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Abstract

In this paper, we propose an approach to construct a family of two-dimensional compactly supported real-
valued symmetric quincunx tight framelets {φ;ψ1, ψ2, ψ3} in L2(R2) with arbitrarily high orders of vanishing
moments. Such symmetric quincunx tight framelets are associated with quincunx tight framelet filter banks
{a; b1, b2, b3} having increasing orders of vanishing moments and enjoying the additional double canonical prop-
erties:

b1(k1, k2) = (−1)1+k1+k2a(1− k1,−k2), b3(k1, k2) = (−1)1+k1+k2b2(1− k1,−k2), ∀ k1, k2 ∈ Z.

Moreover, the supports of all the high-pass filters b1, b2, b3 are no larger than that of the low-pass filter a. For a
low-pass filter a which is not a quincunx orthonormal wavelet filter, we show that a quincunx tight framelet filter
bank {a; b1, . . . , bL} with b1 taking the above canonical form must have L ≥ 3 high-pass filters. Thus, our family
of symmetric double canonical quincunx tight framelets has the minimum number of generators. Numerical
calculation indicates that this family of symmetric double canonical quincunx tight framelets can be arbitrarily
smooth. Using one-dimensional filters having linear-phase moments, in this paper we also provide a second
approach to construct multiple canonical quincunx tight framelets with symmetry. In particular, the second
approach yields a family of 6-multiple canonical real-valued quincunx tight framelets in L2(R2) and a family of
double canonical complex-valued quincunx tight framelets in L2(R2) such that both of them have symmetry and
arbitrarily increasing orders of smoothness and vanishing moments. Several examples are provided to illustrate
our general construction and theoretical results on canonical quincunx tight framelets in L2(R2) with symmetry,
high vanishing moments, and smoothness. Symmetric quincunx tight framelets constructed by both approaches
in this paper are of particular interest for their applications in computer graphics and image processing due to
their polynomial preserving property, full symmetry, short support, and high smoothness and vanishing moments.
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1 Introduction and motivations

In this paper we study quincunx tight framelets having full symmetry, short support, high vanishing moments and
smoothness. We say that a d×d matrix M is a dilation matrix if M is an integer matrix having all its eigenvalues
greater than one in modulus. In dimension two, typical and important dilation matrices M include

2I2 :=

[
2 0
0 2

]
, M√2 :=

[
1 1
1 −1

]
, N√2 :=

[
1 −1
1 1

]
, (1.1)

where M√2 and N√2 are called quincunx dilation matrices. For functions φ, ψ1, . . . , ψL in L2(Rd), we say that

{φ;ψ1, . . . , ψL} is a tight M -framelet for L2(Rd) if the affine system AS({φ;ψ1, . . . , ψL}) is a normalized tight
frame of L2(Rd); that is,

‖f‖2L2(Rd) =
∑
k∈Zd
|〈f, φ(· − k)〉|2 +

∞∑
j=0

L∑
`=1

∑
k∈Zd
|〈f, | det(M)|j/2ψ`(M j · −k)〉|2, ∀ f ∈ L2(Rd), (1.2)

where the affine system generated by the functions φ, ψ1, . . . , ψL is defined to be

AS({φ;ψ1, . . . , ψL}) := {φ(· − k) : k ∈ Zd} ∪ {| det(M)|j/2ψ`(M j · −k) : j ∈ N ∪ {0}, k ∈ Zd, ` = 1, . . . , L},

〈f, g〉 :=
∫
Rd f(x)g(x)dx is the inner product, and ‖f‖L2(Rd) :=

√
〈f, f〉 is the L2-norm. If AS({φ;ψ1, . . . , ψL})

is an orthonormal basis of L2(Rd), then {φ;ψ1, . . . , ψL} is called an orthonormal M -wavelet. It is known in [?,
Proposition 4] that if AS({φ;ψ1, . . . , ψL}) is a normalized tight frame (or an orthonormal basis) for L2(Rd), then
the homogeneous affine system AS({ψ1, . . . , ψL}) must be a normalized tight frame (or an orthonormal basis) for
L2(Rd) as well, where

AS({ψ1, . . . , ψL}) := {|det(M)|j/2ψ`(M j · −k) : j ∈ Z, k ∈ Zd, ` = 1, . . . , L}. (1.3)

Tight M -framelets and orthonormal M -wavelets are often derived from M -refinable functions. By l0(Zd) we denote
the set of all finitely supported sequences u = {u(k)}k∈Zd on Zd. For u ∈ l0(Zd), its Fourier series (or symbol) û is
a 2πZd-periodic trigonometric polynomial defined by û(ω) :=

∑
k∈Zd u(k)e−ik·ω, ω ∈ Rd. For a, b1, . . . , bL ∈ l0(Zd)

such that â(0) =
∑

k∈Zd a(k) = 1, the following functions

φ̂(ω) :=

∞∏
j=1

â((M>)−jω), ψ̂`(ω) := b̂`((M
>)−1ω)φ̂((M>)−1ω), ω ∈ Rd, ` = 1, . . . , L (1.4)

are well defined ([?]). In the spatial domain, φ satisfies the following refinement equation

φ = | det(M)|
∑
k∈Zd

a(k)φ(M · −k)

and φ is called the M -refinable function/distribution associated with the filter/mask a. For the functions φ, ψ1,
. . ., ψL defined in (??) through the filters a, b1, . . . , bL ∈ l0(Zd) satisfying â(0) = 1, {φ;ψ1, . . . , ψL} is a tight
M -framelet for L2(Rd) if and only if {a; b1, . . . , bL} is a tight M -framelet filter bank ; that is,

|â(ω)|2 +
L∑
`=1

|b̂`(ω)|2 = 1 and â(ω)â(ω + 2πξ) +
L∑
`=1

b̂`(ω)b̂`(ω + 2πξ) = 0, ξ ∈ ΩM\{0}, (1.5)

where ΩM is a set of representatives of the distinct cosets of the quotient group [(M>)−1Zd]/Zd and is given by

ΩM := [(M>)−1Zd] ∩ [0, 1)d. (1.6)

As observed in [?, ?], the equations in (??) for a tight M -framelet filter bank only depend on the lattice MZd
instead of M itself. That is, for two d× d integer matrices M and N satisfying

MZd = NZd, (1.7)
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{a; b1, . . . , bL} is a tight M -framelet filter bank if and only if it is a tight N -framelet filter bank. This simple
observation in [?, ?] comes from the fact that (??) is equivalent to M = NE for some integer matrix E with
|det(E)| = 1, which trivially implies (M>)−1Zd = (N>)−1Zd. For example, the two quincunx dilation matrices in
(??) satisfy M√2Z

2 = N√2Z
2, which is the quincunx lattice {(j, k) ∈ Z2 : j + k is even}.

When (??) holds, it was proved in [?] that the corresponding homogeneous affine system AS({ψ1, . . . , ψL})
forms a normalized tight frame in L2(Rd), which is called the unitary extension principle. Under various conditions
on φ, ψ1, . . . , ψL and a, b1, . . . , bL, tight framelets have been studied in [?, ?, ?, ?] and references therein. Under
the natural and necessary condition â(0) = 1, the above one-to-one correspondence between a tight M -framelet
{φ;ψ1, . . . , ψL} and a tight M -framelet filter bank {a; b1, . . . , bL} has been presented in [?, Lemma 2.1, Theo-
rems 2.2 and 2.3] or more generally, [?, Corollary 12 and Theorem 17] for fully nonstationary tight framelets. In
particular, if {a; b1, . . . , bL} is a tight M -framelet filter bank with â(0) = 1, then the functions φ, ψ1, . . . , ψL defined
in (??) must be square integrable functions in L2(Rd) (see [?, Lemma 2.1]). Due to this one-to-one correspon-
dence between tight M -framelets and tight M -framelet filter banks, in this paper we shall concentrate on tight
M -framelet filter banks. Wavelets and framelets using the quincunx dilation matrices in (??) are called quincunx
wavelets or quincunx framelets in this paper.

For some applications such as computer graphics and computer aided geometric design, symmetry of framelets
and wavelets is highly desired. Let us now discuss the general symmetry of a filter. Let G be a finite set of d× d
integer matrices that forms a group under the usual matrix multiplication. We say that a filter a ∈ l0(Zd) is
G-symmetric about a point c ∈ Rd if

a(E(k − c) + c) = a(k), ∀k ∈ Zd and ∀E ∈ G. (1.8)

However, the symmetry of a low-pass filter a does not automatically guarantee the symmetry of the M -refinable
function φ defined in (??). As discussed in [?, ?, ?], some compatibility condition is needed. We say that a dilation
matrix M is compatible with a symmetry group G if MEM−1 ∈ G for all E ∈ G. If M is compatible with a
symmetry group G, then φ in (??) is G-symmetric about cφ := (M − Id)−1c (i.e., φ(E(· − cφ) + cφ) = φ for all
E ∈ G) if and only if a is G-symmetric about c (see [?, Proposition 2.1] and [?, ?]). One of the commonly used
two-dimensional symmetry groups in computer graphics is the dihedral group D4 given by

D4 :=

{
±
[
1 0
0 1

]
,±
[
1 0
0 −1

]
,±
[
0 1
1 0

]
,±
[

0 1
−1 0

]}
. (1.9)

Note that M√2 is compatible with the symmetry group D4 and its subgroup {I2,−I2}, but it is not compatible

with the symmetry group D+
4 := {±diag(1, 1),±diag(1,−1)}. A matrix N is G-equivalent to M if N = EMF

for some E,F ∈ G. Note that N√2 in (??) is D4-equivalent to M√2. It is of interest to point out here that [?,
Theorem 2] shows that every 2 × 2 matrix M compatible with D4 must be D4-equivalent to either M = cI2 or
M = cM√2 for some c ∈ Z. This makes the quincunx dilation matrices M√2 and N√2 particularly interesting
for constructing tight framelets having the full symmetry D4. For a low-pass D4-symmetric filter a, since N√2

is D4-equivalent to M√2, we shall see in this paper that the N√2-refinable function is just a shifted version of
the M√2-refinable function. However, the M√2-refinable function and the N√2-refinable function associated with
a low-pass filter a without symmetry could be completely different ([?, ?]). Because we are mainly interested in
symmetric quincunx tight framelet filter banks, as a consequence, there are no essential differences for using either
M√2 or N√2. Therefore, for simplicity, we mainly discuss the dilation matrix M√2 in this paper.

A tight M -framelet filter bank {a; b1, . . . , bL} with L = |det(M)| − 1 is called an orthonormal M -wavelet filter
bank. It is a simple consequence of the equations in (??) (by rewriting the equations in (??) in a matrix form)
that the low-pass filter a in a tight M -framelet filter bank must satisfy∑

ξ∈ΩM

|â(ω + 2πξ)|2 ≤ 1, ∀ω ∈ Rd. (1.10)

If the above inequality becomes an identity for all ω ∈ Rd, then the low-pass filter a is called an orthonormal
M -wavelet filter. If {a; b1, . . . , bL} is an orthonormal M -wavelet filter bank, then a must be an orthonormal
M -wavelet filter and its corresponding {φ;ψ1, . . . , ψL} in (??) is a tight M -framelet for L2(Rd) but it may fail
to be an orthonormal M -wavelet for L2(Rd) ([?]). For a filter bank {a; b1, . . . , bL} with L = |det(M)| − 1 and
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â(0) = 1, {φ;ψ1, . . . , ψL} in (??) is an orthonormal M -wavelet for L2(Rd) if and only if {a; b1, . . . , bL} is an
orthonormal M -wavelet filter bank and sm(a,M) > 0, where the technical quantity sm(a,M) is defined in (??).
See [?, ?, ?, ?, ?, ?, ?, ?, ?] and references therein for orthonormal wavelets. For a d × d dilation matrix M , it
is trivial to see that |det(M)| ≥ 2. For |det(M)| = 2, an orthonormal M -wavelet filter bank {a; b1, . . . , bL} with
L = |det(M)| − 1 has only one high-pass filter b1 which is derived from the low-pass filter a by

b̂1(ω) := e−iω·γ â(ω + 2πξ), ω ∈ Rd with γ ∈ Zd\[MZd], ξ ∈ ΩM\{0}. (1.11)

Therefore, for a dilation matrix M with | det(M)| = 2, an orthonormal M -wavelet {φ;ψ1, . . . , ψL} with L =
|det(M)| − 1 has only one wavelet function ψ1. Hence, it is of interest in both theory and application to consider
dilation matrices M with |det(M)| = 2. This is another motivation for us to consider the quincunx dilation
matrices in (??).

