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Abstract

Explicit formulae, in terms of Bernstein-Bézier coefficients, of the Fourier
transform of bivariate polynomials on a triangle and univariate polynomials
on an interval are derived in this paper. Examples are given and discussed
to illustrate the general theory. Finally, this consideration is related to the
study of refinement masks of spline function vectors.
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1 Introduction

The objective of this paper is to present a compact formula of the Fourier trans-
form of bivariate polynomials on a triangle and univariate polynomials on a
bounded interval in terms of their Bernstein-Bézier (BB) coefficients. Of course
the BB coefficients are formulated, as usual, in terms of the Barycentric coordi-
nates, as opposed to the Cartesian coordinates x = (x1, x2) for x ∈ R2 or x ∈ R.
We will focus on the bivariate setting and only consider the univariate formulae
as simple consequences. In this regard, although our method of derivation can be
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2 Fourier transform of BB polynomials on triangles

extended to multivariate polynomials on simplexes, we have decided to present
the detailed derivation only for bivariate polynomials, since the motivation of
this research is the study of subdivision masks for parametric spline curves and
surfaces.

Let Pn(x), x ∈ R2, x = (x1, x2), be a Bernstein-Bézier polynomial on a
triangle 4A1A2A3 with vertices Ai = (ai, bi) (i = 1, 2, 3). We write Pn(x) in
terms of the Barycentric coordinates (u, v, w) of 4A1A2A3 as follows.

Pn(x) ≡ Pn(x1, x2) =
∑

0≤j,k,l≤n, j+k+l=n

aj,k,l
n!

j!k!l!
ujvkwl, (1.1)

where (u, v, w) is the Barycentric coordinates of x = (x1, x2) ∈ 4A1A2A3; i.e.,
(x1, x2) = (a1u + a2v + a3w, b1u + b2v + b3w), 0 ≤ u, v, w ≤ 1, u + v + w = 1.

We need the following notation. For (m, s) ∈ {(1, 2), (1, 3), (2, 3)}, the forward-
backward operator 4m,s and backward-forward operator 5m,s defined on se-
quences {aj,k,l}j,k,l of multi-indices j, k, l are given by:

412aj,k,l := aj+1,k−1,l − aj,k,l, 512aj,k,l := aj,k,l − aj−1,k+1,l,

413aj,k,l := aj+1,k,l−1 − aj,k,l, 513aj,k,l := aj,k,l − aj−1,k,l+1, (1.2)
423aj,k,l := aj,k+1,l−1 − aj,k,l, 523aj,k,l := aj,k,l − aj,k−1,l+1.

In addition, we set 4k
m,s := 4m,s

(4k−1
m,s

)
and 5k

m,s := 5m,s

(5k−1
m,s

)
for

k = 1, 2, · · · .
For a triangle T = 4A1A2A3, we use VT to denote its area, given by

VT :=
1
2

∣∣∣∣∣∣
det







1 1 1
a1 a2 a3

b1 b2 b3







∣∣∣∣∣∣
.

The main result of this paper can be stated as follows.

Theorem 1.1 The Fourier transform of Pn(x) as in (1.1) over a triangle4A1A2A3

has the explicit formulation:

P̂n(ξ) :=
∫

4A1A2A3

Pn(x)e−iξ·xdx

= 2VT

n∑

`=0

n−∑̀

k=0

(−1)k+` n!
(n− k − `)!

1
γ`+1

(1.3)

×
{

1
αk+1

(
5k

125`
23an−`,`,0 e−i(a1ξ1+b1ξ2) −4k

125`
23a0,n,0 e−i(a2ξ1+b2ξ2)

)

− 1
βk+1

(
5k

134`
23an−`,0,` e−i(a1ξ1+b1ξ2) −4k

134`
23a0,0,n e−i(a3ξ1+b3ξ2)

)}
,
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where ξ = (ξ1, ξ2), and α := i
(
(a2−a1)ξ1 +(b2− b1)ξ2

)
, β := i

(
(a3−a1)ξ1 +(b3−

b1)ξ2

)
, γ := i

(
(a3 − a2)ξ1 + (b3 − b2)ξ2

)
.

