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This paper proposes a new effective model for denoising images with Rician noise. The sparse representations of images have been
shown to be efficient approaches for image processing. Inspired by this, we learn a dictionary from the noisy image and then
combine the MAP model with it for Rician noise removal. For solving the proposed model, the primal-dual algorithm is applied
and its convergence is studied. The computational results show that the proposed method is promising in restoring images with
Rician noise.

1. Introduction

Image denoising is one of the most fundamental issues in
image processing [1, 2]. In the past decades, many methods
are proposed for removing Gaussian white noise [3, 4],
impulse noise [5–9], Poisson noise [10–12], andmultiplicative
noise [13–21]. With the Magnetic Resonance Imaging (MRI)
being widely used, people are becoming gradually concerned
with another vital noise, Rician noise. In this paper, wemainly
study Rician noise and propose a newmodel that can bemore
efficient to remove it. Mathematically, the image 𝑦 degraded
by Rician noise can be given by

𝑦 = √(𝑥 + 𝜂1)2 + 𝜂22 , (1)

where 𝑥 is the original image and 𝜂1, 𝜂2 ∼ 𝑁(0, 𝜎2). Our goal
is to find the unknown true image 𝑥 from the degraded image𝑦 as well as possible.

In recent years, there have been many methods proposed
for denoising on the images corrupted by Rician noise, such
as filtering methods, wavelet methods, nonconvex methods,
and convex methods. Based on the anisotropic diffusion
process proposed by Perona and Malik [22], Gerig [23]

presented the nonlinear anisotropic filtering method for
Rician noise removal with the edge information preserved,
but some other details may be lost. Studying the nonlocal
means algorithm, in [24], Prima et al. proposed a nonlocal
means variants method for denoising the diffusion-weighted
and diffusion tensor MR image. And Manjn et al. [25] also
improved a new filter (below we call it NLM model) which
is based on the nonlocal means to reduce the noise in MR
images. Inspired by it, Wiest-Daessle et al. [26] adapted
the nonlocal means filter to data corrupted by Rician noise
and presented nonlocal means filtering method for better
respecting the image details and structures. In [27], Nowak
came up with wavelet domain filtering method which adapts
to variations in both the signal and the noise. From a single
Rician-distributed image, Foi [28] presented a stable and fast
iterative procedure for robustly estimating the noise level and
also proposed a variance-stabilization method for efficiently
removing Rician noise. In [29], Wood and Johnson proposed
wavelet packet denoising method for Rician noise removal
at low SNR. Wavelet methods have been efficient to remove
Rician noise with the image details and edge preserved,
but the problem that small dots influence image analysis
process remains unresolved. In the mean time, the maximum
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a posteriori (MAP) estimation model was proposed, which is
considered from the feature of noise-free image and includes
the data fidelity term. TheMAP model is as follows:

argmin
𝑥

1
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − ∫

Ω
log 𝐼0 (𝑥𝑦

𝜎2 ) 𝑑𝑡
+ 𝜆∫

Ω
|𝐷𝑥| 𝑑𝑡,

(2)

where 𝐼0 is the modified Bessel function of the first kind with
order zero [30]. But it is a nonconvex function and leads to a
difficult problem to solve. In view of the MAP model, GTV
model [31] was put forward by Getreuer et al., which is a
convex approximation of the MAP model and can be easily
solved, but the fidelity item of GTV model is a complicated
piecewise function. Chen [32] proposed a new convex model
that added a statistical property of Ricain noise into the MAP
model, leading to a new strictly convex model under mild
condition that can be easily solved by primal-dual algorithm,
and below we call it CZ model.

In this paper, we study the Rician noise and propose a
new reasonable and efficient model for Rician noise removal.
As we know, natural images have a vital feature that is
sparseness, and dictionary learning is being widely used for
image denoising. Dictionary learning has been demonstrated
to be efficient for various noise removal. Aharon and Elad [33,
34] proposed the K-SVD algorithm for designing dictionary
with sparse representation, and it is proven to be effective
for additive white Gaussian noise removal. Inspired by the
K-SVD algorithm, Huang [15] proposed a new model that
combined the “AA” model [35] and K-SVD algorithm to
remove multiplication noise and also presented a log −𝑙0 minimization approach to solve it. Xiao [11] and Ma
[10] also proposed new model via dictionary learning for
Poisson noise removal and Poisson image deblurring. In
addition, Liu et al. [36] applied two-level Bregmanmethod to
dictionary updating and proposed an efficient algorithm for
reconstructing MR images. In [37], integrating total variation
(TV) and dictionary learning, Liu et al. also proposed a
novel gradient for image recovery. Similarly, integrating total
generalized variation and adaptive dictionary learning, Lu.
et al. [38] presented a novel dictionary learning model for
MRI reconstruction. So we attempt to apply the sparse
representation and dictionary learning into the MAP model
for Rician noise removal. Owing to the nonconvexity of
the MAP model, we add the sparse representation term to
overcome the drawback, so we can use the classical primal-
dual algorithm to solve the model.

The following is the outline of our paper. In Section 2,
we first briefly introduce the dictionary learning and sparse
representation, and then we propose the new model that
combines the MAP model with sparse representation term.
Also, we give and elaborate the two-step algorithm for solving
our model. In Section 3, we demonstrate that our model
outperforms the othermethods for Rician noise removal with
numerical results. In the end, we draw our conclusion in
Section 4.

