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Abstract

Magnetic Resonance Imaging (MRI) is one of the most important techniques in medical imaging and
Rician noise is a common noise that naturally appears in MRI images. Low rank matrix approximation
approaches have been widely used in image processing such as image denoising, which takes advantage
of the idea of non-local self-similarity between patches in a natural image. The weighted nuclear norm
minimization method as a low rank matrix approximation approach has shown to be an effective approach
for image denoising. Inspired by this, we propose in this paper a maximum a posteriori (MAP) model with
the weighted nuclear norm as a regularization constraint to remove Rician noise. The MAP data fidelity
term has a Lipschitz continuous gradient and the weighted nuclear norm can be efficiently minimized.
We propose an iterative weighted nuclear norm minimization algorithm (IWNNM) to solve the proposed
non-convex model and analyze the convergence of our algorithm. The computational results show that
our proposed method is promising in restoring images corrupted with Rician noise.

Key Words: Rician noise removal, low rank, weighted nuclear norm.

1 Introduction

As Magnetic Resonance Imaging (MRI) plays a more and more important role in medical imaging, Rician
noise that frequently presents in MRI images attracts more and more attention. In this paper, we mainly
propose a new model to efficiently remove Rician noise. Mathematically, the image y degraded by Rician
noise can be given by

y =
√

(x+ η1)2 + η2
2 , (1)

where x is the original image, η1, η2 ∼ N(0, σ2) and σ2 is the noise variance.
In recent years, there have been many methods proposed for denoising images contaminated by Rician

noise, such as filtering methods, wavelet methods, convex optimization methods and non-convex optimization
methods. Based on the anisotropic diffusion process that proposed by Perona and Malik [20], Gerig et al.
[11] presented the nonlinear anisotropic filtering method for Rician noise removal with the edge information
preserved, but some other details may be lost. Studying the non-local means algorithm, Prima et al. [21]
proposed a non-local means variants method for denoising the diffusion-weighted and diffusion tensor MRI
images. And Manjón et al. [17] also improved a new filter (we call it NLM model) which is based on the
Non-Local Means to reduce the noise in MRI images. Inspired by it, Wiest-Daessle et al. [25] adapted the
non-local means filter to data corrupted by Rician noise, and presented non-local means filtering method for
better respecting the image details and structures. In [19], Nowak came up with wavelet domain filtering
method which adapts to variations in both the signal and the noise. And in [26], Wood and Johnson proposed
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wavelet packet denoising method for Rician noise removal at low signal-to-noise ratio (SNR). Wavelet methods
have been efficient to remove Rician noise with the image details and edge preserved, but the problem that
small dots influence image analysis process remains unresolved. In the meantime, the maximum a posteriori
(MAP) estimation model was proposed, which is considered from the feature of the noise-free image. The
MAP model with total variation (TV) regularization constraint is as follows

min
x

1

2σ2

∫
Ω

x2dt−
∫

Ω

logB0

(xy
σ2

)
dt+ β

∫
Ω

|Dx|dt, (2)

where the first two terms represent the data fidelity term, the last term represents the TV regularization
term. Here, B0 is the modified Bessel function of the first kind with order zero [3] defined by

B0(x) =
1

π

∫ π

0

ex cos θdθ. (3)

One challenge with problem (2) is that the objective function is a non-convex function, which leads to a
difficult problem to solve. In view of the MAP model, GTV model [12] was put forward by Getreuer et al.,
which is a convex approximation of the MAP model and can be easily solved, but the fidelity item of GTV
model is a complicated piecewise function. Recently, Chen and Zeng [7] (we call it CZ model) proposed a
new convex model which added a statistical property of Ricain noise into the MAP model, leading to a new
strictly convex model under mild condition that can be easily solved by primal-dual algorithm. Very recently,
based on the CZ model, Chen et al. [8] put forward a new model (called the C-KSVD model below) which
adds sparse representation and dictionary learning terms into the CZ model.

In the last decade, many non-local based methods have been proposed for image denoising. They exploit
the redundancy of non-local similar patches and achieve great denoising results. One of the well-known
non-local based methods is the block matching 3-D (BM3D) algorithm [9]. To address Rician noise, Foi [10]
developed forward and inverse variance-stabilizing transformations (VSTs) and VSTs can work with BM3D
to efficiently remove Rician noise.

Lately, low rank matrix approximation approaches (LRMA) have shown great performance in image
denoising. For example, see [4, 5, 22, 23, 13, 14]. The idea behind this is that the matrix formed by non-local
similar patches in a natural image is of low rank. The LRMA method using nuclear norm penalization is
one of the most commonly used methods. However, this method, like many other methods, ignores some
prior knowledge of singular values, and hence it is not flexible to deal with many real problems. To improve
the flexibility of nuclear norm minimization method, Gu et al. [13, 14] proposed the weighted nuclear norm
minimization method for image denoising. Also, Nie et al. [18] replaced the nuclear norm with the Schatten-
p norm to regularize the low rank problem. When p → 0, the Schatten-0 norm is equivalent to the rank of
matrix, and when p → 1, the Schatten-1 norm is equivalent to the nuclear norm. Inspired by the weighted
nuclear norm minimization method, in this paper, we incorporate the weighted nuclear norm into the MAP
model for Rician noise removal.

The following is the outline of our paper. In section 2, we first briefly introduce low rank matrix ap-
proximation problems including the weighted nuclear norm minimization. After that we propose our model
by replacing the total variation regularization constraint with the weighted nuclear norm as to the MAP
model. Then we propose an iterative weighted nuclear norm minimization algorithm (IWNNM) for solving
our proposed model. In section 3, we demonstrate with numerical results that our model outperforms other
methods with application to Rician noise removal. In the end, we draw our conclusion in section 4.

2 MAP model with weighted nuclear norm penalization

In this section, we first give a review of low rank matrix approximation problems. Then we propose a MAP
model with the weighted nuclear norm penalization and an iterative weighted nuclear norm minimization
algorithm (IWNNM) to solve the proposed model.
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2.1 Low rank matrix approximation

Rank minimization problem can be generally formulated as

min
X

rank(X) (4)

s.t. X ∈ C,

where rank(·) is the rank of the given matrix, X ∈ RM×N is the unknown low rank matrix, and C is a convex
set. The problem (4) is NP-hard and non-convex, so it is very difficult to solve.