The above formulation is valid for univariate polynomials by setting w = 0,
namely:

pn(x) =
∑

0≤j,k≤n,j+k=n

bj,k
n!

j!k!
ujvk, (1.4)

with u = (x− b)/(a− b), v = (x− a)/(b− a), and x ∈ [a, b]. By using 4 and 5
to denote the forward-backward and backward-forward operators:

4bj,k := bj+1,k−1 − bj,k, 5bj,k := bj,k − bj−1,k+1, (1.5)

and 4k := 4 (4k−1
)

and 5k := 5 (5k−1
)
, for k = 1, 2, · · · . Then the for-

mulation of the Fourier transform of univariate polynomials is an immediate
consequence of Theorem 1.1, as follows.

Corollary 1.2 The Fourier transform of pn(x) in (1.4) over a bounded interval
[a, b] has the explicit formulation:

p̂n(ξ) :=
∫ b

a
pn(x)e−ixξdx

= (b− a)e−ibξ
n∑

k=0

(−1)k n!
(n− k)!

1
(i(b− a)ξ)k+1

(
5kbn,0 −4kb0,n

)
.(1.6)

We will present the proof of Theorem 1.1 in the next section. In Section 3,
we will compute the Fourier transforms of certain minimal supported bivariate
splines to illustrate the general theory, and discuss the relation to subdivision
(refinement) masks for parametric spline surface rendering.

2 Proof of Theorem

The integral of the Fourier transform P̂n of a bivariate polynomial Pn restricted
to the triangle is related to the hypergeometric function 1F1, called a confluent
hypergeometric function (see e.g. [9]), defined by

1F1(α1, β1; z) := 1+
α1

β1

z

1!
+

α1(α1 + 1)
β1(β1 + 1)

z2

2!
+

α1(α1 + 1)(α1 + 2)
β1(β1 + 1)(β1 + 2)

z3

3!
+· · · , z ∈ C,

where α1, β1 ∈ C with β1 /∈ {0,−1,−2, · · · }. Clearly,

1F1(0, β1; z) = 1, 1F1(β1, β1; z) = ez.

We need the following two properties of 1F1 for any nonnegative integers α1, β1:
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(i) For integers k ≥ 0, m > 0,

z

m
1F1(k + 1,m + 1; z) = 1F1(k + 1, m; z)− 1F1(k, m; z), z ∈ C; (2.1)

(ii) For integers k ≥ 0, m ≥ 0, 0 ≤ u ≤ 1 and ρ ∈ C,

∫ 1−u

0
νk(1− u− ν)meρνdν =

k!m!
(k + m + 1)!1

F1(k + 1, k + m + 2; (1− u)ρ). (2.2)

(See [9], p.1013 and p.343).
To prove Theorem 1.1, we need the following result.

Lemma 2.1 For any integer s ≥ 0, real numbers bm,j, and ρ, z ∈ C,

s∑

m=0

bm,s−m
1

(s + 1)!
zs+1

1F1(m + 1, s + 2; ρz)

=
s∑

`=0

(−1)`

ρ`+1
5`bs,0

zs−`

(s− `)!
eρz −

s∑

`=0

(−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
. (2.3)

Proof. By applying (2.1), we see that

Left-hand side of (2.3) =
s∑

m=0

bm,s−m
zs

ρ · s!
(
1F1(m + 1, s + 1; ρz)− 1F1(m, s + 1; ρz)

)

=
s∑

m=0

bm,s−m
zs

ρ · s!1F1(m + 1, s + 1; ρz)−
s∑

m=0

bm,s−m
zs

ρ · s!1F1(m, s + 1; ρz)

