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Abstract

In this paper we survey recent results on approximation power of refinable vectors
of functions. Let ® = (¢1,...,¢,)7 be an r x 1 vector of compactly supported functions
in L,(IR*) (1 < p < o0). The first part of this paper is devoted to an investigation
of approximation power of $(®), the shift-invariant space generated from ®. We review
results on characterizations of the approximation order of $(®) and describe approximation
schemes that achieve the optimal approximation order. We also give a self-contained
treatment of various equivalent forms of the Strang-Fix conditions.

We say that @ is refinable if & = ) ;. a(a)®(M- — «), where M is an expansive
s X s integer matrix, and the refinement mask a is finitely supported. The second part of
this paper is dedicated to a study of accuracy of ®. We review results on characterizations
of the accuracy of ® in terms of the mask in both time and frequency domains. We also
discuss the relationship between the accuracy of ® and the sum rules associated with the
mask. Examples are provided to illustrate the general theory.

1 Supported in part by NSERC Canada under Grant OGP 121336



Approximation Power of Refinable Vectors of Functions

§1. Introduction

In this paper we survey recent results on approximation power of refinable vectors
of functions. Since wavelets are generated from refinable functions, this study plays an
important role in wavelet analysis. Our goal is to give a characterization of the approx-
imation order of a refinable vector of functions in a compact form, which can be easily
applied to concrete problems.

Let IR denote the set of real numbers, and IR® the s-dimensional Euclidean space. An
element of IR® is also viewed as an r x 1 vector of real numbers. The inner product of two
vectors z and y in IR® is denoted by z - y.

Let f be a (Lebesgue) measurable function from IR® to C, where C denotes the set of
complex numbers. For 1 < p < oo, let

= ([ wrepas)

For p = o0, let || f||c be the essential supremum of f on IR°. By L,(IR®) we denote the
Banach space of all measurable functions f such that || f||, < co. A function f is said to
be integrable if f lies in L1(IR®). If 1 < p,p’ < oo and 1/p+ 1/p’ = 1, then p and p’ are
called conjugate exponents. Suppose f € L,(IR*) and g € L, (IR?), where p and p’ are
conjugate exponents. We define

(f,9) = f(x)g(z)dz.
Re

Let IN denote the set of positive integers, and IN, the set of nonnegative integers. An s-
tuple u = (p1, ..., pus) € INg is called a multi-index. The length of p is |u| := p1+- - -+ s,
and the factorial of p is pu! := !+ - pg!. For p,v € INg, v < pmeans v; < pj, j =1,...,8.
If v < pand v # pu, we write v < u. For v < p, we define

() = o=

Let Z denote the set of integers. By £(Z°) we denote the linear space of all sequences
on Z°. A sequence b on Z® is said to be finitely supported if b(a) # 0 only for finitely
many «. Let £o(Z*) denote the linear space of all finitely supported sequences on Z°.

A square integer matrix M is said to be expansive if its spectrum lie outside the
closed unit disc. The transpose of M is denoted by M7T.

For a vector y € IR®, we use D, to denote the differential operator given by

D, f(z) := lim flz+ty) — (=)

, z € R°.
t—0 t

1



Also, we use V, to denote the difference operator given by
Vyf:f_f('_y)'

Let e1,. .., es be the unit coordinate vectors in R®. For j =1,...,s, we write D; for D,,.
For a multi-index p = (p1,-- ., s), D* stands for the differential operator D{" - - - DHs.
For a positive integer k£ and 1 < p < oo, the Sobolev semi-norm | - [ ,, is defined by

flew =Y ID*fllp.

lnl=k

The Sobolev space WF(IR®) consists of all functions f € Ly(IR®) such that |f|x , < co. We
use C(IR®) to denote the space of continuous functions on IR®. The space C*(IR®) consists
of all continuous functions f for which D* f € C(IR?) for all |u| < k.

The Fourier transform of a function f € L1(IR?) is defined by

f@ = [ fl@etds, €eR’,
RS
where 7 denotes the imaginary unit. The domain of the Fourier transform can be naturally
extended to compactly supported distributions.
For p = (p1,...,ps) € INj and = = (x1,...,x5) € R®, define

B pPl gt
ot =] zhe.

The function z — z# (z € IR®) is called a monomial and its (total) degree is |u|. A
polynomial is a linear combination of monomials. The degree of a polynomial g = > u Cuh
is defined to be degq := max{|u| : ¢, # 0}. By ¢(D) we denote the differential operator
Zu cyD*. Let II denote the linear space of all polynomials, and let II; denote the linear
space of all polynomials of degree at most k. By convention, IT_; = {0}.

Now let ® = {¢1,..., ¢, } be a collection of compactly supported functions in L, (IR?)
(1 < p < o0). The first part of this paper is devoted to an investigation of approxima-
tion power of $(®), the shift-invariant space generated from ®. Under the mild condition
that the sequences (¢§J (27 B))gezs, j = 1,...,r, are linearly independent, it was shown in
[15] that $(®) provides approximation order k if and only if $(®) D IIx_;. In Section 2
we shall review this result and discuss approximation schemes which achieve the optimal
approximation order. With the help of the Poisson summation formula, polynomial repro-
ducibility of $(®) can be described as conditions on the Fourier transforms of ¢1,..., ¢,
at 2w, B € Z°. These conditions are often called the Strang-Fix conditions (see [30]). In
Section 3 we will give a self-contained treatment of various equivalent forms of the Strang-
Fix conditions. As far as polynomial reproducibility is concerned, ¢1,..., ¢, are allowed
to be compactly supported distributions. We say that ® has accuracy k if $(®) D IIx_;.

For compactly supported distributions ¢1,..., ¢, on IR®, we use the same letter ®
to denote the r x 1 vector (¢q,...,¢,)T. We say that ® is refinable if ® satisfies the
following vector refinement equation

o= > a(@)®M: - a),

a€Zs



where M is an expansive s X s integer matrix, and each a(«) is an r X r complex matrix.
We call a the (refinement) mask and assume that a is finitely supported. The second
part of this paper is dedicated to a study of accuracy of ®. In Section 4, by using the
Fourier analysis technique, we shall review results on accuracy of ® in terms of the symbol
of the mask. In Section 5 we will give a characterization of the accuracy of ® in terms of
the so-called sum rules associated with the mask. Finally, in Section 6, examples will be
provided to show the reader how this characterization is applied to concrete problems.

§2. Approximation Power of Shift-invariant Spaces

A linear space S of functions from IR’ to C is called shift-invariant if it is invariant
under multi-integer translates, i.e.,

feS=f(-—a)es VaeZ°.