In low rank matrix approximation problems, the rank function is frequently replaced by its tightest convex
surrogate, which is the nuclear norm defined as the sum of its singular values, i.e.,

‖X‖∗ =
∑̀
i=1

δi(X),

where δi(X) is the i-th singular value of X and ` = min{M,N}. We assume that the singular values of X
are in a non-increasing order, namely, δ1(X) ≥ δ2(X) ≥ · · · ≥ δr(X) > δr+1(X) = · · · = δ`(X) = 0, where
r = rank(X).

Candès and Recht [6] proved that the rank minimization problem for matrix completion can be con-
verted into a nuclear norm minimization problem under certain conditions. An unconstrained nuclear norm
minimization problem is as follows

X̂ = argmin
X

1

2
‖Y −X‖2F + λ‖X‖∗, (5)

where ‖X‖F =
√∑

i,j

|Xi,j |2 is the Frobenius norm of X, and λ is a positive constant.

Cai et al. [5] showed that problem (5) can be solved by a soft-thresholding operation on the singular
values of the observation matrix Y , and has a closed form solution as follows

X̂ = USλ(Σ)V T ,

where Y = UΣV T is the singular value decomposition (SVD) of Y , and Sλ(Σ) is the soft-thresholding function
on diagonal matrix Σ with parameter λ. That is, for diagonal matrix Σ with diagonal element Σii, Sλ(Σ) is
a diagonal matrix with the (i, i)-entry Sλ(Σ)ii given by

Sλ(Σ)ii = max(Σii − λ, 0).

Although problem (5) can be explicitly computed and has been widely used for low rank matrix approx-
imation problems, the nuclear norm ignored some prior knowledge of the singular values by shrinking each
singular value with the same parameter λ, and it also cannot be flexibly applied to many real problems. To
overcome this drawback, Gu et al. [13] introduced the weighted nuclear norm

‖X‖ω,∗ =
∑̀
i=1

ωiδi(X), ω = [ω1, · · · , ω`], ωi ≥ 0,

and proposed the following weighted nuclear norm minimization method for image denoising

X̂ = argmin
X

1

2
‖Y −X‖2F + ‖X‖ω,∗. (6)

For natural images, we have the general prior knowledge that the larger singular values of X are more
important than the smaller ones since they represent the energy of the major components of X. Thus, to
shrink less on the larger singular values, it is natural to assume 0 < ω1 ≤ ω2 ≤ · · · ≤ ω`. And the solution of
problem (6) with such ω can be computed using the following result from Corollary 1 in [13] and a special
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case of Theorem 3.1 in [16].

Theorem 2.1. [13, 16] If ω = [ω1, · · · , ω`] satisfies 0 < ω1 ≤ ω2 ≤ · · · ≤ ω`, then problem (6) has the global
optimal solution which is given as follows:

X̂ = USω(Σ)V T ,

where Y = UΣV T is the SVD of Y , and Sω(Σ) is the generalized soft-thresholding operator of the diagonal
matrix Σ with respect to ω with the (i, i)-entry of diagonal matrix Sω(Σ) given by

Sω(Σ)ii = max (Σii − ωi, 0) .

2.2 Our proposed model

To remove Rician noise, we take advantage of the non-local self-similarity of natural images and apply
a low rank matrix approximation (LRMA) method to image patches. An image y ∈ Rd is divided into
overlapped patches of size

√
m×

√
m denoted by the vector yi ∈ Rm. Then for a local patch yj in image y,

we search for a non-local similar patch in a relatively large area around it by methods such as block matching
[9] that uses the Euclidean distance as a block similarity measure. By stacking those non-local similar patches
into a matrix, denoted by Yj ∈ Rm×n, we have

Yj = Xj +Nj ,

where Xj and Nj are the original clean patch matrix and the corresponding corrupted matrix, respectively.
Intuitively, Xj should be a low rank matrix, and LRMA methods can be used to estimate Xj from Yj . The
entire image can be reconstructed by aggregating all estimated patches Yj .

Inspired by the facts that the MAP-based models are particularly efficient for Rician noise removal and
that the low rank approximation method provides a powerful tool for image denoising in general, we propose
in this paper a new MAP model with the weighted nuclear norm penalization for Rician noise removal and
apply the proposed model to estimate Xj from Yj as follows

X̂j = argmin
Xj

1

2σ2
‖Xj‖2F −

〈
logB0

(
XjYj
σ2

)
,1

〉
+ ‖Xj‖ωj ,∗, (7)

where the inner product on the right-hand side of (7) denotes
∑
i,k logB0

(
(Xj)ik(Yj)ik/σ

2
)
, and ωj is a

given weight vector with 0 < (ωj)1 ≤ (ωj)2 ≤ · · · ≤ (ωj)`. Here and below, we use (ωj)i to denote the i-th
component of a vector ωj .

To further analyze model (7), we rewrite the proposed model as follows

min
Xj

Fj(Xj) := fj(Xj) + Ψ(Xj), (8)

where the MAP-based data fidelity term is

fj(Xj) =
1

2σ2
‖Xj‖2F − 〈logB0

(
XjYj
σ2

)
,1〉, (9)

and the weighted nuclear norm penalization is

Ψ(Xj) = ψ ◦ δ(Xj), (10)

with δ(Xj) = (δ1(X), δ2(X), · · · , δ`(Xj)), ψ(x) =
∑̀
i=1

ωiψi(x), ` = min{m,n}, and ψi(x) is the i-th largest

element of {|x1|, |x2|, · · · , |x`|}, for all x ∈ R`.
Model (8) is a non-convex optimization problem, which may have no solution or is challenging to solve in

general. Fortunately, the function fj is lower bounded, which leads to the existence of minimizers. Also, the
function fj is smooth with a Lipschitz-continuous gradient, so efficient algorithms can be developed to solve
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the proposed model. To proceed, we verify the lower boundedness and smoothness of the function fj in the
following lemma and proposition.

Lemma 2.2. Suppose X,Y ∈ Rm×n, Y is bounded on Ω. Then

f(X) =
1

2σ2
‖X‖2F −

〈
logB0

(
XY

σ2

)
,1
〉

(11)

has a lower bound for all X ∈ Rm×n, that is, infX∈Rm×n f(X) > −∞.

