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Abstract

The objective of this paper is to introduce an innovative approach for the recovery of non-

stationary signal components with possibly cross-over instantaneous frequency (IF) curves

from a multi-component blind-source signal. The main idea is to incorporate a chirp rate

parameter with the time-scale continuous wavelet-like transformation, by considering the

quadratic phase representation of the signal components. Hence-forth, even if two IF curves

cross, the two corresponding signal components can still be separated and recovered, provided

that their chirp rates are different. In other words, signal components with the same IF value at

any time instant could still be recovered. To facilitate our presentation, we introduce the notion

of time-scale-chirp rate (TSC-R) recovery transform or TSC-R recovery operator to develop a

TSC-R theory for the 3-dimensional space of time, scale, chirp rate. Our theoretical develop-

ment is based on the approximation of the non-stationary signal components with linear chirps

and applying the proposed adaptive TSC-R transform to the multi-component blind-source

signal to obtain fairly accurate error bounds of IF estimations and signal components recov-

ery. Several numerical experimental results are presented to demonstrate the out-performance

of the proposed method over all existing time-frequency and time-scale approaches in the

published literature, particularly for non-stationary source signals with crossover IFs.
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1 Introduction

In nature and the current highly technological era, acquired signals are usually affected by various

complicated factors and appear as multi-component (time-overlapping) modes in the form of the

adaptive harmonic model (AHM) with an additive trend function, namely:

x(t) = A0(t) +

K∑
k=1

xk(t), xk(t) = Ak(t) cos
(
2πφk(t)

)
, (1)

where A0(t) represents the trend, A1(t), · · · , AK(t) ≥ 0 the instantaneous amplitudes (IAs), and

2πφ1(t), · · · , 2πφK(t) the instantaneous phases (IPhs), of the multi-component source signal (or

composite signal) x(t). The trend along with the instantaneous frequencies (IFs) φ′k(t) of x(t)

in (1) are often used to describe the underlying dynamics of x(t). Here, the IF of the unknown

component xk(t) is defined by the derivative φ′k(t) of 1/2π multiple of the phase function. For

example, radar echoes may be generated by multiple targets close to each other, or by different

micro-motion parts in one target. Also, seismic signals usually consist of multiple modes that

change in time with the dynamic variations of the IAs Ak(t) and the IPhs 2πφk(t), aroused by the

adjacent thin layers. In many situations it is necessary to separate the multi-component source

signal x(t) into a finite number of mono-components xk(t) = Ak(t) cos
(
2πφk(t)

)
to recover the

modes and underlying dynamics, implicated for the purpose of source signal processing, parameter

estimation, feature extraction, and pattern recognition, etc. Unfortunately, there are very few

effective rigorous methods available in the published literature for extracting or recovery of such

signal components or sub-signals.

In this regard, it is important to point out that in general, the signal decomposition approach is

not suitable for resolving the inverse problem of extracting the signal components x1(t), · · · , xK(t)

and trend A0(t) from the source data x(t) in (1). In particular, although function decomposition

methods in the mathematics literature are abundant, the general objective of such approach is to

decompose a given function in a certain function class into its building blocks, which are not of the

form of the signal components in (1). For example, in the pioneering paper [20] by R. Coifman, the

function building blocks (called atoms) do not have the phase and frequency contents as xk(t) =

Ak(t) cos
(
2πφk(t)

)
. In another pioneering paper [6] by S. Chen, D. Donoho, and M. Saunders,

a desired library of function building blocks is compiled to apply an innovative basis pursuit

algorithm for atomic decomposition. However, it is not feasible to compile a huge library of atoms
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of the form Ak(t) cos
(
2πφk(t)

)
for arbitrary IAs and IPhs, to apply the basis pursuit algorithm for

resolving the inverse problem of recovering the number K of components x1(t), · · · , xK(t) in (1),

from the source signal x(t). Of course there are other well-known signal decomposition schemes,

such as the discrete wavelet decomposition and sub-band coding, for signal decomposition, but

they are data-independent computational schemes and definitely cannot be applied to solving this

inverse problem. Even the most popular data-dependent signal (or time series) decomposition

algorithm, called “Emperical Mode Decomposition (EMD)”, proposed by N. Huang et al, as well

as all variants developed by others, such as [16, 17, 18, 24, 30, 35, 40, 47, 48, 51, 53, 54, 33],

fail in resolving this inverse problem. The reason is that there is absolutely no reason for the

EMD decomposed components, called intrinsic mode functions (IMFs), to possess any phase

and frequency information. After all, the manipulation of applying the Hilbert transform to

analytically extend each IMF from the real line to the upper half plane, followed by taking the real

part of the polar formulation of the extension to obtain the instantaneous phase representation,

can also be applied to any arbitrary integrable function. In fact, the derivative of this artificial

instantaneous phase function is not necessarily positive (for the formulation of the instantaneous

frequency), even if the derivative exists.

On the other hand, it would be much more reasonable to first extract the (instantaneous)

frequencies, and then using the frequency contents to decompose the source signal into its com-

ponents. Let us call this procedure the “signal resolution” approach. In other words, the signal

resolution approach is a logical way to resolve the inverse problem using the data information from

the source signal. For stationary signals (that is, source signals with linear-phase components),

the signal resolution approach has a very long history, dated back to B.G.R. De Prony, who intro-

duced the Prony method in his 1795 paper [39] to solving the inverse problem of time-invariant

linear systems with constant coefficients. This pioneering paper stimulates the development of two

very important and popular algorithms, called “MUSIC” proposed by R.O. Schmidt in [42] and

“ESPRIT” introduced by R. Roy and Kailath in [41]. While the number K of signal components

of the stationary model (1) with linear phases and constant coefficients is needed for carrying

out the Prony method, it is not necessary for both MUSIC and ESPRIT, even with non-constant

coefficients in (1).

The first signal resolution approach for non-stationary signals, coined “synchrosqueezed trans-

form (SST)” by I. Daubechies and S. Maes in [22] and studied by H.-T. Wu in his Ph.D. dis-

sertation [52], where both the continuous wavelet transform (CWT) and the short-time Fourier

transform (STFT) are considered to compute some reference frequency from the source signal for

the SST operation to squeeze out the instantaneous frequencies (IFs) of the signal components.

The full developments of SST using CWT and STFT are published in [21] and [46], respectively.

One of the limitations of the SST approach is the need of sufficiently accurate IFs for applying the
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normalized integral of the SST output in a small neighborhood of each IF to recover the signal

components, but without assurance of the number K of such IFs or signal components in (1).

