and r x r matrix @,

(4.2) (v @ u)vec(Q) = uQ'v,
where v ® u denotes the Kronecker product of v, u.
For j € Z¢4, define r? x r? matrices

.Aj i=m! Z Pg,j R Py,
Lefo,N]e
and define (r2([Q]]) x (r?|[Q]|) matrix
(4.3) T = (AMi=j); jefoy -
For f =3 ciq) fie™™7 € H, let vec(f) be the (r*|[Q]|) x 1 vector defined by
vec(f) = "'(--+, " (vec(f;)), ) jelay-
Then from (2.5) and (4. ) for any 7 € [],

vec((TH m™t Y > vee(PRHiP_(ar )

Le[Q] ke[0,N]4

= ’I')’L_1 Z Z H—(MT—Z) ® PH)VGC(H[)

€[] skelo,N]4
= 3 Awrevec(Hy) = (Tvee(H)) ().
Le[Q]

Hence we have
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Theorem 4.2. The restricted transition operator T to H is equivalent to the matriz
T defined by (4.3) under the basis {e’i“‘z}ge[g] of H, and for H € H

(4.4) vec(TH) = Tvec(H).

Lemma 2.2, Theorem 2.11, Theorem 2.12 and Theorem 4.2 lead to the following
two corollaries.

Corollary 4.3. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matriz P(0) satisfies Condition E,

(ii) for the left (row) 1-eigenvector 1 of P(0), IP(27tM~'n;) =0,1<j <m-—1,

(iii) the finite matriz T satisfies Condition E and the corresponding right 1-
eigenvector v satisfies that Ho(w) is positive (or negative) definite on T?, where
Hy(w) is the unique matriz function in H satisfying vec(Hp) = v.

Corollary 4.4. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:
(i) the mask P is a CQF,
(i) the matriz P(0) satisfies Condition E,
(iii) for the left (row) 1-eigenvectorl of P(0), IP(2rtM~1n;) = 0,1 < j <m-—1,
(iv) the finite matriz T satisfies Condition E.

By (4.4), v is an eigenvector of T if and only if the matrix-valued function H(w)
in H with vec(H) = v is an eigenvector of T, and furthermore v, H(w) correspond
to the same eigenvalue. Therefore to study the spectral property of T, we need
only to consider that of the matrix 7. In the rest of this section, we will discuss
the spectral property of 7. In the following, we will assume that eigenvalues of
the dilation matrix M are nondegenerate, and let A;, 1 < j < d be the eigenvalues
of M, V denote the matrix defined by (3.1). We also assume that P satisfies the
vanishing moment conditions of order k for some positive integer k, i.e. P satisfies
(3.4) for some vectors 15, 8 € Z4, |5| < k with 1§ # 0.

Let ko € Z 4, ko < k be the largest integer such that there exist 1 x r complex
vectors 13, BeZL k<|B| <k+ ko — 1 satisfying

(4.5) > ( g ) (iIN*PIEDE *P(0) = A P15.

0<a<p

If all the numbers A7 k < |8] < k + ko — 1 are not eigenvalues of P(0) for some
ko € Z, then the vectors IOB, B € Z4%,k <|B| <k+ko—1 can be chosen iteratively
by

B0L-p0) = ¥ (1) @vemmi oo,
0<a<p

For the case r = 1, since P(0) =1, ko = k.
— l . . . .
Let B(w) = Zeezi,m <kih, Bee'™ be the vector trigonometric polynomial satis-

fying
(4.6) DyB(0) =i%15, B ezdl,|B| <k+ k.
The coefficients By, 1 X r vectors, can be gotten by the following equations

> ((voPB =1, BeZ|Bl<k+ko.
|€|<k+ko
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By (3.2),forany j € Z4,0<j <m —1,

D?/ (B("Mw)P(w)) |lw=2mt M-1y;

- % (2)x (@900} P@) losen-
0<a<p

-2 ( . )A”‘<D%B)<0)D€‘“P<w)|w:2ﬁtM_1,ﬁ
0<a<pB
0<a<p “

Thus the vanishing moment conditions (3.4) and (4.5) can be written equivalently
in the forms

(4.7) DY (B(*Mw)P(w)) |yt a1y, = 6(j) DY B(0), 8 € Z%, 8] < k,0< j <m
and
(4.8) DY (B(*Mw)P(w)) |u=o = DYB(0), B € 2%,k <|B] <k + ko.