Proof. First, we consider g(x, y) = 1
2σ2x

2 − logB0

(
xy
σ2

)
, x, y ∈ R. Since

B0(x) =
1

π

∫ π

0

ex cos θdθ ≤ 1

π

∫ π

0

e|x|dθ ≤ e|x|,

we have

g(x, y) ≥ 1

2σ2
x2 − log

(
e
|xy|
σ2

)
=

1

2σ2
x2 − |xy|

σ2
≥ − 1

2σ2
y2,

for any x ∈ R. Hence for any X ∈ Rm×n, we have

f(X) =
1

2σ2
‖X‖2F −

〈
logB0

(
XY

σ2

)
,1

〉
=

m∑
i=1

n∑
j=1

(
1

2σ2
x2
ij − logB0

(xijyij
σ2

))

=

m∑
i=1

n∑
j=1

g (xij , yij)

≥ − 1

2σ2

m∑
i=1

n∑
j=1

y2
ij .

This proves infX∈Rm×n f(X) > −∞.

Clearly, f(X) defined by (11) is smooth with

∂f(X)

∂xij
=

1

σ2
xij −

yij
σ2

B′0(
xijyij
σ2 )

B0(
xijyij
σ2 )

.

Next, we show that it has a Lipschitz-continuous gradient in Rm×n.

Proposition 2.3. Suppose X,Y ∈ Rm×n, Y is bounded on Ω. Then f(X) defined by (11) has Lipschitz-
continuous gradient in Rm×n with Lipschitz constant Lf = 1

σ2 .

Proof. Denote h(x) = logB0(x), x ∈ R. Then

h′′(x) =
B′′0 (x)B0(x)− (B′0(x))

2

B2
0(x)

.

By the definition of B0(x) in (3), we have

B′0(x) =
1

π

∫ π

0

cos θex cos θdθ and B′′0 (x) =
1

π

∫ π

0

cos2 θex cos θdθ.
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By Cauchy-Schwarz inequality, we have

(B′0(x))
2

=

(
1

π

∫ π

0

cos θex cos θdθ

)2

≤ 1

π

∫ π

0

cos2 θex cos θdθ · 1

π

∫ π

0

ex cos θdθ

=B′′0 (x)B0(x).

This shows that h′′(x) ≥ 0. Clearly, ∂2f(X)
∂xij∂xi′j′

= 0 if (i, j) 6= (i′, j′). In addition, we have

∂2f(X)

∂x2
ij

=
1

σ2
− ∂2

∂x2
ij

(h (xijyij)) =
1

σ2
− h′′ (xijyij) y2

ij ≤
1

σ2
.

Thus,

‖∇2f(X)‖F ≤
1

σ2
.

With Lf = 1
σ2 , we have

‖∇f(X1)−∇f(X2)‖F ≤ Lf‖X1 −X2‖F , ∀X1, X2 ∈ Rm×n.

This proves that ∇f(X) is of Lf−Lipschitz-continuous, as desired.

2.3 Stationary points of the proposed model

In model (8), the function fj(Xj) has a Lipschitz-continuous gradient, so we only need to consider Ψ(Xj)
for characterizing the stationary points of the proposed model. Before that, we give some notations. The
matrices that we consider are in Rm×n and ` is the smaller number between m and n as stated above. For a
vector a = (a1, · · · a`) ∈ R`, we let Diag(a) denote the diagonal matrix with ai’s as its main diagonal entries:

Diag(a) :=

 a1

. . .

a`

 .
Throughout this paper, unless it is stated otherwise, a singular value decomposition (SVD) of a matrix
X ∈ Rm×n means X = UΣV T , where U ∈ Rm×`,V ∈ Rn×` with UTU = V TV = I, and Σ is the
diagonal matrix with ordered singular values δi(X) of X as its main diagonal entries. That is, with
δ(X) := (δ1(X), · · · , δ`(X)), we have Σ = Diag(δ(X)). We also write the matrices U , V , Σ resulted from the
SVD of X as

[U,Σ, V ] = SV D(X).

The pair (U, V ) of matrices with orthonormal columns for SVD of X is not unique. We let M(X) denote
the set of all such pairs (U, V ):

M(X) :=
{

(U, V ) ∈ Rm×` × Rn×` : UTU = V TV = I,X = U Diag(δ(X))V T
}
.

Now, we are ready to characterize the Clarke subdifferential of the function Ψ defined by (10) and the
stationary points of model (8). First, according to Theorem 3.7 of [15], the Clarke subdifferential of Ψ at Xj

is given by
∂Ψ(Xj) = {Uj Diag(d)V Tj : d ∈ ∂ψ(δ(Xj)), (Uj , Vj) ∈M(Xj)},

where ∂ψ is the Clarke subdifferential of ψ.
We say X∗j ∈ Rm×n is a first-order stationary point of problem (8) if

0 ∈
{
UTj ∇fj(X∗j )Vj + Diag(d∗) : (Uj , Vj) ∈M(X∗j ), d∗ ∈ ∂ψ(δ(X∗j ))

}
. (12)

6



It is shown in the next theorem that a local minimizer of problem (8) is a first-order stationary point.

Theorem 2.4. Suppose that X∗j is a local minimizer of problem (8). Then X∗j is a first-order stationary
point of problem (8), that is, (12) holds at X∗j .

Proof. Let X∗j = Ūj Diag(δ(X∗j ))V̄ Tj for some (Ūj , V̄j) ∈ M(X∗j ). By the assumption that X∗j is a local
minimizer of problem (8), one can see that 0 is a local minimizer of the problem

min
Z∈R`×`

fj(X
∗
j + ŪjZV̄

T
j ) + Ψ(X∗j + ŪjZV̄

T
j ).

This, together with the fact

Ψ
(
X∗j + ŪjZV̄

T
j

)
= Ψ

(
Ūj Diag

(
δ
(
X∗j
))
V̄ Tj + ŪjZV̄

T
j

)
= Ψ

(
Diag

(
δ
(
X∗j
))

+ Z
)
,

implies that 0 is a local minimizer of the problem

min
Z∈R`×`

fj(X
∗
j + ŪjZV̄

T
j ) + Ψ(Diag(δ(X∗j )) + Z)︸ ︷︷ ︸

S(Z)
. (13)

By Theorem 3.7 of [15] and the definition of M(·), the Clarke subdifferential of S(Z) at Z = 0 is given by

∂S(0) = {ŪTj ∇fj(X∗j )V̄j + Diag(d∗) : d∗ ∈ ∂ψ(δ(X∗j ))}.