Further development and study in the area of SST and its applications include the more recent

publications [1, 11, 15, 23, 55, 56, 38, 37, 2, 43, 3, 28, 29, 4, 36, 27, 49, 26, 50]. More recently,

another time-frequency approach, coined “signal separation operation or operator (SSO)” by the

first author and H.N. Mhaskar in the joint work [12] for resolving the inverse problem (1) by using

discrete data acquired from the source multi-component signal. In contrast to SST, the SSO is a

direct method for recovering the signal components simply by plugging the computed IF values in

the same SSO (operator). Further development in the direction of SSO includes [14, 31, 9, 8, 13].

In the literature, both SST and SSO are commonly called “time- frequency” approaches. Another

consideration of the signal resolution approach is the “time-scale” approach by using the CWT

and recalling that the scale parameter of the CWT is inversely proportional to the frequency to be

estimated by the CWT. Of course the constants of inverse proportionality depend on the choice

of the analysis wavelets for the CWT. In very recent paper [7], the classical Haar function is ex-

tended to a family of cardinal splines, called extended Haar wavelets ψm,n(x), with any desirable

polynomial spline order m ≥ 1, any desirable order n ≥ 1 of vanishing moments, and compact

supports [−(m + n)2, (m + n)/2], for which the constants of inverse proportionality are easily

computed (see Equation (2.2) and Tables 3–5 in [7]). One advantage of the time-scale approach

proposed in [7] over the SSO is the elimination of the additional parameter for estimating the IFs

of the signal components.

Observe that in applying SSO and the time-scale approach in [7], the phase functions of the

signal components in the source signal model (1) are approximated by some linear polynomials

at any local time for the purpose of extracting the IFs. More recently, quadratic approximation

at local time gives rise to the SSO of “linear chirp-based model’’ proposed in our paper [31].

This model provides a more accurate component recovery formulae, with theoretical analysis

established in our recent work [9]. The main reason for considering the quadratic terms of the

phase approximation is to recover signal components with the same IF values. In this regard, we

emphasize that in the current literature, including all time-frequency and time-scale approaches,

the IFs of the signal components are assumed to be distinct and well separated. This strict

assumption must be removed in order to apply the methods and algorithms to separate more

general real-world multi-component or composite signals. To demonstrate this point of view, let

us consider radar signal processing, where the micro-Doppler effects are represented by highly

non-stationary signals. When the target or any structure on the target undergoes micro-motion

dynamics, such as mechanical vibrations, rotations, or tumbling and coning motions [5, 45], the

frequency curves of the signal components may cross one another. For example, Fig.1 shows the

simulated micro-Doppler modulations (that is, two sinusoidal frequency-modulation signals and
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one single-tone signal) and the STFT of the synthetic signal.
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Figure 1: Micro-Doppler modulations induced by target’s tumbling (Left) and STFT of the signal (Right).

To be precise, we say that two signal components xk(t) and x`(t) of a multi-component sig-

nal x(t) governed by (1) overlap in the time-frequency plane at t = t0, if φ′k(t0) = φ′`(t0) but

φ′k(t) 6= φ′k(t) in some deleted neighborhood of t0. Based on the linear chirp-based model pro-

posed in our previous paper [31], we have extended the SSO method in [12] by incorporating a

chirp rate parameter to introduce a computational scheme in our work [32] for the recovery of

signal components with overlapping frequency curves. In the present paper, we propose another

innovative time-scale approach by introducing a 3D time-scale-chirp rate transform, formulated

by incorporating a complex quadratic phase function with a continuous wavelet-like transform

(CWLT), to be called an adaptive “time-scale-chirp rate (TSC-R)’’ component recovery oper-

ator, and develop a rigorous theory for assurance of solving the inverse problem in separating

the signal components xk(t) of the multi-component signal x(t) governed by (1), without the

assumption of well separated IFs, but rather by assuming that if the two IF curves of the signal

components xk and x` cross at some t = t0, then |φ′′k(t)−φ′′` (t)| ≥ δ for some δ > 0, for |t− t0| < ε,

where ε > 0.

For convenience, we will consider, without loss of generality, the following complex-version of

(1) without the trend function A0(t) function, namely:

x(t) =

K∑
k=1

xk(t) =

K∑
k=1

Ak(t)e
i2πφk(t) (2)

where Ak(t), φ
′
k(t) > 0. The reader is referred to [12] for the methods of polynomial trend removal.

The presentation of this paper is organized as follows. In Section 2, the adaptive TSC-R

operator is introduced and developed, along with some error bounds, for instantaneous frequency

estimation and signal components recovery. When the Gaussian function is used as the wavelet-

like scalable window, more precise error bounds are derived for the adaptive TSC-R operation in

Section 3. Numerical experimental results will be discussed in Section 4.
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2 Time-scale-chirp rate signal recovery operator

To extract and separate the (unknown) signal components with crossover IFs from the multi-

component signal governed by (2), we propose the following adaptive time-scale-chirp rate

signal recovery (TSC-R) operator, by introducing an adaptive continuous wavelet-like transform

(CWLT), namely:

Ux(a, b, λ) :=

∫ ∞
−∞

x(t)
1

a
g
( t− b
aσ(b)

)
e−i2πµ

t−b
a e−iπλ(t−b)

2
dt

=

∫
R
x(b+ at)

1

σ(b)
g
( t

σ(b)

)
e−i2πµt−iπλa

2t2dt, (3)

where g(t) is a window function, µ is a positive constant, and σ(b) is a positive function of b. In

this paper, all window functions g are assumed to be functions in L2(R) that decay to zero at ∞
and satisfy

∫
R g(t)dt = 1. Observe that when λ = 0, Ux(a, b, λ) is reduced to the adaptive CWLT

of x(t), denoted by W̃x(a, b), as considered in [29], and that the TSC-R of x(t) can be considered

as a multi-component signal in the 3-dimensional space of time t, scale a, and chirp rate λ. The

importance of this transform is that when the IF curves of two components xk(t) and x`(t) cross

each other, they may be well-separated in the 3-dimensional space by adaptive TSC-R operator,

provided that φ′′k(t) 6= φ′′` (t) for t in some neighborhood of the cross-over time instant t0. Thus, a

multi-component signal x(t) with certain signal components that have the same IF values can be

extracted and well-separated in the 3-dimensional TSC-R space adaptively. Hence, it is feasible

to reconstruct signal components by adaptive TSC-R.

In practice, for a particular signal x(t), its adaptive CWLT W̃x(a, b) lies in a region of the

scale-time plane:

{(a, b) : a1(b) ≤ a ≤ a2(b), b ∈ R}

for some 0 < a1(b), a2(b) < ∞. That is W̃x(a, b) is negligible for (a, b) outside this region.