Let lg, B € Z4,|B] < k + ko be the row vectors satisfying (3.4) and (4.5). For
Kk € Z%, define row vectors 12 by

(4.9) Bi= )" ( B ) (-'Vk)P*1g, for B € Z4,|8| < k + ko,

a
0<a<p
and then define 1 x (72[[Q2]|) vectors L2 by

(4:].0) Lg = ( alB(K’)a)KE[Q]

with

Pr)= > (—1)a< g )Ic_’n®1§a, k€ LA

0<a<p

Lemma 4.5. For any 8 € Zi, 18] < k+ko, let Lg be the vectors defined by (4.10),
then for any H € H

L2 vec(H) = (—i)1#' DY (B(w)H(w) B*(w)) |w=0-
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Proof. By (4.2), for any 8 € Z4,|8| < k + ko, and any H € H

Lovec(H) =Y 1P(r)vec(Ho) =D > (- ( )15”}1(@(125)*

=52
_ zﬁ:g}sﬁ(—na ( s )1§aH(n)0 ;a(tvﬂ)v ( ° ) .

=Y ¥ Y ()

Kk 0<a<fO0<y<a

(tVk)Y ( @ )( i)/A=I D= B(0)H (k)i'*~7 DL B*(0)

|6|0§:<60<;a( ’ ) ( )DB aB(o);(—itvn)WH(n)Dg‘;*VB*(o)
> (]

Y (%) pisODVEOD O

0<a<p 0<y<a
= (-i)/?I D}, (B(w)H (@) B*()) |w=o-

For B € Z1,|B| < k + ko, denote
Eg:= {8 : X =),8" € Z%,|8'| < k + ko}.

Theorem 4.6. For any 8 € Z4,|8| < k + ko, let Lg be the vectors defined by
(4.10), then

(4.11) LT = A7PLY.

If there exists a B' € Eg such that Lg # 0, then A= is an eigenvalue of T with a
corresponding left eigenvector Lg .

Proof. We need only to show that for any H € H, L2 Tvec(H) = APLSvec(H).
In fact by (4.4) and Lemma 4.5,

(iN)PLE Tvec(H) = (iX)PL2vec(TH)
v (B("Mw)(TH)(* Mw)B* (*Mw)) lu—o

m—

[u

DY (B(* Mw)P (21w + 2mt M~ 1y);) -

<.
Il
o

H(2rmw + 27 M~ )P (27w + 27t M ~1n;)* B* (* Mw)) |lw—o

S 2 2 (2) ()0 BOaP@) s,

j=0 0<a<p 0<y<a
D} H(w)|weomt -10; DY %77 (BEMw)P (W)™ |umant -1y, -
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Since for any 8, a,y € Z% with |8| < k+ko and v < a < 8, min(|al, |B—a—9|) <k,
thus by (4.7) and (4.8),

rTe) = Y Y () (%) neeropel:

0<a<p0<y<a
D’\Y/H(w”w:oD\B/_a_’y (B(th)P(w))* |w:0
g @\ pa v B—a—y s
DY, (B(w)H (w)B* (@) |uo = i1*'L4 vec(H).

Therefore LgTvec(H ) = )\_BLgvec(H ). The second statement of Theorem 4.2
follows from (4.11) and the proof of Theorem 4.6 is completed. O

Since LY = (13,---,13) # 0, 1 is an eigenvalue of T. In the case r = 1,d = 1,
M = (2), then Q = [-N,N] and kg = k. For any n € Z, n < 2k — 1, vector
((=N)™,--- (=D, 0™, 1",-.- | N™) (with notation 0" := §(n)) is the generalized
left eigenvector of eigenvalue 27" of 7 and hence 27",0 < n < 2k—1 are eigenvalues
of T (see [5]). Theorem 4.6 says that for 8 € Z%, |B| < k+ ko, if there exits 8’ € Eg
such that Lg # 0, then A7 is an eigenvalue of T. If the refinement equation (1.1)
has a compactly supported solution ® with & € W*(R?) for some s > 0, the one
can show similarly as in [19] that Lg # 0for 8 € Z4%,|8| < min(k + ko — 1,2s), and
hence A~# are eigenvalues of T. In this paper, for s > 0, we say a vector-valued
function f = !(fi,---, f.) is in the Sobolev space W*(R?) if every component f;
of f satisfies (1 + |w[?)% f;(w) € L2(R?), 1 < j < r. Vectors L2 play an important
role in the estimate of the Sobolev regularity of the refinable vector ®, which will
be shown in the next section.