Due to the importance of high dimensional problems, multivariate wavelets and framelets have been studied
for many years now. For example, quincunx orthonormal wavelets have been investigated in [?, ?] and quincunx
biorthogonal wavelets have been studied in [?, ?, ?]. Using the dilation matrix M√2 and perturbation of the
Daubechies orthonormal wavelets, a family of quincunx orthonormal wavelets with arbitrarily smoothness orders
has been reported in [?]. However, compactly supported continuous quincunx orthonormal wavelets cannot have
symmetry (see [?] and [?, Proposition 2.2]). Moreover, it still remains unknown so far whether there exists a
C1 compactly supported orthonormal N√2-refinable function ([?] and [?, Example 3.6]). In fact, if the dilation
matrix M√2 is changed into N√2 for the family of quincunx wavelet filter banks in [?], as a known phenomenon
observed in [?], their smoothness orders are no more than one and however decreases to zero. The quincunx
biorthogonal wavelets constructed in some literature such as [?, ?] have nice smoothness and/or full D4-symmetry.
However the biorthogonal wavelets usually have large supports and the corresponding wavelet transforms have
large condition numbers. Pairs of quincunx dual frames have been obtained in [?, Corollary 3.4] having only three
wavelet functions without symmetry. Due to the difficulty in constructing multivariate wavelets with desirable
properties such as symmetry, short support and high vanishing moments (see [?, ?, ?, ?, ?] and references therein),
the current interest has been focusing on the construction of tight M -framelets with various dilation matrices and
properties. Tight M -framelets have been studied and constructed in many articles. For example, the topic of
wavelet frames has been investigated in [?, ?, ?, ?, ?, ?, ?] and references therein. The theory and construction of
one-dimensional tight 2-framelets are quite complete so far, for example, see [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?] and many
references therein. In particular, if a is {1,−1}-symmetric, the construction of symmetric 2-framelet filter bank
{a; b1, . . . , bL} with L = 2 or L = 3 and with short support have been completely solved in [?, ?, ?] with efficient
algorithms. The construction of multivariate tight framelets has been reported in [?, ?, ?, ?, ?, ?, ?, ?, ?] and
references therein. The applications of tight framelets to various applications such as image restoration have been
investigated in [?, ?, ?, ?]. Recently, wavelet frames have been used for surface processing [?, ?]. Furthermore, the
connections of wavelet frame based, especially spline tight wavelet frames based, approach for image restoration
to PDE based methods have been established in [?] for the total variational method and extended in [?] for the
nonlinear diffusion partial differential equation based methods, as well as in [?] for variational models on the space
of piecewise smooth functions.

We now explain our motivations to study quincunx tight framelets and quincunx tight framelet filter banks.
From the viewpoint of theory and application for particular areas such as computer aided geometric design and
image processing, the following are some key desirable features of a tight M -framelet filter bank {a; b1, . . . , bL}:

(i) The high-pass filters b1, . . . , bL have desired high orders of vanishing moments.

(ii) The low-pass filter a has full symmetry and all the high-pass filters b1, . . . , bL possess desired symmetry.

(iii) The number L of high-pass filters should be relatively small for computational efficiency.

(iv) The low-pass filter a should have short support, while the supports of all high-pass filters b1, . . . , bL should
not be larger than the support of the low-pass filter a.

(v) The smoothness exponent sm(a,M) (see (??)) can be arbitrarily large.
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Let {φ;ψ1, . . . , ψL} be its associated tight M -framelet for L2(Rd), where φ, ψ1, . . . , ψL are defined in (??). Item
(i) implies that all the wavelet generators ψ1, . . . , ψL have high orders of vanishing moments. The high order of
vanishing moments in item (i) is closely related to sparse approximation by tight framelets and necessarily requires
that the low-pass filter a should have high order of sum rules. Item (v) implies that the smoothness exponents of all
the functions φ, ψ1, . . . , ψL can be arbitrarily large since sm(φ) ≥ sm(a,M) and sm(ψ1) = · · · = sm(ψL) = sm(φ)
(see (??)). The definitions of vanishing moments vm(a), sum rules sr(a,M), and smoothness exponents sm(φ) and
sm(a,M) will be defined in Section 2. High orders of vanishing moments in item (i) and smoothness in item (v)
are of theoretical interest and importance for characterizing function spaces by framelets. Item (ii) implies that all
the functions φ, ψ1, . . . , ψL have symmetry. The symmetry property in item (ii) is indispensable for applications
of tight framelets to certain areas such as computer graphics and is often strongly desired in areas such as image
processing for better visual quality. Item (iv) implies that all φ, ψ1, . . . , ψL have shortest possible support. Items
(iii) and (iv) are important in applications for computational efficiency. We also point out here that because
different applications require different desirable properties of framelets and wavelets, it is not surprising that the
above outlined desirable properties in items (i)–(v) may not be needed or should be changed accordingly for a
particular application. For example, instead of high orders of vanishing moments in item (i), consecutive orders of
vanishing moments starting from vanishing moment one are found to be very useful in image processing [?, ?, ?].
To achieve directionality in [?, ?] for applications of complex tight framelets in image/video denoising, symmetry
of the high-pass filters in item (ii) is sacrificed (but the low-pass filter has symmetry and the high-pass filters have
pairwise symmetry). Nevertheless, the outlined properties in items (i)–(v) are highly desired for applications in
computer graphics, computer aided geometric design as well as other applications.

Despite numerous effort by many researchers on constructions of multivariate tight M -framelets and tight
M -framelet filter banks in many papers, none of them can really achieve all the above desirable properties in items
(i)–(v). For example, tight M -framelet filter banks with short supports have been constructed in [?, ?] from a
special class of almost separable low-pass filters. For a d-dimensional filter a ∈ l0(Zd), we say that a is an almost
separable filter if its symbol is a finite product of symbols of one-dimensional filters as follows:

â(ω) =
K∏
`=1

â`(γ` · ω), ω ∈ Rd with a` ∈ l0(Z), γ` ∈ Zd. (1.12)

Because the one-dimensional filters a` used in [?, ?] are Haar type low-pass filters with sum rule order one, it is
not surprising that all the constructed tight framelets in [?, ?] have only one vanishing moment. For every d× d
dilation matrix M , tight M -framelet filter banks with arbitrarily high vanishing moments have been reported in
[?, ?] by employing the simple observation in (??) on the role of a dilation matrix M in a tight M -framelet filter
bank. Note that every dilation matrix M can be written as M = EΛF (see [?, ?]), where E,Λ, F are integer
matrices such that |det(E)| = |det(F )| = 1 and Λ is diagonal. This allows [?, Theorem 1.1 and Lemma 3.1]
and [?, Corollary 3.4] to trivially have a tight Λ-framelet (or orthonormal Λ-wavelet) filter bank {a; b1, . . . , bL}
with arbitrarily high vanishing moments and short support through tensor product of one-dimensional ones and
consequently, {a(E·); b1(E·), . . . , bL(E·)} is a tight M -framelet (or orthonormal M -wavelet) filter bank. Note that

a(E·) is an almost separable filter by â(E·)(ω) = â((E>)−1ω). Tight M -framelet filter banks derived from almost
separable low-pass filters can be also trivially constructed in [?] through projecting tensor product tight framelet
filter banks. In particular, tight 2Id-framelet filter banks for every box spline filter having at least order one
sum rule can be painlessly constructed (see [?, Theorem 2.5]). In fact, all the constructions in [?, ?, ?, ?, ?]
can be regarded as various special cases of the projection method developed in [?]. Using sum of squares, for
a (two-dimensional) low-pass filter a satisfying (??), a general method has been proposed in [?, ?]. From any
box-spline filter a having at least order one sum rules, recently [?] constructs a tight 2Id-framelet filter bank whose
high-pass filters have short support as that of the low-pass filter a and the number L− 1 is equal to the number of
nonzero coefficients in a. But all the constructed tight 2Id-framelet filter banks in [?] cannot have more than one
vanishing moment, since the method in [?] requires a low-pass filter to have nonnegative coefficients. However,
all the constructed tight framelets in [?, ?, ?, ?, ?, ?, ?, ?] either lack symmetry or have a very large number
L of high-pass filters, while the supports of the constructed high-pass filters in [?] could be much larger than
the support of the low-pass filter. Beyond the above constructions of multivariate tight M -framelet filter banks,
particular examples of tight M -framelet filter banks have been given in [?, ?] and other references. However, it
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remains unclear whether one can construct a family of tight M -framelet filter banks (in particular, for M = M√2

due to [?, Theorem 2] on all dilation matrices compatible with the symmetry group D4) achieving all the desirable
properties in items (i)–(v).

By (??), the equations for a tight M√2-framelet filter bank {a; b1, . . . , bL} become

|â(ω)|2 + |b̂1(ω)|2 +
L∑
`=2

|b̂`(ω)|2 = 1, (1.13)

â(ω)â(ω + (π, π)) + b̂1(ω)b̂1(ω + (π, π)) +
L∑
`=2

b̂`(ω)b̂`(ω + (π, π)) = 0. (1.14)

If in addition the following relation (which is a special case of (??)) holds:

b̂1(ω) = e−iω·(1,0)â(ω + (π, π)), ω ∈ R2, (1.15)

we call {a; b1, . . . , bL} a canonical quincunx tight framelet filter bank. Moreover, if {a; b1, . . . , b2s−1} is a tight
M√2-framelet filter bank satisfying (??) and

b̂2`+1(ω) = e−iω·(1,0)b̂2`(ω + (π, π)), ` = 1, . . . , s− 1, ω ∈ R2, (1.16)

then it is called an s-multiple canonical quincunx tight framelet filter bank. In particular, for s = 2, it is called a
double canonical quincunx tight framelet filter bank. Note that the particular vector (1, 0) in (??) and (??) can be
replaced by any vector from Z2\[M√2Z

2]. Also note that (??) is equivalent to

b1(k1, k2) = (−1)1+k1+k2a(1− k1,−k2), k1, k2 ∈ Z

and (??) is equivalent to

b2`+1(k1, k2) = (−1)1+k1+k2b2`(1− k1,−k2), k1, k2 ∈ Z, ` = 1, . . . , s− 1.

The goal of this paper is to construct a family of quincunx tight framelet filter banks achieving all the above
desirable properties in items (i)–(v) with the additional canonical property in (??) and (??). For an s-multiple
canonical quincunx tight framelet filter bank {a; b1, . . . , b2s−1}, the conditions in (??) and (??) automatically imply
(??) with L = 2s − 1. Hence, {a; b1, . . . , b2s−1} is an s-multiple canonical quincunx tight framelet filter bank if
and only if

s−1∑
`=1

[
|b̂2`(ω)|2 + |b̂2`(ω + (π, π))|2

]
= 1− |â(ω)|2 − |â(ω + (π, π))|2, (1.17)

which is simply a problem of sum of squares. If {a; b1, . . . , bL} is a canonical quincunx tight framelet filter bank
satisfying (??) and if a is not an orthonormal M√2-wavelet filter, then it is quite trivial to show that L ≥ 3.
Indeed, if L = 1, then {a; b1} must be an orthonormal M√2-wavelet filter bank and consequently, a must be an
orthonormal M√2-wavelet filter, which is a contradiction to our assumption on a. Hence, L ≥ 2. Suppose that

L = 2. By (??), the equation in (??) with L = 2 becomes b̂2(ω)b̂2(ω+(π, π)) = 0, from which we must have b2 = 0.
This implies L = 1, a contradiction. Therefore, we must have L ≥ 3. On the other hand, as shown in [?, ?], there
is a very restrictive necessary and sufficient condition for a symmetric tight 2-framelet filter bank {a; b1, . . . , bL}
with L = 2. Due to similar reasons, it is natural that L = 3 is the smallest possible number of high-pass filters for
a symmetric quincunx tight framelet filter bank {a; b1, . . . , bL}. One of the main goals of this paper is to construct
a family of double canonical quincunx tight framelet filter banks {a; b1, b2, b3} with symmetry, short supports, and
increasing orders of vanishing moments achieving all the desirable properties in items (i)–(v).