Throughout this paper we assume for each b ∈ R, the scale a is in the interval:

a1(b) ≤ a ≤ a2(b). (4)

Definition 1. For ε1 > 0 and ε3 > 0, let Eε1,ε3 denote the set consisting of (complex) adaptive har-

monic models (AHMs) defined by (2) with Ak(t) ∈ L∞(R), Ak(t) > 0, φk(t) ∈ C3(R), infb∈R φ
′
k(t) >

0, supb∈R φ
′
k(t) <∞, and Ak(t), φk(t) satisfying

|Ak(t+ τ)−Ak(t)| ≤ ε1|τ |Ak(t), t ∈ R, k = 1, · · · ,K, (5)

|φ′′′k (t)| ≤ ε3, t ∈ R, k = 1, · · · ,K. (6)

For a window function g ∈ L1(R), denote

(g(η, λ) :=

∫
R
g(t)e−i2πηt−iπλt

2
dt. (7)
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(g(η, λ) is called a polynomial Fourier transform of g [34, 44]. Note that (g(0, 0) = 1 since
∫
R g(t)dt =

1.

When g is the Gaussian function defined by

g(t) =
1√
2π

e−
t2

2 , (8)

then we have (refer to [19, 28])

(g(η, λ) =
1√

1 + i2πλ
e−

2π2η2

1+i2πλ , (9)

where
√

1 + i2πλ denotes the square root of 1 + i2πλ lying in the same quadrant as 1 + i2πλ.

We say s(t) is a linear chirp or a linear frequency modulation signal if

s(t) = Aei2πφ(t) = Aei2π(ct+
1
2
rt2),

where c and r are constants. We use linear chirps to approximate each xk(t) at any local time.

Namely, we write

xk(b+ at) = xk(b)e
i2π(φ′k(b)at+

1
2
φ′′k(b)(at)

2) + xr,k(a, b, t),

where

xr,k(a, b, t) = xk(b+ at)− xk(b)ei2π(φ
′
k(b)at+

1
2
φ′′k(b)(at)

2).

Note that, as a function of t, xk(b)e
i2π(φ′k(b)at+

1
2
φ′′k(b)a

2t2) is a linear chirp. Thus x(b + at) can be

approximated by a superposition of linear chirps at any local time t:

x(b+ at) = xm(a, b, t) + xr(a, b, t),

where

xm(a, b, t) :=
K∑
k=1

xk(b)e
i2π(φ′k(b)at+

1
2
φ′′k(b)(at)

2) ,

xr(a, b, t) :=

K∑
k=1

xr,k(a, b, t).

Denote

Rx(a, b, λ) :=

∫
R
xm(a, b, t)

1

σ(b)
g
( t

σ(b)

)
e−i2πµt−iπλa

2t2dt. (10)

Then we have

Rx(a, b, λ) =
K∑
k=1

xk(b)

(g
(
σ(b)

(
µ− aφ′k(b)

)
, σ2(b)a2

(
λ− φ′′k(b)

))
. (11)
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In the following, we denote

ν = ν(b) := min
1≤k≤K

Ak(b), M = M(b) :=

K∑
k=1

Ak(b). (12)

In the next lemma we provide an error bound for |Ux(a, b, λ)−Rx(a, b, λ)|.

Lemma 1. Let x(t) ∈ Eε1,ε3 for some ε1 > 0, ε3 > 0, and let Ux(a, b, λ) be its adaptive TSC-R

defined by (3) with a window function g and Rx(a, b, λ) the approximation of Ux(a, b, λ) defined

by (10). Then ∣∣Ux(a, b, λ)−Rx(a, b, λ)
∣∣ ≤M(b)Π(a, b), (13)

where

Π(a, b) := ε1I1aσ(b) +
π

3
ε3I3a

3σ3(b), (14)

with

In :=

∫
R

∣∣g(t)tn
∣∣dt, n = 1, 2, · · · . (15)

Proof. By (5) and (6),

|x(b+ at)− xm(a, b, t)| = |xr(a, b, t)|

=

K∑
k=1

{
(Ak(b+ at)−Ak(b))ei2πφk(b+at)

+xk(b)e
i2π(φ′k(b)at+

1
2
φ′′k(b)(at)

2)
(
ei2π(φk(b+at)−φk(b)−φ

′
k(b)at−

1
2
φ′′k(b)(at)

2) − 1
)}

≤
K∑
k=1

{∣∣∣Ak(b+ at)−Ak(b)
∣∣∣+Ak(b)

∣∣∣i2π(φk(b+ at)− φk(b)− φ′k(b)at−
1

2
φ′′k(b)(at)

2
)∣∣∣}

≤
K∑
k=1

{
Ak(b)ε1a|t|+Ak(b)2π sup

ξ∈R

1

6

∣∣φ′′′k (ξ)(at)3
∣∣}

≤M(b)ε1a|t|+M(b)
π

3
ε3a

3|t|3.

This leads to∣∣Ux(a, b, λ)−Rx(a, b, λ)
∣∣ =

∣∣∣ ∫
R

(x(b+ at)− xm(a, b, t))
1

σ(b)
g(

t

σ(b)
)e−i2πµat−iπλ(at)

2
dt
∣∣∣

≤
∫
R
M(b)

(
ε1a|t|+

π

3
ε3a

3|t|3
)∣∣ 1

σ(b)
g(

t

σ(b)
)
∣∣dt

= M(b)
(
ε1I1σ(b) +

π

3
ε3I3σ

3(b)
)
.

This completes the proof of Lemma 1.

8



Remark 1. Recall that we assume in this paper a is in an interval as shown in (4). Thus, we

have ∣∣Ux(a, b, λ)−Rx(a, b, λ)
∣∣ ≤M(b)Π0(b), (16)

where

Π0(b) := Π(a2, b) = ε1I1σ(b)a2 +
π

3
ε3I3σ

3(b)a32. (17)

�

In the following, we assume any two IF curves of the signal components xk and x` satsify

either
|φ′k(t)− φ′`(t)|
φ′k(t) + φ′`(t)

≥ 4, t ∈ R, or |φ′′k(t)− φ′′` (t)| ≥ 241, t ∈ R, (18)

where 0 < 4 < 1,41 > 0. Clearly φ′k(t) and φ′`(t) could be cross over at a time instant. For

1 ≤ k ≤ K, define

Zk := {(a, b, λ) : |µ− aφ′k(b)| < 4 and |λ− φ′′k(b)| < 41, b ∈ R}. (19)

Lemma 2. If φk satisfies (18), then Zk, 1 ≤ k ≤ K are disjoint, that is Z` ∩ Zk = ∅ for ` 6= k.

The proof of Lemma 2 is straightforward and it is omitted.

Note that for (a, b, λ) ∈ Z`, the scale variable a satisfies

µ−4
φ′`(b)

< a <
µ+4
φ′`(b)

.