Let ® be a finite set of functions from R® to C. We denote by So(®) the linear span of
shifts of the functions in ®. Then $¢(®P) is the smallest shift-invariant space containing ®.
Given a function ¢ : IR* — C and a sequence b € £(Z*), the semi-convolution ¢ *' b

is the sum
> (- — a)b(a).

a€Zs

This sum makes sense if either ¢ is compactly supported or a is finitely supported. Let
® be a finite collection of compactly supported functions from IR* to €. We use $(P)
to denote the linear space of functions of the form }_, 4 ¢*'by, where by (¢ € ®) are
sequences on Z°.

For a subset E of L,(IR*) (1 < p < o0) and f € L,(IR?), define the distance from f
to E by

dist (f, E)p := gigg{llf—gﬂp}-

Let S be a closed shift-invariant subspace of L,(IR*). For h > 0, let o be the scaling
operator given by o, f := f(-/h) for functions f on IR®. Let S := o1,(S). For a positive
integer k, we say that S provides L,-approximation order £ if, for every sufficiently
smooth function f in L,(IR?),

dist (f,S"), < Cth*F  Vh >0,

where Cy is a constant independent of h.

Let ® be a finite collection of compactly supported functions in L,(IR®) (1 < p < 00).
Then S(®)NL,(IR?) is closed in L, (IR®) (see [15, Theorem 3.1]). We say that $(®) provides
approximation order £ if $(®) N L,(IR*) does.

The following result was established in [19, Theorem 4.1].

Theorem 2.1. Let ¢ be a compactly supported function in L,(IR®). If

Y a@p(-—a)=q Vqell, (2.1)

a€Zs



then $(¢) provides L,-approximation order k.

Let us review the approximation scheme given in [19]. First, choose a compactly
supported nonnegative function p in C*(IR®) such that [, p(z)dz = 1. For h > 0, let
pr(x) := p(z/h)/h, z € IR®. Second, for given f € L,(IR?), set

@)= [ (F=IEN@m) s, xR
Then f;, € C¥(R®). Let

su(@) == > fu(hy)d(z/h—7), xR’

YER?®

Suppose f € Wzi“ (IR?). If ¢ satisfies (2.1), then it was proved in [19, Theorem 4.1] that

If = sully < Clflkph®, h>0,

where C' is a constant independent of h, p, and f.

Another approximation scheme was discussed by Lei, Jia, and Cheney in [27]. The
scheme is based on quasi-projections (see [26] and [14]). Suppose ¢ is a compactly sup-
ported function in L, (IR*), where p’ is the exponent conjugate to p, i.e., 1/p+1/p’ = 1.
Let T be the linear operator given by

Tfi=Y (f,¢(-=Mb(-—7): [ € Ly(IR?).

YEZ®

T is called a quasi-projection operator. For A > 0, we denote by T" the operator o,T o /h>
where oy, is the scaling operator given by o4 f = f(-/h). Suppose f € WF(IR®). It was
proved in [27, Theorem 2.1] that there exists a positive constant C independent of h, p,
and f such that

IT"f = fllp < C|flkph®, h>0,

provided T'q = ¢ for all ¢ € 1Ix_;.

Now let ® = {¢1,...,¢,} be a finite collection of compactly supported functions in
L,(IR?) (1 < p < 00). If there exists some ¢ € 5o(P) satisfying (2.1), then Theorem 2.1 tells
us that $(®) provides approximation order k. Is the same conclusion still valid under the
weaker condition $(®) D IIx_;7 The answer is a surprising no. The first counterexample
was given by de Boor and Hollig in [3] by considering bivariate C'-cubics. Their results
can be described as follows. Denote by h the hat function given by

h(z) := max{1 — |1 —z|,0}, =z € R.

Let ¢1 and ¢, be the functions on IR? given by
1 1
¢1(z1, x2) 1= / h(zy —t)h(xo—t)dt and  ¢Pa(x1,29) := / h(zg —t)h(xz1 — zo +t) dt,
0 0
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where (1, z2) € R?. In [3], de Boor and Héllig proved that $(¢1, ¢2) D IIs but $(¢1, d2)
does not provide L .-approximation order 4. In fact, the optimal L,,-approximation order
provided by $(¢1, ¢2) is 3. This conclusion was also established in [2] by using a different
method. Note that in this example

Z 1z —a)=1= Z $o(x — ) Vo elR

a€cZ? aEezZ?
Suppose @ satisfies the following additional condition: For cq,...,c,. € C,
T
chquj('—a)zo :> c]_:--.:cr:O.
1=1 acZ®

In terms of the Fourier transform, this condition is equivalent to saying that the sequences
(¢;(27P))gezs, j = 1,...,r, are linearly independent. Under this condition, $(®) D IIx_1
implies the existence of a function 9 € $4(®) such that

Y ql@yg(—a)=q Vgell . (2:2)

a€Z?
Therefore we have the following result (see [15, Theorem 8.2]).

Theorem 2.2. Let ® = {¢1,...,¢,} be a finite collection of compactly supported func-
tions in L,(IR*) (1 < p < o00). Suppose that the sequences (qASj(27r,8))/3€Zs, j=1,...,r,
are linearly independent. For a positive integer k, the following statements are equivalent:
(a) S(®) provides Ly,-approximation order k.

(b) $(®) D 1.

(c) There exists an element 1 € 30(®) such that (2.2) is valid.

In this situation, quasi-projection also can be used to construct an approximation
scheme. Suppose ¢1,..., ¢, are compactly supported functions in L,/ (IR*), where p’ is the
exponent conjugate to p. Let T be the linear operator on L,(IR*) given by

Tf:=Y Y (id;(=Mei(-—7) [ e Ly(R).

j=1~ez

Set Th .= opToq/p- Then T" can be expressed as follows:

T 1 N .
Thfi=) Y 7 8i(/h=1)bi(/h =), | € Ly(IR?).
j=l~ez®
Suppose f € W}F(IR®). It was proved in [27, Theorem 2.1] that there exists a positive
constant C independent of h, p, and f such that

||Thf — fllp < C‘f‘k,phk, h >0,

provided T'q = q for all ¢ € 1Ix_;.

Suppose @ is a finite collection of compactly supported distributions on IR®*. Then the
definitions of $o(®) and $(P) still make sense. Moreover, if the sequences ((;33 (27PB))pezs,
j=1,...,r, are linearly independent, then condition (b) and condition (c) in Theorem 2.2
are equivalent.



§3. The Strang-Fix Conditions

Let ¢ be a compactly supported integrable function on IR®. With the help of the
Poisson summation formula it can be shown that the conditions in (2.1) are equivalent to
the following conditions:

D$(2mf) = boubop Ylul <k and BeZ° (3.1)

where 0 denotes the Kronecker symbol. These conditions were formulated by Strang and
Fix [30]. As a matter of fact, in the univariate case (s = 1), these conditions were known
to Schoenberg [29].