The structure of the paper is as follows. In Section ??, we shall first introduce a family of symmetric minimally
supported two-dimensional low-pass filters with arbitrarily high sum rule orders and linear-phase moments. Then
we shall employ such symmetric low-pass filters to construct a family of compactly supported tight framelets with
double canonical quincunx tight framelet filter banks {a; b1, b2, b3} with symmetry and arbitrarily high orders
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of vanishing moments. Numerical calculation also indicates that the smoothness exponents of this family of
compactly supported tight framelets can be arbitrarily large. In Section ??, we shall generalize the particular
construction in Section ?? and propose a general construction of double canonical quincunx tight framelet filter
banks with symmetry and vanishing moments which are derived from one-dimensional filters with linear-phase
moments. A few illustrative examples of such double canonical quincunx tight framelet filter banks {a; b1, b2, b3}
are given in Sections ?? and ??. In Section ??, we shall take another approach by studying multiple canonical
symmetric quincunx tight framelet filter banks using almost separable low-pass filters. In particular, we present a
family of compactly supported 6-multiple canonical real-valued quincunx tight framelets and a family of compactly
supported double canonical complex-valued quincunx tight framelets such that both of them have symmetry and
arbitrarily high orders of smoothness exponents and vanishing moments. We complete this paper by providing a
detailed proof to Theorems ?? and ?? in Appendix ??.

2 Double canonical symmetric quincunx tight framelets with minimal sup-
port

In this section we shall first discuss how to construct a family of minimally supported symmetric low-pass filters
with increasing orders of sum rules and linear-phase moments. Such a family of low-pass filters is of particular
interest in their applications to computer graphics and computer aided geometric design, due to their polynomial
preservation property, short support and high smoothness. Then we shall use such low-pass filters to build double
canonical symmetric quincunx tight framelet filter banks with increasing order of vanishing moments.

For an integer j such that 1 ≤ j ≤ d, by ∂j we denote the partial derivative with respect to the jth coordinate
of Rd. Define N0 := N ∪ {0}. For any µ = (µ1, . . . , µd) ∈ Nd0, we define |µ| := |µ1| + · · · + |µd| and ∂µ the
differentiation operator ∂µ11 · · · ∂

µd
d . For a nonnegative integer m and two smooth functions f, g, we shall use the

following big O notation
f(ω) = g(ω) +O(‖ω − ω0‖m), ω → ω0 (2.1)

to mean the following relation:

∂µf(ω0) = ∂µg(ω0), ∀ µ ∈ Nd0 satisfying |µ| < m. (2.2)

For smooth functions, as shown in [?, Lemma 1], using the big O notation in (??) to mean (??) agrees with the
commonly accepted big O notation in the literature.

Let a ∈ l0(Zd) be a filter. We say that the filter a has order m sum rules with respect to a dilation matrix
M if â(0) = 1 and â(ω + 2πξ) = O(‖ω‖m) as ω → 0 for all ξ ∈ ΩM\{0}. In particular, we define sr(a,M) := m
with m being the largest such integer. We say that the filter a has order n vanishing moments if â(ω) = O(‖ω‖n)
as ω → 0. In particular, we define vm(a) := n with n being the largest such integer. We say that a filter
a ∈ l0(Zd) has order n linear-phase moments with phase c ∈ Rd if â(ω) = e−ic·ω + O(‖ω‖n) as ω → 0. In
particular, we define lpm(a) := n with n being the largest such integer. The notion of linear-phase moments
has been introduced in [?] for studying symmetric complex orthonormal 2-wavelets and plays a central role in
the construction of complex symmetric orthonormal wavelets, subdivision schemes with polynomial preservation
property in computer graphics, and symmetric tight framelets with vanishing moments (see [?, ?, ?, ?, ?]).

Suppose that {a; b1, . . . , bL} is a tight M -framelet filter bank. Through the equations in (??) and assume that
â(0) = 1, it is shown (see e.g. [?, ?]) that

min(vm(b1), . . . , vm(bL)) = min(sr(a,M), 1
2 lpm(a ∗ a?)), (2.3)

where â ∗ a?(ω) := |â(ω)|2. It is straightforward to see that lpm(a ∗ a?) ≥ lpm(a). If the low-pass filter a is
symmetric about a point c ∈ Rd: a(2c − k) = a(k) for all k ∈ Zd, it has been shown in [?, Proposition 5.3] that
lpm(a ∗ a?) = lpm(a) and for a tight M -framelet filter bank {a; b1, . . . , bL} with â(0) = 1,

min(vm(b1), . . . , vm(bL)) = min(sr(a,M), 1
2 lpm(a)). (2.4)

Therefore, to construct quincunx tight framelet filter banks with symmetry and high vanishing moments, it is
necessary to have low-pass filters having high orders of sum rules and linear-phase moments.
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The following result presents a family of minimally supported D4-symmetric low-pass filters having increasing
orders of sum rules and linear-phase moments.

Theorem 2.1. For every positive integer n, there exists a unique two-dimensional filter a2D
2n,2n such that a2D

2n,2n is

supported inside [1− n, n]2 ∩ Z2, has order 2n sum rules with respect to M√2 and order 2n linear-phase moments
with phase c := (1/2, 1/2). Moreover,

(i) the filter a2D
2n,2n is real-valued and is given by

â2D
2n,2n(ω1, ω2) =

1

2
[û(ω1 + ω2) + û(ω1 − ω2)e−iω2 ], (2.5)

where û(ω) := (âI2n(ω/2)− âI2n(ω/2 + π))e−iω/2 and aI2n is the interpolatory 2-wavelet filter given by

âI2n(ω) := cos2n(ω/2)

n−1∑
j=0

(
n− 1 + j

j

)
sin2j(ω/2), ω ∈ R; (2.6)

(ii) the filter a2D
2n,2n is D4-symmetric about the point c = (1/2, 1/2);

(iii) φN
√

2 = φM
√
2(·+ (1, 1)) and φM

√
2 is real-valued with the following symmetry property:

φM
√
2(E(· − cφ) + cφ) = φM

√
2 , ∀E ∈ D4 (2.7)

with cφ := (M√2− I2)−1c = (3/2, 1/2), where φM
√

2 and φN
√
2 are the refinable functions associated with the

filter a and the dilation matrices M√2, N
√

2 in (??), respectively, and are defined in the frequency domain
through

φ̂M
√
2(ω) :=

∞∏
j=1

â2D
2n,2n((M>√

2
)−jω) and φ̂N

√
2(ω) :=

∞∏
j=1

â2D
2n,2n((N>√

2
)−jω), ω ∈ R2. (2.8)

The proof of Theorem ?? is given in Appendix ??. We now derive double canonical quincunx symmetric tight
framelet filter banks from the low-pass filters a2D

2n,2n constructed in Theorem ??.

Theorem 2.2. Let a = a2D
2n,2n with n ∈ N be the filter constructed in (??) of Theorem ??. Define a high-pass filter

b2 by

b̂2(ω1, ω2) :=
1

2
[v̂(ω1 + ω2) + v̂(ω1 − ω2)e−iω2 ] with v̂(ω) := 2âDn (ω/2)âDn (ω/2 + π), (2.9)

and define high-pass filters b1, b3 as in (??) and (??), where aDn ∈ l0(Z) is a real-valued Daubechies orthonormal

2-wavelet filter satisfying |âDn (ω)|2 = âI2n(ω). Then {a; b1, b2, b3} is a double canonical quincunx tight framelet filter
bank satisfying

(i) all high-pass filters b1, b2, b3 have real coefficients and the following symmetry:

b1(E(k − c̊) + c̊) = det(E)b1(k), ∀ k ∈ Z2, E ∈ D4 with c̊ := (1/2,−1/2) (2.10)

and
b2(k1, 1− k2) = b2(k1, k2) and b3(k1,−1− k2) = −b3(k1, k2), ∀ k1, k2 ∈ Z; (2.11)

(ii) all high-pass filters b1, b2, b3 have at least order n vanishing moments;

(iii) the supports of b1, b2, b3 are no larger than that of the low-pass filter a.

Moreover, {φM√2 ;ψ1, ψ2, ψ3} is a tight M√2-framelet in L2(R2) such that φM
√

2 has the symmetry in (??),

ψ1(E(· − c1) + c1) = det(E)ψ1, ∀E ∈ D4 with c1 := (1, 1) (2.12)

and
ψ2(x2 + 1, x1 − 1) = ψ2(x1, x2), ψ3(x2, x1) = −ψ3(x1, x2), (2.13)

where φM
√
2 is defined in (??) and ψ̂`(ω) := b̂`((M

>√
2
)−1ω)φ̂M

√
2((M>√

2
)−1ω) for ` = 1, 2, 3.
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Proof. Let û(ω) = (âI2n(ω/2)−âI2n(ω/2+π))e−iω/2 = (2âI2n(ω/2)−1)e−iω/2, where we use âI2n(ω/2)+âI2n(ω/2+π) =
1. By the definition of a = a2D

2n,2n in (??), we have

|â(ω1, ω2)|2 + |â(ω1 + π, ω2 + π)|2 =
1

2

[
|û(ω1 + ω2)|2 + |û(ω1 − ω2)|2

]
. (2.14)

Similarly, by the definition of b2, we have

|b̂2(ω1, ω2)|2 + |b̂2(ω1 + π, ω2 + π)|2 =
1

2

[
|v̂(ω1 + ω2)|2 + |v̂(ω1 − ω2)|2

]
. (2.15)

Since |âDn (ω)|2 = âI2n(ω), we have

1− |û(ω)|2 = 1− |2âI2n(ω/2)− 1|2 = 1− 4(âI2n(ω/2))2 + 4âI2n(ω/2)− 1

= 4âI2n(ω/2)(1− âI2n(ω/2)) = 4âI2n(ω/2)âI2n(ω/2 + π) = |v̂(ω)|2.

Consequently, (??) holds with s = 2. Therefore, {a; b1, b2, b3} is a double canonical quincunx tight framelet filter
bank.

Since a is D4-symmetric about the point c = (1/2, 1/2), (??) is equivalent to

â(E>ω) = ei(I2−E)c·ωâ(ω), ω ∈ R2, E ∈ D4. (2.16)

For E ∈ D4, we have (I − E)(1, 1)> ∈ 2Z2 and by the definition of b1,

b̂1(E>ω) = e−iω·E(1,0)â(E>ω + (π, π)) = e−iω·E(1,0)â(E>(ω + (π, π)))

= e−iω·E(1,0)e−i(I−E)c·(ω+(π,π))â(ω + (π, π)) = det(E)ei(I−E)̊c·ω b̂1(ω).

This proves (??). By the definitions of b2 and b̂3(ω) = e−iω1 b̂2(ω + (π, π)), we have

b̂2(ω1,−ω2) = b̂2(ω1, ω2)eiω2 and b3(ω1,−ω2) = −b̂3(ω1, ω2)e−iω2 ,

which are equivalent to (??). Therefore, item (i) holds.
Item (ii) follows directly from min(vm(b1), vm(b2), vm(b3)) = min(sr(a,M√2), 1

2 lpm(a)) = n due to sr(a,M√2) =
lpm(a) = 2n. Item (iii) can be directly checked.

By [?, Proposition 2.1], the identity in (??) follows directly from (??) and (??), while the identities in (??)
follows directly from (??) and (??).

