PARAMETERIZATIONS OF MASKS FOR TIGHT AFFINE FRAMES
WITH TWO SYMMETRIC/ANTISYMMETRIC GENERATORS

QINGTANG JIANG

ABSTRACT. Parameterizations of FIR orthogonal systems are of fundamental importance to the design
of filters with desired properties. By constructing paraunitary matrices, one can construct tight affine
frames. In this paper we discuss parameterizations of paraunitary matrices which generate tight affine
frames with two symmetric/antisymmetric generators (framelets). Based on the parameterizations,

several symmetric/antisymmetric framelets are constructed.

1. INTRODUCTION

Let H be a (separable) Hilbert space with inner product (-,-), and norm || - || := (-, )% A system
X C H is called a frame of H if there are two positive constants A and B such that

AlIFIP < Y Wf @)l < BIFIP, Vf e H.

z€X

The constants A and B are called bounds of the frame. If A, B can be chosen such that A = B, then
X is called a tight frame. For H = L?(R), if X is the collection of the dilations of 2/, j € Z and the
integer shifts of a set of functions {¢1,--- ,¥r}, i.e., X = {2j/2¢g(2jl‘ —k):1<{¢<L,jk €Z}, then
X is called an affine (wavelet) frame. In this case 11,--- , 11, are called the generators or framelets.
Frames differ from (bi)orthogonal systems in that their elements may be linearly dependent. Or in
other words, frames can be redundant. This redundancy may be useful in some applications such as
signal analysis (noise reduction, feature detections) (see [8]). The reader is referred to [14], [7], [11],
[8], [5], [1], [17] for discussions on frames and tight frames.

In [17] a simple sufficient condition is provided to construct tight affine frames with more than one

generator (see [13] for the similar condition for affine bi-frames). More precisely, let h(z),q1(2),- -+ ,q5(2)
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be FIR filters (Laurent polynomials of z~1). Denote

h(z)  h(-2)

(1.1) Mg () = | @ 0

| qr(2) qr(=2) |

Assume that ¢ € L2(R) is the refinable function satisfying the refinement equation
=2 hp(2- k).
k
Let 4,1 < ¢ < L, be the functions defined by
. w | o~ W
Pelw) = ale (2.

It was shown in [17], [13] that if ¢ € L?(R) satisfies that ¢(0) = 1, |¢(w)| < ¢(1 + \w|)_%_€,e > 0,
and if My g, ... 4
Recall that a j x I (7 > [) matrix filter P(z) with real coefficients P is called paraunitary if

is paraunitary, then 1,1 < £ < L generate a tight affine (wavelet) frame of L?(R).

L

P(z)'P(z"") =1L, z#0,

that is P(e”) is a matrix of orthonormal columns for all w € R. Throughout this paper we assume
that the coefficients of filters discussed are real.

It was proved in [6], [16] that the decay assumption of ¢ at infinity can be removed. (See [3] about
the necessary and sufficient condition for the minimum-energy affine frames. The reader is referred to
[15] and [2] for the similar results for the case L = 1.) Thus if we have filters h,q1,- - ,qr such that
h generates a L*(R) function ¢ with ¢(0) = 1 and if M, g, g, is paraunitary, then we have a tight
affine frame. The larger the number L of framelets, the more freedom or redundancy there is for the
construction of tight affine frames ( see [17, 18, 19]). However if too many framelets are used, then
there would be the problem of complicated computations in applications. So in this paper we consider
frames generated by two framelets. We discuss parameterizations of FIR filters for tight affine frames
with two symmetric/antisymmetric generators. In the following for a refinable function ¢ with the
refinement mask h(z), we use g(2) = Y ez k2 © and f(z) = > ez fxz ¥ to denote the FIR filters
for framelets, and let 11,19 be the framelets defined by

=2 grp(2-—k), P2=2D  frd(2-—k).
k Ic

Filters g(z), f(z) are also called frame masks.
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Parameterizations of FIR orthogonal systems are of fundamental importance to the design of filters
with special properties. On the other hand, for some symmetric refinable functions, e.g., the cubic B-
spline, one cannot construct the corresponding symmetric/antisymmetric framelets by this paraunitary
matrix extension approach (the “Unitary Extension Principle”, according to [17]). Even in the case
that one can construct the corresponding symmetric/antisymmetric framelets from some symmetric
refinable functions by this approach, the resulting framelets may not have high vanishing moments since
the sum rule order of the refinement mask does not imply automatically the vanishing moment order
of framelets. So to construct symmetric/antisymmetric framelets with high vanishing moments, one
needs to construct appropriate refinable functions. The parameterization based construction method
provides one way to this goal, and it produces framelets with high order vanishing moments and
good smoothness by solving some equations related to the sum rules for the refinement mask and the
vanishing moments of framelets.

We say a filter p(z) = Zkezpkz_k is causal if p, = 0 for any k < 0 and it is an FIR filter if only

finite pj are not zeros. For an FIR filter p(z) = Y, .5 pez ", write

(1.2) p(z) = szkf%‘l‘(szHlf%)fl
V2 ﬁp (22)z L

= el E

For FIR filters h,g and f, let he, ho, ge, go and fe, f, be the filters defined by (1.2). Define
he(z)  ho(2)
Prgs(2) 7= | ge(2)  go(2)

Let My, 4 r(2) be the matrix filter defined by (1.1). Then

V2 1 1

(1.3) Mhg,f(2) = Tph,g,f(zQ) 1 1
z —Z

Thus My, 4 ; is paraunitary if and only if so is P, g f.
To construct symmetric/antisymmetric framelets, one starts with a symmetric refinement mask h

and symmetric/antisymmetric frame masks g, f. For an FIR filter p, if there exits N € Z such that
2 Vp(z7) = sp(z), s ==,

then we say that p is symmetric (antisymmetric, respectively) if s = 1 (s = —1, respectively), and
call N/2 the center of symmetry of p(z). Suppose h(z),g(z), f(z) are causal FIR filters. If they are

symmetric/antisymmetric, and Mj, 4  is paraunitary (or equivalently P} 4 ; is paraunitary), then we
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can find symmetric/antisymmetric causal FIR filters h,(2), g-(2), f-(2) such that [h,(2), g-(2), fr(2)]*
is the paraunitary extension of P}, 4 ¢(z), and furthermore, the extended square matrix filter is causal
and has some symmetry. Therefore to obtain the parameterization of masks for tight affine frames,
one needs only to consider that for the 3 x 3 symmetric paraunitary matrix filter.