= bs,0
zs

ρ · s!1F1(s + 1, s + 1; ρz) +
1
ρ

s−1∑

m=0

bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz)

−b0,s
zs

ρ · s!1F1(0, s + 1; ρz)−
s∑

m=1

bm,s−m
zs

ρ · s!1F1(m, s + 1; ρz)

= bs,0
zs

ρ · s!e
ρz +

1
ρ

s−1∑

m=0

bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz)

−b0,s
zs

ρ · s! −
1
ρ

s−1∑

m=0

bm+1,s−m−1
zs

s! 1F1(m + 1, s + 1; ρz)

=
1
ρ
bs,0

zs

s!
eρz − 1

ρ
b0,s

zs

s!
+

(−1)
ρ

s−1∑

m=0

4bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz).
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Now, repeating this process, we may conclude that the left-hand side of (2.3) is
given by

(
1
ρ
bs,0

zs

s!
+

(−1)
ρ2

4bs−1,1
zs−1

(s− 1)!
+ · · ·+ (−1)`

ρ`+1
4`bs−`,`

zs−`

(s− `)!
+ · · ·+ (−1)s

ρs+1
4sb0,s

)
eρz

−
(

1
ρ
b0,s

zs

s!
+

(−1)
ρ2

4b0,s
zs−1

(s− 1)!
+ · · ·+ (−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
+ · · ·+ (−1)s

ρs+1
4sb0,s

)

=
s∑

`=0

(−1)`

ρ`+1
5`bs,0

zs−`

(s− `)!
eρz −

s∑

`=0

(−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
,

where the last equality follows from the identity 4`bs−`,` = 5`bs,0. Hence we
obtain (2.3).

We are now ready to prove the main result of the paper.
Proof of Theorem 1.1. By simple calculations, we have

P̂n(ξ) =
∫

∆A1A2A3

e−iξ·xPn(x)dx = 2VT

n∑

j=0

n−j∑

k=0

aj,k,n−j−k
n!

j!k!(n− j − k)!

×
∫ 1

0

∫ 1−u

0
e−iξ1

(
a3+(a1−a3)u+(a2−a3)v

)
e−iξ2

(
b3+(b1−b3)u+(b2−b3)v

)
ujvk(1− u− v)n−j−kdvdu

= 2VT e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑

k=0

aj,k,n−j−k
n!

j!k!(n− j − k)!

∫ 1

0
eβuuj

∫ 1−u

0
eγvvk(1− u− v)n−j−kdvdu

= 2VT e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑

k=0

aj,k,n−j−k
n!

j!(n− j + 1)!

×
∫ 1

0
eβuuj(1− u)n−j+1

1F1(k + 1, n− j + 2; (1− u)γ)du

= 2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

∫ 1

0
eβu uj

j!

×
{

n−j∑

k=0

aj,k,n−j−k
1

(n− j + 1)!
(1− u)n−j+1

1F1(k + 1, n− j + 2; (1− u)γ)

}
du,

where the third equality follows from (2.2). Applying Lemma 2.1 to the sum in
the curly brackets of the rightmost equality with s = n− j, bm,` = aj,m,` (so that
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4bm,` = 423aj,m,`,5bm,` = 523aj,m,`), z = 1− u, ρ = γ, we see that

P̂n(ξ) = 2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

∫ 1

0
eβu uj

j!

×
{

n−j∑

`=0

(−1)`

γ`+1
5`

23aj,n−j,0
(1− u)n−j−`

(n− j − `)!
e(1−u)γ −

n−j∑

`=0

(−1)`

γ`+1
4`

23aj,0,n−j
(1− u)n−j−`

(n− j − `)!

}
du

= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

j=0

n−j∑

`=0

(−1)`

γ`+1
5`

23aj,n−j,0
1

j!(n− j − `)!

∫ 1

0
uj(1− u)n−j−`eαudu

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑

`=0

(−1)`

γ`+1
4`

23aj,0,n−j
1

j!(n− j − `)!