For a function φ ∈ L2(Rd), its Sobolev smoothness exponent sm(φ) is defined to be

sm(φ) := sup
{
τ ∈ R :

∫
Rd
|φ̂(ξ)|2(1 + ‖ξ‖2)τdξ <∞

}
. (2.17)

If φ is an M -refinable function associated with a filter a ∈ l0(Zd), then the smoothness exponent sm(φ) is closely
linked to a quantity sm(a,M) introduced in [?]. For u ∈ l0(Zd) and µ = (µ1, . . . , µd) ∈ Nd0, we define

∇ku := u− u(· − k), k ∈ Zd and ∇µ := ∇µ1e1 · · · ∇
µd
ed
, (2.18)

where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd has its only nonzero entry 1 at the jth coordinate. By δ we denote the Dirac
sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}. For a ∈ l0(Zd) and a d × d dilation matrix M , let
m := sr(a,M). For 1 ≤ p ≤ ∞, the smoothness exponent smp(a,M) (see [?]) is defined to be

smp(a,M) := d
p − d log| det(M)| ρm(a,M)p and sm(a,M) := sm2(a,M), (2.19)

where
ρm(a,M)p := sup

{
lim
n→∞

‖∇µSna,Mδ‖
1/n

lp(Zd)
: µ ∈ Nd0, |µ| = m

}
(2.20)
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and the subdivision operator Sa,M is defined to be

[Sa,Mv](n) := |det(M)|
∑
k∈Zd

v(k)a(n−Mk), n ∈ Zd. (2.21)

The quantity sm(a,M) can be computed by [?, Algorithm 2.1]. We say that M is isotropic if M is similar to a
diagonal matrix diag(λ1, . . . , λd) with |λ1| = · · · = |λd|. Note that the two quincunx matrices M√2 and N√2 in
(??) are isotropic. For an isotropic dilation matrix M , we have sm(φ) ≥ sm(a,M) and if in addition the integer
shifts of φ are stable (i.e.,

∑
k∈Zd |φ̂(ω + 2πk)|2 6= 0 for all ω ∈ Rd), then sm(φ) = sm(a,M) (e.g., see [?, ?] and

many references therein).
The smoothness exponents sm(a2D

2n,2n,M
√

2) and sm(aI2n, 2) for n = 1, . . . , 10 in Table ?? are calculated by [?,
Algorithm 2.1] using D4 symmetry group. Note that sm(a,N√2) = sm(a,M√2) since a is D4-symmetric.

n 1 2 3 4 5 6 7 8 9 10

sm(a2D
2n,2n,M

√
2) 2.0 3.0365 3.5457 4.0269 4.4970 4.9658 5.4350 5.9038 6.3714 6.8374

sm(aI2n, 2) 1.5 2.4408 3.1751 3.7931 4.3441 4.8620 5.3628 5.8529 6.3352 6.8115

Table 1: The smoothness exponents of the quincunx low-pass filters a2D
2n,2n in (??) and of interpolatory 2-wavelet

filters aI2n in (??) for n = 1, . . . , 10, computed by [?, Algorithm 2.1]. Note that sm(a2D
2n,2n, N

√
2) = sm(a2D

2n,2n,M
√

2).

We complete this section by presenting two examples to illustrate the results in Theorems ?? and ??.

Example 2.1. Take n = 1 in Theorems ?? and ??. Then a = a2D
2,2 in (??) with n = 1 is given by

â(ω1, ω2) =
1

4
(1 + e−iω1)(1 + e−iω2)

and

b̂1(ω) := e−iω1 â(ω + (π, π)) =
1

4
(1− e−iω1)(eiω2 − 1).

By âD1 (ω) := 1
2(1 + e−iω), we have v̂(ω) := 2âD1 (ω/2)âD1 (ω/2 + π) = 1

2(1− e−iω). Then

b̂2(ω1, ω2) :=
1

2
(v̂(ω1 + ω2) + v̂(ω1 − ω2)e−iω2) =

1

4
(1− e−iω1)(1 + e−iω2)

and

b̂3(ω) := e−iω1 b̂2(ω + (π, π)) =
1

4
(1 + e−iω1)(1− eiω2).

The double canonical quincunx tight framelet filter bank {a; b1, b2, b3} is given by

a =
1

4

[
1 1

1 1

]
[0,1]2

, b1 =
1

4

[
−1 1

1 −1

]
[0,1]×[−1,0]

, b2 =
1

4

[
1 −1

1 −1

]
[0,1]2

, b3 =
1

4

[
1 1
−1 −1

]
[0,1]×[−1,0]

.

Note that sr(a,M√2) = 2, lpm(a) = 2, and sm(a,M√2) = sm(a,N√2) = 2. The filter a is D4-symmetric

about (1
2 ,

1
2), while b1 has the symmetry in (??) and b2, b3 have the symmetry in (??) with vm(b1) = 2 and

vm(b2) = vm(b3) = 1. Let φ, ψ1, ψ2, ψ3 be defined in (??) with M = M√2, L = 3 and a = a2D
2,2 . Then {φ;ψ1, ψ2, ψ3}

is a tight M√2-framelet in L2(R2) such that φ, ψ1, ψ2, ψ3 have symmetry property as in (??), (??), and (??).

Example 2.2. Take n = 2 in Theorems ?? and ??. Then a = a2D
4,4 in (??) with n = 2 is given by

â(ω1, ω2) =
1

32

(
9 + 9e−iω1 + 9e−iω2 + 9e−i(ω1+ω2) − ei(ω1+ω2) − ei(ω2−2ω1) − ei(ω1−2ω2) − e−i2(ω1+ω2)

)
.

By b̂1(ω) := e−iω1 â(ω + (π, π)), the filters a and b1 are given by

a =
1

32


−1 0 0 −1
0 9 9 0

0 9 9 0
−1 0 0 −1


[−1,2]2

, b1 =
1

32


1 0 0 −1

0 −9 9 0

0 9 −9 0
−1 0 0 1


[−1,2]×[−2,1]

.
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Let aD2 be the Daubechies orthonormal 2-wavelet filter given by

âD2 (ω) =
1

8

(
(1−

√
3)eiω + (3−

√
3) + (3 +

√
3)e−iω + (1 +

√
3)e−i2ω

)
. (2.22)

Define v̂(ω) := 2âD2 (ω/2)âD2 (ω/2 + π). Then b̂2(ω1, ω2) := 1
2(v̂(ω1 + ω2) + v̂(ω1 − ω2)e−iω2) is given by

b2 =
1

32


√

3− 2 0 0 2 +
√

3

0 −
√

3 + 6 −
√

3− 6 0

0 −
√

3 + 6 −
√

3− 6 0√
3− 2 0 0 2 +

√
3


[−1,2]2

.

By b̂3(ω) := e−iω1 b̂2(ω + (π, π)), the filter b3 is given by

b3 =
1

32


−2−

√
3 0 0

√
3− 2

0
√

3 + 6 −
√

3 + 6 0

0 −
√

3− 6
√

3− 6 0

2 +
√

3 0 0 2−
√

3


[−1,2]×[−2,1]

.

Note that sr(a,M√2) = 4, lpm(a) = 4, and sm(a,M√2) = sm(a,N√2) ≈ 3.03654. Hence φM
√
2 , φN

√
2 ∈ C2(R2).

The filter a is D4-symmetric about (1/2, 1/2), while b1 has the symmetry in (??) and b2, b3 have the symmetry in
(??) with vm(b1) = 4 and vm(b2) = vm(b3) = 2. The filter bank {a; b1, b2, b3} is a double canonical quincunx tight
frame filter bank. Let φ, ψ1, ψ2, ψ3 be defined in (??) with M = M√2, L = 3 and a = a2D

4,4 . Then {φ;ψ1, ψ2, ψ3} is

a tight M√2-framelet in L2(R2) such that all φ, ψ1, ψ2, ψ3 all have symmetry property as in (??), (??), and (??).

3 Double canonical symmetric quincunx tight framelets derived from one-
dimensional filters

Motivated by the special form in (??) for the two-dimensional quincunx low-pass filters a2D
2n,2n, we now further

generalize the construction and results in Section ?? for building double canonical symmetric quincunx tight
framelets from one-dimensional filters.

Theorem 3.1. Let u ∈ l0(Z) be a one-dimensional finitely supported filter with û(0) = 1. Define a two-dimensional
filter a2D by

â2D(ω1, ω2) =
1

2
[û(ω1 + ω2) + û(ω1 − ω2)e−iω2 ]. (3.1)

Then

(i) a2D has order n sum rules with respect to M√2 if and only if u has n linear-phase moments with phase 1/2,
i.e.,

û(ω) = e−iω/2 +O(|ω|n), ω → 0. (3.2)

(ii) a2D has order n linear-phase moments with phase (1/2, 1/2) if and only if u has n linear-phase moments
with phase 1/2, i.e., (??) holds.

(iii) a2D is D4-symmetric about the point (1/2, 1/2) if and only if u is symmetric about the point 1/2, that is,
u(1− k) = u(k) for all k ∈ Z.

Proof. The claim in item (iii) can be directly checked. We now prove items (i) and (ii). If (??) holds, then

â2D(ω + (π, π)) =
1

2
(û(ω1 + ω2)− û(ω1 − ω2)e−iω2)

=
1

2
(e−i(ω1+ω2)/2 − e−i(ω1−ω2)/2e−iω2) +O(‖ω‖n)

= O(‖ω‖n)
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as ω → 0. Hence, (??) implies that a2D has order n sum rules with respect to M√2.

Conversely, suppose that a2D has order n sum rules with respect to M√2. Then

1

2
(û(ω1 + ω2)− û(ω1 − ω2)e−iω2) = â2D(ω + (π, π)) = O(‖ω‖n), ω → 0,

from which we deduce that

v̂(ω1 + ω2) = v̂(ω1 − ω2) +O(‖ω‖n), ω → 0 with v̂(ω) := û(ω)eiω/2. (3.3)

By û(0) = 1, we have v̂(0) = 1. Now (??) implies

v̂(j)(0) = ∂j2[v̂(ω1 + ω2)]|ω1=0,ω2=0 = ∂j2[v̂(ω1 − ω2)]|ω1=0,ω2=0 = (−1)j v̂(j)(0), ∀ 0 ≤ j ≤ n− 1

and

v̂(j+1)(0) = ∂1∂
j
2[v̂(ω1 + ω2)]|ω1=0,ω2=0 = ∂1∂

j
2[v̂(ω1 − ω2)]|ω1=0,ω2=0 = (−1)j v̂(j+1)(0), ∀ 0 ≤ j ≤ n− 2.

From the above identities, it is easy to deduce that we must have v̂(0) = 1 and v̂(j)(0) = 0 for all j = 1, . . . , n− 1.
That is, v̂(ω) = 1 +O(|ω|n) as ω → 0. Consequently, by v̂(ω) = û(ω)eiω/2, (??) must hold. This proves item (i).

Similarly, if (??) holds, then

â2D(ω) =
1

2
(û(ω1 + ω2) + û(ω1 − ω2)e−iω2)

=
1

2
(e−i(ω1+ω2)/2 + e−i(ω1−ω2)/2e−iω2) +O(‖ω‖n)

= e−i(ω1+ω2)/2 +O(‖ω‖n)

as ω → 0. Hence, (??) implies that a2D has order n linear-phase moments with phase (1/2, 1/2). Conversely, if
a2D has order n linear-phase moments with phase (1/2, 1/2), then we must have

v̂(ω1 + ω2) = −v̂(ω1 − ω2) +O(‖ω‖n), ω → 0 with v̂(ω) = û(ω)eiω/2.

A similar proof as in the proof of item (i) shows that (??) must hold. This proves item (ii).

For the filter u in Theorem ??, we also have the following result.

Proposition 3.1. For a finitely supported filter u ∈ l0(Z) with û(0) = 1 such that u is symmetric about the
point 1/2, lpm(u) must be an even integer. Moreover, the filter u is symmetric about the point 1/2 and u has 2n
linear-phase moments with phase 1/2 if and only if u takes the following form

û(ω) = 2−1(1 + e−iω)
(

sin2n(ω/2)R(sin2(ω/2)) + 1 +

n−1∑
j=1

(2j − 1)!!

(2j)!!
sin2j(ω/2)

)
(3.4)

for some polynomial R, where (2j− 1)!! = (2j− 1)(2j− 3) · · · (3)(1) and (2j)!! = (2j)(2j− 2) · · · (2). In particular,
the two-dimensional filter a2D defined in (??) using the filter u in (??) with R = 0 is the same filter a2D

2n,2n in
(??).

Proof. Note that u is symmetric about the point 1/2 if and only if û(ω) = e−iωû(−ω), that is, eiω/2û(ω) =
e−iω/2û(−ω). Moreover, the symmetry of u also implies that

∑
k∈Z u(k)k = 1/2. Thus, it is trivial to see that

[eiω/2û(ω)](2j−1)(0) = 0 for all j ∈ N. Consequently, by the definition of linear-phase moments with phase 1/2,
lpm(u) must be an even integer.