5. SOBOLEV REGULARITY ESTIMATES

Assume that P ({P,}) is a matrix refinement mask satisfying (3.4) and (4.5) for
some positive integers k, kg with ko < k, and ® is a compactly supported (M, P)
refinable vector. Suppose supp{P,} C [0, N]¢, and let H be the space defined by
(1.5). In this section, we will give the estimate on the Sobolev regularity of @ in
terms of the spectral radius of the restricted operator of the transition operator T
to an invariant subspace H° of H.

For j € Z4+,1 < j <rand a € Z%,|a| < k, let ;1&,,;rd be the 1 x (r?|[(2]])
vectors defined by

(5.1) il = (1K) Dneta, 576 = (0017 (K), - )rela)
with
1%(k) ==te; @12, r%(k) =17, ®%,;, keZl

Lemma 5.1. For j, 1< j<rand a € Z4,|a| < k—1, let ;13 , ;v& be the row
vectors defined by (5.1), then for any H € H,

j1gvec(H) = i Dy (B(w)H (w)e;) |w=0,
jrévec(H) = (—i)*Dy (‘ej H (w) B* (w)) lu=o-
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— —iKkw
Proof. For any H € H, H(w) = ZNE[Q] H.e ,

Dy (B H@e) o= Y (2 ) DIBODTHOe

0<y<a
. o _ .
=i*> Y ( -y ) (—'VK)*JHye; =i* Y 12 Hye;
Kk 0<v<a K

=4 Z(tej ® 12)vec(H,) = i% ;13 vec(H).

The proof of the second formula is similar and it is omitted here. O
Let H° be the subspace of H defined by

(52) H:={HeH: Livec(H)=0, ;1&vec(H) =0 and

jrévec(H) = 0,V8,a € Z4,|B| < k + ko, || < k,1 < j <r}.
Proposition 5.2. Let H° be the subspace of H defined by (5.2), then HC is invari-
ant under T.
Proof. By Theorem 4.6, for any H € H° and 8 € Z4,|8| < k + ko,

L2vec(TH) = L5 Tvec(H) = A™PL2 vec(H) = 0.
By Lemma 5.1, for any o € Z4,|a| < k, ;13vec(H) = 0 and jr&vec(H) = 0 for all
J,1 < j <r,areequivalent to DY (B(w)H (w)) |w=0 = 0 and D{} (H(w)B*(w)) |w=0 =
0, respectively. One can check by (4.7) and (4.8) that D¢ (B(w)TH(w)) |w=0 = 0
(D¢ (TH (w)B*(w)) |w=o0 = O resp. ) for all « € Z%, |a| < k if D¢ (B(w)H (w)) |w=0
=0 ( D¢ (H(w)B*(w)) |w=o = 0 resp.) for a € Z4,|a| < k. Thus HC is invariant
under T. m

Let T|go denote the restriction of T to H?. We will provide the Sobolev regularity
estimate of ® in terms of the the spectral radius p(T|go) of T|go, and therefore
we need to find the maximum of the moduli of the eigenvalues of T|go. By the
fact that the product of the left and right eigenvectors of a simple eigenvalue of a
matrix is not zero, Theorem 4.6 leads to the following corollary,

Corollary 5.3. If A7 with 8 € Z4,|B| < k + ko is a simple eigenvalue of T and
there exists ' € Eg such that Lg # 0, then \=? is not an eigenvalue of T|gp .

The next proposition provides a way to find the eigenvalues of T|go. Let Lo be
d+k+ko—1

the r2|[Q]| by ( 4 ) matrix defined by
Lo = ( :t(Lg):'")BeZi,|B\§k+ko—1=

d+k-1

and for j, 1 < j < r, let L; and R; be the r%|[Q]| by ( J

defined by

) matrices

Lj:=(-- 7t(j1?2)7'")aEZi,|a\§k—17 Rj:= (- :t(jra)a'")aezi,|a\gk—1-

d+k+k—1 d+ k-1
d )+2r< d

MQ = (,CQ,Ll,'-' ,LT,Rl,"' ,Rr).

Then define the 72[[Q]| by ( ) matrix Mg
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Proposition 5.4. Assume that Ao is a nonzero eigenvalue of T, then Ao is an
eigenvalue of T|wo if and only if rank(* Mo (u1,--- ,u;)) <1, here uy,--- ,w; are a
basis of the Ag-eigenspace of T .