After finishing this paper, the author became aware of recent papers of [4], [9]. In their papers,
the “Oblique Extension Principle” is introduced and used for the construction of tight frames. In this
paper, the author used the “Unitary Extension Principle”. The advantage of the “Unitary Extension
Principle” based construction is that the lengths of filters for the constructed framelets are not larger
than that of the filter for the scaling function.

This paper is organized as follows. The symmetric extension of P, 4 ¢(z) is considered in Section 2.
Parameterizations of masks are discussed in Sections 3 and 4. The parameterization based construction
of symmetric/antisymmetric framelets is presented in Section 5.

In this paper we use N,Ny and Z to denote the sets of all natural numbers, nonnegative integers
and integers, respectively. For an FIR filter p(z) = E’,?:kl prz~F with pg,pr, # 0, we use leng(p) :=
ko — k1 + 1 to denote the filter length of p. If p(0) = 1,p)(—=1) =0, 0 < j < J, then we say that p
has the sum rules of order J. For n € N, let I, denote the n X n identity matrix, and let J,, denote
the n X n exchange matrix with ones on the anti-diagonal.

For s > 0, we use W*¥(R) to denote the Sobolev space consisting of all functions f with (1 +
|w|2)%f(w) € L?(R). For a compactly supported function 4, we say that v has the vanishing moments
of order J if

/w(a:)mjdac =0, 0<j<J
If ¢ is defined by (w) = q(el%)ffﬁ(%) for an FIR filter ¢(z) and a compactly supported ¢ € L%(R),
then the conditions ¢¢)(1) = 0, 0 < j < J, imply that 1 has vanishing moments of order J.

2. SYMMETRIC EXTENSION

Suppose h, g, f are FIR filters. Let he, ho, ge, go and fe, f, be the filters defined by (1.2). For L € Z,
define

(2.1) he(2)

275 (ge(z7 ) o271 = felz7N)go(z71)),
gr(2) = _ZiL(he(zil)fO(zil) - fe(zil)hO(Zil))a
fr(2) : 2k (he(z_l)QO(z_l) - ge(z_l)hO(z_l))'

By a direct calculation, one has the following proposition.
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Proposition 2.1. Suppose h,g,f are FIR filters. Let hy,gr, fr be the filters defined by (2.1) with
L € Z. Then My 4 ¢(2) is paraunitary if and only if Ar(z) defined by

he h, h;
(2.2) AL(z) = | g¢ 9o 9r |>
fe fo [r

18 paraunitary.

From Proposition 2.1, any set {h, g, f} of FIR filters with M}, ,  paraunitary can be constructed by
3 x 3 paraunitary matrices Ar(z). If h, g, f are causal, then for a sufficiently large L, Ay, is also causal.
A causal and paraunitary FIR matrix can be factorized into the products of UyUi(2) - - - U,, —1(2)U,, (2)
(see e.g., [23, 22, 24, 21]), where 71 € Ny, Up is a 3 x 3 orthogonal matrix, and

(2.3) Uj(2) =3+ (21 — 1)Uju?,

u; € R?’,u;—‘u]' =1.
Therefore we have that for causal FIR filters h, g, f, M} 4 7 is paraunitary if and only if h, g, f can be
factorized as

W21, 90D, £ = S2OU ) - U (D)1, 0

for some y; € N.

The main purpose of this paper to give parameterizations of masks h, g, f which generate symmet-
ric/antisymmetric framelets. We first have the following proposition.
Proposition 2.2. Suppose h,g,f are symmetric/antisymmetric nonzero FIR filters. If My g is
paraunitary, then leng(h),leng(g), leng(f) have the same parity.

Proof. Without loss of generality, we assume that leng(f) < leng(g) < leng(h). Suppose the centers of
symmetry for h, g, f are N/2,K/2,5/2 respectively, where N, K, S € Z. Then leng(h) = 2k; + N + 1,
leng(g) = 2ks + K + 1, leng(f) = 2k3 + S + 1 for some k1, ko, k3 € Z. By |h(2)|? +]9(2) > +|f(2)]? = 1,
leng(g) = leng(h). Thus K — N is even.

To complete the proof of Proposition 2.2, it suffices to show that S — N is also even. For this, denote

H(z) = h(2)h(~2"1), G(2) :=g(2)g(=2""), F(2):=f(2)f(=2").

Then H(z7') = (-1)VH(2),G(z7') = (-1)XG(2),F(27') = (=1)°F(2). The paraunitariness of
Mh,g,f implies
H(z)+ G(z) + F(z) = 0.

Thus
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Therefore

(1= (D)5 M)G(e) + (1 - (-5 M) F(z) 0.
That is (1 — (—=1)"N)F(z) = 0. Since F(z) # 0, S — N is even. The proof of Proposition 2.2 is
complete. O

In the following we consider the case leng(g) <leng(h), leng(f) <leng(h). In this case if M}, 4 s is
paraunitary, leng(g) =leng(h) or leng(f) =leng(h). Without loss of any generality, we assume that
leng(g) =leng(h), and h, g, f are causal.