Since u is symmetric about 1/2, we must have û(ω) = 2−1(1 + e−iω)P (sin2(ω/2)) for some polynomial P .
Therefore, eiω/2û(ω) = cos(ω/2)P (sin2(ω/2)). Now u has order 2n linear-phase moments with phase 1/2 if and
only if cos(ω/2)P (sin2(ω/2)) = eiω/2û(ω) = 1 +O(|ω|2n) as ω → 0, which, by considering x = sin2(ω/2), is further

12



equivalent to P (x) = (1− x)−1/2 +O(xn) as x→ 0. Considering the Taylor expansion of (1− x)−1/2 at x = 0, we
must have

P (x) = xnR(x) +
n−1∑
j=0

(
−1/2

j

)
(−x)j = xnR(x) + 1 +

n−1∑
j=1

(2j − 1)!!

(2j)!!
xj ,

for some polynomial R.

When R = 0, the filter u in (??) is supported inside [1−n, n]. Define v̂(ω) := (âI2n(ω/2)− âI2n(ω/2 +π))e−iω/2.

Since aI2n is an interpolatory 2-wavelet filter, it is trivial to see that v̂(ω) = (1 − 2âI2n(ω/2 + π))e−iω/2. By
sr(aI2n, 2) = 2n, it is trivial to see that

v̂(ω) = e−iω/2 +O(|ω|2n), ω → 0.

That is, lpm(v) ≥ 2n. Since aI2n is supported inside [1−2n, 2n−1], we deduce that v is supported inside [1−n, n].
By the uniqueness of u, we must have v = u. This proves a2D = a2D

2n,2n in (??).

We now construct double canonical quincunx tight framelet filter banks from the low-pass filters in (??).

Theorem 3.2. Let u ∈ l0(Z) be a finitely supported filter such that

|û(ω)| ≤ 1, ω ∈ R. (3.5)

Define a2D as in (??), b̂1(ω) := e−iω1 â2D(ω + (π, π)), and

b̂2(ω) :=
1

2
[v̂(ω1 + ω2) + v̂(ω1 − ω2)e−iω2 ], b̂3(ω) := e−iω1 b̂2(ω + (π, π)), (3.6)

where v ∈ l0(Z) is a filter obtained from Fejér-Riesz lemma and satisfying |v̂(ω)|2 = 1−|û(ω)|2. Then {a2D; b1, b2, b3}
is a double canonical quincunx tight framelet filter bank.

Proof. By the definitions of a = a2D in (??) and b2 in (??), as proved in the proof of Theorem ??, (??) and (??)
must hold. Since |û(ω)|2 + |v̂(ω)|2 = 1, it is trivial to see that (??) holds with s = 2. Hence, {a2D; b1, b2, b3} is a
double canonical quincunx tight framelet filter bank.

By the same proof of Theorem ??, we have the following generalized result of Theorem ??:

Theorem 3.3. Let u, v ∈ l0(Z) be finitely supported filters such that

|û(ω)|2 + |v̂(ω)|2 = 1, ω ∈ R. (3.7)

Let M be a d× d integer matrix such that | det(M)| = 2. Define

âdD(ω) :=
1

2
[û(γ1 · ω) + û(γ2 · ω)e−iγ3·ω], b̂1(ω) := e−iγ4·ωâdD(ω + 2πξ),

and

b̂2(ω) :=
1

2
[v̂(γ1 · ω) + v̂(γ2 · ω)e−iγ3·ω], b̂3(ω) := e−iγ4·ω b̂2(ω + 2πξ), (3.8)

where ω ∈ Rd, ξ ∈ ΩM\{0}, γ1, γ2 ∈MZd\{0}, and γ3, γ4 ∈ Zd\[MZd]. Then {adD; b1, b2, b3} is a double canonical
tight M -framelet filter bank.

For a real-valued symmetric filter u satisfying

u(1− k) = u(k), for all k ∈ Z, (3.9)

it is of interest to ask whether there exists a finitely supported real-valued filter v satisfying (??) with symmetry
so that the constructed high-pass filters b2 and b3 in Theorem ?? will have better symmetry as in Example ??.
This is negatively answered by the following result.

13



Theorem 3.4. Let u, v ∈ l0(Z) be two finitely supported real-valued filters. Then (??) and (??) hold,
∑

k∈Z u(k) =
1, and v has symmetry if and only if

û(ω) = 2−1(eijω + e−i(j+1)ω) and v̂(ω) = 2−1e−ikω(eijω − e−i(j+1)ω) (3.10)

for some j, k ∈ Z.

Proof. The sufficient part is trivial, since (??) implies (??) and v has symmetry.
We now prove the necessity part. Since u has symmetry in (??), we can write û(ω) = 2−1(1+e−iω)P (sin2(ω/2))

for some polynomial P with real coefficients. Since û(0) = 1, we must have P (0) = 1. Consequently, we have
|û(ω)|2 = cos2(ω/2)(P (sin2(ω/2)))2 = (1− x)(P (x))2 with x := sin2(ω/2).

Since v has symmetry and there are essentially four different types of symmetry, we must have

v̂(ω) = e−ikωQ(sin2(ω/2)),

v̂(ω) = e−ikω2−1(1 + e−iω)Q(sin2(ω/2)),

v̂(ω) = e−ikω2−1(eiω − e−iω)Q(sin2(ω/2))

(3.11)

or
v̂(ω) = e−ikω2−1(1− e−iω)Q(sin2(ω/2)) (3.12)

for some k ∈ Z and some polynomial Q with real coefficients. We now show that v must have the symmetry
in (??). Otherwise, v must take one of the three forms in (??). Then |v̂(ω)|2 = (Q(x))2, (1 − x)(Q(x))2, or
x(1− x)(Q(x))2, respectively. Now by |û(ω)|2 + |v̂(ω)|2 = 1, we will have

(1− x)(P (x))2 + (Q(x))2 = 1, (1− x)(P (x))2 + (1− x)(Q(x))2 = 1, or (1− x)(P (x))2 + x(1− x)(Q(x))2 = 1.

The last two identities cannot hold due to the factor 1−x, while the first identity must fail by considering x→ −∞
and noting P 6≡ 0. Thus, v must have the symmetry in (??).

By (??) and (??), we see that both eiω/2û(ω) and iei(k+1/2)ωv̂(ω) are real-valued. Therefore,

eiω
[
û(ω) + eikωv̂(ω)

][
û(ω)− eikωv̂(ω)

]
=
[
eiω/2û(ω) + ei(k+1/2)ωv̂(ω)

][
eiω/2û(ω)− ei(k+1/2)ωv̂(ω)

]
= |û(ω)|2 + |v̂(ω)|2 = 1.

Hence, the first two nontrivial factors in the above identities must be monomial, that is,

û(ω) + eikωv̂(ω) = λeijω, û(ω)− eikωv̂(ω) = e−i(j+1)ω/λ

for some j ∈ Z and λ ∈ R\{0}. From the above identities, we have û(ω) = [λeijω + e−i(j+1)ω/λ]/2. By (??), we
must have λ = 1 and (??) holds.

By Theorem ??, we can conclude that except the Haar-type double canonical quincunx tight framelet filter bank
that is similar to Example ??, there is no other real-valued double canonical quincunx tight framelet filter bank
with better symmetry property. Moreover, due to Proposition ??, it is quite easy to observe that the real-valued
low-pass filter u constructed in (??) can have no more than two linear-phase moments and therefore, the tight
framelet filter banks constructed in Theorem ?? can have no more than one vanishing moment. This shortcoming
can be easily remedied by using complex-valued filters. As shown in [?, Theorem 1 and Algorithm 2], there are
finitely supported complex-valued low-pass orthonormal 2-wavelet filters a such that a(1− k) = a(k) for all k ∈ Z
with arbitrarily high orders of sum rules and linear-phase moments. Take u = a. Then we can easily obtain
complex-valued double canonical symmetric quincunx tight framelet filter banks with arbitrarily high orders of
vanishing moments. For the convenience of the reader, we provide an example here by combining [?, Algorithm 1]
and Proposition ??.

Note that M√2 is not compatible with the symmetry group D+
4 := {±diag(1, 1),±diag(1,−1)}. But we have

M√2D
+
4 M

−1√
2

:= {M√2EM
−1√

2
: E ∈ D+

4 } = {±
[
1 0
0 1

]
,±
[
0 1
1 0

]
} =: D−4 and M√2D

−
4 M

−1√
2

= D+
4 .
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Example 3.1. Take n = 3 and R = 0 in (??) of Proposition ??. Then P (x) = 1 + 1
2x+ 3

8x
2 and

Q̃(x) :=
1− (1− x)(P (x))2

x
=
x2(9x2 + 15x+ 40)

64
≥ 0, ∀ x ∈ R.

Then Q(x) := 3
8x(x+ 5+i3

√
15

6 ) satisfies |Q(x)|2 = Q̃(x) for all x ∈ R. Define filters u and v by

û(ω) = 2−1(1 + e−iω)P (sin2(ω/2)), v̂(ω) = 2−1(1− e−iω)Q(sin2(ω/2)).

Then lpm(u) = 6 with phase c = 1/2,

û(ω) =
1

256
(150(1 + e−iω)− 25(eiω + e−2iω) + 3(e2iω + e−3iω)),

and

v̂(ω) =
1

256
((60 + i18

√
15)(1− e−iω)− (25 + i6

√
15)(eiω − e−2iω) + 3(e2iω − e−3iω)).

The filters u and v satisfy u(k) = u(1−k) and v(k) = −v(1−k) for k ∈ Z; that is, u is symmetric about 1/2 while v is

antisymmetric about 1/2. Note that the real-valued filter v in Theorem ?? defined by v̂(ω) = 2âDn (ω/2)âDn (ω/2+π)
does not have symmetry property.

Define a = a2D as in (??). Then, the filter a satisfies a = a2D = a2D
6,6 in (??) due to P (x) = (1−x)−1/2 +O(x4)

and a is supported on [−2, 3]2. The canonical high-pass filter b1 of a is given by b̂1(ω) = e−iω1 â(ω + (π, π)). The
filters a and b1 are given by

a =
1

512



3 0 0 0 0 3
0 −25 0 0 −25 0
0 0 150 150 0 0

0 0 150 150 0 0
0 −25 0 0 −25 0
3 0 0 0 0 3


[−2,3]2

, b1 =
1

512



−3 0 0 0 0 3
0 25 0 0 −25 0

0 0 −150 150 0 0

0 0 150 −150 0 0
0 −25 0 0 25 0
3 0 0 0 0 −3


[−2,3]×[−3,2]

.

Note that a = a2D
6,6 is real-valued and D4-symmetric about c = (1/2, 1/2) while b1 has symmetry given by (??).

Define high-pass filters b2 and b3 by (??). Then, the high-pass filter b2 is supported on [−2, 3]2 and is given by

b2 =
1

512



3 0 0 0 0 −3

0 −25− 6 i
√

15 0 0 25 + 6 i
√

15 0

0 0 60 + 18 i
√

15 −60− 18 i
√

15 0 0

0 0 60 + 18 i
√

15 −60− 18 i
√

15 0 0

0 −25− 6 i
√

15 0 0 6 25 + i
√

15 0

3 0 0 0 0 −3


[−2,3]2

.