2. Our Proposed Model

Generally speaking, we consider that every signal instance
from the family can be represented as a linear combination of
few columns from a redundant dictionary. For the degraded
image 𝑦 ∈ R

√𝑁×√𝑁, regarding the image patch of size √𝑛 ×√𝑛, we order it as column vector Y ∈ R𝑛 lexicographically.
And we define a dictionary of size D ∈ R𝑛×𝑘 to simply
construct the Sparseland model, where 𝑘 > 𝑛 implies
that the dictionary D is redundant. Meanwhile, we should
also make an assumption that the dictionary D is known
and fixed. Then, column vector Y can be sparsely linearly
represented by few atoms selected from the dictionary D.
That is to say that there is a sparse solution of the following
problem:

�̂� = argmin
𝛼

‖𝛼‖0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 D𝛼 ≈ Y. (3)

That is, ‖𝛼‖0 ≪ 𝑛, where ‖𝛼‖0 denotes the number of the
nonzero entries in𝛼. And ‖∙‖0 is used to constrain the sparsity
of representation.

For simplicity, we substitute ‖Y − D𝛼‖2 ≤ 𝜖 for D𝛼 ≈ Y.
Also, replacing the constraint with a penalty term, we can get
the equivalent problem of (3):

�̂� = argmin
𝛼

‖Y − D𝛼‖22 + 𝜇 ‖𝛼‖0 , (4)

and a suitable choice of 𝜇 can make problem (3) equivalent to
problem (4).

Now we consider the entire image 𝑦, that is, to consider
all the patches of image 𝑦. Then we can construct the sparse
representation model for the noisy image 𝑦. First, we index
the image 𝑦 with Ω = {1, 2, . . . , √𝑁}2; then the image
patches of size √𝑛 × √𝑛 located in Ω can be indexed by
Γ = {1, 2, . . . , √𝑁−√𝑛+1}2. From patches to image, problem
(4) becomes the following problem:

�̂�𝑖𝑗 = argmin
𝛼𝑖𝑗

∑
(𝑖,𝑗)∈Γ

󵄩󵄩󵄩󵄩󵄩R𝑖𝑗𝑦 − D𝛼𝑖𝑗󵄩󵄩󵄩󵄩󵄩22 + ∑
(𝑖,𝑗)∈Γ

𝜇𝑖𝑗 󵄩󵄩󵄩󵄩󵄩𝛼𝑖𝑗󵄩󵄩󵄩󵄩󵄩0 , (5)

whereR𝑖𝑗 is an 𝑛 ×𝑁matrix that we can use to extract the (i,
j) patch from the image.

Looking back at the assumption that the dictionary
D is known and fixed, we have the following question:
how to choose and settle the dictionary? In [33], Aharon
put forward the K-SVD algorithm for designing dictionary.
Giving the initial dictionary, Aharon applied the singu-
lar value decomposition (SVD) into updating dictionary.
In [34], Elad and Aharon applied the MAP estimator to
problem (5) and had a comparison of different dictionaries
(overcomplete DCT, global trained dictionary, and adap-
tive dictionary trained on patches from the noisy image),
whose results show that the adaptive dictionary training is
best.

After studying the sparse representation and dictionary
learning of K-SVD algorithm [33], it inspires us to apply the
sparse representation to the MAP model (2), and thus we
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propose a new model for Rician noise removal which is as
follows:

arg min
𝑥∈𝑆(Ω)

𝛽
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − 𝛽∫

Ω
log 𝐼0 (𝑦𝑥

𝜎2 )𝑑𝑡
+ 1

2 ∑󵄩󵄩󵄩󵄩󵄩D𝛼𝑖𝑗 −R𝑖𝑗𝑥󵄩󵄩󵄩󵄩󵄩2 + ∑𝜇𝑖𝑗 󵄩󵄩󵄩󵄩󵄩𝛼𝑖𝑗󵄩󵄩󵄩󵄩󵄩0
+ 𝜆∫

Ω
|𝐷𝑥| 𝑑𝑡,

(6)

where 𝑆(Ω) fl {V ∈ 𝐵𝑉(Ω) : 0 ≤ V ≤ 255} and ∫
Ω
|𝐷𝑥|𝑑𝑡

is the total variation (TV) of 𝑥. The first and second terms
of our model stem from the MAP model, which is data-
fidelity caused by the statistical properties of Rician noise,
and the third and forth terms are inspired by the sparse
representation. The last TV regularization term can make the
denoised image smooth.

In model (6), there are three unknown variables: the
noise-free image 𝑥 that we need to solve, the dictionary D,
and the sparse coefficients 𝛼𝑖𝑗. Similar to [33, 34], in order to
solve problem (6) effectively and efficiently, here we have the
following two-step algorithm.

(1) Based on the degraded image 𝑦, we give the initial
dictionary and get the sparse representation coefficients 𝛼𝑖𝑗;
then use 𝛼𝑖𝑗 to learn dictionary D and update corresponding
coefficients 𝛼𝑖𝑗.

(2) Use the primal-dual algorithm to get the recovered
image that we wanted.

2.1. Dictionary Learning. In the first step of our algorithm,
we will use the degraded image 𝑦 to train a dictionary, and all
the image patches can be sparsely represented by the trained
dictionary with the corresponding coefficients 𝛼𝑖𝑗. The whole
process is just using the orthogonal matching pursuit (OMP)
and K-SVD algorithms [33, 34], and the procedure is to solve
the following optimization problem:

{D̂, �̂�𝑖,𝑗} = arg min
{D,𝛼𝑖,𝑗}

1
2 ∑
(𝑖,𝑗)

󵄩󵄩󵄩󵄩󵄩R𝑖𝑗𝑥 − D𝛼𝑖,𝑗󵄩󵄩󵄩󵄩󵄩2

+ ∑
(𝑖,𝑗)

𝜇𝑖,𝑗 󵄩󵄩󵄩󵄩󵄩𝛼𝑖,𝑗󵄩󵄩󵄩󵄩󵄩0 .
(7)

For solving the difficult problem, we have the following
specific steps.