Proof. Note that Ag is a nonzero eigenvalue of T|go if and only if A¢ is a nonzero
eigenvalue of 7 with a corresponding right eigenvector u satisfying

(5.3) t Maqu = 0.

By the fact that for any matrices My, M> (with the product M; M, meaningful),
rank(M; M) < min(rankM;, rank M>), we know that if rank(* Mg (uy,--- ,w;)) > 1,

then rank(!Mq(uy, - -- ,1;)) = [, and therefore any linear combinations of uy,--- , 1
does not satisfies (5.3). Thus Ag is not an eigenvalue of T|go.

If rank (! Mg (uy,- - - ,1;)) = Iy < I, we assume without loss of generality that the
rank of *Mq( wuy, --- ,uy,) is lop. Thus *Mqu;,j =1,--- 1, are linearly indepen-
dent, while *Mqu;,j = 1,---,lp + 1, are linearly dependent. Hence we can find
constants ¢y, - - , ¢y, such that

vi=cug + -+ ey + W41

satisfies (5.3), i.e. Ag is an eigenvalue of T|g with Hy € H given by vec(Hp) = v
being a corresponding eigenvector. O

Proposition 5.4 provides an easy way to find eigenvalues of T|po, further it is
provided in its proof the way to find the corresponding eigenvector. By Proposition
5.4, we have the following corollary.

Corollary 5.5. The spectral radius p(T|mgo) of T|mo is the mazimum of the moduli
of all eigenvalues \o of T satisfying rank(* Mq(uy,--- ,w;)) < I, where uy,--- ,uy
are o basis of the A\g-eigenspace of T .

For the next proposition, we need consider the transition operators on other
spaces. Denote N := max(N,k + ky) and

o0
Q=D Mg ;€ [-N, N4V € 2y}
j=0
Let Hg, denote the space of all » x r matrices with each entry a trigonometric
polynomial whose Fourier coefficients are supported in [(;] and let Tgq, denote the
restricted operator of T to Hg, . Then Tgq, is a linear operator on Hg, leaving Hg,
and H invariant, and the representing matrix of Tq, is

Toy == (Azij)ijelon)-
Let HY, be the subspace of Hg, defined as follows: H € HQ if and only if
Lglvec(H) = 0,;13 vec(H) = 0 and ;r§ vec(H) = 0 for all f,a € Z4,|8] <
k+ko,|a| < k,1 <j <r.In this case Lgl, ;18 and ;jrd are 1 x (r?|[Q]]) vectors

defined as (4.9) and (5.1), respectively with €; instead of Q. It can be shown
similarly that ]I-]]?21 is invariant under Tq, and let T|H§>1 denote the restriction of
1

Tg, (T) to HY, . Let Hy € Ho, defined by

(1 — cos(w;))¥ keI, w=" (w, - ,wq) € R

M&

(5.4)

J=1
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Then Ho(w) € HY, , and thus HY, is non-trivial. By Lemma 2.2, the eigenvectors
of Tq, correspondlng nonzero eigenvalues are in H, therefore Tgq, (T|]H@z resp.)
1

and the restricted operator T|g of T to H (T|go resp.) have the same nonzero
eigenvalues, hence p(T|mw) = p(T|ug ), here p(T|w) and p(T[yy ) denote the
1 1

spectral radii of T|g and T|gg , respectively.
1

The following proposition obtained by modifying the proofs of Proposition 4.4
in [26] or Proposition 3.3 in [19].

Choose a vector norm on space Hf) and define the operator (matrix) norm
||T|]H[?21 || with respect to this vector norm, then

Tim (Tl )"[I" = p(Tleg, ) = p(Tlio).

Proposition 5.6. Assume that P satisfies conditions (3.4) and (4.5), and p('T|pp)
is the spectral radius of T|go. Then for any € > 0, for the corresponding (M,P)
matriz refinable function ®, there exists a constant ¢ independent of n such that

[ (8] dw < clomi) + o7,

n

where D, := tM"TN\(M" T, n € Z,.