Since 0 is a local minimizer of problem (13), the first-order optimality condition of (13) yields 0 ∈ ∂S(0).
Hence, there exists some d∗ ∈ ∂ψ(δ(X∗j )) such that

ŪTj ∇fj(X∗j )V̄j + Diag(d∗) = 0, (14)

which implies that (12) holds at X∗j with Uj = Ūj , Vj = V̄j .

2.4 Iterative weighted nuclear norm minimization algorithm

In this section, we propose an iterative weighted nuclear norm minimization algorithm (IWNNM), which
is inspired by the iterative reweighted singular value minimization (IRSVM) algorithm introduced in [16].
IRSVM aims to solve minimization problems of the form as model (8) under the assumption that fj has a
Lipschitz-continuous gradient and Ψ is exactly the Schatten-p quasi-norm. In our proposed model, Ψ is the
weighted nuclear norm with weights being fixed. In fact, IRSVM algorithm together with its acceleration
strategy works well even with our choice of Ψ. A key step of the IWNNM method is to solve the following
problem:

Xk+1
j = argmin

Xj∈Rm×n
〈∇fj(Xk

j ), Xj −Xk
j 〉+

Lkj
2
‖Xj −Xk

j ‖2F + ‖Xj‖ωj ,∗, (15)

where ∇fj(Xj) is the gradient of function fj(Xj), L
k
j is a positive parameter, Xk

j is a matrix with size m×n,
and ωj with 0 ≤ (ωj)1 ≤ · · · ≤ (ωj)` is the given weight vector.

We observe that problem (15) is equivalent to

Xk+1
j = argmin

Xj∈Rm×n

Lkj
2

∥∥∥∥∥Xj −

(
Xk
j −
∇fj(Xk

j )

Lkj

)∥∥∥∥∥
2

F

+ ‖Xj‖ωj ,∗. (16)

Let Zkj = Xk
j −∇fj

(
Xk
j

)
/Lkj , and [U,Σ, V ] = SV D

(
Zkj
)
. Then, according to Theorem 2.1, the minimizer

of (16) is given by
Xk+1
j = USωj/Lkj (Σ)V T .

Next we provide our algorithm in Algorithm 1.
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Algorithm 1: Iterative Weighted Nuclear Norm Minimization Algorithm

Input: Degraded image patch group Yj , weight vector ωj with 0 < (ωj)1 ≤ · · · ≤ (ωj)`, 0 < Lmin <
Lmax, τ > 1, c > 0 and integer N0 ≥ 0.

Initialization: X
(0)
j = Yj , k = 0.

while not converge do

(a) Choose Lkj ∈ [Lmin, Lmax].

(b) Zkj = Xk
j −∇fj

(
Xk
j

)
/Lkj .

(c) [U,Σ, V ] = SV D(Zkj ).

(d) Xk+1
j = USωj/Lkj (Σ)V T .

(e) If

Fj
(
Xk+1
j

)
≤ max

[k−N0]+≤l≤k
Fj
(
X l
j

)
− c

2

∥∥Xk+1
j −Xk

j

∥∥2

F
(17)

is satisfied, then set L̄kj = Lkj , k ← k + 1 and go to the next while loop iteration.

(f) Set Lkj ← τLkj and go to step (b).

end while

Output: X̂j = X∞j .

Remark 2.5. Based on the Proposition 2.3 and [16], we can obtain that for each k ≥ 0, the inner termination
criterion (17) is satisfied after at most

max

{⌊
log(Lf + c)− log(Lmin)

log(τ)
+ 1

⌋
, 1

}
inner iterations, where Lf = 1

σ2 is the Lipschitz constant of ∇f given in Proposition 2.3.

Theorem 2.6. Let {Xk
j }k∈N be a sequence generated by Algorithm 1. Then the following statements hold:

(i) The sequence {Xk
j }k∈N is bounded;

(ii) Let X∗j be any accumulation point of {Xk
j }k∈N. Then X∗j is a first-order stationary point of problem

(8), i.e., (12) holds at X∗j .

Proof. (i) Using (17) and an inductive argument, we can conclude that Fj(X
k
j ) ≤ Fj(X0

j ) for all k ∈ N. This
together with fj = infXj∈Rm×n fj(Xj), (ωj)i > 0 for 1 ≤ i ≤ `, and the definition of Fj implies that

fj + ‖Xk
j ‖ωj ,∗ ≤ f(Xk

j ) + ‖Xk
j ‖ωj ,∗ = Fj(X

k
j ) ≤ Fj(X0

j ).

It follows that (ωj)1δ1(Xk
j ) ≤ ‖Xk

j ‖ωj ,∗ ≤ Fj(X0
j )− fj and hence {Xk

j }k∈N is bounded.

(ii) From the proof of statement of (i) , we know that{
Xk
j

}
k∈N ⊂ Ωj =

{
Xj ∈ Rm×n : ‖Xj‖ω,∗ ≤ Fj(X0

j )− fj
}
.

Observe that Fj(Xj), viewed as a function of Xj , is uniformly continuous in Ωj . Using this fact, (17), and a
similar argument as used in the proof of Lemma 4 in [27], one can show that ‖Xk+1

j −Xk
j ‖F → 0 as k →∞.

By the updating rule of Algorithm 1 and Remark 2.5, we can observe that {L̄kj }k∈N is bounded.

Let Z̄kj = Xk
j −∇fj(Xk

j )/L̄kj , and let Ukj Diag(dkj )(V kj )T be the SVD of Z̄kj , where Ukj ∈ Rm×`, V kj ∈ Rn×`

and dkj consists of all singular values of Z̄kj arranged in a descending order. It then follows from Algorithm 1
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that Xk+1
j is the solution of (16) with Lkj = L̄kj given by

Xk+1
j = Ukj Diag(sk+1

j )(V kj )T , (18)

where
sk+1
j = max(dkj − ωj/L̄kj , 0). (19)

By the properties of dkj and ωj , we see that (dkj )1 ≥ · · · ≥ (dkj )` and (ωj)1 ≤ · · · ≤ (ωj)`. These together with

(19) imply that (sk+1
j )1 ≥ · · · ≥ (sk+1

j )` ≥ 0. This relation and (18) yield

(sk+1
j )i = δi(X

k+1
j ), ∀i = 1, · · · , `. (20)

Since X∗j is an accumulation point of {Xk
j }k∈N, there exists a subsequence {Xk

j }k∈K such that K ⊂ N
and {Xk

j }k∈K → X∗j . Due to ‖Xk+1
j − Xk

j ‖F → 0, we also have {Xk+1
j }k∈K → X∗j . This along with (20)

leads to {
(sk+1
j )i

}
k∈K → δi(X

∗
j ), ∀i = 1, · · · , `. (21)

Let r = rank
(
X∗j
)
. Then one can see from (21) that there exists some k0 > 0 such that (sk+1

j )i > 0 for all
1 ≤ i ≤ r and k ∈ K0 = {j ∈ K : j > k0}. This and (19) lead to that

(sk+1
j )i = (dkj )i − (ωj)i/L̄

k
j , ∀1 ≤ i ≤ r, k ∈ K0.