(1) Initialization. Set 𝑥 = 𝑦, D = overcomplete DCT
dictionary.

(2) Iteration. 𝐹𝑜𝑟 𝑚 = 0 𝑡𝑜 𝑁 𝑑𝑜(𝑎) Given 𝑥 and D, we get the sparse representation
coefficients 𝛼𝑖𝑗 through solving the following problem:

{�̂�𝑖,𝑗} = argmin
{𝛼𝑖,𝑗}

1
2∑
(𝑖,𝑗)

󵄩󵄩󵄩󵄩󵄩R𝑖𝑗𝑥 − D𝛼𝑖,𝑗󵄩󵄩󵄩󵄩󵄩2 + ∑
(𝑖,𝑗)

𝜇𝑖,𝑗 󵄩󵄩󵄩󵄩󵄩𝛼𝑖,𝑗󵄩󵄩󵄩󵄩󵄩0 , (8)

and we can efficiently and effectively solve model (8) by using
the orthogonal matching pursuit (OMP) method [33, 34].(𝑏) Given 𝑥 and 𝛼𝑖𝑗, we can update the dictionary D =[𝑑1, 𝑑2, . . . , 𝑑𝑘] column by column [33, 34]. For each column𝑑𝑙, 𝑙 = 1 . . . 𝑘, we update it as follows.(𝑖) For those patches represented by𝑑𝑙 , wewrite down and
denote it by 𝜁𝑙 = {(𝑖, 𝑗) | 𝛼𝑖,𝑗(𝑙) ̸= 0}.

(𝑖𝑖) For each index (𝑖, 𝑗) ∈ 𝜁𝑙, we compute the correspond-
ing representation error through

𝑒𝑙𝑖𝑗 = R𝑖𝑗𝑥 − ∑
𝑚 ̸=𝑙

𝑑𝑚𝛼𝑖,𝑗 (𝑚) , (9)

and then we use the columns {𝑒𝑙𝑖𝑗}(𝑖,𝑗)∈𝜁𝑙 to define a matrix E𝑙.(𝑖𝑖𝑖) For the matrix E𝑙, we apply the singular value
decomposition (SVD) into E𝑙 and get E𝑙 = UΔVT.

Let the first column of U be 𝑑𝑙 to update 𝑑𝑙, and multiply
the first column of V by Δ(1, 1) to update {𝛼𝑖,𝑗(𝑙)}(𝑖,𝑗)∈𝜁𝑙 .

End for
Here, the dictionary training and sparse representation

are completed.

2.2. Primal-Dual Algorithm. After the first step of our algo-
rithm, we get the spare dictionary representation D𝛼𝑖𝑗 from
each patch R𝑖𝑗𝑦, and we now minimize (6) with respect to 𝑥;
that is,

arg min
𝑥∈𝑆(Ω)

𝛽
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − 𝛽∫

Ω
log 𝐼0 (𝑦𝑥

𝜎2 )𝑑𝑡
+ 1

2 ∑󵄩󵄩󵄩󵄩󵄩D𝛼𝑖𝑗 − R𝑖𝑗𝑥󵄩󵄩󵄩󵄩󵄩2 + 𝜆∫
Ω
|𝐷𝑥| 𝑑𝑡.

(10)

Proposition 1. Let 𝑦 be a bounded function such that
infΩ 𝑦 > 0; then the objective function in (10) is strictly convex
with the constraint 𝜎4/𝛽 > (supΩ 𝑦)2.
Proof. Using the notations 𝑊 = ∑(𝑖,𝑗)∈ΓR

𝑇
𝑖𝑗R𝑖𝑗 and 𝑀 =

∑(𝑖,𝑗)∈ΓR
𝑇
𝑖𝑗D𝛼𝑖𝑗, model (10) can be rewritten as

arg min
𝑥∈𝑆(Ω)

𝛽
2𝜎2 ⟨𝑥, 𝑥⟩ − 𝛽⟨log 𝐼0 (𝑦𝑥

𝜎2 ) , 1Ω⟩
+ 1

2 ⟨𝑊𝑥, 𝑥⟩ − ⟨𝑀, 𝑥⟩ + 𝜆 ‖𝑥‖𝑇𝑉 .
(11)

Also, we define 𝑔(𝑥) = (𝛽/2𝜎2)⟨𝑥, 𝑥⟩−𝛽⟨log 𝐼0(𝑦𝑥/𝜎2), 1Ω⟩+(1/2)⟨𝑊𝑥, 𝑥⟩ − ⟨𝑀, 𝑥⟩(𝑥 > 0) and ℎ(𝑥) = log 𝐼0(𝑥)(𝑥 >0). According to [32], we have 0 < ℎ󸀠󸀠(𝑥) = 1 −(2/𝑥)(𝐼1(𝑥)/𝐼0(𝑥)) − (𝐼1(𝑥)/𝐼0(𝑥))2 < 1. Then 𝑔󸀠󸀠(𝑥) = 𝛽/𝜎2 −𝛽[log 𝐼0(𝑦𝑥/𝜎2)]󸀠󸀠 + 𝑊 > 𝛽/𝜎2 − 𝛽(𝑦2/𝜎4) + 𝑊. Due to1 ≤ 𝑊𝑖𝑗 ≤ 𝑛, 𝑔󸀠󸀠(𝑥) > 0 holds when 𝜎4/𝛽 > (supΩ 𝑦)2,
and 𝑔(𝑥) is strictly convex. We know that 𝑥 󳨀→ ‖𝑥‖𝑇𝑉 is
convex, so the objective function (11) is strictly convex; that
is, function (10) is strictly convex.