Now let us discuss the symmetry of Ay, when h, f, g are symmetric/antisymmetric. We first consider
the case leng(h) is even. In this case by Proposition 2.2, leng(g), leng(f) are also even if M}, , ¢ is
paraunitary. For z € R, denote

[z] :==inf{k:2 < k,k € Z}.
Proposition 2.3. Let h(z) = ilBI hrz7k, g(z) = 22161 gz and f(z) = Zigo_l frz=F be causal
FIR filters with hg # 0 and m <,y € N. Suppose h(z) is symmetric about v — 1/2 and

g(z) = soz_(27_1)g(z_1), flz) = slz_(Qm_l)f(z_l), so==+1, s ==+1.

If My, 4.5 1s paraunitary, then
(i). v +m + leng(he),y +m + leng(ge) and leng(fe) are odd.
(i1). (so+1)(s1+1) =0, (so+1)(s1 + (—1)""™) =0.
(iii). A(z) := Apy(2) defined by (2.2) with Ly ==y + [%51] — 1 is causal, paraunitary and satisfies

(2.4) 2z~ Vdiag(1, s, 512~ ™) A(z7 1) diag(Js, —soslzm_l_Q[mT_q) = A(z).
Proof. By the symmetry of h, g, f,
Z_(’Y_l)he(z_l) = ho(2), z_(’y_l)ge(z_l) = 5090(2), z_(m_l)fe(z_l) = s1fo(2).

Let hy, gr, fr be the filters defined by (2.1) for some integer L. Then
(2.5)
7 CLmrmm R, (271) = —spsihe(2), 2~ CETT ) g (27 = —s190(2), 27 PP £(27T) = —s0 i (2).-
Thus
2~ Ddiag(1, sg, 512~ ™ M) AL (27 V) diag(Ja, —sos12~ CL=27mH3)) = A (2).
By |he(2)|? + |ho(2) |2 + |y (2)|? = 1, leng(h,)=leng(h.). Assume that

ho(2) = apz™" + apyrz~®+D ..o = sospae—(EHleng(he)-1)
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for some k € Z and ay, # 0. Then z_(2k+leng(he)_1)hr(z_1) = —50s1hr(2), which together with (2.5)
leads to

2k + leng(h,) —1=2L —y —m + 2.
Thus leng(he) + v + m is odd. One can prove similarly that both leng(ge) + v + m and leng(f.) are
odd.
Let Ly =+ [™-1] — 1. Then h,, g,, fr defined by (2.1) with L = Ly satisfy
(26) 2 O RIEE DR (2, g (2 D] = [—s0s1he(2), 5190 (2)], 2 2T (2 ) = —sof(2)-

Note that leng(h,) = leng(he) < v <y —m+ 2[%1] + 1, leng(g,) = leng(ge) < v —m +2[251] +1
and leng(f,) = leng(f.) < m < 2[™>1] + 1. This fact and (2.6) yield that h,,g,, f, are causal. Thus
A(z) is causal, paraunitary and satisfies (2.4).

Finally, we show (ii). By the paraunitariness of A(z) and (2.4) for z = 1,z = —1, we have
trace(diag(1, sg, s1))=trace(diag(J2, —s0s1)),
(—1)7trace(diag(1, so, s1(—1)™)) =trace(diag(Ja, —3031(—1)(7”_1"'2[7”771”)),
which imply (ii). O

Now let us consider the case leng(h) is odd. By Proposition 2.2, leng(g), leng(f) are also odd if

My, 4,5 is paraunitary and h, g, f are symmetric/antisymmetric.
Proposition 2.4. Let h(z) = Zilo hpz7k, g(z) = Zilo gz % and f(z) = Zizo frz % be causal
filters with hy # 0 and m <,y € N. Suppose h(z) is symmetric about v and

9(2) = s0z g(z7"), [fl2)=s12 " f(z71), so=%1, s =%l

If My, 4.5 is paraunitary, then
(i). m is odd.
(i1). s1 = —s0, (14 80)(1+ (—1)7) =0.
(111). A(z) := Ar,(2) defined by (2.2) with Ly :=~ + (m — 1)/2 is causal, paraunitary and satisfies

(2.7) 2z Vdiag(1, so, s12 ) A(z Y diag(1, z, —1) = A(z).
Proof. By the symmetry of h, g, f,
2 he(z ") =he(2), 2 T Vho(z ") = ho(2),
2779e(27") = s0ge(2), 2T Vgo(27") = s0g0(2),
T fe(27) = s1fe2), 27T fo(27) = s1fo(2).
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Let hy, gr, fr be the filters defined by (2.1) for some integer L. Then
(2.8)

Z_(ZL_’Y_m—H)hT (z_l) = SOSIhT(z)aZ_(ZL_’Y_m—'—l)gr(z_l) = Slgr(z)aZ_(ZL_Z’H_I)fT(Z_l) = SOfr(z)'

Thus
z Vdiag(1, so, 512~ ™ ) A (2~ V) diag(1, 2, sgs12~ P72 "™ D) = A (2).

Note that leng(h.) = v + 1 and leng(h,) < . This together with |he(2)|? + |ho(2)|2 + R (2)]2 = 1
implies that leng(h,)=leng(h.) = v + 1, and h, cannot be symmetric. Thus h, is antisymmetric, i.e.,
sps1 = —1.

Assume that

h(z) = apz " + ak+1z_(k+1) e — akz—(k+7)

for some k € Z and ay, # 0. Then 2=kt p, (2=1) = —h,(2). This and (2.8) yield
% +y=2L v —m+1.

Therefore m is odd.