Hence,
L̄kj ((sk+1

j )i − (dkj )i) + (ωj)i = 0, ∀1 ≤ i ≤ r, k ∈ K0,

which implies that for all k ∈ K0,

L̄kj

r∑
i=1

((sk+1
j )i − (dkj )i)(U

k
j )i((V

k
j )i)

T +

r∑
i=1

(ωj)i(U
k
j )i((V

k
j )i)

T = 0. (22)

In the first term on the left hand side of (22), using (18) and Z̄kj = Ukj Diag(dkj )(V kj )T , one can see that

r∑
i=1

((sk+1
j )i − (dkj )i)(U

k
j )i((V

k
j )i)

T = Xk+1
j − Z̄kj −

∑̀
i=r+1

((sj)
k+1
i − (dj)

k
i )(Ukj )i((V

k
j )i)

T ,

which together with Z̄kj = Xk
j −∇fj(Xk

j )/L̄k yields

r∑
i=1

((sk+1
j )i − (dkj )i)(U

k
j )i((Vj)

k
i )T = Xk+1

j −Xk
j +
∇fj(Xk

j )

L̄k
−
∑̀
i=r+1

((sk+1
j )i − dki )(Ukj )i((V

k
j )i)

T .

Substituting it into (22), we can get that for all k ∈ K0,

L̄kj (Xk+1
j −Xk

j ) +∇fj(Xk
j )− L̄kj

∑̀
i=r+1

((sk+1
j )i − (dkj )i)(U

k
j )i((V

k
j )i)

T +

r∑
i=1

(ωj)i(U
k
j )i((V

k
j )i)

T = 0. (23)

Let Ūkj = [(Ukj )1 · · · (Ukj )r] and V̄ kj = [(V kj )1 · · · (V kj )r]. Upon pre- and post-multiplying (23) by (Ūkj )T and

V̄ kj , and using (Ūkj )T Ūkj = (V̄ kj )T V̄ kj = I, we can see that for all k ∈ K0,

L̄kj (Ūkj )T (Xk+1
j −Xk

j )V̄ kj + (Ūkj )T∇fj(Xk
j )V̄ kj + Diag((ωj)1, · · · , (ωj)r) = 0. (24)

Notice that {Ūkj }k∈K and {V̄ kj }k∈K are bounded. Considering a convergent subsequence if necessary, assume

without loss of generality that {Ūkj }k∈K → Ū∗j and {V̄ kj }k∈K → V̄ ∗j . Using the boundedness of {L̄kj }k∈K,
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‖Xk+1
j −Xk

j ‖F → 0, {Xk
j }k∈K → X∗j , and taking limits on both sides of (24) as k ∈ K0 →∞, we have

(Ū∗j )T∇fj(X∗j )V̄ ∗j + Diag((ωj)1, · · · , (ωj)r) = 0. (25)

Taking the limits as k ∈ K0 → ∞ to (Ūkj )T Ūkj = (V̄ kj )T V̄ kj = I, we have (Ū∗j )T Ū∗j = (V̄ ∗j )T V̄ ∗j = I.

Using (18), (21), r = rank(X∗j ), {Xk+1
j }k∈K → X∗j , {Ūkj }k∈K → Ū∗j and {V̄ kj }k∈K → V̄ ∗j , one can get that

X∗j = Ū∗j Diag(δ(X∗j ))(V̄ ∗j )T . Hence, (Ū∗j , V̄
∗
j ) ∈ M(X∗j ). Moreover, {ψ(δ(Xk+1

j ))}k∈K → ψ(δ(X∗j )) and

ωj ∈ ∂ψ(δ(Xk+1
j )) imply that ωj ∈ ∂ψ(δ(X∗j )). Using those relations and (25), we can conclude that (12)

holds at X∗j with Uj = Ū∗j , Vj = V̄ ∗j , d∗j = ωj . This proves Theorem 2.6.

The convergence result in Theorem 2.6 still holds for a simplified version of Algorithm 1, in which Lkj is

set to be the Lipschitz constant Lf = 1
σ2 and step (a), (e) and (f) are removed. However, Algorithm 1 with

an accelerated scheme can speed up the convergence of the algorithm, because it allows to choose Lkj that is
smaller than Lf .

2.5 Rician noise removal

The proposed method presented in Algorithm 1 is used to estimate the clean patch matrix X̂j from the
patch matrix Yj by solving the MAP model with the weighted nuclear norm penalization. By aggregating all

estimated patches X̂j , the entire image can be reconstructed. The overall algorithm for Rician noise removal
is presented in Algorithm 2.

Algorithm 2: Rician Noise Removal

Input: Degraded image y and parameter γ ∈ (0, 1).

Initialization: x(0) = y, y(0) = y.

for k = 1 : K

Iterative regularization y(k) = x(k−1) + γ
(
y − x(k−1)

)
.

for each patch yj in y(k)

Find similar patch group Yj .

Estimate weight vector ωj using (26).

Estimate X̂j from Yj via model (8) using Algorithm 1.

end for

Aggregate X̂j to form the image xk+1.

end for

Output: x̂ = x(K+1).

The choice of the weight vector ωj can be estimated by

(ωj)i =
C̃

δi(X̃∗j ) + ε
, (26)

where C̃ and ε are positive constants and X̃∗j is a low rank solution the approximates the given noisy patch

group Yj . In particular, we compute X̃∗j explicitly using the following lemma with Y = Yj and X∗ = X̃∗j .
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Lemma 2.7. [13] Let Y = UΣV T be the SVD of Y , where Σ =

[
Diag(δ(Y ))

0

]
. Suppose that the regularization

parameter C is positive and the positive value ε is small enough to make the inequality ε < min(
√
C, C

δ1(Y ) )

hold. Then the sequence {Xk} generated by

Xk+1 = argmin
X

1

2
‖Y −X‖F + ‖X‖ωk,∗

with the reweighted formula ωki = C
δi(Xk)+ε

and initial estimation X0 = Y , converges to the closed-form

solution: X∗ = U Σ̃V T , where

Σ̃ =

[
Diag(δ(X∗))

0

]
,

and

δi(X
∗) =

{
0, if di < 0;
ci+
√
di

2 , if di ≥ 0

where
ci = δi(Y )− ε and di = (δi(Y ) + ε)2 − 4C.