Referring to Proposition 1, we know that model (10) is
convex; then we can apply the primal-dual algorithm for
solving the minimization problem, which enjoys nice saddle-
point structures and has good performance on nonsmooth
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1. Let 𝜅 and 𝜏 be given. Set 𝑥0 = 𝑦, 𝑥0 = 𝑦, and 𝑝0 = (0, . . . , 0)𝑇 ∈ R2𝑑.
2. Update 𝑝𝑛, 𝑥𝑛, 𝑥𝑛 iteratively as follows:

(a) 𝑝𝑛+1 = argmax
𝑝∈𝑃

𝜆⟨𝑥𝑛, div 𝑝⟩ − 1
2𝜅‖𝑝 − 𝑝𝑛‖22;

(b) 𝑥𝑛+1 = arg min
𝑥∈𝑆(Ω)

𝐹(𝑥) − 𝜆⟨𝑥, div 𝑝𝑛+1⟩ + 1
2𝜏‖𝑥 − 𝑥𝑛‖22;

(c) 𝑥𝑛+1 = 2𝑥𝑛+1 − 𝑥𝑛.
until some stop criterion is satisfied.

Algorithm 1

convex optimization [39–41]. Moreover, we discuss a bias
correction technique and the convergence of our algorithm.

Briefly, we define 𝐹(𝑥) fl (𝛽/2𝜎2)‖𝑥‖2 − 𝛽⟨log 𝐼0(𝑦𝑥/𝜎2), 1⟩ + (1/2)∑ ‖D𝛼𝑖𝑗 − R𝑖𝑗𝑥‖2, and model (10) can be
translated to the following format:

min
0≤𝑥≤255

𝐹 (𝑥) + 𝜆 ‖∇𝑥‖1 . (12)

Because the 𝑇𝑉-model has the duality property, we can
change the primal-dual formulation of optimization problem
of (12) into the following format:

max
𝑝∈𝑃

min
0≤𝑥≤255

𝐹 (𝑥) − 𝜆 ⟨𝑥, div 𝑝⟩ , (13)

where 𝑃 = {𝑝 ∈ R2𝑑 : max𝑖∈{1,...,𝑑}|(𝑝2
𝑖 + 𝑝2

𝑖+𝑑)1/2| ≤ 1}.
Here, 𝑝 is the dual variable, and div = −∇𝑇. The specific

algorithm is as in Algorithm 1.
In particular, the solution of the dual problem 2(a) can be

expressed as

𝑝𝑛+1
𝑖 = 𝜋1 (𝜆𝜅 (∇𝑥𝑛)𝑖 + 𝑝𝑛

𝑖 ) 𝑖 = 1, . . . , 2𝑑, (14)

where 𝜋1(𝑞𝑖) = 𝑞𝑖/max(1, |𝑞𝑖|), 𝜋1(𝑞𝑑+𝑖) = 𝑞𝑑+𝑖/max(1, |𝑞𝑖|),
and |𝑞𝑖| = √𝑞2𝑖 + 𝑞2𝑖+𝑑, 𝑖 = 1, . . . , 𝑑. Moreover, the solution of
the primal problem2(b) can be obtained byNewton’smethod.

Inspired by [39], we provide a bias correction technique
for (13) so that the mean of the restored image 𝑥∗ equals that
of the observed image 𝑦. In numerical practice, the following
step is implemented in order to preserve the mean of 𝑦:

𝑥𝑛𝑖 fl ∑𝑑
𝑗=1 𝑦𝑗

∑𝑑
𝑗=1max (𝑥𝑛𝑗 , 0) max (𝑥𝑛𝑖 , 0) 𝑖 = 1, . . . , 𝑑, (15)

after updating 𝑥𝑛 by Newtonmethod, which also ensures that𝑥𝑛 ≥ 0.
Referring to Theorem 1 in [42], we will get the conver-

gence properties of our algorithm as follows.

Proposition 2. Suppose that 𝜅𝜏𝜆2‖∇‖2 < 1. 
en the iterates{(𝑥𝑛, 𝑝𝑛)} of our algorithm converge to a saddle point of (13).

Inspired by [42], the condition of convergence of our
algorithm can be simplified into 𝜅𝜏𝜆2 < 1/8, based on the
fact that ‖∇‖2 ≤ 8 with the unit spacing size between pixels.
For simplicity, in our numerical experiments, we let 𝜅 = 8/𝜆

and 𝜏 = 0.015/𝜆 and just adjust 𝜆, and the convergence of the
algorithm is satisfied.

Before we present numerical results, here we give the
basic property of model (10) rewritten in the continuous
settings; that is,

inf
𝑥∈𝑆(Ω)

𝛽
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − 𝛽∫

Ω
log 𝐼0 (𝑦𝑥

𝜎2 )𝑑𝑡
+ 1

2 ∑󵄩󵄩󵄩󵄩󵄩D𝛼𝑠 −RΩ𝑠
𝑥󵄩󵄩󵄩󵄩󵄩2 + 𝜆 ‖𝑥‖𝑇𝑉 ,

(16)

where (Ω𝑠)𝑠∈𝐼 is a finite set of small patches covering Ω and
RΩ𝑠

is the restriction onΩ𝑠.