Let Lo =+ + (m —1)/2. Then h,, g, fr defined by (2.1) with L = Ly satisfy
Zhe(z7Y) = —he(2), 277gr(z7Y) = s190(2), 2T r(z7Y) = sofr(2),

which, together with leng(h,) = leng(g,) = v+ 1 and leng(f,) < m+1, yields that h,, g,, f, are causal.
Thus A(z) is causal, paraunitary and satisfies (2.7).
The other statement in (ii) can be proved similarly to that for (ii) in Proposition 2.3, and details

are omitted here. O

By Propositions 2.2, 2.3 and 2.4, any causal symmetric/antisymmetric filters h,g, f with M} 4 ¢
paraunitary and leng(g), leng(f) <leng(h) are given by causal paraunitary filter A(z) satisfying (2.4)
or (2.7). Thus to give parameterizations of masks h, g, f for symmetric/antisymmetric framelets, one
needs only to present those for A(z) satisfying (2.4) or (2.7).

The parameterization of symmetric paraunitary M-channel filter banks are discussed in [12], [20].
In [12], [20], M is an even number, and the polyphase matrix of the filter bank can be factorized into
the product of symmetric linear paraunitary factors. For A(z) satisfying (2.4) or (2.7), since A(z) is
a 3 x 3 matrix, A(z) cannot be factorized into the product of symmetric linear paraunitary factors.
Instead, A(z) will be factorized into the product of symmetric quadratic paraunitary factors.

In the following we discuss parameterizations for causal paraunitary filters A(z) satisfying (2.4) or

2.7) with m = «y if v is odd and m = v — 1 if v is even. For A(z) satisfying (2.4), we factorize it
Yy Y Y
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into the form of Py(2)V2(2) - - - V}y/2)(2), where Py(z) is the causal paraunitary filter satisfying (2.4) for
v =2 or vy =3, Vj(z) are quadratic paraunitary factors (matrix polynomials of 271 of degree 2). The
factorization for A(z) satisfying (2.7) is derived from that for A(z) satisfying (2.4).

By the method used in this paper, one can also give the factorization of A(z) for the general case,
for example the factorization of such a causal symmetric paraunitary filter A(z) that is derived from
h(z),9(z), f(z) with h(2), f(2) having the forms in Proposition 2.3 and g(z) = 2211 grz"*. One will
find below that the only difference between the factorization for the cases discussed in this paper and
that for the general case is that one needs to calculate the different initial filters Py(z). Our policy here
is that we consider such cases that for fixed filter lengths of masks h(z), g(z) and f(z), the expressions
of h(z),g(z), f(z) will have as many (but not redundant) free parameters as possible.

Parameterizations of causal paraunitary filters A(z) satisfying (2.4) and (2.7) with m = v or m =

v — 1 are discussed in the following two sections, respectively.

3. PARAMETERIZATIONS FOR MASKS WITH EVEN FILTER LENGTHS

In this section we discuss parameterizations of symmetric/antisymmetric masks with the form:
h(z) = S0 ek, g(2) = Y2l ez and f(z) = 370! frz7*, where m =« if v is odd and
m =y — 1 if v is even.

Let us first consider the case v = 2n + 1, n € Ny, and m = 7. Let A(z) := Ar,(z) be the causal
filter defined by (2.2) with Ly = 3n. By Proposition 2.3 (ii), s; = —sg or s1 = s9 = —1. If 57 = —s,

by interchanging g, f, we know that it is suffices to consider the parameterization for either the case

s1=—89=1o0r s1 = —sg = —1. We consider the case s; = —sg = 1. Denote
211 -1
B(z) = A()diag(Ro 1), Ro— Y2
2 11 1
Then E(z) is paraunitary. By Proposition 2.3 (iii),
(3.1) E(z) = z~"diag(1, —1,1)E(z~")diag(1, -1, 1).

For the case s; = —sg = 1, define E(z) := A(z)diag(Ry,1). Then

(3.2) E(z) = z7*"diag(—1,1,1)E(z~ ") diag(—1,1,1).

Thus diag(Jz, 1) E(z)diag(Ja, 1) satisfies (3.1). Therefore to find the parameterization for E(z), we
need only to find that for F(z) satisfying (3.1).

For the case v = 2n, n € N, we choose m = v — 1. Let A(z) := Ar,(z) be the causal filter defined
by (2.2) with Ly = 3n — 2. In this case s = —1,81 = £1. If s; = 1, then E(z) := A(z)diag(Ro, 1)
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satisfies
(3.3) E(z) = 2z~ Ddiag(1, -1, 2) E(z~")diag(1, —1,1).

If s = —1, then E(z) := A(z)diag(Ro, 1) satisfies

(3.4) E(z) = z " Vdiag(—1,1,2)E(z !)diag(—1,1,1).
Again, to find the parameterization for E(z) satisfying (3.4), it suffices to find that for E(z) satisfying
(3.3).

We give parameterizations of F(z) satisfying (3.1) (for v = 2n + 1) and (3.3) (for v = 2n) in the

following two subsections, respectively.

3.1. The case v = 2n + 1. We first consider the case n = 0. By a direct calculation, one has that an

orthogonal matrix Py satisfies (3.1) with n = 0 if and only if it can be written as

cos@ 0 —p;sind
(3.5) Py = 0 po 0 , m==x1, po==£1, 0¢€[-mmn).
sind 0 pjcosf

Define a matrix filter V(z) by

1 0 1
1 1
(3.6) V(z) := 2 1 | [cosa,l,sinal+ | 0O [sina,(),—cosa]zil—ki ~1 | [cosa, —1,sin )z 2.
0 -1 0

It is easy to check that V(z) is paraunitary and satisfies (3.1) with n = 1.