∫ 1

0
uj(1− u)n−j−`eβudu

= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

j=0

n−j∑

`=0

(−1)`

γ`+1
5`

23aj,n−j,0
1

(n− ` + 1)!1
F1(j + 1, n− ` + 2;α)

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑

`=0

(−1)`

γ`+1
4`

23aj,0,n−j
1

(n− ` + 1)!1
F1(j + 1, n− ` + 2;β)

= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

`=0

(−1)`

γ`+1

n−∑̀

j=0

5`
23aj,n−j,0

1
(n− ` + 1)!1

F1(j + 1, n− ` + 2;α)

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

`=0

(−1)`

γ`+1

n−∑̀

j=0

4`
23aj,0,n−j

1
(n− ` + 1)!1

F1(j + 1, n− ` + 2; β).

Finally, applying Lemma 2.1 to the first term (the second term resp.) in the
above equation with s = n − `, bm,k = 5`

23am,k+`,0, z = 1, ρ = α (with s =
n− `, bm,k = 5`

23am,0,k+`, z = 1, ρ = β resp.), we have

P̂n(ξ) = 2VT n!e−i(a2ξ1+b2ξ2)
n∑

`=0

(−1)`

γ`+1

×
{

n−∑̀

k=0

(−1)k

αk+1
5k

125`
23an−`,`,0

eα

(n− `− k)!
−

n−∑̀

k=0

(−1)k

αk+1
4k

125`
23a0,n,0

1
(n− `− k)!

}

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

`=0

(−1)`

γ`+1

×
{

n−∑̀

k=0

(−1)k

βk+1
5k

134`
23an−`,0,`

eβ

(n− `− k)!
−

n−∑̀

k=0

(−1)k

βk+1
4k

134`
23a0,0,n

1
(n− `− k)!

}
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= 2VT

n∑

`=0

n−∑̀

k=0

(−1)k+` n!
(n− k − `)!

1
γ`+1

×
{

1
αk+1

(
5k

125`
23an−`,`,0 e−i(a1ξ1+b1ξ2) −4k

125`
23a0,n,0 e−i(a2ξ1+b2ξ2)

)

− 1
βk+1

(
5k

134`
23an−`,0,` e−i(a1ξ1+b1ξ2) −4k

134`
23a0,0,n e−i(a3ξ1+b3ξ2)

)}
,

as desired.
Remark 1. By applying Lemma 2.1 and following the above procedure,

the main result in this paper can be extended to higher dimensions. That is,
explicit formulae of the Fourier transform of Bernstein-Bézier representations of
multivariate polynomials on simplexes can be derived in a similar way.

3 Application to refinable bivariate splines on triangles

Refinable spline functions are instrumental to surface subdivisions. For exam-
ple, the bi-cubic B-spline is used in the Catmull-Clark scheme [1] and the three-
direction box-spline B222 is used in the Loop scheme [10]. The simple reasons are
that firstly, the refinement masks of such spline functions immediately give the
so-called “local averaging rules” for the subdivision schemes; and secondly, the
parametric spline representations are precisely the subdivision surfaces. While
the refinement masks of the bi-cubic B-spline and the box-spline B222, being
defined by convolutions of the characteristic function of the unit square along
the appropriate directions, are readily computable, those for others, such as ba-
sis functions with minimum and quasi-minimum supports, are not as easy to
compute. Examples of the recent development in this direction are the refinable
bivariate C2-cubic, C2-quartic and C2-quintic spline functions in [6, 7, 8], intro-
duced for matrix-valued surface subdivisions to gain such desirable properties as
surface geometric shape control parameters, smaller subdivision template size (to
better address the often unavoidable extraordinary vertices), and interpolation
of the position components of the (initial) control vertices. Computations of the
refinement masks of these bivariate spline functions are very tedious, requiring
formulating and solving large linear systems in terms of Bernstein-Bézier coeffi-
cients. For this reason, the original motivation for this research was to extend the
standard Fourier approach to computing the (scalar-valued) refinement masks of
refinable spline functions to computing the matrix-valued refinement masks of
refinable spline function vectors.