Hence for any (a, b, λ) ∈ Z`, by (13), we have∣∣Ux(a, b, λ)−Rx(a, b, λ)
∣∣ ≤M(b)Π`(b), (20)

where

Π`(b) := Π(
µ+4
φ′`(b)

, b) = ε1I1σ(b)
µ+4
φ′`(b)

+
π

3
ε3I3σ

3(b)
(µ+4
φ′`(b)

)3
. (21)

For a fixed b, and a positive number ε̃1, we let Hb and Hb,k denote the sets defined by

Hb :=
{

(a, λ) : |Ux(a, b, λ)| > ε̃1
}
,

Hb,k :=
{

(a, λ) ∈ Hb : |µ− aφ′k(b)| < 4 and |λ− φ′′k(b)| < 41

}
.

(22)

Note that Hb and Hb,k depend on ε̃1, and for simplicity of presentation, we drop ε̃1 from them.

Let Υ(b),Υ`,k(b) with Υ(b) ≥ Υ`,k(b) for k 6= ` be some functions satisfying

sup{(a,λ):(a,b,λ)6∈∪Kk=1Zk}
∣∣ (g
(
σ(b)(µ− aφ′k(b)), σ2(b)a2(λ− φ′′k(b))

)∣∣ ≤ Υ(b),

sup{(a,λ):(a,b,λ)6∈Z`}
∣∣ (g
(
σ(b)(µ− aφ′k(b)), σ2(b)a2(λ− φ′′k(b))

)∣∣ ≤ Υ`,k(b).
(23)
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About the quantities Υ(b) and Υ`,k(b), refer to Section 3 when g is the Gaussian window function.

Next we provide another lemma which will be used to derive our main theorem. In the

following lemma and the rest of this paper,
∑

k 6=` denotes
∑
{k: k 6=`,1≤k≤K}.

Lemma 3. Let x(t) ∈ Eε1,ε3 for some ε1 > 0, ε3 > 0, and Ux(a, b, λ) be the adaptive TSC-R of

x(t) with a window function g. Then for any (a, λ) ∈ Hb,`,∣∣Ux(a, b, λ)− x`(b) (g
(
σ(b)(µ− aφ′`(b)), σ2(b)a2(λ− φ′′` (b))

)∣∣ ≤ Err`(b), (24)

where

Err`(b) := M(b)Π`(b) +
∑
k 6=`

Ak(b)Υ`,k(b) (25)

with Π`(b) defined by (21).

Proof. By (11), we have for any (a, λ) ∈ Hb,`,∣∣Rx(a, b, λ)− x`(b) (g
(
σ(b)(µ− aφ′`(b)), σ2(b)a2(λ− φ′′` (b))

)∣∣
=
∣∣∣∑
k 6=`

xk(b)

(g
(
σ(b)(µ− aφ′k(b)), σ2(b)a2(λ− φ′′k(b))

)∣∣∣
≤
∑
k 6=`

Ak(b)
∣∣∣ (g
(
σ(b)(µ− aφ′k(b)), σ2(b)a2(λ− φ′′k(b))

)∣∣∣ ≤∑
k 6=`

Ak(b)Υ`,k(b).

This, along with (20), leads to that

Left hand side of (24)

≤
∣∣Ux(a, b, λ)−Rx(a, b, λ)

∣∣+
∣∣Rx(a, b, λ)− x`(b) (g

(
σ(b)(µ− aφ′`(b)), σ2(b)a2(λ− φ′′` (b))

)∣∣
≤M(b)Π`(b) +

∑
k 6=`

Ak(b)Υ`,k(b).

Thus (24) holds true.

Next we have the following theorem.

Theorem 1. Let x(t) ∈ Eε1,ε3 for some ε1 > 0, ε3 > 0, and Ux(a, b, λ) be the adaptive TSC-R of

x(t) with a window function g. Suppose x(t) satisfies (18) for some 0 < 4 < 1 and 41 > 0, and

2M(b)
(
Υ(b) + Π0(b)

)
≤ ν(b) (26)

holds. Let Hb and Hb,k be the sets defined by (22) with a function ε̃1 = ε̃1(b) > 0 satisfying

M(b)
(
Υ(b) + Π0(b)

)
≤ ε̃1 ≤ ν(b)−M(b)

(
Υ(b) + Π0(b)

)
. (27)

Then the following statements hold.
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(a) Hb = ∪Kk=1Hb,k.

(b) The sets Hb,k, 1 ≤ k ≤ K are disjoint, i.e. Hb,k ∩Hb,k′ = ∅ if k 6= k′.

(c) Each set Hb,k is non-empty.

We delay the proof of Theorem 1 to the end of this section.

Denote

(â`, λ̂`) = (â`(b), λ̂`(b)) := argmax(a,λ)∈Hb,` |Ux(a, b, λ)|, ` = 1, · · · ,K. (28)

From Theorem 1, we know â`(b) and λ̂`(b) are well defined. We will use them to estimate φ′`(b),

chirp rate φ′′` (b) and to recover x`(b). More precisely, we have the following TSC R operator

scheme for IF estimation and component recovery.

Algorithm 1. (Time-Scale-Chirp rate operator scheme) Suppose x(t) ∈ Eε1,ε3 satisfies

the conditions in Theorem 1.

Step 1. Calculate â`(b) and λ̂`(b) by (28).

Step 2. Obtain IF and chirp rate estimates by

φ′`(b) ≈
µ

â`(b)
, φ′′` (b) ≈ λ̂`(b), (29)

Step 3. Obtain the recovered `-th component by

x`(b) ≈ Ux(â`, b, λ̂`). (30)

�

Observe that the recovered component is obtained simply by substituting the time-scale ridge

â`(b) and time-chirp rate ridge λ̂`(b) to adaptive TSC-R, which is different from SST method with

which the recovered xk(t) is computed by a definite integral along each estimated IF curve on the

SST plane.

Next we study the error bounds for these approximations. To this regard, we introduce

admissible window functions.

Definition 2. (Admissible window function) A function g(t) in L2(R) is called an admissible

window function if
∫
R g(t)dt = 1, g has certain at ∞ and satisfies the following conditions.

(a) | (g(η, λ)| can be written as f(|η|, |λ|) for some function f(ξ1, ξ2) defined on 0 ≤ ξ1, ξ2 <∞.

11



(b) There exist c0 with 0 < c0 < 1 and (strictly) decreasing non-negative continuous functions

β(ξ) and γ(ξ) on [0,∞) with β(0) = 1, γ(0) = 1 such that if f in (a) satisfies

1− c ≤ f(η, λ), (31)

for some c with 0 ≤ c ≤ c0 and η, λ, then

1− c ≤ β(η), 1− c ≤ γ(λ). (32)

Theorem 2. Let x(t) ∈ Eε1,ε3 for some ε1 > 0, ε3 > 0, and Ux(a, b, λ) be the adaptive TSC-R of

x(t) with an admissible window function g for certain c0 such that (32) holds. Suppose (18) and

(26) hold and that for 1 ≤ ` ≤ K, 2Err`(b)/A`(b) ≤ c0, where Err`(b) is defined by (25). Let Hb
and Hb,k be the sets defined by (22) for some ε̃1 satisfying (27). Let â`(b), λ̂`(b) be the functions

defined by (28). Then the following statements hold.