Theorem 3.1. A causal paraunitary filter E(z) satisfies (3.1) for some n € Ny if and only if it can

be factorized in the form of
(3.7) E(z) = PyVi(z)--- Va(2),

where Py is defined by (3.5) with € [—m,7) and Vj(2),1 < j < n are defined by (3.6) with o €
[_7‘-’7")'

Proof. Clearly if E(z) is given by (3.7), then it is causal, paraunitary and satisfies (3.1). Conversely,

n

suppose E,(z) = eg + --- + e2,27 2" with n € Ny is paraunitary and satisfies (3.1). We show that it
can be factorized in the form (3.7) by induction on n.

If n =0, E(z) is Py and the statement is true. Assume that n is a positive integer. Define

E, 1(z):= En(z)V(z_l)T,
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where V (z) is the filter defined by (3.6) with @ € [—m, 7). Then E,_;(z) is paraunitary and satisfies
(3.1) with n — 1. We show that there exists « such that E,,_1(z) defined above is causal. Note that

cos o sin o cos o
1 1
V(iz"HT = S| 1 [LLo+ 0 0,0, -1z +5 | -1 |1, —1,0]2%
sin o — oS « sin «

Thus we need only to show that there exists a such that

(3.8) eolcos o, —1,sina]’ =0, eg[sina,0,—cosa]’ =0,

(3.9) e1fcos o, —1,sina]” = 0.

First we consider the case eg = 0. By the symmetry of F,(2), e; = diag(1, —1, 1)es,—jdiag(1, —1,1),0 <
j < 2n. By the paraunitariness of E,(z), eiel, _; = 0. Thus ejdiag(1,—1,1)el = 0. Therefore
rank(e;) = 1 and e; = u(cosf,1,sin@) for some u € R*,0 € [—7, 7). Let o = §. Then (3.8) and (3.9)
hold.

Then let us consider the case ey # 0. The facts epel, = 0 and ey, = diag(1, —1, 1)epdiag(1, —1,1)
yield that ey = u[cos 0, 1,sin ] for some u € R3\{0},6 € [~m, 7). Thus (3.8) holds for o = 6.

To show that (3.9) holds for a = 6, denote X := e;[cos@, —1,sind]7. By egel, ; +eied, =0 (a

consequence of the paraunitariness of E,(z)),
uXT + XuT = 0.

Since u # 0, the above equation yields X = 0. Thus (3.9) holds for a = 6.
Therefore for « = 6, E,_1(z) is causal. By our induction assumption, E,,_1(z) can be factorized
into the product of PyVi(2)---V,_1(2). Thus E,(z) can be factorized into the form of (3.7). The proof

of Theorem 3.1 is complete. O

By Theorem 3.1 and the relationship between E(z) and masks h, g, f, we have the following corollary.

Corollary 3.1. Assume that h(z) = S35 hez ®, g(2) = S5 grz ® and f(2) = S04 frz * are

causal filters with ho # 0. Suppose h(z) is symmetric about 2n + 1/2 and

9(2) = 5027 U g (z7Y),  f(2) = s127 UV f(27Y),  sp =1, s ==+l
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Then My g is paraunitary if and only if sy = —so = 1 and h, g, f are factorized as
(3.10)

h(z) z7 141
7 9(2) = %Pon(zZ)---Vn(ZQ) 7l [ Ja=hifsi=1,Je =Jy if s1 = —1,
f(2) 0
or s1 =89 = —1 and h,g, f are factorized as
9(2) -1
(3.11) M) | = SPVAE) Vi) | =1 |
f(z) 0

where Py is defined by (3.5) with 0 € [—m,m) and V;(2),1 < j < n are defined by (3.6) with a; €
[—7‘(,7‘(’).

3.2. The case v = 2n. In this subsection, we discuss the parameterization of A(z) satisfying (3.3).
First, we consider the case n = 1.

Proposition 3.1. A causal filter Pi(z) is paraunitary and satisfies (3.8) with n = 1 if and only if it

can be written as

cos@ 1 sinf cos@ —1 sinf
1 1
(3.12)  Pi(2) = diag(p, p2,p3)(5 | cosf 1 sin@ | +5 | —cos§ 1 —sinf z71),
—2sinf 0 2cos@ 0 0 0

where 6 € [—m,m), p1 = £1,py = £1, p3 = £1.

Proof. One can check directly that if P;(z) is given by (3.12), then it is paraunitary and satisfies (3.3)
with n = 1. Conversely, assume that Pi(z) = A + Bz . By the symmetry of P|, the entries a;j of A
satisfy azs = 0 and B = diag(1, —1,0)A diag(1,—1,1). By ABT =0,

laijli<ico<j<adiag(l, =1, 1) ([ag)i<ico1<5<3)” = 0.
Thus the rank of matrix [a;;]1<i<2,1<j<3 is 1 and it can be written as
[aij]1<i<2,1<j<3 = v[cos 0, 1,sin0], v = (v1,v9)" € R2\{0},0 € [, 7).
On the other hand A” B = 0 implies
[as1,0,a33][cos 0, 1,sin 0] = 0.

Thus [a31,a33] = t[sinf, —cosf] for some ¢t € R Finally AAT + BBT = I3 yields t = £1,v; =
+1/2,05 = +1/2. O
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Theorem 3.2. A causal filter E(z) satisfies (3.3) for some n € N if and only if it can be factorized

in the form of

(3.13) E(z) = Pi(2)Va(z) -+ - Vu(2),

where Pi(z) is defined by (3.12) with 0 € [—m,m) and Vj(2),2 < j < n are defined by (3.6) with
a; € [—m,m).