3 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the effectiveness of our proposed algo-
rithm for Rician noise removal. We compare our method with the GTV model [12], the CZ model [7], the
NLM model [17], the C-KSVD model [8], the WNNM model [14] and the VST-BM3D method [9, 10]. All
the experiments are performed under Windows 10 and MATLAB R2017a running on a PC equipped with
2.90GHz CPU and 4G RAM.

(a) Lena (b) Barbara (c) Monarch (d) Bee (e) Starfish (f) Peppers (g) Camera (h) Boat

(i) Brain1 (j) Mouse (k) Brain2 (l) Spine (m) Brain3 (n) Ankle (o) Knee (p) Shoulder

Figure 1: Original images.

We test all the image denoising methods on both standard images and medical images. Standard test
images are shown in Figure 1 (a)-(h). “Lena” and “Barbara” are of size 512×512, and other images are of size
256×256. Medical test images are shown in Figure 1 (i)-(p). “Brain1” is of size 181×217, “Mouse intestine”
(Briefly, we call it “Mouse” throughout this paper) is of size 248× 254, “Brain2” is of size 174× 238, “Spine”
is of size 256×256, “Brain3” and “Ankle” are of size 250×250, “Knee” is of size 262×250 and “Shoulder” is
of size 247×230. The test images are degraded by Rician noise with σ = 10, 20, 30, respectively. We evaluate
the quality of recovered images obtained from various denoising algorithms by using the peal-signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) [24]. The PSNR is defined by:

PSNR(x, x̂) = 10 log10

( 2552

‖x− x̂‖22

)
,

11



where x and x̂ denote the original image and the recovered image respectively. And the SSIM is defined by:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c1)
,

where µx (resp., µx̂) represents the mean of x (resp., x̂), σ2
x (resp., σ2

x̂) denotes the variance of x (resp., x̂),
σ2
xx̂ is the covariance of x and x̂, c1 and c2 are constants. The larger the values of PSNR and SSIM are, the

better the recovered image is.
Firstly, we have a brief overview of the models with which we compare our method.
The GTV model is given by

min
x
β

∫
Ω

Gσ(x, y) +

∫
Ω

|Dx|dt, (27)

where

Gσ(x, y) =

{
Hσ(x) if x ≥ cσ,
Hσ(cσ) +H ′σ(cσ)(x− cσ) if x ≤ cσ,

H ′σ(x) =
x

σ2
− y

σ2
B
(xy
σ2

)
,

B(s) ≡ B1(s)

B0(s)
≈ s3 + 0.950037s2 + 2.38944s

s3 + 1.48937s2 + 2.57541s+ 4.65314
,

where c = 0.8426, B1 is the modified Bessel function of the first kind with order one [3]. Because it is an
approximate equality, we cannot write down the final explicit restoration model.

The CZ model is given by

min
x∈S(Ω)

1

2σ2

∫
Ω

x2dt−
∫

Ω

logB0

(xy
σ2

)
dt+

1

σ

∫
Ω

(
√
x−√y)2dt+ β

∫
Ω

|Dx|dt, (28)

where S(Ω) := {ν ∈ BV (Ω) : 0 ≤ ν ≤ 255}. And since BV (Ω) [1, 2] is the subspace of function x ∈ L1(Ω),
the following quantity is finite:

J(x) = sup

{∫
Ω

x(t) div(ξ(t))dt | ξ ∈ C∞0 (Ω,R2), ‖ ξ ‖L∞(Ω,R2)≤ 1

}
.

Before introducing the NLM model, we have a description of the sign that will be used. For a user-
defined radius Rsim, we define a square neighborhood window centered around pixel i as Ni. And a Gaussian
weighted Euclidean distance of all the pixels of each neighborhood is defined as:

L(m,n) = Gρ‖y(Nm)− y(Nn)‖2Rsim ,

where Gρ is a normalized Gaussian weighting function with zero mean and ρ standard deviation (usually set
to be 1). By giving more weight to pixels near the center, we can through Gρ penalize pixels far from the
center of the neighborhood window. And based on the similarity between the neighborhoods Nm and Nn of
pixels m and n, we calculate the similarity f(m,n) as

f(m,n) =
1

C(m)
e−

L(m,n)

h2 ,

where C(m) =
∑
n e
−L(m,n)

h2 is the normalizing constant and h is a exponential decay control parameter.
Then given an image y, using the NLM method we can calculated the filtered value at a point m by the

following formula:

NLM(y(m)) =
∑
∀n∈y

f(m,n)y(n),

with 0 ≤ f(m,n) ≤ 1,
∑
∀n∈y

f(m,n) = 1.
(29)
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Table 1: Settings of parameter β for GTV and CZ testing algorithms

Images
σ = 10 σ = 20 σ = 30

GTV CZ GTV CZ GTV CZ
Lena, Monarch 15 0.06 25 0.05 35 0.04

Other standard images 25 0.06 35 0.05 45 0.04
Mouse 15 0.06 25 0.05 35 0.04

Other medical images 25 0.055 35 0.045 45 0.035

The following is the C-KSVD model:

min
x,α

1

2σ2
‖x‖22 − logB0

(xy
σ2

)
+

1

σ
‖
√
x−√y‖22 + µ‖α‖0, s.t. x = Dα (30)

where µ is a parameter, ‖·‖0 and ‖·‖2 represent `0-norm and `2-norm respectively, and D is an over-complete
dictionary matrix.