The equivalence between (2.1) and (3.1) is a special case of the more general results
in the following lemma. These results were stated in [30]. Also see [4] for more detailed
discussions. In what follows, by A we denote the set {u € ING @ |u| < k}.

Lemma 3.1. Let ¢q,..., ¢, be compactly supported integrable functions on IR®. For each

p € Ay, suppose 1, is a linear combination of ¢1,...,¢,. The following statements are
equivalent:

l it av
(a) e Z Z 7¢u—u($ —a) Yup€Ag.

H v<pa€Zs

a—zx)

m Yy -0 =d VeeA.

v<p a€ZS )

—iD -
(c) Z ( zw ) ¢u—v(27713) = doudop Vpu €A, and B € Z5.
v<p )

Proof. (a) = (b): By the Binomial Theorem we have

(oz _ x)u B Z (_m)r a’~T

v Tt (v—1)"

T<v
It follows that
ZZL”)W (z — )—Z(_””)T Yy (@—a). (3.2)
p T 7! (v — )l V=T e A
vipa€Z?® T<p T<v<p

Hence, for p € Ag, condition (a) implies

a—zx)¥ —1)"x™ xH7T x#
23 et = D S = G S (7))

v<p aeZs r<p (= r<p

Consequently, condition (b) is valid, since

217 (/;) = { 21 =0 g ﬁj,‘:>0’0.

T<p



(b) = (a): The proof proceeds by induction on |u|. For g =0, (b) implies

Suppose || > 0 and (a) is true for all multi-indices p' with |p'| < |u|. Then for 0 < 7 < p

we have
= > Y~ ( % 7 —(w-r) (T — ). (3.3)

T<v<p a€”Z®

Moreover, condition (b) implies

DD DRI
v<p a€Zs
This together with (3.2) and (3.3) yields

3 (—Tr!)T +y e '% (z—a)=0. (3.4)

— |
o<r<pu (/j, T) v<pua€”Z’

On the other hand,

3 (—:;) i ! = Z( ) = 0. (3.5)

_ l
= (u—1)! =

Comparing (3.4) with (3.5), we obtain

I
PP DR @)="p 0<lul<k

v<p a€Zs

(b) = (c): Let

= Z Z wwu_y(x—a), z € R’.

v<p a€”Zs

Then g, is 1-periodic, i.e., g,(- +7) = g, for all v € Z*®. For € Z° we have

—i27fB-x _ _ —i2wfB-x
/[0,1] w@)e dr=D3_ ). / %—v(ﬂf a)e dz

v<pa€Z®
_ Z/ —.’L' ’Lp“ y( ) —127B-x dr Z ( )V &N_U(Zﬁﬂ-)_
v<p v<p



It follows from (b) that g, = do, for |p| < k. Hence,

/ 9,(2)e™ 2B dy = §¢,,605- (3.6)
[0,1]°

Consequently,

_D v
Z ( ;! ) VYu—v(287) = boudop, |p| < k.

v<p
(c) = (b): (c) implies (3.6). Hence, the Fourier coefficients of the 1-periodic function
g, are 0qu008, B € Z°. It follows that g, = do,, |p| < k. ]

A trigonometric polynomial 4 is a function from IR® to € having the form
hE) =) e, EER,
YEZ®
where ¢, are complex numbers and ¢, = 0 except for finitely many ~.
Recall that Ay, = {p € INy : |u| < k}. It is known that the matrix
(V) v.uens
is invertible (see, e.g., [1, §4]).

Lemma 3.2. For given complex numbers b, i € Ay, there exists a unique trigonometric
polynomial

h:&w— Z c e, €€ R?,

YEAE

such that

(—=iD)*h(0) =b, Vpe Ag. (3.7)
Proof. We have

(D) hO) = 3 e

YEAL
Hence, (3.7) is equivalent to the following system of linear equations:
Z ey =b, Ype A
YEA

Since the matrix (v*),,uea, is invertible, this system of linear equations has a unique
solution for (cy)~yea,- []

Let ® be an 7 x 1 vector (¢1,...,¢,)T, where ¢1,..., ¢, are compactly supported
integrable functions on IR®. We say that ® satisfies the Strang-Fix conditions of order k if
there exists a (finite) linear combination % of shifts of ¢1, ..., ¢, such that

DFa)(2B7) = dopudos Vi € Ay and B € Z°.

Such a function is often called a superfunction. Note that zf)(g) = B(§)<i>(£), ¢ € R?,
where B is a 1 x r vector of trigonometric polynomials. Thus, ® satisfies the Strang-Fix
conditions of order k if and only if there exists a 1 xr vector B of trigonometric polynomials
such that D*(B®)(278) = do,00p for all 4 € Ay and B € Z°.
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Theorem 3.3. Let ® be an r x 1 vector (¢1,...,¢,)T, where ¢1,..., ¢, are compactly
supported integrable functions on IR®. Then the following statements are equivalent.

(a) @ satisfies the Strang-Fix conditions of order k.

(b) There exist v, € span{¢1,...,¢,}, p € Ay, such that

D
Z( : ) ¢u u(2ﬂ7f)—5op,5og Vue Ay and € Z°.

v<p

(c) There exist v, € span{$1,...,¢r}, p € Ay, such that

Z Z —.@bu v(x—a) Yue A

v<puaEZs

Proof. It was proved in Lemma 2.1 that (b) and (c) are equivalent. Hence, it remains
to show that (a) and (b) are equivalent. Suppose ® satisfies the Strang-Fix conditions
of order k. Then there exists a 1 x r vector B of trigonometric polynomials such that
DH(B®)(287) = dou00p for all u € Ay and B € Z°. Let

o= CDLBOT

By the Leibniz formula for differentiation we obtain

(SiDY(B)(26m) _ 5~ (<D B() (~iD)" $(2m)

! = (n—)! V!

—iD) w (26) 9
_ Z by

v<p

But D*(B®)(287) = o,00p for all 4 € Ay and B € Z°. Hence, (b) is true.
Conversely, suppose (b) is true. Then for each p € A, ¢, = B,®, where B, isa 1 xr
vector of complex numbers. By Lemma 3.2 there exists a 1 x r vector B of trigonometric

polynomials such that
(—=iD)*B(0)

!
Hence, condition (b) and (3.8) together yield

:BH Yu e Ag.