Proof. Let Ho(w) € HY, defined by (5.4). Since "M ~"T* is a neighborhood of the
origin, there exists a positive integer g such that %’]I‘d C tM~!T? Note that for
w €Dy, d(w) = M,(w)®(M"w), and for w € ']I‘d\(%'ﬂ‘d), Hy(w) > coI, with

co = d(1—cos(Z))*+* > 0. Thus by the continuity of ®(w) on T¢, we have for any
positive integer n,

/ B(w) 3" (w)dw = / T, (@) B M ") 3" (M) T (w)dw
D,
/ W)dw < ¢ / I, ()T, () dov
Man\(%tMan)
<e / T, (w) Ho ("M~ ")TT% (w)d
tMan\(%tMan)

< [ M) oM ") @) = [ (Th, o)),

where last equation follows from Lemma 2.9. Since the Hilbert-Schmidt norm
Q]2 = v/ Tr(QQ*) is an equivalent norm for finite matrices, by applying the trace
operation, we obtain

[ Beras= [ T(8@)8 @) do <c (oThy, ) +€)" = e (o(The) +9"

with ¢, independent of n. O

Proposition 5.6 together with the usual Littlewood-Paley technique lead to the
following Sobolev estimate of the refinable vector ®.

Theorem 5.7. Assume that P satisfies conditions (3.4) and (4.5). Then the
(M, P) matriz refinable function ® is in W*(R?%) for any s < so := —log p(T|me )/ (2log Amaz),
here p(T|mo) is the spectral radius of Tlgo and Amaz := maz{|\1],--- , ||}
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Proof. For the dilation matrix M, there exists some ng € Z4 such that T? C
(tM)m+IT?, For s < sg, let € > 0 be a constant satisfying s < —log(e +
P(T|mo)/(21log Amax). Since
[ Bw)Pds < cle+ p(Tho))",
Dy
for some constant ¢ independent of n and 3 is continuous on T4, thus

/ (1 + |w]?)?*[B(w)[2dw
R4

< [ @+l + Y (1+ o) B() e

— /M"O"'"Td\tM"_le

_ 2\s| R 2 SN 2\8| R 2
= [Lar ey E@Pa s 33 [ e

n=1j=0
oo no
<eted D (Amax) ™ (e + p(Tho))" < oo.
n=1 j=0
Therefore ® € W*(R?). O

Let C7(R?) denote the space defined as the following way: if v = n + 4/ with
n € Z,and 0 < o' < 1, then f € C7(R?) if and only if f € C(™(R?) and (™ is
uniformly Hélder continuous with exponent +/', i.e.

IDPf(z+y) - DPf(@)| < cly|”', for any B € 2%, 8] = n,

for some constant ¢ independent of z,y € RY. With the well-known inclusion

d
We(RY) c C'(RY), for s>+ 2

Theorem 5.7 leads to the following corollary.

Corollary 5.8. Suppose P satisfies conditions (3.4) and (4.5), then the (M,P)
matriz refinable function ® € C?(R?) for any v < —2 —log p(T|w )/ (2108 Amaz),
where p(T|wo) is the spectral radius of T|gp and Amaz := maz{|M1],--- , ||}

Assume that the refinement mask {P,} is a finitely supported real r x r matrix
sequence and P satisfies the vanishing moment conditions of order k (3.4) and (4.5)
for some ky with real vectors 13 ,18| < k + ko. Let Hr denote the space of all r x r
matrices with each entry a trigonometric polynomial whose Fourier coefficients are
real and supported in [(]. Then Hy is invariant under T. Define the subspace

Hsym of Hr by
Hsym := {H € Hy : H*=H, L{vec(H) =0 and
jlgvec(H) = 0,Y8,a € 2%, |B] < k+ko, || <k, 1< j <r}.
Then Hsym is a linear space over the field R and is invariant under T. Let T|Hsym
denote the restricted operator of T to Hsym. Then as above, we can obtain the

Sobolev regularity estimate of the compactly supported (M, P) refinable vector ®
in terms of the spectral radius of T|Hsym'
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Theorem 5.9. Assume that the refinement mask {P,} is a finitely supported real
rXr matriz sequence and P satisfies (3.4) and (4.5) with real vectors 15, || < k+ko.
Then the (M,P) matriz refinable function ® is in W*(R?) for any s < sg :=
—10gp(T|Hsym)/(2 log Amaz), here p(T|Hsym) is the spectral radius of T|Hsym
and )\ma{p = ma,w{|)\1|, ey, |)\d|}

In [19], the Sobolev regularity estimates of the B-splines defined by knots 0,0, 1,1
and 0,1, 1, 2, the GHM-orthogonal scaling functions in [8] and two refinable vectors
from [2] are analyzed. To finish this paper, we analyze an example from [9] about
refinable bivariate splines.