Secondly, we give the parameter settings for all the methods. For our proposed method, we set in
Algorithm 1 that Lmin = 0.1/σ2, Lmax = 1/σ2, τ = 2, c = 10−4 and N0 = 3; as for block matching, we set
the size of the patch to be 6× 6 and the number of similar patches n = 70 for σ = 10, 20, 30; and we set in
Algorithm 2 that γ = 0.3, C = 3.2

√
n, C̃ = 5.6

√
n and ε = 10−16. Moreover, for GTV model and CZ model,

the values of parameter β are listed in Table 1.
Now, we compare the numerical results of different denoising methods on standard images and medical

images. In Table 2 and 3, the first column gives the test image names, the second column gives the noise
standard deviation σ, the third column gives the performance metrics, and Columns 4-11 are numerical results
of different denoising methods. We observe that the PSNR values of the restored images by our proposed
method are higher than those of GTV method, CZ method, NLM method and C-KSVD method, and almost
higher than WNNM method and benchmark VST-BM3D method. As far as “Barbara” is concerned, the
PSNR value of our method is more than 6 dB higher than CZ model at the σ = 20. The characteristics
of SSIM values are almost consistent with those of PSNR values. However, the SSIM values are composed
of luminance comparison, contrast comparison, and structure comparison, which makes differences at some
points.

Finally, we compare the visual quality of the restored images generated by the above six methods as well
as our proposed method. The experiment results tested on standard test image “Lena” and medical image
“Mouse” are shown in Figures 2 and 3. In order to observe the superiority of our proposed model more
clearly, we magnify some local parts of the images. We can clearly see that fewer details and more noise
remain in the results of GTV, CZ, NLM and C-KSVD methods. For example, in Row 4 of Figure 2, the
face in “Lena” image restored by our method is more smooth and the hair area is more refined; in Row 4 of
Figure 3 for the results of “Mouse”, the denoised images by GTV method, CZ method, and NLM method
still remain some noise and are blocky; the denoised image by C-KSVD method is too smooth with details
missing due to the overprocessing of denoising; the denoised images by WNNM method and VST-BM3D
method have issues with image contrast; and the image restored by our proposed method trades off between
denoising and detail preservation, which makes it better than the other six methods.

In conclusion, the numerical results demonstrate that our proposed method remarkably performs better
than the GTV method, CZ method, NLM method, C-KSVD method and WNNM method, and achieves
comparable performance to the VST-BM3D method.

4 Conclusion

In this paper, we propose a new effective model via the weighted nuclear norm penalization for denoising
images with Rician noise. More specifically, based on the low rank matrix approximation, we use the weighted
nuclear norm as a regularization constraint to improve the MAP model. Using the facts that the MAP
fidelity term has a Lipschitz continuous gradient and the weighted nuclear norm can be efficiently minimized,
we propose the IWNNM algorithm to solve the proposed non-convex model and prove that our algorithm
converges to a stationary point. Also, we carry out experiments on various images to demonstrate the
effectiveness of our model. The numerical experiments show that our proposed model is promising in denoising
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Table 2: Comparison of different denoising methods on standard images
Img σ Metric Noisy GTV CZ NLM C-KSVD WNNM VST-BM3D Proposed

L
en

a

10
PSNR 28.13 34.12 34.02 34.87 35.42 35.92 35.85 35.99
SSIM 0.682 0.956 0.953 0.961 0.965 0.968 0.968 0.969

20
PSNR 22.17 30.89 30.90 30.97 31.61 32.25 32.88 32.96
SSIM 0.681 0.915 0.916 0.914 0.925 0.938 0.940 0.936

30
PSNR 18.74 29.04 28.88 27.88 28.28 29.12 31.02 30.90
SSIM 0.536 0.877 0.874 0.859 0.878 0.905 0.911 0.899

B
ar

b
ar

a

10
PSNR 28.14 31.03 30.83 33.29 34.21 35.33 34.89 35.36
SSIM 0.914 0.949 0.952 0.969 0.972 0.976 0.976 0.977

20
PSNR 22.22 26.87 25.75 29.21 30.01 31.15 31.60 31.93
SSIM 0.767 0.879 0.863 0.922 0.933 0.951 0.951 0.952

30
PSNR 18.76 24.85 23.92 25.84 26.28 27.62 29.54 29.55
SSIM 0.635 0.820 0.793 0.860 0.871 0.918 0.923 0.916

M
on

ar
ch

10
PSNR 28.11 32.86 32.89 32.44 33.50 34.91 33.89 34.88
SSIM 0.734 0.933 0.927 0.939 0.948 0.958 0.953 0.959

20
PSNR 22.19 28.72 28.65 29.14 29.52 30.51 30.02 30.99
SSIM 0.518 0.879 0.883 0.869 0.906 0.922 0.915 0.923

30
PSNR 18.77 26.44 26.10 26.24 26.25 27.06 27.81 28.65
SSIM 0.393 0.834 0.831 0.793 0.855 0.882 0.876 0.882

B
ee

10
PSNR 26.30 33.12 32.96 32.89 33.69 34.75 34.36 34.82
SSIM 0.658 0.895 0.874 0.890 0.919 0.927 0.919 0.928

20
PSNR 21.84 29.64 29.19 29.62 30.86 30.62 30.90 31.28
SSIM 0.411 0.804 0.755 0.808 0.844 0.856 0.846 0.857

30
PSNR 18.66 27.77 27.94 27.02 28.62 27.50 29.19 29.29
SSIM 0.295 0.754 0.760 0.732 0.780 0.800 0.802 0.800

S
ta

rfi
sh

10
PSNR 24.99 31.83 31.64 31.80 30.18 33.52 33.16 33.50
SSIM 0.778 0.912 0.902 0.906 0.919 0.931 0.927 0.932

20
PSNR 19.32 27.88 27.85 28.08 29.24 29.12 29.26 29.70
SSIM 0.561 0.827 0.806 0.821 0.853 0.865 0.859 0.867

30
PSNR 16.16 25.81 25.90 25.26 27.01 25.88 27.23 27.70
SSIM 0.429 0.767 0.765 0.728 0.789 0.803 0.807 0.817

P
ep

p
er

s

10
PSNR 25.78 33.52 33.16 33.93 34.88 35.15 35.05 35.43
SSIM 0.658 0.919 0.895 0.923 0.935 0.941 0.939 0.942

20
PSNR 21.86 29.47 29.10 30.00 30.86 30.16 31.24 31.68
SSIM 0.443 0.835 0.798 0.850 0.881 0.891 0.894 0.899

30
PSNR 18.44 27.29 27.37 27.20 28.32 26.56 29.16 29.39
SSIM 0.323 0.790 0.808 0.778 0.833 0.843 0.858 0.859

C
am

er
am

an 10
PSNR 27.31 32.45 32.47 31.50 33.39 33.61 33.69 34.15
SSIM 0.654 0.902 0.871 0.886 0.923 0.922 0.925 0.929