SO (Ba)(apm) = S I (25m) = duudos Vi€ A and B 2

v<p

Therefore, ® satisfies the Strang-Fix conditions of order k. ]

We remark that Theorem 3.3 is still valid if ¢4,..., ¢, are compactly supported dis-
tributions on IR°. Recall that ® has accuracy k if $(®) D 1.
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§4. Accuracy of Refinable Vectors of Functions

Let ® = (¢1,---,¢-)T be an r x 1 vector of compactly supported distributions on R®
such that ®(0) # 0. Suppose P satisfies the following vector refinement equation

®= > a(a)®(M-—a), (4.1)

a€”Zs

where M is an expansive integer matrix, and the mask a is finitely supported.

In the univariate case (s = 1), accuracy of refinable vectors of functions was investi-
gated by Heil, Strang, and Strela [11], and by Plonka [28]. They characterized the accuracy
of ® in terms of the mask a under the assumption of linear independence or stability of ®.

In the multivariate case, approximation by refinable vectors of square-integrable func-
tions was studied by de Boor, DeVore, and Ron [2], and by Jiang [24]. They characterized
the approximation order of ® in terms of the symbol of a by using the Fourier analysis
technique. Without using the Fourier analysis technique, Cabrelli, Heil, and Molter [5, 6]
determined the accuracy of ® in terms of the mask a. Moreover, they determined explicitly
the coeflicients in the expansion of polynomials into a series of multi-integer translates of
®. In [8], Chen, Sheng, and Xiao combined techniques in both frequency and time domains
and improved some earlier results on accuracy of ®.

Taking Fourier transform of both sides of (4.1), we obtain

b(6) = A(MT)T1)e((MT)7TE), e’ (4.2)
where
1 .
A(E) = ot 3] g;s a(a)e ¢, (4.3)

It follows from (4.2) that R X
®(0) = A(0)®(0).

In other words, ®(0) is a right eigenvector of A(0) corresponding to eigenvalue 1.
Let  be a complete set of representatives of the distinct cosets of Z°/MTZ°. Without
loss of any generality, we may assume 0 € €.

The following two theorems extend the results in [2, Theorem 5.2] and [24, Theorem
3.2] to the case when ¢y, ..., ¢, are compactly supported distributions on IR°.

Theorem 4.1. Let ® = (¢1,...,¢,)" be anr x 1 vector of compactly supported distribu-
tions on IR® such that ®(0) # 0. Suppose ® is a solution of the refinement equation (4.1).
Then ® satisfies the Strang-Fix conditions of order k, provided there exists a 1 X r vector
B of trigonometric polynomials such that, with G given by G(£) = B(MT¢)A(¢), € € R?,
the following three conditions are satisfied:

(a) B(0)d(0) = 1;

(b) DFG(2r(MT)"w) =0 for all p € Ay and w € Q\ {0};

(c) D*G(0) = D*B(0) for all p € Ay.

Proof. Let f(£) := B(&)®(¢), ¢ € IR®. Then condition (a) tells us f(0) = B(0)®(0) = 1.
By (4.2) we have

£(€) = BEA(MT)TIHS((MT)7HE) = G(MT)1)D(MT)™IE), £eR’.  (4.4)

10



Condition (b) implies D*(G o (M7T)~1)(2rw) = 0 for all 4 € Ay, and w € 2\ {0}. Suppose
B€Z*\ MTZ’. Then 8 =w+ M7T for some w € 2\ {0} and v € Z°. By the Leibniz
formula for differentiation we obtain

Drf(2mB) =) (’;) D”(G o (MT)=Y)(2rB) D*~*(® o (MT)~1) (27P).

But condition (b) tells us that
D¥(Go(MT) ™M) (2rB) = D*(G o (MT)™ ") (21w +2rMT) = D" (G o (MT)™")(27w) = 0
for all w € 2\ {0} and v € Aj. Hence,
Drf(2nB) =0 Vue Ay and BeZ°\ MTZ°.
It follows from (4.4) that
F(MTE) = G(E)D(E), €€l

Since both G and B are 2w-periodic, condition (c¢) gives D*G(2rf) = D*B(2np) for
u € Ay and B € Z°. By the Leibniz formula for differentiation we obtain

DH(foMT)(2np) =Y (’:) D¥G(21B) D"~ d(21 )
v (4.5)

=Y (5) D¥B(2rB)DF"®(2n8) = D* f(2n).

v<p
By using this relation repeatedly we conclude that D*f(2r3) = 0 for all y € Ag and
Be M)z \ (MT)"1Z° n =0,1,.... Note that the set Z°\ {0} is the union of the
sets (MT)nzZ®\ (MT)"*1Z°, n = 0,1,.... Therefore,
D*f(2nB) =0 VyueA, and g€ Z°\ {0}
Let g := fo M7T. It follows from (4.5) that
D*g(0) = D*(f o MT)(0) = D*f(0) V€ Ay.

Consequently, D*(g— f)(0) = 0 for all 4 € Ag. By using the Chain Rule for differentiation
we deduce that

DF((g—f)o(MT)™)(0)=0 VpeAyandneN.
But go (MT)™" = fo (MT)~"*l. Hence,
DH(fo (MT)="t1)(0) = D*(fo (MT)™™)(0) Vue€ Ayandn €N,
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It follows that
DFf(0) =DH(fo(MT)™™)(0) Vu€A,andnelN.
Therefore, for u € Ay \ {0} we have
D f(0) = lim D*(fo (MT)™")(0) =0.

We have shown that D*(B®)(2rf) = doudog for all u € Ay and B € Z*. In other
words, @ satisfies the Strang-Fix conditions of order k. ]

For the scalar case (r = 1), the above theorem can be simplified as follows: If
DFARr(MT)"lw) = 0 for all p € Ag and w € Q\ {0}, then ® has accuracy k (see
[16, Theorem 3.1]). The converse of this statement is true under the additional condition
that, for each w € Q, there exists some 8 € Z* such that ®(27(MT)1w + 2rf3) # 0.
Without this additional condition, there is a counterexample (see [16, Example 4.2]).

For the vector case (r > 1), the converse of Theorem 4.1 is true under a similar
additional condition. In what follows, for a subset E of a vector space, span F denotes the
linear span of E.

Theorem 4.2. Suppose span{®(2r(MT) 'w+2rB): B € Z°} =C" for allw € Q. If &
has accuracy k, then there exists a 1 X r vector B of trigonometric polynomials such that
conditions (a), (b), and (c) in Theorem 4.1 are satisfied.

Proof. Since ® has accuracy k and span{®(278) : 8 € Z°} = C", by Theorem 2.2 we see
that ® satisfies the Strang-Fix conditions of order k. Hence, there exists a 1 X r vector B
of trigonometric polynomials such that the function f given by f(§) := B(¢ )@(5 ), £ € R,
satisfies

D" f(2rB) = doubop Vp € A and B e Z°.