(a) For ` = 1, 2, · · · ,K,

|µ− â`(b)φ′`(b)| ≤ Bd1,` :=
1

σ(b)
β−1

(
1− 2 Err`(b)

A`(b)

)
, (33)

|λ̂`(b)− φ′′` (b)| ≤ Bd2,` :=
1

σ2(b)â2`
γ−1

(
1− 2 Err`(b)

A`(b)

)
. (34)

(b) For ` = 1, 2, · · · ,K, ∣∣Ux(â`, b, λ̂`)− x`(b)
∣∣ ≤ Bd3,`, (35)

where

Bd3,` := Err`(b) + 2πI1A`(b)β
−1(1− 2 Err`(b)

A`(b)

)
+ πI2A`(b)γ

−1(1− 2 Err`(b)

A`(b)

)
with I1 and I2 defined by (15).

(c) If, in addition, the window function g(t) ≥ 0 for t ∈ R, then for ` = 1, 2, · · · ,K,∣∣|Ux(â`, b, λ̂`)| −A`(b)
∣∣ ≤ Err`(b). (36)

Note that since limξ→1− β
−1(ξ) = 0 and limξ→1− γ

−1(ξ) = 0, the error bounds Bd1,`, Bd2,`,

Bd3,` are small as long as Err`(b) is small. We will study these error bounds in more details in

the next section when g is the Gaussian window function.

As shown in (33)-(36), µ
â`(b)

is an estimate to φ′`(b) as shown in (29) and Ux(â`, b, λ̂`) is the

recovered component of x`(b). For a real-valued x`(t), we will use

x`(b) ≈ 2Re
(
Ux(â`, b, λ̂`)

)
. (37)

In addition, the chirp rate φ′′` (b) and IA A`(b) can be estimated by λ̂`(b) and |Ux(â`, b, λ̂`)| re-

spectively.
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Remark 2. Adaptive TSC-R defined by (3) can be extended to adaptive CWLT with a higher

order polynomial phase function. More precisely, one may define

Ux(a, b, λ1, · · · , λm) :=

∫ ∞
−∞

x(t)
1

a
ψσ(b)

( t− b
a

)
e−i2π

∑m+1
`=2 λ`−1

(t−b)`
`! dt

=

∫
R
x(b+ at)

1

σ(b)
g
( t

σ(b)

)
e−i2πµt−i2π

∑m+1
`=2 λ`−1

(at)`

`! dt. (38)

Ux(a, b, λ1, · · · , λm) can be used for IF estimation and mode recovery of such a multicompo-

nent signal that IFs φ′k(t) and φ′`(t) of two components are “highly” crossover at some time

t0: φ
(j)
k (t0) = φ

(j)
` (t0), 1 ≤ j ≤ m. One can establish theorems similar Theorems 1 and 2 for

Ux(a, b, λ1, · · · , λm). �

Finally in this section we present the proofs of Theorems 1 and 2. For simplicity of presenta-

tion, we write σ for σ(b).

Proof of Theorem 1(a). Clearly ∪Kk=1Hb,k ⊆ Hb. Next we show Hb ⊆ ∪Kk=1Hb,k.
Let (a, λ) ∈ Hb. Suppose (a, λ) 6∈ Hb,k for any k. Then (a, b, λ) 6∈ ∪Kk=1Zk. Hence, by (23), we

have ∣∣Rx(a, b, λ)
∣∣ =

∣∣∣ K∑
k=1

xk(b)

(g
(
σ(µ− aφ′k(b)), σ2a2(λ− φ′′k(b))

)∣∣∣
≤

K∑
k=1

Ak(b)Υ(b) = M(b)Υ(b).

This, together with (16), implies∣∣Ux(a, b, λ)
∣∣ ≤ ∣∣Ux(a, b, λ)−Rx(a, b, λ)

∣∣+
∣∣Rx(a, b, λ)

∣∣
≤M(b)Π0(b) +M(b)Υ(b) ≤ ε̃1,

a contradiction to that (a, λ) ∈ Hb. Hence there must exist an ` such that (a, λ) ∈ Hb,`. This

shows Hb = ∪Kk=1Hb,k.

Proof of Theorem 1(b). Observe that Hb,k = Hb ∩ {(a, λ) : (a, b, λ) ∈ Zk}. Since Zk, 1 ≤
k ≤ K are disjoint, we conclude that Hb,k, 1 ≤ k ≤ K are also disjoint.

Proof of Theorem 1(c). To show that each Hb,` is non-empty, it is enough to show

( µ
φ′`(b)

, φ′′` (b)) ∈ Hb. Indeed, with (g(0, 0) = 1, (24) with η = µ
φ′`(b)

, λ = φ′′` (b) implies∣∣Ux(
µ

φ′`(b)
, b, φ′′` (b))

∣∣ ≥ ∣∣x`(b) (g(0, 0)
∣∣− Err`(b)

= A`(b)−M(b)Π`(b)−
∑
k 6=`

Ak(b)Υ`,k(b)

> ν(b)−M(b)Π0(b)−M(b)Υ(b) ≥ ε̃1.

13



Thus ( µ
φ′`(b)

, φ′′` (b)) ∈ Hb. Hence ( µ
φ′`(b)

, φ′′` (b)) ∈ Hb,`, and Hb,` is non-empty. �

Proof of Theorem 2(a). From (24), we have∣∣Ux(â`, b, λ̂`)
∣∣ ≤ ∣∣x`(b) (g

(
σ(µ− â`φ′`(b)), σ2â2` (λ̂` − φ′′` (b))

)∣∣+ Err`(b). (39)

On the other hand, by the definitions of â`, λ̂` and by (24) with a = µ
φ′`(b)

, λ = φ′′` (b), we have∣∣Ux(â`, b, λ̂`)
∣∣ ≥ ∣∣Ux(

µ

φ′`(b)
, b, φ′′` (b))

∣∣ ≥ |x`(b) (g(0, 0)
∣∣− Err`(b) = A`(b)− Err`(b). (40)

This, together with (39), implies

A`(b)− Err`(b) ≤ A`(b)
∣∣ (g
(
σ(µ− â`φ′`(b)), σ2â2` (λ̂` − φ′′` (b))

)∣∣+ Err`(b).

Thus we have

1− 2 Err`(b)

A`(b)
≤ f

(
σ|µ− â`φ′`(b)|, σ2â2` |λ̂` − φ′′` (b)|

)
. (41)

Since 2Err`(b)/A`(b) ≤ c0, (41) along with (31) and (32) leads to

1− 2 Err`(b)

A`(b)
≤ β

(
σ
∣∣µ− â`φ′`(b)∣∣), 1− 2 Err`(b)

A`(b)
≤ γ

(
σ2â2`

∣∣λ̂` − φ′′` (b)∣∣).
Since β(ξ), γ(ξ) decreasing, we have

σ
∣∣µ− â`φ′`(b)∣∣ ≤ β−1(1− 2 Err`(b)

A`(b)

)
, σ2â2`

∣∣λ̂` − φ′′` (b)∣∣ ≤ γ−1(1− 2 Err`(b)

A`(b)

)
.