Theorem 3. Let Ω be a bounded, open subset of R2 with
Lipschitz boundary. Let 𝑦 be a positive, bounded function. For𝑥 satisfying 𝑥 ∈ 𝐵𝑉(Ω), 𝑥 > 0, let

𝐸 (𝑥) = 𝛽
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − 𝛽∫

Ω
log 𝐼0 (𝑦𝑥

𝜎2 ) 𝑑𝑡
+ 1

2 ∑󵄩󵄩󵄩󵄩󵄩D𝛼𝑠 −RΩ𝑠
𝑥󵄩󵄩󵄩󵄩󵄩2 + 𝜆 ‖𝑥‖𝑇𝑉 ,

(17)

where 𝜆 > 0. Suppose that (Ω𝑠)𝑠∈𝐼 is a finite local coverage of
Ω and∑∞

𝑠∈𝐼 ‖𝐷𝛼𝑠‖2 < +∞. 
en 𝐸(𝑥) has a unique minimizer
when 𝜎4/𝛽 > (supΩ 𝑦)2.
Proof. Let𝐸(𝑥) = 𝜆‖𝑥‖𝑇𝑉+𝐽(𝑥) and 𝐽(𝑥) = (𝛽/2𝜎2) ∫

Ω
𝑥2𝑑𝑡−

𝛽∫
Ω
log 𝐼0(𝑦𝑥/𝜎2)𝑑𝑡 + (1/2)∑ ‖D𝛼𝑖𝑗 − R𝑖𝑗𝑥‖2. By Proposi-

tion 1, we know that 𝐽(𝑥) is convex. Thus 𝐸(𝑥) is convex
and bounded from below. Consider a minimizer sequence(𝑥𝑛) for 𝐸(𝑥). Then ‖𝑥𝑛‖𝑇𝑉 and 𝐽(𝑥𝑛) are bounded from
above. Hence (𝑥𝑛) is bounded in 𝐵𝑉(Ω). As 𝐵𝑉 is compact
in 𝐿1(Ω), there is 𝑥0 ∈ 𝐵𝑉 such that a subsequence (𝑥𝑛𝑘)
converges 𝑥0 in 𝐿1(Ω) and 𝐵𝑉(Ω), and we may assume
that 𝑥𝑛𝑘 󳨀→ 𝑥0 pointwise almost everywhere. As the 𝐵𝑉
norm is l.s.c., ‖𝑥0‖𝑇𝑉 ≤ lim inf ‖𝑥𝑛𝑘‖𝑇𝑉. Since 𝐽(𝑥𝑛𝑘) is
bounded from below, by Fatou’s Lemma, we have 𝐽(𝑥0) ≤
lim inf 𝐽(𝑥𝑛𝑘). Thus 𝐸(𝑥0) ≤ lim inf 𝐸(𝑥𝑛𝑘) = inf𝐵𝑉(Ω)𝐸(𝑥),
and 𝑥0 minimizes 𝐸(𝑥). Consequently, 𝐸(𝑥) admits at least
one minimizer 𝑥0. 𝐸(𝑥) is strictly convex function; hence,𝐸(𝑥) admits a unique minimizer.
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Table 1: Parameter 𝜆 values for all testing algorithms.

Images 𝜎 = 10 𝜎 = 15 𝜎 = 20
MAP GTV CZ Algorithm 1 (𝛽=0.1) MAP GTV CZ Algorithm 1 (𝛽=0.1) MAP GTV CZ Algorithm 1 (𝛽=1)

Lena 15 15 0.07 0.01 20 20 0.055 0.02 25 25 0.045 0.02
Barbara 22 23 0.045 0.01 30 30 4.91 0.02 37 37 0.03 0.02
House 14 14 0.075 0.01 19 19 1.00 0.5 24 24 0.045 10
Monarch 15 15 0.065 0.01 20 20 0.05 0.02 30 30 0.04 0.02
Brain 17 15 0.065 0.01 25 22 0.05 0.01 35 22 0.045 0.01
Mouse 17 17 0.06 0.01 24 24 0.05 0.01 31 32 0.035 0.01

3. Numerical Experiments

In this section, we will present our numerical experiments
to evaluate the approximation accuracy and computational
efficiency of our proposed algorithm. We compare our
method for the denoising cases with the MAP model (2), the
GTV model [31], the CZ model [32], and the NLM model
[25]. Here, we have a brief overview of the models that we
compared.

GTV model:

argmin
𝑥

𝜆∫
Ω
𝐺𝜎 (𝑥, 𝑦) + ∫

Ω
|𝐷𝑥| 𝑑𝑡, (18)

𝐺𝜎 (𝑥, 𝑦) = {{{
𝐻𝜎 (𝑥) if 𝑥 ≥ 𝑐𝜎,
𝐻𝜎 (𝑐𝜎) + 𝐻󸀠

𝜎 (𝑐𝜎) (𝑥 − 𝑐𝜎) if 𝑥 ≤ 𝑐𝜎,
𝐻󸀠

𝜎 (𝑥) = 𝑥
𝜎2 − 𝑦

𝜎2𝐵(𝑥𝑦
𝜎2 ) ,

𝐵 (𝑠) ≡ 𝐼1 (𝑠)𝐼0 (𝑠)
≈ 𝑠3 + 0.950037𝑠2 + 2.38944𝑠

𝑠3 + 1.48937𝑠2 + 2.57541𝑠 + 4.65314 ,

(19)

where 𝑐 = 0.8426; 𝐼1 is the modified Bessel function of the
first kind with order one [30]. Because it is an approximate
equality, we can not write down the final explicit restoration
model.