Proof. One can check directly that if E(z) is given by (3.13), then it is causal, paraunitary and

2n—1)

satisfies (3.3). Conversely, suppose that E,(z) = ey 4 -+ + egp_12~ , with n € N, is paraunitary

and satisfies (3.3). We prove that it can be factorized in the form (3.13) by induction on n.
By Proposition 3.1, it is true for n = 1. Assume that n > 2. Define

E, 1(z):= E'n(z)V(z_l)T,

where V(z) is the filter defined by (3.6) for some « € [—m, 7). Then E,_1(z) is paraunitary and it
satisfies (3.1) with n — 1. We show that there exists a such that E,_1(z) is causal, or precisely, there

exists a such that
(3.14) eolcos o, —1,sina]’ =0, eg[sina,0,—cosa]’ =0,
(3.15) e1]cos a, —1,sina]’ = 0.
By the symmetry of E,(z), es,—1 = diag(1, —1,0)egdiag(1,—1,1) and
ean—j = (diag(1,—1,0)e; + diag(0,0,1)e;_1)diag(1l,—1,1),2 < j < 2n.

If eg = 0, then eg;,—1 = 0. Then ejed, o, = 0,e1el, 3+ e2ed. o = 0 (followed from the paraunitari-
ness of E(z)) yield
erdiag(1,—1,1)el = 0.

Thus rank(e;) = 1 and e; = u(cos 8, 1,sin @) for some u € R3, 0 € [—m, 7). Therefore (3.14) and (3.15)
hold with o = 6.

Assume that ey # 0. Then egel, | =0 and egel, , +ejel | =0 imply that
eodiag(1, —1,1)el = 0.

Thus ey can be written as ey = v(cos 0, 1,sin ) for some v € R3\{0},0 € [-7, 7). On the other hand

eoegn_Q + elegn_l =0 and eoegn_3 + elegn_z + egegn_l = 0 yield

eodiag(1, —1,1)e] + e;diag(1, —1,1)ej = 0.
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Denote Y := eq[cosf, —1,sinf]?. Then the above equation is

YT + YT =0,

which implies Y = 0. Thus (3.14) and (3.15) hold for a = 6.

Thus for @ = 0, E,,_1(z) is causal. By our induction assumption, F,_1(z) can be factorized into the
form of Py(2)Va(2)---V,—1(2). Therefore E,(z) can be factorized into the form of (3.13). The proof
of Theorem 3.2 is complete. g

Corollary 3.2. Let h(z) = Y1 iz, g(2) = Yot grz™*, and f(2) = 00° frz™" be causal
filters with hy # 0. Suppose that h(z) is symmetric about 2n — 1/2 and

g(z) = s0z U Vg(z7Y),  fl2) =s12 WD f(zY), so=+£1, s ==l

Then My g is paraunitary if and only if sy = —so =1 and h, g, f are factorized as
h(z) 1 1

(3.16) g(z) | = %Pl(zz)VQ(,zQ) V@) =1 |+ 1| e,
f(z) 0 0

or s1 =89 = —1 and h,g, f are factorized as
9(2) -1 1

(3.17) h(z) | = %Pl(ZQ)VQ(zQ) Va1 |+ 1|2,
f(z) 0 0

where Pi(z) is defined by (3.12) with 0 € [—m,m) and V;(2),2 < j < n are defined by (3.6) with

aj € [—m, 7).
4. PARAMETERIZATIONS FOR MASKS WITH ODD FILTER LENGTHS

In this section we consider parameterizations of symmetric/antisymmetric masks h, g, f with the
form of h(z) = Zilo hez%, g(z) = Zilo grz k. f(2) = Zi@o frz"k, where m = v if v is odd and
m =y — 1 if v is even.

Assume that v = m = 2n—1 for some n € N. In this case s1 = —sy = +1 by Proposition 2.4 (ii). Let
A(z) := Ar,(2) be the causal filter defined by (2.2) with Ly = 3n — 2. Denote E(z) := A(z)diag(1, J2).
Then E(z) satisfies

(4.1) E(z) = z~ @ Vdiag(1, sg, s1) E(z~')diag(1, -1, 2).

Thus E(z)7 satisfies (3.3) provided s; = —sg = 1. By Theorem 3.2, E(z)T can be factorized in the

form of (3.13). Therefore we have the following corollary.
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Corollary 4.1. Let h(z) = ZiZ_OQ hez %, g(z) = Zii_f grzk, and f(2) = ZiZBZ frz* be causal
filters with hy # 0. Suppose h(z) is symmetric about 2n — 1 and

9(z) = soz W gz, flz) =s12 WY, sg =41, s =+l

Then My g, is paraunitary if and only if s1 = —so = 1 and h, g, f are factorized as
(4.2)

h(z) 1
NEORN ?Vn(zQ)T V()P 0 | Je=hifs =1 o= T ifs1= -1,
"l

where Pi(z) is defined by (3.12) with 0 € [—m,m) and V;(2),2 < j < n are defined by (3.6) with
a; € [—m,m).

For the case v = 2n, n € N, we choose m = 2n — 1. In this case s; = —so = 1. Let A(z) := A, ()
be the causal filter defined by (2.2) with Ly = 3n — 1. Denote E(z) := A(z)diag(1l,J2). Then E(z)

satisfies
(4.3) E(z) = z~"diag(1, -1, 2) E(z~")diag(1, —1, 2).

To give the parameterization of F(z) satisfying (4.3), we define

1 p O 1 —p 0
1 1
(4.4) Wo(z) :== 3 1 p 0|+ 3 —1 p 0|zt p=4+1.
0 0 2 0 0 0

One can check that Wy is paraunitary and satisfies
(4.5) Wo(z) = 2z~ tdiag(1, —1,1) Wy (2~ 1)diag(1, -1, 2).

Theorem 4.1. A causal filter E(z) satisfies (4.3) for some n € N if and only if it can be factorized

in the form of
(4.6) E(z) = P1(2)Va(2) - - - Va(2)Wo(2),

where Wo(z) is defined by (4.4), Pi(z) is defined by (3.12) with 6 € [—7,7) and V;(2),2 < j < n are
defined by (3.6) with oj € [—m, ).