As an application, let us consider the Fourier transform of the minimally sup-
ported (ms) and quasi-minimally supported (qms) bivariate splines in Sk

m(k)(∆
(i))

(i = 1, 2), where ∆(1) and ∆(2) denote respectively 3 and 4-direction meshes in
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R2 with integer grid points, and Sk
m(k)(∆

(i)) (i = 1, 2) the spaces of functions
in Ck whose restrictions on the triangular cells are polynomials of degree m(k).
Here, m(k) denotes the smallest nonnegative integer such that Sk

m(k)(∆
(i)) con-

tains at least one locally supported function f . It is well known that for ∆(1)

m(2k − 1) = 3k and m(2k) = 3k + 1; and for ∆(2) we have m(3k − 1) = 4k,
m(3k) = 4k + 1, and m(3k + 1) = 4k + 2 (see [2, 3]).

Minimally ms and qms bivariate splines, considered in [2, 3, 4], are defined
as follows. The support of a locally supported function f in a spline space is the
closure of the set on which f does not vanish and is denoted by supp(f). A set
S is called a minimal support of a spline space if there is some f , called an ms
spline, in the space with supp(f) = S, but there does not exist a nontrivial g in
the space with supp(g) properly contained in S. A function f in a spline space
is called a qms spline if (i) f cannot be written as a (finite) linear combination
of ms splines in the space, and (ii) for any h in the space properly contained in
supp(f), h is some (finite) linear combination of ms spines in the space.

For example, for the 3-direction mesh ∆(1), while the spline space S0
1(∆(1))

has only one ms spline g0
1, which is the box spline B111 with direction set {(1, 0),

(0, 1), (1, 1)}, the space S−1
0 (∆(1)) has two ms splines g0

2 and g0
3 which are the

characteristic functions of χA and χB, where A is the triangle bounded by the 3
lines: x = 0, y = 1, and y = x, and B the triangle bounded by the 3 lines: x = 1,
y = 0 and y = x.

On the other hand, for the 4-direction mesh ∆(2), the space S1
2(∆(2)) has only

one ms spline f0
1 = B1111, the box spline with direction set {(1, 0), (0, 1), (1, 1),

(1,−1)}, but there are two ms splines in the space S0
1(∆(2)) by f0

2 and f0
3 , where

f0
2 is the Courant hat function having a diamond support with the vertices (1, 0),

(0, 1), (−1, 0), and (0,−1), and having value of 1 at the center (0, 0) of the
support, and f0

3 the other Courant hat function supported on the unit square
[0, 1]2 with value 1 at its center (1/2, 1/2). Furthermore, there are two ms splines
f0
4 and f0

5 and one qms spline f0
6 in S2

4(∆(2)) (see [2, 3, 4]).
In the following, let us consider the k-fold 2-dimensional convolutions: gk

1 =
g0
1 ∗ g0

1 ∗ · · · ∗ g0
1︸ ︷︷ ︸

k+1

and fk
1 = f0

1 ∗ f0
1 ∗ · · · ∗ f0

1︸ ︷︷ ︸
k+1

of g0
1 and f0

1 , respectively. Now, the

spline function vectors of interest are:

Gk ≡
[

gk
2

gk
3

]
:= gk−1

1 ∗
[

g0
2

g0
3

]
, F k ≡

[
fk
2

fk
3

]
:= fk−1

1 ∗
[

f0
2

f0
3

]
, (3.1)

where k ≥ 1 and f ∗
[

g
h

]
:=

[
f ∗ g
f ∗ h

]
.