CZ model:

arg min
𝑥∈𝑆(Ω)

1
2𝜎2 ∫

Ω
𝑥2𝑑𝑡 − ∫

Ω
log 𝐼0 (𝑥𝑦

𝜎2 )𝑑𝑡
+ 1

𝜎 ∫
Ω
(√𝑥 − √𝑦)2 𝑑𝑡 + 𝜆∫

Ω
|𝐷𝑥| 𝑑𝑡,

(20)

where 𝑆(Ω) fl {] ∈ 𝐵𝑉(Ω) : 0 ≤ ] ≤ 255}. And because𝐵𝑉(Ω) [35, 43] is the subspace of function 𝑥 ∈ 𝐿1(Ω), the
following quantity is finite:

𝐽 (𝑥) = sup{∫
Ω
𝑥 (𝑡) div (𝜉 (𝑡)) 𝑑𝑡 | 𝜉

∈ 𝐶∞
0 (Ω,R2) , 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩𝐿∞(Ω,R2) ≤ 1} .

(21)

NLMmodel:
Before introducing the NLM model, we have a descrip-

tion of the sign that will be used. For a user-defined radius

𝑅𝑠𝑖𝑚, we define a square neighborhood window centered
around pixel 𝑖 as 𝑁𝑖. And a Gaussian weighted Euclidian
distance of all the pixels of each neighborhood is defined as

𝐿 (𝑚, 𝑛) = 𝐺𝜌
󵄩󵄩󵄩󵄩𝑦 (𝑁𝑚) − 𝑦 (𝑁𝑛)󵄩󵄩󵄩󵄩2𝑅𝑠𝑖𝑚 , (22)

where 𝐺𝜌 is a normalized Gaussian weighting function
with zero mean and 𝜌 standard deviation (usually set to
1). By giving more weight to pixels near the center, we
can use 𝐺𝜌 to penalize pixels far from the center of the
neighborhood window. And, based on the similarity between
the neighborhoods𝑁𝑚 and𝑁𝑛 of pixels𝑚 and 𝑛, we calculate
the similarity 𝑓(𝑚, 𝑛) as

𝑓 (𝑚, 𝑛) = 1
𝐶 (𝑚)𝑒−𝐿(𝑚,𝑛)/ℎ

2 ,
𝐶 (𝑚) = ∑

∀𝑛

𝑒−𝐿(𝑚,𝑛)/ℎ2 ,
(23)

𝐶(𝑚) is the normalizing constant, and ℎ is a exponential
decay control parameter.

Then, given an image 𝑦, using the NLM method, we can
calculate the filtered value at a point 𝑚 by the following
formula:
𝑁𝐿𝑀(𝑦 (𝑚)) = ∑

∀𝑛∈𝑦

𝑓 (𝑚, 𝑛) 𝑦 (𝑛) ,

0 ≤ 𝑓 (𝑚, 𝑛) ≤ 1, ∑
∀𝑛∈𝑦

𝑓 (𝑚, 𝑛) = 1. (24)

The parameter 𝜆 values of MAP model, GTV model,
CZ model, and our proposed model are listed in Table 1.
In order to preserve the mean of the observed image, the
bias correction technique (15) is utilized for the CZ method
and our method. All the experiments are performed under
Windows 7 andMATLAB R2017a running on a PC equipped
with 2.90GHz CPU and 4G RAM.

In our tests, we choose images “Lena” and “Barbara” with
size of 512 × 512, “House” and “Monarch” with size of 256 ×256, “Brain” with size of 181 × 217, and “Mouse intestine”
(briefly, we call it “Mouse” throughout this paper) with size
of 248 × 254, which are shown in Figure 1. We evaluate the
quality of recovered images obtained from various denoising
algorithms by using the structural similarity index (SSIM)
[44] and the peal-signal-to-noise ratio (PSNR) [45] defined
by

PSNR (𝑥, 𝑥) = 20 log10 ( 2552
‖𝑥 − 𝑥‖2) , (25)
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Table 2: The comparison of different denoising methods.

Images Methods 𝜎 = 10 𝜎 = 15 𝜎 = 20
PSNR SIM Time PSNR SSIM Time PSNR SIM Time

Lena

Noisy 28.15 0.874 24.65 0.773 22.18 0.680
MAP 34.13 0.957 160.00 32.27 0.935 210.65 30.98 0.915 249.88
GTV 34.10 0.957 13.38 32.21 0.935 13.38 30.90 0.915 13.35
CZ 34.14 0.956 4.11 32.24 0.933 5.04 30.94 0.911 5.24
NLM 34.82 0.961 4.55 32.74 0.939 41.47 31.00 0.914 41.16

Algorithm 1 35.39 0.964 480.01 33.36 0.945 433.97 31.59 0.924 443.05

Barbara

Noisy 28.16 0.913 24.66 0.839 22.21 0.765
MAP 31.10 0.950 207.92 28.55 0.913 245.68 26.90 0.876 285.53
GTV 31.09 0.950 13.14 28.52 0.913 13.16 26.85 0.875 13.16
CZ 31.07 0.948 4.41 28.49 0.910 4.91 26.83 0.873 5.73
NLM 33.32 0.968 4.79 31.10 0.947 40.90 29.16 0.921 40.00

Algorithm 1 34.43 0.972 852.05 32.06 0.956 609.78 29.94 0.932 547.64

House

Noisy 28.15 0.605 24.63 0.445 22.14 0.346
MAP 34.42 0.883 34.62 32.65 0.859 42.28 31.36 0.838 57.97
GTV 34.33 0.882 3.43 32.46 0.858 3.35 31.08 0.839 3.35
CZ 34.35 0.881 0.85 32.55 0.858 1.00 31.29 0.836 1.15
NLM 35.08 0.886 10.22 33.23 0.846 10.22 31.39 0.802 10.14