In particular, B(0)®(0) = f(0) = 1. This verifies condition (a). We claim that B also
satisfies conditions (b) and (c). X

Let G(¢) = B(MT¢)A(€), £ € R*. Then f(MT€) = G()b(¢), € e R*.

We first establish (b) by induction on |u|. It follows from f(M7T¢) = G(£)®(€) that
for w € Q\ {0},

0= f(2rw+2aeMTB) = Gr(MT)'w)d2r(MT)'w+2n8) VB e Z’.
Since span{®(2r(MT) w4 278) : B € Z°} = C", we must have
G2r(MT)'w)=0 YweQ)\{0}.

This proves (b) for 4 = 0. Suppose 0 < m < k. Assume that (b) is valid for all |v| < m.
Let || = m. For w € Q\ {0} and 8 € Z®, we have

0=D*(foMT)(2r(M™) 'w + 273)

=Y D"G(2r(M") 'w)D* o (2r(MT) " w + 27)
v<p

= D'G (2n(M™)"'w)® (2r(MT) " w + 27p).
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This is true for all 8 € Z*. Since span{®(27(MT) 1w+ 2rp) : € Z°} = C", we obtain
DFG(2r(MT)=1w) = 0 for all w € Q \ {0}. This completes the induction procedure.

Next, let us prove (c). This will be done by induction on |u|. It follows from the
equation f(MT¢) = G(&)P(€) that

1=G(0)®(0) and 0= f2rMTB) = G0)d(2rB), B e Z°\{0}.
On the other hand, the equation f(£) = B(£)®(¢) yields
1=DB(0)®(0) and 0= f(2x8) = B(0)®(2rB), B e Z°\{0}.

It follows that [G(0) — B(0)]®(2x8) = 0 for all 8 € Z*. Since {®(2np): B € Z°} = C",
we must have G(0) — B(0) =0, i.e., G(0) = B(0). This proves (c) for u = 0.

Suppose 0 < m < k. Assume that (c) is true for all |v| < m. Let |u| = m. For g € Z?,
it follows from the equation f(M7T¢) = G(€)®(¢) that

0=DH(foM")2rp) =) (’:) DYG(0)D*~V®(2pn)

v<py

= D*G(0)®(27p) +Z< )D”G(O DFV$(2f).

vy

On the other hand, the equation f(£) = B(&)@(f) yields

0=DHf@2rf) =Y (’;) DY B(0)D*~"d(26r)

v<py

= D'B(0)(27B) + » ( )D”B (0) D& (28).

vy

By the induction hypothesis, D¥G(0) = D¥B(0) for |v| < m. Therefore, we have
[D*G(0) — D*B(0)]®(278) =0 VB € Z°.

Since {®(27p) : B € Z°} = C", we must have D*G(0) — D*B(0) = 0. This completes the
induction procedure and thereby the proof of the theorem. L]

We note that the condition
span{®(2r(MT) " 'w+27B) : B Z°} =C" Vwe N

is a consequence of linear independence or stability (see [20]). A viable way for checking this
condition in terms of the mask was provided in [12]. In the univariate case (s = 1), without
requiring such a condition, Jia, Riemenschneider, and Zhou [21] gave a characterization of
the accuracy of ® strictly in terms of the refinement mask.

For the scalar case (r = 1), Theorem 4.1 is valid under conditions (a), (b), and
G(0) = B(0). Is this true for the vector vase (r > 1)7 The following example gives a
negative answer.
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Example 4.3. Let s =1, 7 =2, and M = (2). Suppose the mask a is supported in [0, 1],

a(o):[—;m 134] and “(1):[1}2 1(/)4]'

Then [22, Example 6.1] tells us that there exist functions ¢; and ¢2 in Lo(IR) supported
on [0,1] such that ® = (¢1, ¢2)7 satisfies the refinement equation

® = a(0)®(2) + a(1)d(2- — 1)
and ®(0) = (1,0)7. We observe that 1/2 is not an eigenvalue of the block matrix

a(0) 0
0 a(l)]|"
Hence, by [21, Theorem 2.1], ® does not have accuracy 2.
We have
_ —ig) _ [ (L+e7™)/2 0
A© = 3la +awe ] = | U S ] e

If we choose B(£) = (1, (1—e~%)/2), € € R, then B(0) = (1,0). Hence, B(0)®(0) = 1 and
B(0)A(0) = B(0). Let G(§) = B(28)A(§), £ € R. It can be easily checked that G(7) =0
and G'(m) = 0. Consequently, B satisfies condition (b) in Theorem 4.1 for k£ = 2. ]

(NN

§5. Accuracy and the Sum Rules

Let ® be an r x 1 vector of compactly supported distributions satisfying the refinement
equation (4.1). In this section our goal is to give a characterization of the accuracy of ®
in terms of the sum rules associated with the refinement mask.

Let T be a complete set of representatives of the distinct cosets of Z°/MZ?®. Without
loss of any generality we may assume 0 € I'. For v € I and p € IN{, define

Ky = 562; (MB +7)“a(MB + 7). (5.1)
2,

Suppose r = 1. We say that a satisfies the basic sum rule if
Y a(MB+7)= ) a(MB) VyeTl.
Bezs Bezs
The basic sum rule was employed by Cavaretta, Dahmen, and Micchelli [7] in their study
of stationary subdivision. More generally, a is said to satisfy the sum rules of order £ if

K,,=K,o Vu € Ay and yeT.

If the mask a satisfies the sum rules of order k, then it was proved in [16] that ® has accuracy
k. This extends an earlier result of Daubechies and Lagarias [9] on univariate refinable
functions. Conversely, if ® has accuracy k, and if the sequence (®(27(MT)~'w+278))pecze
is nonzero for each w € €2, then the mask a satisfies the sum rules of order k.

For the vector case (r > 1), a certain form of the sum rules was discussed by Jetter
and Plonka [13].

Our starting point is the following lemma.
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Lemma 5.1. Let a be a finitely supported sequence of r x r complex matrices, and let

A© =3 af@)em, e,

m

where m = |det M| = #Q = #I'. Then for polynomials p1,...,p, of s variables, the
following two statements are equivalent:

(i) [p1(iD),...,p,(iD)JA2T(MT) " lw) =0 for allw € Q\ {0}.
(ii) fZﬂelzls [pl(lrwﬁ), - De(MB)Ja(MB) =3 gezs 1 (MB+Y), - - -, pr (M B+7)]a(M +7)
orallyel.

Proof. For the scalar case (r = 1), this result was established in [16, Lemma 3.3]. For the
general case, the proof is almost the same. Let us sketch the proof.
From the expression of A(¢) we have

m[p1(iD), ..., p, (iD)JA() = Y [p1(a), ..., pr(@)]a(@)e™™E, £ € R®,
a€”Z?