We remark that among the functions gk
i , fk

i , i = 1, 2, 3, only gk
1 and fk

1 are box
splines, while all of them are the unique ms and qms splines in the corresponding
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spline spaces (where the notion of uniqueness is according to the statement of
Theorem 3.2 in [2]).

The Fourier transforms of the “initial” ms splines g0
i , f0

i , i = 2, 3, can be
evaluated by using the formula provided in this paper, and the Fourier transforms
of the other splines are given by the corresponding products with those of gk

1 or
fk
1 .

Finally, the refinement masks of Gk, F k can be easily computed by making
use of (3.1) from the refinements of the “initial” G0 and F 0.

Example 1. The Fourier transform of Gk is given by Ĝk(ξ1, ξ2) = [ĝk
2 , ĝk

3 ]T (ξ1, ξ2),
where ĝk

2 = ĝ0
2(ĝ

0
1)

k and ĝk
3 = ĝ0

3(ĝ
0
1)

k. Here, we have

ĝ0
1(ξ1, ξ2) = B̂111(ξ1, ξ2) =

1− e−iξ1

iξ1

1− e−iξ2

iξ2

1− ei(ξ1+ξ2)

i(ξ1 + ξ2)
,

ĝ0
2(ξ1, ξ2) =

1− e−i(ξ1+ξ2)

ξ1(ξ1 + ξ2)
− 1− e−iξ2

ξ1ξ2
, (3.2)

and

ĝ0
3(ξ1, ξ2) =

1− e−i(ξ1+ξ2)

ξ2(ξ1 + ξ2)
− 1− e−iξ1

ξ1ξ2
. (3.3)

Next, let us compute the Fourier transform of F k. For this purpose, recall
that

(
φ(A · −k)

)∧(ξ) = | det(A)|−1e−iξT ·(A−1k)φ̂
(
(A−1)T ξ

)
, (3.4)

for any invertible matrix A of dimension s.

Example 2. Let f0
2 , f0

3 be the two Courant hat functions in S0
1(4(2)) as intro-

duced previously. To compute the Fourier transform of f0
2 , we use the x-y axes

to partition its support into four triangles: ∆1, ∆2, ∆3, and ∆4 in the the first,
second, third, and fourth quadrants, respectively. Then f0

2 can be written as the
sum of four functions: φ1, φ2, φ3, and φ4, with supports given by ∆1, ∆2, ∆3,
and ∆4, respectively.

By the formula (1.3), the Fourier transform of φ1 is given by

φ̂1(ξ1, ξ2) = − 1
ξ1ξ2

+ i
1− e−iξ1

ξ2
1(ξ1 − ξ2)

+ i
1− e−iξ2

ξ2
2(ξ2 − ξ1)

. (3.5)

Since φ2(x, y) = φ1(−x, y), it follows from (3.5) and (3.4) that

φ̂2(ξ1, ξ2) = φ̂1(−ξ1, ξ2) =
1

ξ1ξ2
− i

1− eiξ1

ξ2
1(ξ1 + ξ2)

+ i
1− e−iξ2

ξ2
2(ξ1 + ξ2)

.
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Similarly, since φ3(x, y) = φ1(−x,−y) and φ4(x, y) = φ1(x,−y), we have

φ̂3(ξ1, ξ2) = − 1
ξ1ξ2

+ i
1− eiξ1

ξ2
1(ξ2 − ξ1)

+ i
1− eiξ2

ξ2
2(ξ1 − ξ2)

;

φ̂4(ξ1, ξ2) =
1

ξ1ξ2
+ i

1− e−iξ1

ξ2
1(ξ1 + ξ2)

− i
1− eiξ2

ξ2
2(ξ1 + ξ2)

.

Consequently, we arrive at

f̂0
2 (ξ1, ξ2) =

4∑

j=1

φ̂j(ξ1, ξ2) = 2i
eiξ2 − e−iξ2

ξ2(ξ1 + ξ2)(ξ2 − ξ1)
+ 2i

eiξ1 − e−iξ1

ξ1(ξ1 + ξ2)(ξ1 − ξ2)
.