Thus shows (33) and (34).

Proof of Theorem 2(b). From (24), we have∣∣Ux(â`, b, λ̂`)− x`(b)
∣∣ ≤ ∣∣Ux(â`, b, λ̂`)− x`(b) (g

(
σ(µ− â`φ′`(b)), σ2â2` (λ̂` − φ′′` (b))

)∣∣
+
∣∣x`(b) (g

(
σ(µ− â`φ′`(b)), σ2â2` (λ̂` − φ′′` (b))

)
− x`(b)

∣∣
≤ Err`(b) +A`(b)

∣∣∣ ∫
R

1

σ
g(
t

σ
)
(
e−i2π(µ−â`φ

′
`(b))t−iπâ

2
` (λ̂`−φ

′′
` (b))t

2 − 1
)
dt
∣∣∣

≤ Err`(b) +A`(b)

∫
R

∣∣∣ 1
σ
g(
t

σ
)
∣∣∣ ∣∣2π(µ− â`φ′`(b))t+ πâ2` (λ̂` − φ′′` (b))t2

∣∣dt
≤ Err`(b) +A`(b)2π|µ− â`φ′`(b)|

∫
R

∣∣∣ 1
σ
g(
t

σ
)t
∣∣∣dt+A`(b)πâ

2
`

∣∣λ̂` − φ′′` (b)∣∣ ∫
R

1

σ

∣∣∣g(
t

σ
)
∣∣∣t2dt

= Err`(b) +A`(b)2πI1σ|µ− â`φ′`(b)|+A`(b)πI2σ
2â2`
∣∣λ̂` − φ′′` (b)∣∣

≤ Err`(b) + 2πI1A`(b)β
−1(1− 2 Err`(b)

A`(b)

)
+ πI2A`(b)γ

−1(1− 2 Err`(b)

A`(b)

)
,

where the last inequality follows from (33) and (34). This completes the proof of (35).

Proof of Theorem 2(c). Note that when g(t) ≥ 0, by the assumption
∫
R g(t)dt = 1, we

have that | (g(η, λ)| ≤ 1 for any η, λ ∈ R. This fact, together with (39), implies∣∣Ux(â`, b, λ̂`)
∣∣ ≤ A`(b) + Err`(b).

This and (40) lead to (36). This completes the proof of Theorem 2(c). �
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3 Time, scale and chirp rate signal recovery operator with Gaus-

sian window function

The Gaussian function is the only function (up to scalar multiplication, shift and modulations)

which gains the optimal time-frequency resolution. Hence it has been used in many applications.

In this section we consider the adaptive TSC-R with the window function being the Gaussian

function and obtain more precise estimates for the error bounds Bd1,`, Bd2,`, Bd3,` in Theorem

2. In the following g is always the Gaussian function given in (8).

From (9), we have that | (g(η, λ)| = f(|η|, |λ|) with

f(η, λ) :=
1

(1 + 4π2λ2)1/4
e
− 2π2η2

1+4π2λ2 . (42)

First one can obtain that

| (g(η, λ)| ≤ min
{ 1

(2π2η2)1/4
,

1

(1 + 4π2λ2)1/4

}
. (43)

Indeed, if 2π2η2 ≥ 1 + 4π2λ2, then

| (g(η, λ)| ≤ 1

(1 + 4π2λ2)1/4
1 + 4π2λ2

2π2η2
=

(1 + 4π2λ2)3/4

2π2η2
≤ 1

(2π2η2)1/4
;

otherwise, for 2π2η2 < 1 + 4π2λ2, we have

| (g(η, λ)| ≤ 1

(1 + 4π2λ2)1/4
.

Hence (43) holds.

Next let us consider the quantities Υ(b) and Υ`,k(b) satisfying (23). Suppose (a, b, λ) 6∈ Zk.
By (43), we have∣∣ (g

(
σ(µ− aφ′k(b)), σ2a2(λ− φ′′k(b))

)∣∣
≤ min

{ 1

(2π2)1/4
√
σ|µ− aφ′k(b)|

,
1(

1 + 4π2σ4a4(λ− φ′′k(b))2
)1/4}. (44)

If |µ− aφ′k(b)| ≥ 4, then

1

(2π2)1/4
√
σ|µ− aφ′k(b)|

≤ 1

(2π2)1/4
√
4
√
σ

;

otherwise, if |µ− aφ′k(b)| < 4, then |λ− φ′′k(b))| ≥ 41. Therefore,

1(
1 + 4π2σ4a4(λ− φ′′k(b))2

)1/4 ≤ 1√
2π41aσ

≤ 1√
2π41a1σ

.
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Hence, by (44), we have∣∣ (g
(
σ(µ− aφ′k(b)), σ2a2(λ− φ′′k(b))

)∣∣ ≤ max
{ 1

(2π2)1/4
√
4
√
σ
,

1√
2π41a1σ

}
. (45)

Thus we may let

Υ(b) =
1

√
σmin

{
(2π2)1/4

√
4, a1

√
2π41σ

} .
Since Z` and Zk are not overlapping if ` 6= k, we may simply let Υ`,k(b) = Υ(b). For such choice

of Υ(b) and Υ`,k(b), (23) holds. Note that if σ = σ(b) is large, then Υ(b) and Υ`,k(b) will be small.

Next we consider the functions β(ξ), γ(ξ) satisfying (32) for f(η, λ) given by (42). Clearly, we

may choose

γ(λ) =
1

(1 + 4π2λ2)1/4
. (46)

Next we will show that for this f(η, λ), if c0 in (31) satisfies c0 ≤ 1− e−1/4, then we can choose

β(η) = e−2π
2η2 . (47)

To this regard, we first have the following two lemmas.

Lemma 4. Let f(η, λ) be the function defined by (42). If 0 ≤ η ≤ 1
2π
√
2
, then

f(η, λ) ≤ f(η, 0) = e−2π
2η2 , λ ∈ [0,∞). (48)

Proof. One can obtain from ∂λf(η, λ) that for fixed η, f(η, λ) is a decreasing function in λ on

λ ≥ 0 and

8π2η2 ≤ 1 + 4π2λ2. (49)

Notice that (49) holds true for any λ ≥ 0 if 0 ≤ η ≤ 1
2π
√
2
. Hence, (48) holds true.