Example 5.10. Let ¢; denote the “pyramid function” with support on the square

with vertices (2, 1), (1,2),(0,1) and (1,0) which is continuous, satisfies ¢;(1,1) =1

and is linear on each of the four triangles formed by the boundary and two diagonals

of its support. Let ¢ be the “pyramid function” with support on [1, 2]?, i.e.
$2(x1,72) = d1(x1 + 22 — 1,71 — T2).

Let ® := (¢1, ¢2), then & satisfies matrix refinement equations (1.1) with M = 21,
and the matrix refinement mask given by (refer to [9])

Pw) = 1 (2 +2+20n2 + 2720 + 2173 (1+21)(1 + 22)
8 2(2’122)2 2’122(1+21)(1+2’2) ’
where 21 = e ', 25 = e 2. In this case n; = v;,j = 0,---,3 and they are the

vertices of [0,1]?, and 1, i are eigenvalues of P(0), N = 2, Q = [-2,2]2. One has

1/6 4 1 /-2 0\ .

Thus 1(()00) = !(1,1) is the unique (up to a nonzero constant) vector satisfies (3.4)
for 8 = (00). And we have

DUOP(0) = DUOP(Q) = %ﬁ (i 2) ,

DUOP(r,0) = DOVP(0, 7) = %’ (_42 _22> ,

DOOP(0,7) = DOVP(r,0) = DOOP(r, 1) = DOVP(r, 1) = %Z (‘f 8) :

One can obtain that 1(()10) = 1(()01) = (1, 3) satisfy (3.4) for 8 = (10) and B = (01),
respectively and there are no such vectors l'g that satisfy (3.4) for all 8 € Z3 wit

|3| = 2. Though I is an eigenvalue of P(0), there are vectors 1(()20) = 1((]02) =
£1,2),15" = £(1,2) and 1§ =1 = t(1,9) 17" = 1{'*) = (1, 3) satisfy (4.5)
for g = (20), (02), (30), (03),(21) and (12), respectively. To check the stability of
®, one need to compute the eigenvalues of the 100 x 100 matrix
T-2,212 = (A2i—j)ije[2.2)2-

We find for 8 € Z4, |8] < 3, Lfiz op # 0, thus by Theorem 4.2, 1,3, } and §
are eigenvalues of 7. In fact the eigenvalues of T are 1,1(2),1(5), (12), £(24)
and 0(56). Here for an eigenvalue Ao, notation Ag(l) denotes that the algebraic
multiplicity of A is [. Thus 7[_5 2> and the restricted transition operator of T
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to Hi_5 o2, denoted by T[_3 2, satisfy Condition E. We find the 1-eigenvector of
T[_272]2 is
8+ eiw1 +eiw2 4 e w1 _}_efz'wz 14+ eiw1 +eiw2 4 ez’(w1+w2)
Hiw)= (1 4 em1 4 gmiwz 4 gmi(witws) 4 ) .
Checking directly, H(w) > 0 for all w € T2, hence ® is stable. By Theorem 3.6,
S(®) provides approximation of order 2.

To estimate the regularity by our method, we need only to find the maximum of
the moduli of the eigenvalues of T|_3 52 |mo, the restricted operator of T[_y )2 to the
invariant subspace H° of Hi_5 9p2 defined by (5.2). By Corollary 5.3 and Proposition
5.4, we find 1,  and % are not eigenvalues of T[_ o2|wo, and § is an eigenvalue of
T} 522w with a corresponding eigenvector HO(w) = 3,1y 172 Hee  given by

1 4 —6 6
H , ,= tH11 = (0 0> ) H_g= tHlO = ( 0 0) )

0 6 —10 4
Ho_1 ="Hy = (O —6) ; Hoo = ( 4 —8) ,

and H_1y ="Hy_; = 0. Thus p(T[_222|p) = §, and it follows from Theorem 5.7

or Theorem 5.9 that ® € W%_f(Rz) for any € > 0. On the other hand, the Fourier
transform of ® is (see [9])

~ . w1 Sinwy — wa sinw
¢1(W1,w2):4€71(w1+w2) 1 2 _ 2 . 1
wiwz (Wi — w3)

~ 1 . N
¢2(W1,w2) = 567%Z(w1+w2)¢1(

?

w1 twe wi — wz)

2 2 )
Thus ® € W*(R?) if and only if s < 2 and our estimate on the Sobolev regularity
of ® is optimal.
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