The canonical high-pass filter b3 of b2 is supported on [−2, 3]× [−3, 2] and is given by

b3 =
1

512



3 0 0 0 0 3

0 6 i
√

15− 25 0 0 6 i
√

15− 25 0

0 0 60− 18 i
√

15 60− 18 i
√

15 0 0

0 0 −60 + 18 i
√

15 −60 + 18 i
√

15 0 0

0 25− 6 i
√

15 0 0 25− 6 i
√

15 0

−3 0 0 0 0 −3


[−2,3]×[−3,2]

.
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The high-pass filters b2 and b3 are complex-valued and have the following symmetry:

b2(E(k − c) + c) = E1,1b2(k), ∀k ∈ Z2, E ∈ D+
4 with c = (1/2, 1/2),

b3(E(k − c̊) + c̊) = E2,2b3(k), ∀k ∈ Z2, E ∈ D+
4 with c̊ = (1/2,−1/2),

where Ei,j is the (i, j)-entry of E.
The filter bank {a; b1, b2, b3} is a double canonical quincunx tight framelet filter bank with vm(b1) = 6 and

vm(b2) = vm(b3) = 3. Let φ, ψ1, ψ2, ψ3 be defined in (??) with M = M√2, L = 3 and a = a2D
6,6 . Then {φ;ψ1, ψ2, ψ3}

is a tight M√2-framelet in L2(R2) such that φ, ψ1 have symmetry property as in (??), (??). ψ2, ψ3 are of complex
value and have the following symmetry property:

ψ2(E(· − c2) + c2) = [MEM−1]1,1ψ2,

ψ3(E(· − c3) + c3) = [MEM−1]2,2ψ3,
∀E ∈ D−4 .

where c2 = (3/2, 1/2) and c3 = (1, 1).

4 Multiple canonical quincunx tight framelet filter banks with symmetry

In this section we study symmetric multiple canonical quincunx tight framelet filter banks derived from one-
dimensional filters.

As discussed in Section ??, for every d × d dilation matrix M , compactly supported tight M -framelets
{φ;ψ1, . . . , ψL} with arbitrarily high vanishing moments and smoothness can be easily constructed (e.g. [?, The-
orem 1.1]) but at the cost of large number L of wavelet/framelet functions. The key idea to construct such and
similar compactly supported tight M -framelets in [?, ?, ?, ?, ?] is to use the almost separable low-pass filters in
(??). For example, for two one-dimensional tight 2-framelet filter banks {b0; b1, . . . , bJ} and {u0;u1, . . . , uL} one
can trivially verify (see [?, Lemma 3.2] and [?]) that

{bj ⊗ uk : 0 ≤ j ≤ J, 0 ≤ k ≤ L}, (4.1)

is a quincunx tight framelet filter bank derived from the separable low-pass filter b0⊗u0, where ̂bj ⊗ uk(ω1, ω2) :=

b̂j(ω1)ûk(ω2). Moreover, every one-dimensional tight 2-framelet filter bank {b0; b1, . . . , bJ} is automatically a
quincunx tight framelet filter bank by identifying Z with either Z×{0} or {0}×Z so that a one-dimensional filter
can be regarded as a two-dimensional filter ([?]). Such tight framelet filter banks are particular instances of the
tight framelet filter banks constructed via the projection method in [?]. In fact, one can directly check that if
{b0; b1, . . . , bJ} is a one-dimensional tight 2-framelet filter bank and if the filters u0, u1, . . . , uL satisfy

|û0(ω)|2 + |û1(ω)|2 + · · ·+ |ûL(ω)|2 = 1, (4.2)

then the filter bank in (??) is still a quincunx tight framelet filter bank. Note that (??) is weaker than requiring
{u0;u1, . . . , uL} to be a tight 2-framelet filter bank. For every pair of finitely supported low-pass filters b0 and u0

satisfying |b̂0(ω)|2 + |b̂0(ω + π)|2 ≤ 1 and |û0(ω)|2 ≤ 1, one can always construct ([?]) a finitely supported tight
2-framelet filter bank {b0; b1, b2}, and by Fejér-Riesz lemma, there always exists a finitely supported filter u1 such
that (??) holds with L = 1. Consequently, the quincunx tight framelet filter bank in (??) with J = 2 and L = 1
has only five high-pass filters derived from the given low-pass b0 ⊗ u0, and {b0; b1, b2} is a quincunx tight framelet
filter bank with only two high-pass filters. However, such quincunx tight framelet filter banks often lack symmetry
and are not necessarily a multiple canonical quincunx tight framelet filter bank. By modifying (??) slightly, we
next show that multiple canonical quincunx tight frame filter banks can be easily obtained from one-dimensional
tight framelet filter banks as long as {b0; b1, . . . , bJ} has the multiple canonical property.

Theorem 4.1. Let s, L be positive integers. Suppose that {b0; b1, . . . , b2s−1} is a one-dimensional finitely supported

s-multiple canonical tight 2-framelet filter bank having the canonical property: b̂2j+1(ω) = e−iω b̂2j(ω + π), j =
0, . . . , s − 1. Suppose that u0, u1, . . . , uL ∈ l0(Z) are one-dimensional filters satisfying (??). Then {b2Dj,k : j =
0, . . . , 2s− 1; k = 0, . . . , L} is an s(L+ 1)-multiple canonical quincunx tight framelet filter bank, where

b̂2D2j,k(ω) := b̂2j(ω1)ûk(ω2), b̂2D2j+1,k(ω) := b̂2j+1(ω1)ûk(ω2 + π), ω = (ω1, ω2) ∈ R2. (4.3)

for j = 0, . . . , s− 1 and k = 0, . . . , L.
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Proof. By the canonical property in (??) and (??), it follows directly from the definition of b2Dj,k that the two-

dimensional filter bank {b2Dj,k : j = 0, . . . , 2s − 1; k = 0, . . . , L} has the desired s(L + 1)-multiple canonical
property. On the other hand, we have

2s−1∑
j=0

L∑
k=0

|b̂2Dj,k (ω)|2 =
s−1∑
j=0

L∑
k=0

|b̂2D2j,k(ω)|2 +
s−1∑
j=0

L∑
k=0

|b̂2D2j+1,k(ω)|2

=

s−1∑
j=0

|b̂2j(ω1)|2
L∑
k=0

|ûk(ω2)|2 +

s−2∑
j=0

|b̂2j+1(ω1)|2
L∑
k=0

|ûk(ω2 + π)|2 =

2s−1∑
`=0

|b̂`(ω1)|2 = 1.

The fact
2s−1∑
j=0

L∑
k=0

b̂2Dj,k (ω)b̂2Dj,k (ω + (π, π)) = 0

can be proved similarly. Thus {b2Dj,k : j = 0, . . . , 2s− 1; k = 0, . . . , L} is a quincunx tight framelet filter bank.

Before applying Theorem ?? to construct multiple canonical quincunx tight framelets, let us look at the
smoothness exponent of the low-pass filter b0 ⊗ u0 in Theorem ??.

Theorem 4.2. Let 1 ≤ p ≤ ∞. The following statements hold.

(i) For a ∈ l0(Z) with â(0) = 1, sr(a,M√2) = sr(a,N√2) = sr(a, 2); if smp(a, 2) ≥ 0, then smp(a,M√2) =

smp(a, 2), where a is also regarded as a 2D filter by identifying Z with Z× {0} in Z2.

(ii) For u, v ∈ l0(Zd) with û(0) = v̂(0) = 1 and for any d×d dilation matrix M , sr(u∗v,M) ≥ sr(u,M)+sr(v,M)
and sm(u ∗ v,M) ≥ sm∞(u ∗ v,M) ≥ sm(u,M) + sm(v,M), where û ∗ v(ω) := û(ω)v̂(ω).

(iii) For u, v ∈ l0(Z) with û(0) = v̂(0) = 1, sr(u ⊗ v,M√2) = sr(u ⊗ v,N√2) ≥ sr(u, 2) + sr(v, 2); if sm(u, 2) ≥ 0
and sm(v, 2) ≥ 0, then sm(u⊗ v,M√2) ≥ sm∞(u⊗ v,M√2) ≥ sm(u, 2) + sm(v, 2).

The proof to Theorem ?? is given in Appendix ??. For item (i), sm(a,N√2) = sm(a, 2) often fails. In

fact, as Daubechies showed in [?] that limn→∞ sm(aI2n, 2) = ∞, while numerical calculation in [?] observed that
limn→∞ sm(aI2n, N

√
2) = 0. Moreover, as we shall see in the proof of Theorem ?? in Appendix ??, the condition

smp(a, 2) ≥ 0 in item (i) cannot be removed to guarantee smp(a,M√2) = smp(a, 2).

Let aDn with n ≥ 1 be the Daubechies orthogonal filter with 2n-nonzero coefficients. Let b0 = aDn , a0 = aDm and
define b1 and a1 by

b̂1(ω) = e−iω1 âDn (ω + π), â1(ω) = âDm(ω + π), ω ∈ R,

then we have double canonical quincunx tight framelet filter banks based on the Daubechies orthogonal filters as
summarized in the following corollary.

Corollary 4.1. Let aDn and aDm be the Daubechies orthogonal filters. Define

b̂2D0 (ω) := âDn (ω1)âDm(ω2), b̂2D1 (ω) := e−iω1 b̂2D0 (ω + (π, π)),

b̂2D2 (ω) := âDn (ω1)âDm(ω2 + π), b̂2D3 (ω) := e−iω1 b̂2D2 (ω + (π, π)).

Then {b2D0 ; b2D1 , b2D2 , b2D3 } is a double canonical quincunx tight framelet filter bank such that min(vm(b2D1 ),vm(b2D2 ),
vm(b2D3 )) ≥ min(m,n) and sm(b2D0 ,M√2) ≥ sm(aDn , 2) + sm(aDm, 2)→∞ as m+ n→∞.

The Daubechies orthogonal filter-based double canonical quincunx tight framelet filter bank {b2D0 ; b2D1 , b2D2 , b2D3 }
does not have any symmetry. In this paper we are interested in multiple/double canonical quincunx tight framelet
filter banks with symmetry. We immediately conclude from Theorem ?? that all nontrivial symmetric real-valued
canonical qunicunx tight framelet filter banks of the form in (??) must have multiplicity at least 6. In fact, if we
require both {b0; b1, . . . , b2s−1} and {u0;u1, . . . , uL} in Theorem ?? to be of real-valued filters with symmetry, then
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s ≥ 2 and L ≥ 2 due to the well-known fact that except the Haar type filter banks, there is no real-valued symmetric
dyadic orthonormal wavelet filter bank. Consequently, the multiplicity of a nontrivial canonical quincunx tight
framelet filter bank with real-valued filters and with symmetry satisfies s(L + 1) ≥ 6. That is, {b0; b1, . . . , b2s−1}
need to be at least double canonical tight 2-framelet filter bank {a, b1, b2, b3} while {u0;u1, . . . , uL} need to be at
least {u0;u1, u2}.

We now discuss double canonical tight 2-framelet filter bank {a; b1, b2, b3} with symmetry satisfying

b̂1(ω) = e−iωâ(ω + π), b̂3(ω) = e−iω b̂2(ω + π). (4.4)

It follows trivially from the above relations in (??) that

â(ω)â(ω + π) + b̂1(ω)b̂1(ω + π) = 0, b̂2(ω)b̂2(ω + π) + b̂3(ω)b̂3(ω + π) = 0.

Consequently, every double canonical tight 2-framelet filter bank with symmetry is a special case of type I sym-
metric tight 2-framelet filter banks {a; b1, b2, b3} discussed in [?]. Moreover, Algorithm 1 in [?] can be used to find
all possible such type I symmetric tight 2-framelet filter banks {a; b1, b2, b3} from any given symmetric low-pass
filter. For simplicity, we only discuss real-valued filters here. As a special case of [?, Algorithm 1], the following
result constructs all possible double canonical tight 2-framelet filter banks with symmetry.

Theorem 4.3. Let a ∈ l0(Z) be a real-valued low-pass filter having symmetry and satisfying

v̂(2ω) := 1− |â(ω)|2 − |â(ω + π)|2 ≥ 0, ∀ ω ∈ R. (4.5)

Define a finitely supported real-valued high-pass filter b2 by either of the following two cases:

1. Obtain a real-valued filter u ∈ l0(Z) through Fejér-Riesz lemma by |û(ω)|2 = v̂(ξ) and define

b̂2(ω) := (û(2ω) + εe−iωcb û(2ω))/2 with ε ∈ {−1, 1} and cb being an odd integer.

2. If in addition multiplicity of any zero inside (0, 1) of the Laurent polynomial
∑

k∈Z v(k)zk is even, then one
can always construct finitely supported real-valued filters u1, u2 with symmetry such that

|û1(ω)|2 + |û2(ω)|2 = v̂(ξ) with
Sû1(ω)

Sû2(ω)
= e−iω,

where Sû1(ω) := û1(ω)
û1(−ω) records the symmetry type of the filter u1. Define

b̂2(ω) := (û1(2ω) + e−iωû2(ω))/
√

2.