Algorithm 1 35.99 0.902 253.91 34.25 0.876 183.07 32.74 0.858 168.34

Monarch

Noisy 28.13 0.735 24.67 0.611 22.19 0.517
MAP 33.04 0.934 52.41 30.54 0.907 68.69 29.02 0.865 83.11
GTV 32.99 0.934 3.44 30.44 0.907 3.43 28.87 0.865 3.42
CZ 33.06 0.936 0.99 30.57 0.905 1.20 29.04 0.885 1.39
NLM 32.56 0.940 10.08 30.75 0.908 10.15 29.24 0.871 10.16

Algorithm 1 33.87 0.951 803.41 31.35 0.930 487.84 29.60 0.909 349.56

Brain

Noisy 27.16 0.657 23.57 0.549 21.13 0.467
MAP 32.95 0.835 21.23 30.08 0.769 21.39 27.97 0.719 23.12
GTV 33.63 0.952 2.57 31.09 0.917 2.14 29.41 0.889 2.17
CZ 33.67 0.950 0.56 31.10 0.919 0.64 29.21 0.891 0.69
NLM 35.15 0.962 6.16 32.07 0.925 6.12 29.72 0.885 5.99

Algorithm 1 35.40 0.967 194.60 32.47 0.942 129.26 30.07 0.911 108.05

Mouse

Noisy 28.18 0.828 24.67 0.706 22.13 0.592
MAP 31.99 0.930 52.87 29.71 0.890 65.66 28.01 0.847 63.97
GTV 31.94 0.929 3.92 29.60 0.886 3.91 27.89 0.843 4.29
CZ 31.95 0.929 1.17 29.58 0.887 1.31 27.86 0.842 1.52
NLM 32.49 0.935 9.69 29.84 0.888 9.72 27.55 0.833 9.72

Algorithm 1 33.71 0.952 700.02 30.63 0.914 397.23 28.12 0.865 295.06

where 𝑥 and 𝑥 denote the original image and the recovered
image, respectively.

First, we choose the test image of “Lena” and degrade it by
Rician noise with𝜎 = 10 and use differentmethods to recover
the noisy image. The numerical results are enumerated in
Table 2, where the first column gives the test image names, the
second column gives the method names (here, Algorithm 1
denotes our method presented in Section 2), and columns

3-5 (resp., 6-8 and 9-11) are the PSNR (dB), SSIM, and CPU
time (s) for 𝜎 = 10 (resp., 𝜎 = 15, 𝜎 = 20). We observe
that the PSNR values of the restored images by Algorithm 1
are higher than those of MAP, GTV, CZ, and NLM method.
Moreover, you can easily find that the PSNR values of the
restored images by Algorithm 1 are always the highest among
all those five methods for all images. As far as “Barbara” is
concerned, the PSNR value of our method is more than 3
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(a) Lena (b) Barbara (c) House

(d) Monarch (e) Brain (f) Mouse

Figure 1: The original images.

(a) (b) (c) (d) (e) (f)

Figure 2: Results of “Lena” by different methods. (a) Degraded images (row 1: with 𝜎 = 10, row 2: with 𝜎 = 15, row 3: with 𝜎 = 20), (b) MAP
method (row 1: 𝜆 = 15, row 2: 𝜆 = 20, row 3: 𝜆 = 25), (c) GTV method (row 1: 𝜆 = 15, row 2: 𝜆 = 20, row 3: 𝜆 = 25), (d) CZ method (row 1:𝜆 = 0.07, row 2: 𝜆 = 0.055, row 3: 𝜆 = 0.045), (e) NLMmethod (row 1-row 3 are denoised image of 𝜎 = 10, 15, 20, row 4: patch with 𝜎 = 20),
(f) ours (row 1: 𝜆 = 0.01, row 2: 𝜆 = 0.02, row 3: 𝜆 = 0.02).

dB higher than CZ model at 𝜎 = 10. The characteristics
of SSIM values are almost consistent with those of PSNR
values. However, the SSIM values are composed of luminance
comparison, contrast comparison, and structure comparison,
which makes differences at some points.

The images are corrupted, respectively, by Rician distri-
bution with 𝜎 = 10, 𝜎 = 15, and 𝜎 = 20, and the restored
images of the above five algorithms for the images “Lena”,
“Barbara”, “House”, and “Monarch” are shown inFigures 2–5,
respectively. We clearly find that much noise remains in the
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(a) (b) (c) (d) (e) (f)

Figure 3: Results of “Barbara” by different methods. (a) Degraded images (row 1: with 𝜎 = 10, row 2: with 𝜎 = 15, row 3: with 𝜎 = 20); row
4: patch with 𝜎 = 20, (b) MAP method (row 1: 𝜆 = 22, row 2: 𝜆 = 30, row 3: 𝜆 = 37); row 4: patch with 𝜎 = 20, (c) GTV method (row 1:𝜆 = 23, row 2: 𝜆 = 30, row 3: 𝜆 = 37); row 4: patch with 𝜎 = 20, (d) CZ method (row 1: 𝜆 = 0.045, row 2: 𝜆 = 0.035, row 3: 𝜆 = 0.03); row 4:
patch with 𝜎 = 20, (e) NLM method (row 1-row 3 are denoised image of 𝜎 = 10, 15, 20, row 4: patch with 𝜎 = 20), (f) ours (row 1: 𝜆 = 0.01,
row 2: 𝜆 = 0.02, row 3: 𝜆 = 0.02); row 4: patch with 𝜎 = 20.