Lemma 5. Let f(η, λ) be the function defined by (42). Let c be a number satisfying 0 ≤ c ≤
1− e−1/4. Then 1− c ≤ f(η, λ) for some η, λ ≥ 0 implies 0 ≤ η ≤ 1

2π
√
2
.

Proof. Assume η > 1
2π
√
2
. Let λ ≥ 0. If 1 + 4π2λ2 ≤ 8π2η2, then

f(η, λ) ≤ 1

(1 + 4π2λ2)1/4
e−1/4 < e−1/4.

Otherwise, when 1 + 4π2λ2 > 8π2η2, let λ0 > 0 be the number such that 1 + 4π2λ20 = 8π2η2. As

mentioned in the proof of Lemma 4, f(η, λ) is a decreasing function in λ for 8π2η2 ≤ 1 + 4π2λ2.

Since λ0 < λ, we have

f(η, λ) ≤ f(η, λ0) =
1

(8π2η2)1/4
e−1/4 < e−1/4.
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So in either case, we have f(η, λ) < e−1/4, a contradiction to that

f(η, λ) ≥ 1− c ≥ e−1/4.

Therefore η ≤ 1
2π
√
2
. This completes the proof of Lemma 5.

Lemmas 4 and 5 immediately lead to the following proposition.

Proposition 1. Let f(η, λ), β(η) and γ(λ) be the functions defined by (42), (47) and (46) re-

spectively. Suppose c satisfies 0 ≤ c ≤ 1− e−1/4. Then 1− c ≤ f(η, λ) implies

1− c ≤ β(η), 1− c ≤ γ(λ).

Proof. Clearly 1− c ≤ γ(λ) since f(η, λ) ≤ γ(λ). By Lemma 5, 1− c ≤ f(η, λ) implies η ≤ 1
2π
√
2
.

This, together with Lemma 4, implies

f(η, λ) ≤ f(η, 0) = β(η).

Thus 1− c ≤ f(η, λ) ≤ β(η), as desired.

For γ(λ) given by (46), its inverse γ−1(ξ) is given by

γ−1(ξ) =
1

2πξ2

√
1− ξ4.

Hence the error bound Bd2,` in (34) is given by

Bd2,` :=
1

σ2(b)
γ−1

(
1− 2 Err`(b)

A`(b)

)
=

1

σ2(b)2π
(
1− 2 Err`(b)

A`(b)

)2
√

1−
(
1− 2 Err`(b)

A`(b)

)4
. (50)

Hence, if Err`(b)
A`(b)

≈ 0, then

Bd2,` ≈
√

2

πσ2(b)

√
Err`(b)

A`(b)
.

The inverse function β−1(ξ) of β(λ) given by (47) is

β−1(ξ) =
1

π
√

2

√
− ln ξ, 0 < ξ < 1.

Thus if 2 Err`(b)
A`(b)

≤ 1− e−1/4, then by (41) and Proposition 1, we have

|µ− â`(b)φ′`(b)| ≤ Bd1,` :=
1

σ(b)
β−1

(
1− 2 Err`(b)

A`(b)

)
=

1

σ(b)π
√

2

√
− ln

(
1− 2 Err`(b)

A`(b)

)
.
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Using the fact − ln(1− t) < e1/4t for 0 < t < 1− e−1/4, we have

Bd1,` ≤
e1/8

σ(b)π

√
Err`(b)

A`(b)
. (51)

In addition, the error bound Bd3,` in (35) for component recovery is bounded by

Bd3,` ≤ Err`(b) + 2e1/8I1
√

Err`(b)A`(b) +
I2A`(b)

2
(
1− 2 Err`(b)

A`(b)

)2
√

1−
(
1− 2 Err`(b)

A`(b)

)4
. (52)

To summarize, we have the following theorem.

Theorem 3. Let x(t) ∈ Eε1,ε3 for some ε1 > 0, ε3 > 0, and Ux(a, b, λ) be the adaptive TSC-R of

x(t) with Gaussian window function g in (8). Suppose (18) and (26) hold and that for 1 ≤ ` ≤ K,

2Err`(b)/A`(b) ≤ 1−e−1/4. Let Hb and Hb,k be the sets defined by (22) for some ε̃1 satisfying (27).

Let â`(b), λ̂`(b) be the functions defined by (28). Then (33), (34) and (35) hold with Bd1,`,Bd2,`

and Bd3,` bounded by the quantities in (51), (50) and (52) respectively.
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Figure 2: Two-component signal x(t) in (53) and its time-frequency representations with SST. Top row

(from left to right): Waveform of x(t), magnitude spectrum and ground truth IFs of two components x1(t)

and x2(t); Bottom row (from left to right): CWLT, CWT-based SST and CWT-based second-order SST.
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In this section we provide some experimental results to demonstrate our method and general

theory. We set µ = 1.

Example 1. Let x(t) be a signal consisting of two-component linear chirps, given as

x(t) = x1(t) + x2(t) = cos(2πc1t+ πr1t
2) + cos(2πc2t+ πr2t

2), t ∈ [0, 0.75), (53)

where c1 = 21, c2 = 71, r1 = 67 and r2 = −61.

The IFs of x1 and x2 are φ′1(t) = c1 + r1t and φ′2(t) = c2 + r2t, respectively. See the top-right

panel of Figure 2. The chirp rates of x1 and x2 are φ′′1(t) = r1 and φ′′2(t) = r2, respectively. Here

signal x(t) is discretized with sampling rate 256Hz. That means there are 192 samples for x(t).

In the following, we just use these 192 samples to analyze the signal. The waveform of x(t) and

its magnitude spectrum are presented in the top row of Fig.2.

The bottom row of Fig.2 shows the results of CWLT, SST [21] and the second-order SST

[37], where parameter σ = 0.023. Here the scale variable a is discretized as
(
2j/nv4t

)
j
, where

4t = 1/256 for this example, and nv is the number of voice. Here and below we set nv =

32. Due to the IF curves of the components are crossover, these methods cannot represent

the synthetic signal sharply and separately. In addition, EMD performs poorly in decompose

this signal. Consequently, these methods are hardly to recover this two-component signal with

crossover IFs.

Next let us look at our method. Due to that the adaptive TSC-R Ux(a, b, λ) is 3-dimensional,

here we show some slices of |Ux(a, b, λ)|. First we look at the slice when λ = r1, the ground truth

chirp rate of x1. The top-left panel of Fig.3 is |Ux(a, b, r1)|. The clear and sharp scale-time ridge

shown in this panel is exactly the curve (b, µ
φ′1(b)

), which gives a precise estimate of φ′1(b), the IF of

x1(t). The top-right panel is |Ux(a, b, r2)|, where the clear and sharp scale-time curve corresponds

to (b, µ
φ′2(b)

). These two pictures tell us that in two scale-time planes (sub-spaces of R3) (b, a, r1)

and (b, a, r2), b, a ∈ R, a > 0, there do exist two clear and sharp scale-time ridges which are desired

to estimate φ′1(b) and φ′2(b). Note that these two scale-time planes are well-separated in the 3-

dimensional space R3 since the distance between them is r1 − r2 = 128, which is large. Thus the

estimated chirp rates λ̂1(b) and λ̂2(b) should be easily obtained. In addition, if they are close to

r1 and r2 respectively, then we will have accurate estimates for φ′1(b) and φ′2(b). Here we use the

same parameters as those used in Fig.2, especially, σ is constant, namely σ = 0.023.