Define the filters b1 and b3 as in (??). Then {a; b1, b2, b3} is a double canonical tight 2-framelet filter bank such that
all the filters have symmetry. Moreover, all finitely supported canonical tight 2-framelet filter banks with symmetry
can be obtained by the above procedure.

The construction of real-value filters {u0;u1, u2} satisfying (??) and having symmetry has been completely
solved in [?, Theorem 2.7] and [?, Lemma 2.4].

Now we have the main result in this paper on 6-multiple canonical quincunx tight framelet filter banks with
symmetry and vanishing moments.

Theorem 4.4. Let a ∈ l0(Z) be a real-valued low-pass filter satisfying the condition in (??) such that â(0) = 1 and
a has symmetry. Then we can always construct by Theorem ?? a finitely supported real-valued double canonical
tight 2-framelet filter bank {a; b1, b2, b3} with symmetry and by [?, Theorem 2.7] finitely supported real-valued filters
u1 and u2 with symmetry such that

|â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1. (4.6)
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Define two-dimensional filters b2D`,k as in (??) of Theorem ?? for ` = 0, . . . , 3 and k = 0, 1, 2 with b0 := a and

u0 := a. Define a2D := b2D0,0 . Then

{a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2} (4.7)

is a 6-multiple canonical quincunx tight framelet filter bank such that the real-valued low-pass filter a2D is D4-
symmetric, with

sr(a2D,M√2) = sr(a2D, N√2) ≥ 2 sr(a, 2) and sm(a2D,M√2) = sm(a2D, N√2) ≥ 2 sm(a, 2),

and all the eleven high-pass filters are real-valued and have symmetry with at least order min(2 sr(a, 2), lpm(a)/2)
vanishing moments. In particular, if we take a = aI2n with n ∈ N, then we have a 6-multiple canonical quincunx
tight framelet filter bank in (??) such that

(i) all the high-pass filters have symmetry and at least order n vanishing moments;

(ii) the low-pass a2D = aI2n ⊗ aI2n is D4-symmetric such that sr(aI2n ⊗ aI2n,M√2) = sr(aI2n ⊗ aI2n, N√2) ≥ 4n,

limn→∞ sm(aI2n ⊗ aI2n,M√2) =∞, and limn→∞ sm(aI2n ⊗ aI2n, N√2) =∞;

(iii) the tight M√2-framelet (or tight N√2-framelet) {φ;ψ1, . . . , ψL} with L = 11 in L2(R2) have symmetry and
arbitrarily high orders of vanishing moments and smoothness, where φ, ψ1, . . . , ψL is defined in (??).

Proof. Since a is D4-symmetric, by definition of smoothness exponent, we can directly verify that smp(a
2D,M√2) =

smp(a
2D, N√2) for all 1 ≤ p ≤ ∞ (also see Theorem ?? and [?, ?]). It is known in [?] that limn→∞ sm(aI2n, 2) =

∞. By Theorem ??, we have sm(a2D,M√2) = sm(aI2n ⊗ aI2n,M
√

2) ≥ 2 sm(aI2n, 2). Consequently, we have

limn→∞ sm(aI2n ⊗ aI2n,M√2) =∞. All other claims follow from the results and discussion before Theorem ??.

As proved in [?, Theorem 1 and (2.15)], there are finitely supported complex-valued orthonormal 2-wavelet
filters with symmetry and arbitrarily high orders of sum rules. As a consequence, if we relax the constrain on
real-valued filters and allow complex-valued filter banks, we can have double canonical quincunx tight framelet
filter banks with symmetry of form in (??).

Corollary 4.2. For n ∈ N, let an ∈ l0(Z) be the finitely supported symmetric complex-valued orthonormal 2-
wavelet filter with sr(an, 2) = 2n− 1 as constructed in [?, Theorem 1]. Define

â2D(ω1, ω2) := ân(ω1)ân(ω2), b̂2(ω1, ω2) := ân(ω1)ân(ω2 + π)

and

b̂1(ω1, ω2) := e−iω1 â2D(ω1 + π, ω2 + π), b̂3(ω1, ω2) := e−iω1 b̂2(ω1 + π, ω2 + π).

Then {a2D; b1, b2, b3} is a double canonical quincunx tight framelet filter bank such that a2D is D4-symmetric, with

sr(a2D,M√2) ≥ 2n and sm(a2D,M√2) = sm(a2D, N√2) ≥ 2 sm(an, 2)→∞, as n→∞,

and all the high-pass filters b1, b2, b3 have symmetry and at least order n vanishing moments.

We conclude this section by presenting two examples of 6-multiple canonical quincunx real-valued tight framelet
filter banks to illustrate the result in Theorem ??.

Example 4.1. Consider a = aI2 = {− 1
32 , 0,

9
32 ,

1
2 ,

9
32 , 0,−

1
32}[−3,3] with sr(a, 2) = 4 and lpm(a) = 4. Then

1− |â(ω)|2 − |â(ω + π)|2 = − 1

64
(cos3(2x)− 9 cos2(2x) + 15 cos(2x)− 7) ≥ 0.

By Fejér-Riesz Lemma, we can obtain u ∈ l0(Z) such that |û(2ω)|2 = 1− |â(ω)|2 − |â(ω + π)|2 as follows.

û(ω) =

√
2

32
eiω(t0 + t1e

−iω + t2e
−i2ω + t3e

−i3ω),
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where t0 = 2−
√

3, t1 = −6 +
√

3, t2 = 6 +
√

3, t3 = −2−
√

3. Define b1, b2, b3 by

b̂1(ω) = e−iωâ(ω + π), b̂2(ω) = (û(2ω) + e−iωû(2ω))/2, b̂3(ω) = e−iω b̂2(ω + π). (4.8)

Then,

b̂1(ω) = e−iω
(

1

2
− 9

32
(eiω + e−iω) +

1

32
(ei3ω + e−i3ω)

)
,

b̂2(ω) =

√
2

64

(
t3(ei3ω + e−i4ω) + t0(ei2ω + e−i3ω) + t2(eiω + e−i2ω) + t1(1 + e−iω)

)
,

b̂3(ω) = −
√

2

64

(
t3(ei3ω − e−i4ω)− t0(ei2ω − e−i3ω) + t2(eiω − e−i2ω)− t1(1− e−iω)

)
.

Note that b1 is symmetric about 1 and supported on [−2, 4], b2 is symmetric about 1/2 and supported on [−3, 4],
b3 is antisymmetric about 1/2 and supported on [−3, 4]. The filter bank {a; b1, b2, b3} forms a double canonical
tight 2-framelet filter bank. See [?, Examples 4 and 9] for other tight 2-framelet filter banks {a; b1, b2, b3} with
symmetry derived from the interpolatory low-pass filter a = aI2.

Next, define v̂(ω) := 1− |â(ω)|2. Then,

v̂(ξ) =
∣∣∣1− e−iω

2

∣∣∣4∣∣∣e−iω + 2−
√

3√
4− 2

√
3

∣∣∣2(6 + 3 cos(x)− cos3(x)

4

)
.

By Fejér-Riesz lemma, we can obtain u0 such that |û0(ω)|2 = v(ω) as follows:

û0(ω) = ei3ω
(1− e−iω

2

)2(e−iω + 2−
√

3√
4− 2

√
3

)(e−iω − r1

2
√

2r1

)(e−2iω + (r2 + r2)e−iω + |r2|2)

2|r2|

where

r1 := c0 −
√
c2

0 − 1, r2 := c1 −
√
c2

1 − 1,

with

t = (3 + 2
√

2)1/3, c0 := t+
1

t
, c1 :=

c0

2
−
√

3

2
i(t− 1/t).

Define u1, u2 by
û1(ω) = (û0(ω) + e−iωû0(ω))/2, û2(ω) = (û0(ω)− e−iωû0(ω))/2.

Then, u1 is symmetric about 1/2 with support [−3, 4] ∩ Z, u2 is antisymmetric about 1/2 with support [−3, 4],
and |â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1.

Finally, we can define

{a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2}

as in Theorem ??, which gives a 6-multiple canonical quincunx tight framelet filter bank. a2D has at least order 4
sum rules and is D4-symmetric about the origin. All the eleven high-pass filters are real-valued and have symmetry
with at least order 2 vanishing moments.

Example 4.2. Consider a = {− 3
64 ,

5
64 ,

15
32 ,

15
32 ,

5
64 ,−

3
64}[−2,3] with sr(a, 2) = 3 and lpm(a) = 4. Then

1− |â(ω)|2 − |â(ω + π)|2 = − 15

256
(1− cos(2x))2 ≥ 0.

Then û(ω) :=
√

15
32 (2− e−iω − eiω) satisfies 1− |â(ω)|2 − |â(ω + π)|2 = |û(2ω)|2. Define b1, b2, b3 as in (??). Then,

b̂1(ω) =
15

32
(−1 + e−iω) +

5

64
(eiω − e−i2ω) +

3

64
(ei2ω − e−i3ω),

b̂2(ω) =

√
15

64

(
2(1 + e−iω)− (eiω + e−i2ω)− (ei2ω + e−i3ω)

)
,

b̂3(ω) =

√
15

64

(
2(−1 + e−iω)− (eiω − e−i2ω) + (ei2ω − e−i3ω)

)
.
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Note that high-pass filter b1 is antisymmetric about 1/2 and supported on [−2, 3], the high-pass filter b2 is
symmetric about 1/2 and supported on [−2, 3], and the high-pass filter b3 is antisymmetric about 1/2 and supported
on [−2, 3]. The filter bank {a; b1, b2, b3} forms a double canonical tight 2-framelet filter bank with vm(b1) = 3,
vm(b2) = 2, and vm(b3) = 3. See [?, Example 3] for a tight 2-framelet filter bank {a; b1, b2} with symmetry derived
from the low-pass filter a.

Next, define v̂(ω) := 1− |â(ω)|2 = − 1
128(cos(x)− 1)2(9 cos3(x) + 3 cos2(x)− 53 cos(x)− 79). Then,

v̂(ξ) =
∣∣∣1− e−iω

2

∣∣∣4 9(cos(x)− c0)(cos(x)− c1)(cos(x)− c1)

−32
,

where
c0 = t1 + t2 − 1/9, c1 = −(t1 + t2 + 2/9−

√
3i(t1 − t2))/2, t1 = 8

3
√

10/9, t2 = 2
3
√

100/9.

Consequently, we can obtain u0 such that |û0(ω)|2 = v(ω) as follows.

û0(ω) = 3ei2ω
(1− e−iω

2

)2(e−iω − r0

2
√
r0

)e−2iω − (r1 + r1)e−iω + |r1|2

8|r1|
,

where r0 = c0 −
√
c2

0 − 1 and r1 = c1 −
√
c2

1 − 1. Define u1, u2 by

û1(ω) = (û0(ω) + e−iωû0(ω))/2, û2(ω) = (û0(ω)− e−iωû0(ω))/2.

Then, u1 is symmetric about 1/2 with support [−2, 3]∩Z, u2 is antisymmetric about 1/2 with support [−2, 3]∩Z,
and |â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1. We also have vm(u1) = 2 and vm(u2) = 3.

Finally, we can define

{a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2}

as in Theorem ??, which gives a 6-multiple canonical quincunx tight frame filter bank. a2D has at least order 6
sum rule and is D4-symmetric about the origin. All the eleven high-pass filters are real-valued and have symmetry
with at least 2 vanishing moments.

We remark that other 6-multiple canonical quincunx tight framelet filter banks with high orders of vanishing
moments can be obtained by considering other low-pass filters and following the above procedure.

A Proofs of Theorems ?? and ??