An element @ € Z°® can be written uniquely as M + v with g € Z° and v € I'. Observe
that, for £ ;= 2r(MT)" 1w, w € Q,

—ioé = —i(MB+v)2r(MT)'w = —i2nf-w — i 2r M~y - w.
Consequently,

mlp1(iD),...,pr (iD)JACRT(MT) w) = 3" b(y)e™ 2™ vy e q,
€T

where

= [1(MB+7),..,p(MB+y)]a(MB+7), veT.
BEZ®

Note that the matrix (e‘izWMAW""/\/T_n)A,ep,weQ is a unitary matrix (see [16, Lemma 3.2]).

Therefore, Y r b(v)e=2M ™ rw = 0 for all w € Q\ {0} if and only if b(y) = b(0) for all
v €T'. This establishes the equivalence between (i) and (ii). ]

Lemma 5.1 enables us to transfer conditions (a), (b), and (c) in Theorem 4.1 into
certain sum rules associated with the mask. Let us first consider the case when M is
a diagonal integer matrix: M = diag(oi,...,0s), where |o;| > 1, j = 1,...,s. For
p = (p1,...,s) € Z°, we write o* for of* ---oks. Suppose that there exists a 1 x r
vector B of trigonometric polynomials such that conditions (b) and (c) in Theorem 4.1 are

satisfied. Recall that G(&) = B(MT¢)A(€), ¢ € R®. Clearly,
D;G(¢) = 0;D;B(MTE)A(E) + BIMTE)D;A€), j=1,...,s.

15



More generally, for p € INj we have
(DGO = X (%) o (=D BMTO(-iD) A©), € €
v<p

Hence, condition (b) is equivalent to saying that, for all w € Q \ {0} and u € Ay,

v

0= (—iD)*G2r(MT) 'w) = Z (“) "~ (=iD)*~"B(0) (=iD)* A(2r(MT) " w).

With B, := (—iD)*B(0)/u!, p € Ak, we see that condition (b) is equivalent to

Z o VB, _,(—iD)’ A2r(MT) 'w)/v! =0 Vpe€ Ay and we Q) {0}.
v<p

By Lemma 5.1 we conclude that the above equation is equivalent to the following:

Y ()Mot B, Ky =Y (-1)"lo# B, K,y VpeA;andyeT\{0}. (5.2)
v<p v<p

Furthermore, we observe that condition (c) is equivalent to

(~iD)*B(0) = (—iD)*G(0) = Y (“) oh=V (—iD)* "V B(0) (—iD)’ A(0) Y € Ag.

v
v<p
This in turn is equivalent to
—v v 1
B,=Y 0" "Bu_,(-1) lR Y Kuy Vpe A (5.3)
v<p y€T

Equations (5.2) and (5.3) together are equivalent to

» (-1yMe# B, K, =B, VpeAgandyel. (5.4)
v<p

We are in a position to establish the following theorem, which generalizes Theorem 4.1
in [17] from the univariate case (s = 1) to the multivariate case.

Theorem 5.2. Let ® be an r X 1 vector of compactly supported distributions satisfying
the refinement equation (4.1) associated with an expansive matrix M = diag(oy,...,05)
and a finitely supported mask a. If there exist 1 x r vectors B, € CY™", i € Ay, such that

By®(0) = 1 and (5.4) holds true, then ® has accuracy k. Moreover,
zh a”
—=> > —Bu®@—a) VpeAy (5.5)

5 v<pa€Zs
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Conversely, if ® has accuracy k, and if span{®(2r(MT) 'w +218): 8 €Z°} = C" for all
w € Q, then there exist 1 x r vectors B,, € C'*", u € Ay, such that Bo®(0) = 1 and (5.4)
holds true.

Proof. Suppose B, (¢ € Ag) are 1 x r vectors of complex numbers such that (5.4) holds
true and By®(0) = 1. By Lemma 3.2 there exists a 1 x 7 vector B of trigonometric
polynomials such that
(=iD)*B(0)
!

It follows that B(0)®(0) = Bo®(0) = 1. Let G(¢) = B(MT&)A(), € € R®. Then
conditions (b) and (c) in Theorem 4.1 are satisfied. Hence, ® has accuracy k. Moreover,
from the proof of Theorem 4.1 we see that (—iD)*(B®)(267m) = o, dop for all p € A and
B € Z’. Let ¢, := B,®, p € Ag. Then it follows from (3.8) that

=B, Vpe A (5.6)

> ( Zyl') ) Vu—0(2mB) = 60,008 Vi € Ay and B € Z°,
v<p
In light of Lemma 3.1, this implies (5.5).

Conversely, if ® has accuracy k, and if span{@(%r(MT)_lw +2np): BeZ’t=C"
for all w € €, then there exists a 1 x r vector B of trigonometric polynomials such that
conditions (a), (b), and (c) in Theorem 4.1 are satisfied. Let B, (1 € Ag) be given by
(5.6). Then By®(0) = B(0)®(0) = 1. Since conditions (b) and (c) together are equivalent
to (5.4), we conclude that (5.4) holds true. []

Next, we consider the case when M is a general dilation matrix. Recall that eq, ..., es
are the unit coordinate vectors in IR°. We may view e; as the jth column of the s x s
identity matrix. Let v; := (MT)~le;, j =1,...,s. We have

Dy (f o MT)(€) = lim LML €+ 1es) = F(MTE)

t—0 t

= D, f(MT¢), ¢eR’.

Suppose that there exists a 1 xr vector B of trigonometric polynomials such that conditions
(a), (b), and (c) in Theorem 4.1 are satisfied. Recall that G(¢) = B(MT¢)A(), € € R®.
Clearly,

D,,G(€) = D;B(MTE)A(E) + B(MTE) Dy, A(€).

More generally, with Dy, := D41 ... DFs, we have

14

DEG(E) =Y (“) DFYB(MTE)DYA(E), €€ TR". (5.7)

v<p
Consequently, condition (b) is equivalent to saying that, for w € Q\ {0} and u € Ay,
0= (—iDy)*Gn(M")'w) = (“) (~iD)*™B(0) (~iDy)" A(2m(M") " w).
v<p
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With B, (p € Ag) given by (5.6) we see that condition (b) is equivalent to

Y B (_iDV)UA(ff(MT)_lw) =0 VweA, and we Q\{0}. (5.8

For v = (v4,...,Vs), it follows from (4.3) that
. v 1 v v —ta-
(¢Dy )" A(§) = p” Y (@) (vf ) a(a)e L.
[=y/Al

An element o € Z® can be written uniquely as M + v with 8 € Z*® and v € . Hence,
we obtain

(ZDv)VA(27T(MT)_1w) _ l ZJV ’Ye_i27r’y'(MT)_1w
m s ’

v!

yel
where )
oy == D (f (MB+7)" - (v (MB+7)) a(MB + 7).
BezZ®
Note that
vj (MB+7)=ef M~ (MB + ) = e (B+M").
Hence,
Ty = = 37 (B M) a(MB+ 7). (5.9)
pezs

By Lemma 5.1 we conclude that (5.8) is equivalent to the following:
S (-O¥Bu iy =Y (-1)¥B, ], VpeEAgand y€T. (5.10)

v<p v<p

Furthermore, we observe that condition (c) is equivalent to D{,G(0) = D}, B(0) for all
p € Ag. By (5.7) we have

14

DLG0) =Y (“) D=V B(0)DY A(0).

v<p
Therefore, condition (c) is equivalent to

(=:Dv)"B(0)
!