Proof. If E(z) is given by (4.6), then it is easy to check that it is causal, paraunitary and satisfies
2n

(4.3). Conversely, suppose E,(z) = ey + -+ + eap2™
Define

with n € N is paraunitary and satisfies (4.3).

E(z) == E,(2)Wo(2~1)T.
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Then E(z) is paraunitary and satisfies (3.3). We will show that for a suitable sign choice of p in Wp(z),
E(2) is causal. That is
eo[1,1,0]7 =0 or eg[1,—1,0]T = 0.
By the symmetry of E(z), e2, = diag(1, —1,0)epdiag(1, —1,0) and
ean—1 = diag(1, —1,0)(e1diag(1, —1,0) + eodiag(0,0,1)) + diag(0,0, 1)eodiag(1, —1,0).
By eged, = 0,epel, | +erel =0 (followed from the paraunitariness of E,(z)),
eodiag(1, —1,0)e] diag(1, —1,1) = 0.

Thus rank(epdiag(1,1,0)) = 1 and the first two columns of ey can be written as epdiag(1,1,0) =
udiag(1, p1,0),p1 = £1,u € R3. Therefore eg[1, —p1,0]7 = 0. Hence if we choose p = p; in Wy(z),
then E(z) is causal. By Theorem 3.2, E(z) can be factorized into the product of Py (2)Va(2) - - - Vy(2).
Therefore E(z) can be factorized into the form of (4.6). O

Note that Wo(2)[1,0,27 1T = [1 + 22,1 — 272,227 117 /2. Theorem 4.1 leads to the following

corollary.
Corollary 4.2. Assume that h(z) = Ziio hez ™, g(2) = Zigo grz "k, and f(z2) = Zi’!f frz™ are
causal filters with ho # 0. Suppose h(z) is symmetric about 2n and

g(z) = soz_4ng(z_1), flz) = slz_(4n_2)f(z_1), sg==+1, s ==+1.

Then My g is paraunitary if and only if sy = —sg =1 and h, g, f are factorized as

h(z) 14 272
() o) | = LR V) | 1o |,
f(z) 2271

where Pi(z) is defined by (3.12) with 0 € [—m,m) and V;(2),2 < j < n are defined by (3.6) with

aj € [-m,m).
5. EXAMPLES

In this section we construct framelets based on parameterizations of masks h, g, f provided in Corol-
laries 3.1, 3.2, 4.1 and 4.2. We use ¢ to denote the refinable function and 1,2 to denote the

symmetric/antisymmetric framelets corresponding to g, f, respectively.

Example 5.1. Let h, g, f be the filters given by (4.2) with n = 1,81 = 1,p1 = p3 = 1. Then

2 2 2
h(z) = %(0039—2sin9z_1-|—cos 0272),9(z) = %(1 — 279, f(2) = %(sin9+2cos 02! +sinfz72).
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Clearly h(1) =1 if and only if § = —Z. For § = —Z, h(z) = (14 27')?/4 and the refinable function ¢

is the hat function. In this case the corresponding framelets 11,19 are those constructed in [17].
Example 5.2. Let h, g, f be the filters given by (3.17) with n =1, p1 = po = p3 = 1. Then

h(z) = (1427 1)(1 — cosf +2cos 0z~ " + (1 — cos0)z2) /4,
g(z) = (1 =27 (1 —cos@ + 227 + (1 — cos0)z72) /4,

f(z) =sin@(1 —2z71)/2.

For = %, h(z) = (1 + 27')®/8 and the refinable function is the quadratic B-spline. The framelets

11,1 are those constructed in [3].

One notes that framelets 91 in Example 5.1 and 1)1, in Example 5.2 have the vanishing moments
of order 1. In the following we construct symmetric/antisymmetric framelets with good smoothness
and higher vanishing moment orders. Our method is, based on parameterizations for masks, to fix
parameters by solving some equations related to the sum rules for the refinement mask and the
vanishing moments for framelets such that the resulting framelets have good smoothness and higher
vanishing moment orders. We will make the change of variables:

2t 1-—1¢2

sina:m, Osa:m,

which makes it easy to solve the equations by Maple programs. The refinable functions ¢ constructed
below are L2(R) stable, and we use the Sobolev smoothness estimate in [10] and [25] to calculate the

smoothness of ¢.

Example 5.3. Let h(z) = ZZ:O hrz7k, g(z) = 22:0 a2z f(2) = 22:0 frz~* be the filters given
by (3.10) withn =2,s1 =1,p; = p2 = 1. Then

. t(-1+13) _ 1—1¢3 _ 2ot
CT o1+ )1+ T 20+2) A+ T A+2)(A+£)
go = —i g1 = # go = 0
2(1+ t2)’ 2(1+t2)’ ’
tot? t ti(—1 412
[ [ fo= CLT)

(14+83)(1+13) (1+)Q+12)’ 1+3)(1+13)

and hj = hs—j,9; = —g5-j, f = f5-j,3 < j < 5. Forty = to, h(1) = 1,h(~1) = 0and g(1) =0, f(1) =
f'(1) =0. For t; =ty = ﬂ:\/g, h has the sum rules of order 3, and the resulting ¢ € W1-6468(R), 4,
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FIGURE 1. Symmetric refinable function ¢ € W1-64688 and antisymmetric/symmetric

framelets 1)1, 19 with vanishing moments of orders 3 and 2 respectively.

and 1o have the vanishing moments of order 3 and 2, respectively. See Figure 1 for the graphs of ¢, 1

and 1o. In this case the masks are

W) = = (14 2 133 — 1421 +32°2),

64
g(z) = —%(1 — 2733 +4271 +3272),
f(z) = 42\2—1_5(1 — 2z D21+ 27H3 -2 +3272).