Proof of Theorem ??. The existence of such a filter a2D
2n,2n has been proved in Proposition ??. Let a be such a

filter a2D
2n,2n. We now prove the uniqueness of such a filter a satisfying all the properties in Theorem ??.

a having orders 2n sum rules with respect to M = M√2 is equivalent to∑
k∈Z2

a(Mk + (1, 0))(Mk + (1, 0))µ =
∑
k∈Z2

a(Mk)(Mk)µ ∀|µ| < 2n, (A.1)

and a has order 2n linear-phase moments with phase c = (1/2, 1/2) is equivalent to∑
k∈Z2

a(k)kµ = cµ ∀ |µ| < 2n, (A.2)

where µ = (µ1, µ2) ∈ N2
0. It is easily seen that (??) and (??) are equivalent to

∑
k∈Z2 a(Mk + (1, 0))(Mk + (1, 0))µ = 1

2c
µ

∑
k∈Z2 a(Mk)(Mk)µ = 1

2c
µ

, |µ| < 2n. (A.3)
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Define
Λ0 := {k = (k1, k2) ∈ Z2 : k1 + k2 even, k ∈ [−n+ 1, n]2},
Λ1 := {k = (k1, k2) ∈ Z2 : k1 − k2 odd, k ∈ [−n+ 1, n]2}.

Then, #Λ0 = #Λ1 = 2n2, Λ0 ∩ Λ1 = ∅, and Λ0 ∪E1 = [−n+ 1, n]2 ∩ Z2. Moreover, Λ0 = MZ2 ∩ [−n+ 1, n]2 and
Λ1 = (MZ2 + (1, 0)) ∩ [−n+ 1, n]2. On the other hand, consider the index set

Γn := {µ ∈ N2
0 : |µ| < 2n, µ2 < 2n− 1} \ {(0, 2j − 1) : j = 1, . . . , n− 1}.

Then, it is easy to show that #Λ0 = #Λ1 = #Γn = 2n2. Using these notation and noticing Γn is a subset of
{µ ∈ N2

0 : |µ| < 2n}, (??) implies that a must also satisfy the following conditions.∑
k∈Λε

a(k)kµ =
1

2
cµ, µ ∈ Γn, ε ∈ {0, 1}. (A.4)

Note that
#
(
Λ0 ∩ {x = (x1, x2) ∈ R2 : x1 + x2 = 2j}

)
= 4− |2j − 1|, j = −n+ 1, · · · , n

and
#
(
Λ1 ∩ {x = (x1, x2) ∈ R2 : x1 − x2 = 2j + 1}

)
= 4− |2j + 1|, j = −n, · · · , n− 1.

By [?, Lemma 3.1], The matrices (kµ)k∈Λε, µ∈Γn ,ε = 0, 1 are non-singular. Consequently, a must be unique.

Item (i) follows from Proposition ??. For item (ii), notice that â2D
2n,2n(ω) = ̂̊a(ω)e−ic·ω, where

̂̊a(ω) := âI2n

(
ω1 + ω2

2

)
+ âI2n

(
ω1 − ω2

2

)
− 1. (A.5)

One can easily show that ̂̊a satisfies ̂̊a(E>·) = ̂̊a for all E ∈ D4 due to the fact that aI2n satisfies âI2n(−ω) = âI2n(ω)
for ω ∈ R. Consequently,

â2D
2n,2n(E>ω) = ̂̊a(E>ω)e−ic·E

>ω = â2D
2n,2n(ω)eic·(I2−E

>)ω, ω ∈ R2,

which is equivalent to (??), i.e., a2D
2n,2n is D4-symmetric about c = (1/2, 1/2).

Item (iii) is a direct consequence of [?, Proposition 2.1] (also see [?, Theorem 2.3]). In fact, by N√2 = EM√2

with E =

[
0 1
1 0

]
, N√2 is D4-equivalent to M√2. Thus, by [?, Proposition 2.1], φN

√
2 = φM

√
2(· + c̊), where

c̊ := (M√2 − I2)−1c− (N√2 − I2)−1c = (1, 1). (??) follows from [?, Proposition 2.1].

Proof of Theorem ??. By the definition of sum rules and M√2Z
2 = N√2Z

2, it is straightforward to check that
sr(a,M√2) = sr(a,N√2) = sr(a, 2). We now prove smp(a,M√2) = smp(a, 2). Let M = M√2. By the definition of
the subdivision operator in (??), we have

Ŝna,Mv(ω) = |det(M)|nv̂((M>)nω)â(ξ) · · · â((M>)n−1ω). (A.6)

In particular, noting that M2 = 2I2, we have

Ŝna,Mδ(ω) = 2nâ(ω) · · · â((M>)n−1ω) = Ŝn1
a,2δ(ω1)Ŝn2

a,2δ(ω1 + ω2),

where

n1 := bn+ 1

2
c, n2 := n− n1. (A.7)

Therefore, for µ1, µ2 ∈ N0 := N ∪ {0}, we deduce from the above identity that

[∇µ1e1∇
µ2
e1+e2S

n
a,Mδ](j, k) = [∇µ1Sn1

a,2δ](j − k)[∇µ2Sn2
a,2δ](k), j, k ∈ Z,
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from which we have

‖∇µ1e1∇
µ2
e1+e2S

n
a,Mδ‖lp(Z2) = ‖∇µ1Sn1

a,2δ‖lp(Z)‖∇µ2Sn2
a,2δ‖lp(Z), µ1, µ2, n ∈ N0, (A.8)

where n1 and n2 are defined in (??). Let m := sr(a, 2). By â(0) = 1, it is known in [?] and [?, Theorem 3.1] that
ρj(a, 2)p ≥ 21/p−j for all j ∈ N0 and

ρj(a, 2)p = max(21/p−j , ρm(a, 2)p), j = 0, . . . ,m. (A.9)

Taking µ1 = m and µ2 = 0 in (??), by ρ0(a, 2)p ≥ 21/p > 0 and limn→∞ n1/n = 1/2 = limn→∞ n2/n, we have√
ρm(a, 2)p

√
ρ0(a, 2)p = lim

n→∞
‖∇mSn1

a,2δ‖
1/n
lp(Z) lim

n→∞
‖Sn2

a,2δ‖
1/n
lp(Z) = lim

n→∞
‖∇me1S

n
a,Mδ‖

1/n
lp(Z2)

≤ ρm(a,M)p.

Since ρ0(a, 2)p ≥ 21/p, we conclude from the above inequality that ρm(a, 2)p ≤ 2−1/p(ρm(a,M)p)
2. Consequently,

by |det(M)| = 2 and sr(a,M) = m, we have

smp(a, 2) = 1
p − log2 ρm(a, 2)p ≥ 1

p − log2[2−1/p(ρm(a,M)p)
2] = 2

p − 2 log2 ρm(a,M)p = smp(a,M).

This proves smp(a, 2) ≥ smp(a,M). Conversely, taking µ1 = j and µ2 = m− j in (??) with 0 ≤ j ≤ m, we have

lim
n→∞

‖∇je1∇
m−j
e1+e2S

n
a,Mδ‖

2/n
lp(Z2)

= lim
n→∞

‖∇jSn1
a,2δ‖

2/n
lp(Z) lim

n→∞
‖∇m−jSn2

a,2δ‖
2/n
lp(Z) ≤ ρj(a, 2)pρm−j(a, 2)p. (A.10)

By ∇e2δ = ∇e1+e2δ− [∇e1δ](·−e2), we see that all ∇µ1e1∇
m−µ1
e2 δ with µ1 = 0, . . . ,m are finitely linear combinations

of [∇je1∇
m−j
e1+e2δ](· − k), j = 0, . . . ,m and k ∈ Z2. If we can prove

ρj(a, 2)pρm−j(a, 2)p ≤ 21/pρm(a, 2)p, ∀ j = 0, . . . ,m, (A.11)

then it follows from (??) that (ρm(a,M)p)
2 ≤ 21/pρm(a, 2)p. Since m = sr(a,M) and | det(M)| = 2,

smp(a,M) = 2
p − 2 log2 ρm(a,M)p ≥ 2

p − 2 log2

√
21/pρm(a, 2)p = 1

p − log2 ρm(a, 2)p = smp(a, 2).

Hence, smp(a,M) ≥ smp(a, 2) and this completes the proof of item (i).
We now prove (??). According to (??), we have four cases to consider. If ρj(a, 2)p = 21/p−j and ρm−j(a, 2)p =

21/p−(m−j), then (??) holds, since

ρj(a, 2)pρm−j(a, 2)p = 21/p−j21/p−(m−j) = 22/p−m = 21/p21/p−m ≤ 21/pρm(a, 2)p,

where we used the fact that ρm(a, 2)p ≥ 21/p−m. If ρj(a, 2)p = ρm(a, 2)p and ρm−j(a, 2)p = 21/p−(m−j), then
(??) holds, since ρj(a, 2)pρm−j(a, 2)p = 21/p−(m−j)ρm(a, 2)p ≤ 21/pρm(a, 2)p. The case ρj(a, 2)p = 21/p−j and
ρm−j(a, 2)p = ρm(a, 2)p is similar.

If ρj(a, 2)p = ρm(a, 2)p and ρm−j(a, 2)p = ρm(a, 2)p, then

ρj(a, 2)pρm−j(a, 2)p = ρm(a, 2)pρm(a, 2)p ≤ 21/pρm(a, 2)p,

where we used the inequality ρm(a, 2)p ≤ 21/p which is guaranteed by our assumption sm(a, 2)p ≥ 0. Therefore,
(??) is verified and this completes the proof of item (i).

We now prove item (ii). The claim sr(u ∗ v,M) ≥ sr(u,M) + sr(v,M) can be directly verified by using the
definition of sum rules. By (??) and û ∗ v(ω) = û(ω)v̂(ω), for µ, ν ∈ Nd0, we have

∇µ+νSnu∗v,Mδ = |det(M)|−n[∇µSnu,Mδ] ∗ [∇νSnv,Mδ].

Consequently, by Cauchy-Schwarz inequality, we have

‖∇µ+νSnu∗v,Mδ‖l∞(Zd) ≤ |det(M)|−n‖∇µSnu,Mδ‖l2(Zd)‖∇νSnv,Mδ‖l2(Zd)
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Let m1 := sr(u,M) and m2 := sr(v,M). Taking µ, ν ∈ Nd0 with |µ| = m1 and |ν| = m2 in the above inequality, we
have

lim
n→∞

‖∇µ+νSnu∗v,Mδ‖
1/n

l∞(Zd)
≤ |det(M)|−1 lim

n→∞
‖∇µSnu,Mδ‖

1/n

l2(Zd)
lim
n→∞

‖∇νSnv,Mδ‖
1/n

l2(Zd)

≤ |det(M)|−1ρm1(u,M)2ρm2(v,M)2.

Note that any element η ∈ Nd0 with |η| = m1 +m2 can be written as η = µ+ν with |µ| = m1 and |ν| = m2 for some
µ, ν ∈ Nd0. Thus, we deduce from the above inequality that ρm1+m2(u∗v,M)∞ ≤ |det(M)|−1ρm1(u,M)2ρm2(v,M)2.
Let m := sr(u ∗ v,M). By m ≥ m1 +m2, we have

ρm(u ∗ v,M)∞ ≤ ρm1+m2(u ∗ v,M)∞ ≤ |det(M)|−1ρm1(u,M)2ρm2(v,M)2,

from which we have

sm∞(u ∗ v,M) = −d log|det(M)| ρm(u ∗ v,M)∞ ≥ −d log|det(M)|[|det(M)|−1ρm1(u,M)2ρm2(v,M)2]

= d
2 − d log| det(M)| ρm1(u,M)2 + d

2 − d log| det(M)| ρm2(v,M)2 = sm2(u,M) + sm2(v,M).

The proof of item (ii) is completed by noting that sm∞(u ∗ v,M) ≤ sm2(u ∗ v,M) always holds.
To prove item (iii), we define ũ(k, j) := u(k)δ(j) and ṽ(j, k) := v(k)δ(j) for all j, k ∈ Z. That is, ũ is the 2D filter

by identifying u on Z with Z×{0}, while ṽ is the 2D filter by identifying v on Z with {0}×Z. Since sm(u, 2) ≥ 0
and sm(v, 2) ≥ 0, by item (i), we have sr(ũ,M√2) = sr(u, 2), sr(ṽ,M√2) = sr(v, 2) and sm(ũ,M√2) = sm(u, 2),
sm(ṽ,M√2) = sm(v, 2). Note that u⊗ v = ũ ∗ ṽ. Now the claim in item (iii) follows directly from item (ii).
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