1
=> (-1¥B,_, — Y oy Ve A (5.11)
v<p yer

Equations (5.10) and (5.11) together are equivalent to

(—iDv )" B(0)
!

= Z(—l)""BM_yJw7 Ve A and vy €T

v<p
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Suppose |u| =n and

|T|=n
Let us determine the coefficients c,, (|u| = n, |7| = n). Suppose v; = (vj1,...,v;s)7,
j=1,...,s. It follows from the above equation that
l(v Ty 4 A V1T ) (V1T + - -+ Vs Zc
/11' 1141 1sts sl41 ss s uT .a

IT|=n

where © = (z1,...,2,) € R®. Choose x = (A1,...,As)T, where A1,..., A, € INg and
A+ -+ As =n. Then

AT 1
Z Cur = m(%T)‘)m < (vg A

IT|=n

Ty _ T(rf-1
But v; A =e; (M~'}). Hence,

AT (MR
> ety = B

|T|=n

The matrix (A7/7!)|r|=n |r|=n is invertible. Let (tx,)x|=n,|v|=n De its inverse. In other
words,

AT
> it =0r, 7| =m0, [y =n.
Al=n

Consequently,

— Z MD‘V'

|A|=n H:
It follows that

—iDy )*B(0) (M~ )\“ —1D)"B(0 M=IA)H
SO _ g o G )()=Z[Z( *,

| |
! 7! Aen !

IT|=n[A|=n |T|=n

B;.

The foregoing discussion can be summarized as follows.

Theorem 5.3. Let ® be an r x 1 vector of compactly supported distributions satisfying
the refinement equation (4.1) with a general expansive matrix M and a finitely supported
mask a. If there exist 1 x 7 vectors B, € C'*", i € Ay, such that Bo®(0) = 1 and

S VBT = Y [Z ﬂth

B, YueAg and yeT, (5.12)
v<p Bl P I
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then ® has accuracy k. Moreover,

bl a?
— = Z Z FBH_,,(I)(QZ —a) Vpe A
p v<pa€EZs ’

Conversely, if ® has accuracy k, and if span{®(2r(MT) 'w + 278) : B € Z°} = C" for
all w € Q, then there exist 1 x r vectors B, € C'*", u € Ay, such that By®(0) = 1 and
(5.12) holds true.

A mask a is said to satisfy the sum rules of order k if there exist 1 X r vectors
B, € C™", € Ay, such that By # 0 and (5.12) holds true. A mask a is said to satisfy
the weak sum rules of order k if there exist 1 x r vectors B,, € (Dlxr, i € Ag, such
that Bg # 0 and (5.10) holds true. If a satisfies the sum rules of order &, and if ® is a
solution of the refinement equation associated with the mask a and By®(0) = 1, then ®
has accuracy k. For the vector case (r > 1), however, this conclusion is not valid if a only
satisfies the weak sum rules of order k, as was demonstrated by Example 4.3.

The accuracy of ® is related to the spectrum of the transition operator associated with
the mask (see [11], [21], and [23]). The transition operator Ty, is the linear operator on

(£6(Z*))7*! defined by

Tov(a) = Z a(Ma - B)v(B), a€Z ve (Lh(Z%)
pezs
For the scalar case (r = 1), it was shown in [12] that the transition operator T, has
only finitely many nonzero eigenvalues. The same proof works for the general case. The
following is an outline of the proof. For a bounded subset H of IR®, the set > >, M~"H

is defined as o
{ M~"h, : h, € H for n:1,2,...}.

n=1
If H is a compact set, then Z;;o:l M~™H is also compact. By suppa we denote the set
{a €Z’ : a(a) # 0}. Let

E = (Z:ozl M_"(suppa)> NZ°.

We use £(F) to denote the linear space of all sequences supported in E. It is easily seen
that (£(E))"*! is invariant under T,. Moreover, if v is an eigenvector of T}, corresponding
to a nonzero eigenvalue of T,, then v must lie in (£(E))"*!. Consequently, any nonzero
eigenvalue of T, must be an eigenvalue of the block matrix

(a(Ma — B))a,ﬂeE'

In particular, T, has only finitely many nonzero eigenvalues.
The following theorem extends [21, Theorem 2.1] and [23, Theorem 2.2]. Its proof is
similar to those given in [21] and [23].

Theorem 5.4. Let ® be an r X 1 vector of compactly supported distributions satisfying
the refinement equation (4.1) with a general expansive matrix M and a finitely supported
mask a. If ® has accuracy k, then the spectrum of the block matrix (a(Ma — ,B))a s
contains {o~* : |u| < k}, where 0 = (01,...,05) is the s-tuple of the eigenvalues of M
and o~ F ;=g " ..o Fs for a multi-index pp = (1, ..., phs)-
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§6. Examples

In this section we give two examples to show the reader how to apply Theorem 5.2 or
Theorem 5.3 to concrete problems. To determine the accuracy of a refinable vector ® of
compactly supported distributions, we need to solve the system of linear equations in (5.8)

A

or (5.12) for B, p € Ay, subject to the condition By®(0) = 1. Note that the solution is
unique if span{®(27p8) : g € Z°} = C".