As we see from our theorems that for a given multicomponent signal, the key for the success

of our method to recover its modes is: (i) For each b, can we obtain â`(b) and λ̂`(b)? and (ii) if

yes for Question (i), then whether â`(b) and λ̂`(b) are close to µ/φ′`(b) and φ′′` (b)? The answer

to Question (ii) is guaranteed by the error bounds in our theorems. So the most important step

is whether we can obtain â`(b) and λ̂`(b). For this example of the two-component signal, the
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Figure 3: Some slices of adaptive TSC-R. Top row (from left to right): Two slices of |Ux(a, b, λ)| when

λ = r1, λ = r2; Middle row (from left to right): Two slices of |Ux(a, b, λ)| when b = 32
256 and b = 160

256 ;

Bottom row (from left to right): Two slices of |Ux(a, b, λ)| when a = 2
51
32 /256 and a = 1

64 .

question is for each b, two peaks of the function h(a, λ) := |Ux(a, b, λ)| with a ∈ (0,∞), λ ∈ R are

far apart enough from each other so that we can easily obtain the (local) maximum points (â1, λ̂1)

and (â2, λ̂2) in the scale-(chirp rate) plane? As examples, in the middle-left panel of Fig.3, we

show h(a, λ) with b = 32/256; while h(a, λ) with b = 160/256 is presented in the middle-right

panel of Fig.3. From these two panels, we observe that for either b = 32/256 or b = 160/256,

two peaks of h(a, λ) do be far apart and hence we should easily obtain (â1, λ̂1) and (â2, λ̂2). Also

observe from these two panels, the scale coordinates â1, â2 of the (â1, λ̂1) and (â2, λ̂2) change

for different b = 32/256 or b = 160/256; while chirp rate coordinates λ̂1, λ̂2 essentially stay the

same (around 70 and −60 respectively). This is due to the fact that φ′1(b) and φ′2(b) change with

time b, while φ′′1(b) and φ′′2(b) are independent of b. In the bottom row of Fig.3, we provide slices
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|Ux(a, b, λ)| with a = 2
51
32 /256 and a = 1/64. All these pictures demonstrate that the components

x1 and x2 are well-separated in the 3-dimensional space of adaptive TSC-R, although their IF

curves are crossover.
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Figure 4: Estimated IF of x1 (left panel), estimated IF of x2 (middle panel) and estimated chirp rates

(right panel) of two components by our method TSC-R.

Fig.4 shows the estimated IFs 1
â1(b)

, 1
â2(b)

and estimated chirp rates λ̂1(b) and λ̂2(b). Observe

the estimated IFs are very close to ground truth φ′1(b) and φ′2(b). The estimation errors of IFs and

chirp rates are mainly caused by the bound effect, which can also be improved with a time-varying

σ(b). �

Example 2. Let y(t) be a truncation of the synthetic micro-Doppler signal in Fig.1, given as,

y(t) = y1(t) + y2(t) + y3(t)

= cos
(

82πt+ 50 cos
(
πt+

π

2

))
+ cos(82πt) + cos

(
82πt+ 50 cos

(
πt− π

2

))
, (54)

where t ∈ [0, 1).

In the following experiment, y(t) is discretized with the sampling rate 256Hz, namely t =

0, 1
256 , . . . ,

255
256 . The IFs of y1, y2 and y3 are φ′1(t) = 41 − 25 sin(πt + π

2 ), φ′2(t) = 41 and φ′3(t) =

41 − 25 sin(πt − π
2 ), respectively. See the top-right panel in Fig.5 for IFs. The bottom row of

Fig.5 shows CWLT, SST and the second-order SST, where parameter σ = 0.023 and the number

of voice nv = 32. Observed that CWLT and SST are hardly to represent any of these three

sub-signals separated and reliably. Thus they cannot separate sub-signals. Actually, as far as

we known, there is no efficient algorithm available to recover the three components with the 256

points observation of y(t) above.

The top-left panel in Fig.6 shows the slice of the adaptive TSC-R |Uy(a, b, λ)| of y(b) when

b = 0.5, namely the specific time point when the IFs of the three components are crossover.

Observe even at this particular time b = 0.5, the three peaks of |Uy(a, 0.5, λ)| (marked by +) are

far apart in the scale-(chirp rate) plane. Thus we can easily obtain (â1, λ̂1), (â2, λ̂2) and (â3, λ̂3)
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Figure 5: Three-component signal y(t) given in (54) and its time-frequency representations with SST.

Top row (from left to right): Waveform of y(t), magnitude spectrum and ground truth IFs of y1(t), y2(t)

and y3(t); Bottom row (from left to right): CWLT of y(t), CWT-based SST and CWT-based second-order

SST.

for this b. Actually for other b, three peaks of |Uy(a, b, λ)| in the scale-(chirp rate) plane are also

far apart, and much clearer and sharper than the case here when b = 0.5. Hence, these three

components are well-separated in the 3-dimensional space of (a, b, λ). The estimated IF of each

component is given in the other panels of Fig.6. The result shows our method is able to estimate

the IF of each component correctly and precisely. We provide the result of component recovery in

Fig.7, which shows that each recovered waveform is very close to the corresponding mode, except

for near time b = 0.5, where the IFs of three components are crossover. The results show the

validity and correctness of the proposed method. Here we use a time-varying parameter σ(b),

which improves IF estimation and mode recovery performance a lot. How to select σ(b) will be

addressed in our future work. �

Finally, let us consider the effect of our computational scheme for signal data with additive

noise, by adding a noise n(t) process to signal y(t) to have a synthetic signal z(t) contaminated

by noise n(t):

z(t) = y(t) + n(t).

Here we let n(t) be a zero-mean Gaussian noise. Table 1 shows the IF estimate and mode recovery

errors with different signal-to-noise ratios (SNRs), where the SNR is defined by 10 log10
||y||2
||n||2 . The
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Figure 6: Slice of adaptive TSC-R |Uy(a, b, λ)| of y(t) when b = 0.5 (Top-left panel) and estimated IF

(dotted lines) of three components (Top-right and bottom panels).

errors in Table 1 are defined by

Ef =
||f − f̃ ||2
||f ||2

,

where f̃ is the estimation of f . Ef is also called the normalized mean square error. Observe that

for SNR≥ 10, IF estimation is stable and mode recovery errors are reasonable small.
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