20
PSNR 19.41 27.67 28.21 27.94 29.63 28.08 29.69 30.22
SSIM 0.443 0.708 0.770 0.717 0.851 0.836 0.853 0.856

30
PSNR 17.30 25.70 25.52 25.88 27.06 24.17 27.66 28.07
SSIM 0.320 0.654 0.753 0.637 0.788 0.760 0.802 0.798

B
oa

t

10
PSNR 28.17 32.13 31.83 31.84 33.04 33.75 33.44 33.72
SSIM 0.733 0.895 0.878 0.890 0.922 0.930 0.926 0.928

20
PSNR 22.17 27.93 28.05 27.98 29.43 29.22 29.41 29.69
SSIM 0.490 0.796 0.783 0.780 0.834 0.846 0.843 0.848

30
PSNR 18.66 25.67 26.12 25.52 26.87 26.09 27.38 27.54
SSIM 0.346 0.711 0.716 0.687 0.745 0.771 0.779 0.780
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Table 3: Comparison of different denoising methods on medical images
Img σ Metric Noisy GTV CZ NLM C-KSVD WNNM VST-BM3D Proposed

B
ra

in
1

10
PSNR 27.16 32.80 33.46 34.98 35.15 30.80 35.83 37.00
SSIM 0.665 0.915 0.946 0.964 0.966 0.812 0.960 0.979

20
PSNR 21.08 28.96 29.02 29.66 29.95 24.69 31.48 32.65
SSIM 0.483 0.865 0.895 0.891 0.915 0.758 0.866 0.940

30
PSNR 17.53 26.77 26.09 25.93 26.17 21.04 29.12 29.66
SSIM 0.355 0.824 0.830 0.802 0.842 0.704 0.857 0.876

M
ou

se

10
PSNR 28.18 31.93 32.01 32.49 33.82 34.13 34.37 34.72
SSIM 0.828 0.929 0.930 0.935 0.953 0.957 0.958 0.961

20
PSNR 22.21 27.75 27.45 27.61 28.02 28.47 30.25 30.35
SSIM 0.599 0.835 0.828 0.837 0.866 0.887 0.906 0.909

30
PSNR 18.69 25.42 24.56 24.03 23.84 24.57 27.64 27.58
SSIM 0.428 0.750 0.712 0.727 0.741 0.804 0.842 0.845

B
ra

in
2

10
PSNR 26.72 32.77 32.87 34.13 32.16 29.20 35.03 35.68
SSIM 0.579 0.915 0.948 0.957 0.955 0.652 0.931 0.961

20
PSNR 20.60 28.93 28.66 30.40 30.33 23.37 31.20 31.91
SSIM 0.444 0.887 0.900 0.921 0.916 0.606 0.868 0.912

30
PSNR 17.11 26.77 26.02 27.58 27.40 19.95 29.05 29.58
SSIM 0.350 0.860 0.847 0.875 0.873 0.572 0.845 0.839

S
p

in
e

10
PSNR 26.85 31.59 30.69 31.94 26.26 32.96 33.83 34.12
SSIM 0.766 0.924 0.899 0.914 0.928 0.936 0.948 0.949

20
PSNR 21.50 26.40 27.47 26.93 29.12 26.31 29.70 29.86
SSIM 0.567 0.649 0.819 0.677 0.868 0.827 0.883 0.889

30
PSNR 18.37 23.90 24.40 24.08 25.62 21.98 26.88 27.05
SSIM 0.434 0.516 0.737 0.534 0.759 0.711 0.772 0.808

B
ra

in
3

10
PSNR 28.30 30.55 31.08 31.38 25.29 32.61 34.68 35.12
SSIM 0.695 0.917 0.785 0.837 0.941 0.929 0.966 0.965

20
PSNR 21.70 27.04 26.98 27.19 29.13 25.08 29.86 30.43
SSIM 0.456 0.832 0.524 0.529 0.873 0.775 0.863 0.897

30
PSNR 17.81 23.62 25.17 25.13 25.51 20.77 27.32 27.70
SSIM 0.331 0.709 0.461 0.454 0.756 0.655 0.742 0.819

A
n

k
le

10
PSNR 27.14 29.20 30.92 29.50 25.30 28.69 31.84 31.94
SSIM 0.636 0.715 0.790 0.765 0.717 0.684 0.842 0.844

20
PSNR 20.87 25.10 27.27 26.92 26.42 23.06 28.17 28.32
SSIM 0.446 0.566 0.660 0.642 0.608 0.554 0.744 0.729

30
PSNR 17.29 22.32 25.38 25.00 23.61 19.65 26.27 26.32
SSIM 0.337 0.470 0.600 0.585 0.512 0.477 0.672 0.648

K
n

ee

10
PSNR 26.91 30.47 32.29 32.68 30.07 29.39 33.86 34.17
SSIM 0.596 0.671 0.891 0.919 0.699 0.663 0.910 0.934

20
PSNR 20.94 25.83 28.71 29.31 27.74 24.01 30.33 30.81
SSIM 0.435 0.571 0.850 0.855 0.613 0.604 0.836 0.845

30
PSNR 17.46 23.20 26.81 27.01 25.03 20.81 28.58 28.74
SSIM 0.328 0.514 0.810 0.802 0.551 0.564 0.819 0.743

S
h

ou
ld

er

10
PSNR 28.16 33.54 32.92 34.29 35.14 35.28 35.13 35.42
SSIM 0.620 0.864 0.835 0.889 0.903 0.906 0.901 0.908

20
PSNR 22.30 30.63 30.15 30.47 32.05 31.46 32.44 32.61
SSIM 0.366 0.828 0.778 0.819 0.852 0.865 0.862 0.862

30
PSNR 18.96 28.67 28.71 27.08 30.01 27.62 30.74 30.74
SSIM 0.248 0.792 0.760 0.740 0.809 0.828 0.825 0.824
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(a) Noisy (b) GTV (c) CZ (d) NLM (e) C-KSVD (f) WNNM (g) VST-BM3D (h) Proposed

Figure 2: Results of “Lena” by different methods. From top to bottom, the first three rows are the
noisy/denoised images corrupted/restored by Rician noise with σ = 10, 20, and 30; and the fourth row
is the zoomed-in views of the third row. From left to right, the denoising methods are the noisy image,
GTV method, CZ method, NLM method, C-KSVD method, WNNM method, VST-BM3D method, and our
proposed method.

images with Rician noise.
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