Example 5.4. Let h(z) = Zzzo hrz=F, g(2) = ZZ:O a2z f(z) = 22:0 frz~* be the filters given
by (4.2) withn =2,s1 =1,p; = p3 = 1. Then

hmzl@ 1-¢2 p=3§ to(—1+ t2)

4 (1+2)(1+1t3)’ 2 1+)(1+18)
MZ)@%%@;%-?H, V:ﬁh§4+@’

4 (1+t)(1+1¢) (1 +t)(1+15)

V2 1 V2 g V2t
90271_'_1%, 91:—7m, 92__7Tt3’ g3 =0,

V2 3] _ V2toty
f°:7(1+t§)(1+tg)’ fl__(1+t§)(1+t3)’
ﬁ::_zgm@ﬁ1—1+t@ ﬁV:X@(l—%XI—t@

2 1+ +1¢3)’ 2 (1+)(1+83)’
and hj = he—j,9; = —g6—j» fj = fo—j4 < j < 6. For t1 = (1 +v2)to +1)/(to — 1 = v2), h(1) =

1,h(—1) = 0 and g(1) = 0, f(1) = f'(1) = 0. Furthermore, if t, = 10.22065693302211 (a root of the



PARAMETERIZATIONS OF MASKS FOR SYMMETRIC TIGHT AFFINE FRAMES 19

polynomial z* — 823 — 2222 — 82+ 9), h has the sum rules of order 4 and the resulting ¢ € W3-37460(R).
In this case 91 and 1), have the vanishing moments of order 1 and 2 respectively. If tg = —2 + /7
(t1 = —(1 + 2v/2)V/7/7 then), then h has the sum rules of order 2. In this case ¢ € W1-22062(R), 4y,

1po have the vanishing moments of order 3 and 2, respectively, and the masks are

h(z) = - -'(;4\/7(1 4221420 = VD) = 6(5 — 2VT) 2 2+ 2(1 — VT) 23 4 27Y),
9(=) = 3\/53#(1 — 2R+ (1+ (6 —2VT)z7 +272),
fz) = _%;7(1 —2 2T+ 4B~ VD)2 +2(7 = 2VT)2 72 + 1403 - V)22 + T2 7).

Example 5.5. Let h(z) = 2220 hyz7*, g(z) = 22:0 g2k, f(2) = 22:0 frz* be the filters given

by (3.10) with n = 3,81 = 1, p1 = p2 = 1. Here we do not give the parametric expression for them. If

ty = (=16t +24/622 — 2 +63) /(12 +9)/2, to= (t1 +1t2)/(1 — t1ta),

then h has the sum rules of order 3, g(1) = ¢'(1) = ¢"(1) = 0, f(1) = f'(1) = 0. Ift; =
V' 32v/226 — 481, ty = (59 + 4v226)t1/27, and to = 27ty/45, then h has the sum rules of order 3,
the resulting ¢ € W'82127(R), 4); and 1, have the vanishing moments of order 3 and 4 respectively.

See Figure 2 for the graphs. The corresponding masks are

h(z) = 2712(1 + 271)3((43 + 2¢) — 6(33 +2¢)z~ 1 + 3(71 + 10c) 22 +

4(99 — 10¢)z 3 + 3(71 + 10¢)z~* — 6(33 + 2¢)z > + (43 + 2¢)z~°),
g(z) =271%(1 — 2713 ((76 + 5¢) + 4(16 + ¢)z ™' —3(4 — )22 —

8(16 — )z % — 3(4 — )z * + 4(16 + ¢)z ° + (76 + 5¢)z %),
f(2) = —2713v/382c —481(1 — 2 1)*(1 + 2 1) (3(391 + 26¢) + 4(241 + 16¢)z * +

2(751 + 50¢)z~2 + 4(241 + 16¢)2~3 + 3(391 + 26¢)z~*),
where ¢ = /226.

Example 5.6. Let h(z) = 21191:0 hpz"*, g(z) = 2116120 gz F, f(2) = ZZ:O frz~* be the filters given
by (3.17) with n =3,s1 =1, p1 = p2 = p3 = 1. For the choices of

to = —\/ —16345 4 2800v/37/35, t1 = 35(53 + 8V/37)to/441, 1y = —\/1195 + 200v/37/V/77,
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0.5

FIGURE 2. Symmetric refinable function ¢ € W82127 and antisymmetric/symmetric

framelets 1)1, 19 with vanishing moments of orders 3 and 4 respectively.

the resulting ¢ € W32735(RR), and both 1; and 1, have vanishing moments of order 3. See Figure 3
for the graphs. In this case the masks are
h(z) = 2717(1 4+ 271)*(25(13 + 5¢) — 10(83 + 75¢)z " — 5(433 — 375¢)2 ™2 +
4(2359 — 625¢) 2% — 5(433 — 375¢)z~* — 10(83 + 75¢c)z~° + 25(13 + 5¢)27°),
g(z) =271(1 — 271)3(25(13 + 5¢) + 10(177 + 25¢)z ™ — 1600(7 — ¢)z~2 — 62(43 + 35¢)z > —

(55818 — 2950c)z~* — 62(43 + 35¢)z > — 1600(7 — ¢)z~® + 10(177 + 25¢)z~ " + 25(13 + 5¢)2 %),
_2716,/2800c — 16345
B 63

f(2) (1 —271)?(45(13 + 5¢) + 18(177 + 25¢) 2~ " + 513(13 + 5¢)z ™% +

4(6503 + 959¢)z ™% + 513(13 + 5¢)z~* + 18(177 + 25¢)2~° + 45(13 + 5¢)27°),
where ¢ = +/37.
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