Example 6.1. Let r =4, s=2, and

w3 1)

Suppose the mask a is supported in [—1,1]?, a(—1,—1), a(0, —1), a(1,—1) are given by

1/4 1/4 1/4 1/2 1/4 0 1/2 1/4 00 0 0
0 0 0 0 0 1/4 0 1/4 00 1/4 0
0 0 0 0 |’ 0 0 0 0 |’ 00 0 0|
0 0 0 0 0 0 0 0 00 0 O
a(—1,0), a(0,0), a(1,0) are given by
1/4 1/2 0 1/4 1 1/2 1/2 1/2 1/4 0 1/4 0
0 0 0 0 0 1/2 0 0 1/2 1/2 1/4 1/4
o o 1/4 1/4|° |o o 12 o> o o o0 0|’
0 0 0 0 0 0 0 1/2 0 0 1/4 1/4
and a(-1,1), a(0,1), a(1,1) are given by
0 0 0 0 1/4 1/4 0 0 1/4 0 0 0
0 0 0 0 0 0 0 0 0 1/4 0 0
0 1/4 0 0}’ 1/2 1/4 1/2 1/4|° 0 0 1/4 0
0 0 0 0 0 1/4 0 1/4 1/2 1/4 1/4 1/2
We observe that 1 is a simple eigenvalue of the matrix
) ) 5 3 3 3
1 111 3 11
R RCEEH I
aETEeeEr 1 11 3

and (1/2,1/6,1/6,1/6)T is a right eigenvector of A corresponding to eigenvalue 1. In
light of [25, Theorem 2.4] there exists a unique 4 x 1 vector ® of compactly supported

distributions such that
b= Z a(a)®(2- — a)
a€cZ?

and ®(0) = (1/2,1/6,1/6,1/6)T. It can be proved that ® actually is continuous.
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Clearly, I' := {(0,0),(1,0),(0,1),(1,1)} is a complete set of representatives of the
cosets Z*?/2Z*. For p € N} and v € ', K, ., is computed as in (5.1). For k = 3, the
equations in (5.4) can be written as follows:

B0,0) = B(0,0)K(0,0) >
B,0) = 2B1,0K 0,007 = B0,0)K (1,0),7,
Bo,) = 2B0,1)K 0,007 = B,0)K(0,1),7,
B2,0) = 4B(2,0/K 0,07 — 2B1,0K(1,0),4 T B(0,0)K (2,0),7:
B,y =4Ba,1)K 0,07 — 2B,0 K01,y — 2B, K@,0, t Bo.o K1
Bo,2) = 4B(0,2)K 0,07 = 2B0,)K(0,1),5 T B(0,0)K (0,2)7
where v € T'. Solving the above system of linear equations subject to the condition
Bio,0)(1/2,1/6,1/6,1/6)T = 1, we obtain
B(O,O) (1,1,1,1), B(l,o) =(0,1/2,0,1/2), B(071) =(0,0,1/2,1/2),
B0y = (0,0,0,0), By = (0,0,0,0), Bo,2) = (0,0,0,0).
By Theorem 5.2 we conclude that ® has accuracy 3. Moreover, we observe that 1/8 is

not an eigenvalue of the block matrix (a(2a — f))4 ge[—1,112nz2- Hence, ® does not have
accuracy 4, by Theorem 5.4. Thus, the optimal accuracy of ® is 3. ]

If the expansive matrix M is not diagonal, then Theorem 5.3 will be used. In this case
the matrix (T)‘/T!)|T|:n’|)\|:n and its inverse (£xy)|a|=n,|v|=n Need to be computed. For this
purpose we fix an ordering in IN, as follows: For two multi-indices g = (p1, ..., 4s) and
v = (v1,...,Vs), if there exists some j € {1,...,s} such that ps = 11,..., ;-1 = vj_1,
and pi; > vj, then we write < v. For the two-dimensional case (s = 2), (7*/7!)||=0,1x|=0
is (1), and (72/7!)|7|=1,]a|=1 is the 2 X 2 identity matrix. Furthermore, (7*/71);|=2,x|=2
and its inverse are

2 1/2 0 1/2 -1/4 0
0 1 0 and 0 1 0
0 1/2 2 0 -1/4 1/2

Example 6.2. Let r =2, s=2, and

M:(} _11).

Suppose the mask a is supported in [—1,1]?,

1 3 2 1 1 0
( 1, _1 - [ :| ’ a(—l,O) - 3_2 [_12 16:| ’ a(_l,l) - @ [_16 _4:| s
1113 -7 1126 0 1 (13 7]
(0 _1) 3_2 _4 4 :|7 G(O,O)—3—2[O _8:|a a(oal)_ﬁ[él 4_7

and
11 0 13 —2 1 ]
“(1’_1)_3_2_16 —4]’ “(1’0)_3_2[12 16}’ “(1’1)_3_2{0 -8
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We observe that 1 is a simple eigenvalue of the matrix

1 1 1 1 0
5 g ; 011,042 [0 1/8:|’

and (1,0)7 is a right eigenvector of A corresponding to eigenvalue 1. In light of [18] there
exist unique compactly supported distributions ¢; and ¢, such that ® = (¢1, ¢2)T satisfies

o = Z a(a)®(M- — )

acZ?

and ®(0) = (1,0)T. Tt can be proved that ® actually is continuous.

Clearly, I := {(0,0), (1,0)} is a complete set of representatives of the cosets Z*/MZ>.
For 4 € INj and v € I, J, o is computed as in (5.9). For k = 3, the equations in (5.12)
can be written as follows:

B(0,0) = B(0,0)J(0,0) s

%B(LO) + %B(o,l) = B1,0J0,0,y = B0,0 71,0,
%B(LO) - %B(o,l) = Bo.yJ0,0.y = BooJon,
EB<2,0> + 33(1,1) + iBm,a) = Be,0J00, = Baodaos T Boodeo.qr
%B@,O) - %Bw,z) = Ba,1Jw,0, ~ Baondony — Bondany + BoeoJan
1 1 1

1Beo — Bay + 1Bey = BexyJony — Bondony + Beodoz,.

where v € I'. Solving the above system of linear equations subject to the condition
B(0,0)(1,0)T =1, we obtain
B(O,O) = (150)5 B(l,O) = (05 1/8)7 B(O,l) = (07 _1/8)7
B(2,0) = (_11/96a O)a B(l,l) = (11/485 0)7 B(O,Z) = (_31/965 O)
By Theorem 5.3 we conclude that ® has accuracy 3. Let us show that ¢ does not have

accuracy 4. The matrix M has two eigenvalues o1 = /2 and 05 = —/2. Note that the
mask a is supported in [—1,1]? and

Z M=([-1,1)%) = {(z1,72) € R?: |z1] < 3, |72| < 3, |21 — 72| < 4, |71 + 72| < 4},

The set E == Z*N (302, M~™([-1,1]%)) has exactly 37 points. Among the 37 eigenvalues
of the matrix (a(Ma — ))q,geck the following are of the form o #*
index (p1, po) with gy + pe < 3:

L V2 V21 11 V2 V2

27 272 272 47 4
If ® had accuracy 4, then v/2/4 = ¢7® = 67 '05 2 would be a double eigenvalue of the
matrix (a(Ma — B))a,peE, by Theorem 5.4. Therefore, the optimal accuracy of ® is 3. L]

o, 1* for some double-
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