(a) (b) (c) (d) (e) (f)

Figure 4: Results of “House” by different methods. (a) Degraded images (row 1: with 𝜎 = 10, row 2: with 𝜎 = 15, row 3: with 𝜎 = 20), (b)
MAP method (row 1: 𝜆 = 14, row 2: 𝜆 = 19, row 3: 𝜆 = 24), (c) GTV method (row 1: 𝜆 = 14, row 2: 𝜆 = 19, row 3: 𝜆 = 24), (d) CZ method
(row 1: 𝜆 = 0.075, row 2: 𝜆 = 0.055, row 3: 𝜆 = 0.045), (e) NLM method (row 1-row 3 are denoised image of 𝜎 = 10, 15, 20, row 4: patch with𝜎 = 20), (f) ours (row 1: 𝜆 = 0.01, row 2: 𝜆 = 0.5, row 3: 𝜆 = 10).
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(a) (b) (c) (d) (e) (f)

Figure 5: Results of “Monarch” by different methods. (a) Degraded images (row 1: with 𝜎 = 10, row 2: with 𝜎 = 15, row 3: with 𝜎 = 20), (b)
MAP method (row 1:𝜆 = 15, row 2: 𝜆 = 20, row 3: 𝜆 = 30), (c) GTV method (row 1:𝜆 = 15, row 2: 𝜆 = 20, row 3: 𝜆 = 30), (d) CZ method
(row 1: 𝜆 = 0.065, row 2: 𝜆 = 0.05, row 3: 𝜆 = 0.04), (e) NLM method (row 1-row 3 are denoised image of 𝜎 = 10, 15, 20, row 4: patch with𝜎 = 20), (f) ours (row 1: 𝜆 = 0.01, row 2: 𝜆 = 0.02, row 3: 𝜆 = 0.02).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6: Results of “Brain” with 𝜎 = 10 by different methods. (a) is the original “Brain” image and (g) is the degraded image with 𝜎 = 10.
(b)-(f) are the denoised images ofMAPmethod (𝜆 = 17), GTVmethod (𝜆 = 15), CZmethod (𝜆 = 0.065), NLMmethod, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.

results of MAP, GTV, and CZmethod. For example, in Row 4
of Figure 3, we can see from the background that “Barbara”
image restored by our method is more clearer than those
restored by other methods, and textures of Barbara’s trousers
and scarf are kept better in the restored image by ourmethod.
The restored images by our method also preserve more
significant details thanMAP,GTV, CZ, andNLMmethods on
the hat tidbits of the “Lena” image. What is more, the flowers
of the lower left of “Monarch” also indicate that our method

is superior to other methods, because our method is a patch-
based method, which is a different framework with TV-based
methods (i.e., MAP method and CZ method). The images
obtained from our method provide smoother regions and
better shape preservation (e.g., the backgrounds in “Lena”
and “Barbara”).

Figures 6–11 are results of experiments on “Brain” and
“Mouse” images. In particular, for the “Brain” and “Mouse”
images, we not only present the recovered images but also
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7: Results of Brain with 𝜎 = 15 by different methods. (a) is the original “Brain” image and (g) is the degraded image with 𝜎 = 15.
(b)-(f) are the denoised images of MAPmethod (𝜆 = 25), GTVmethod (𝜆 = 22), CZmethod (𝜆 = 0.05), NLMmethod, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Results of Brain with 𝜎 = 20 by different methods. (a) is the original “Brain” image and (g) is the degraded image with 𝜎 = 20.
(b)-(f) are the denoised images ofMAPmethod (𝜆 = 35), GTVmethod (𝜆 = 22), CZmethod (𝜆 = 0.045), NLMmethod, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.

use residuals to make a comparison with the original images.
The first row is original image and recovered images of
MAP method, GTV method, CZ method, NLM method,
and our method. The second row is degraded image with
various 𝜎 and residuals of those methods, respectively. In
Figures 6–8, the recovered images of of MAP method, GTV
method, CZ method, and NLM method are still unclear, so
we can conclude that the recovered images by ourmethod are
best through our visions and residuals. As for the “Mouse”
image, the recovered results are very similar; in this case,
we use residuals to see which result is better. In general, the
blurrier residual is, the better according recovered image is.
We can find that the outline of residual by our method is
blurriest.

In conclusion, the results of our numerical experiments
demonstrate that our proposed method performs better than
the MAP method, GTV method, CZ method, and NLM
method.

4. Conclusion

In this paper, we proposed a new effective model via a
learned dictionary for denoising images with Rician noise.
More specifically, based on the dictionary training, we add
a dictionary penalty term to the original nonconvex MAP
model to establish a new denoising model and develop a
two-step algorithm to solve our model. Also we carry out
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9: Results of “Mouse” with 𝜎 = 10 by different methods. (a) is the original “Mouse” image and (g) is the degraded image with 𝜎 = 10.
(b)-(f) are the denoised images of MAPmethod (𝜆 = 17), GTVmethod (𝜆 = 17), CZmethod (𝜆 = 0.06), NLMmethod, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10: Results of “Mouse” with 𝜎 = 15 by different methods. (a) is the original “Mouse” image and (g) is the degraded image with 𝜎 = 15.
(b)-(f) are the denoised images of MAPmethod (𝜆 = 24), GTV method (𝜆 = 24), CZ method (𝜆 = 0.05), NLM method, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.

experiments on various images to demonstrate the effective-
ness of our model.The numerical experiments show that our
proposedmodel is promising in denoising imageswithRician
noise.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11: Results of “Mouse” with 𝜎 = 20 by different methods. (a) is the original “Mouse” image and (g) is the degraded image with 𝜎 = 20.
(b)-(f) are the denoised images of MAPmethod (𝜆 = 31), GTV method (𝜆 = 32), CZ method (𝜆 = 0.035), NLMmethod, and ours (𝜆 = 0.01),
and (h)-(l) are residuals of those methods, respectively.
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