(3.6)

Next, observe that the linear transformation B

[
x
y

]
−

[
1
0

]
, with

B =
[

1 1
1 −1

]
,

maps the supp(f0
3 ) to supp(f0

2 ), with the vertices (0, 0), (1, 0), (1, 1), and (0, 1)
of supp(f0

3 ) corresponding to the vertices (−1, 0), (0, 1), (1, 0), and (0,−1) of
supp(f0

2 ), respectively. Hence, we may write

f0
3 (x, y) = f0

2

(
B

[
x
y

]
−

[
1
0

] )
,

and apply (3.4) to obtain

f̂0
3 (ξ1, ξ2) =

1
2
e−iξ· 1

2
B[1,0]T f̂0

2 (
1
2
Bξ) =

1
2
e−i

ξ1+ξ2
2 f̂0

2 (
ξ1 + ξ2

2
,
ξ1 − ξ2

2
)

=
2i

ξ1ξ2

(
e−iξ2 − e−iξ1

ξ2 − ξ1
+

1− e−i(ξ1+ξ2)

ξ1 + ξ2

)
. (3.7)

Finally, to compute the refinement masks of Gk and F k in (3.1), we observe
that the convolution of two (finitely) refinable functions remains to be (finitely)
refinable, and that Gk is the convolution of G0 with the refinable box spline gk

1 ,
and F k the convolution of F 0 with the refinable box spline fk

1 . Hence, we only
need to compute the refinement masks of the initial ms splines. Precisely, from
ĝ0
2 and ĝ0

3 given by (3.2) and (3.3), we have

Ĝ0(2ξ1, 2ξ2) = Q0(ξ1, ξ2)Ĝ0(ξ1, ξ2)

where

Q0(ξ1, ξ2) =
[

1 + z2 + z1z2 z2

z1 1 + z1 + z1z2

]
, z1 = e−iξ1 , z2 = e−iξ2 ;



C. K. Chui, T. X. He, and Q. T. Jiang 11

and from f̂0
2 and f̂0

3 given by (3.6) and (3.7), we have

F̂ 0(2ξ1, 2ξ2) = R0(ξ1, ξ2)F̂ 0(ξ1, ξ2)

where

R0(ξ1, ξ2) =
1
4

[
1 + 1

2(z1 + 1
z2

)(z1 + z2) 1
2(1 + 1

z1
)(1 + 1

z2
)

z1z2
1
2(1 + z1)(1 + z2)

]
, z1 = e−iξ1 , z2 = e−iξ2 .

The interested reader is referred to [5] for computing the refinement mask for
F 0(x) by calculating the BB coefficients of F 0(B−1x) directly.

Therefore, we conclude, from the definitions in (3.1), that

Ĝk(2ξ1, 2ξ2) = Qk(ξ1, ξ2)Ĝk(ξ1, ξ2), F̂ k(2ξ1, 2ξ2) = Rk(ξ1, ξ2)F̂ k(ξ1, ξ2)

with

Qk(ξ1, ξ2) =
(
q(ξ1, ξ2)

)k
Q0(ξ1, ξ2), Rk(ξ1, ξ2) =

(
r(ξ1, ξ2)

)k
R0(ξ1, ξ2) (3.8)

where q(ξ1, ξ2) = 1
8(1 + e−iξ1)(1 + e−iξ2)(1 + e−i(ξ1+ξ2)) is the mask (or two-scale

symbol) of g0
1, and r(ξ1, ξ2) = 1

16(1+e−iξ1)(1+e−iξ2)(1+e−i(ξ1+ξ2))(1+e−i(ξ1−ξ2))
the mask (or two-scale symbol) of f0

1 .
That is, we have the following result.

Theorem 3.1 The vector-valued functions Gk and F k are finitely refinable with
refinement masks given by (3.8).

Similarly,

fk−1
1 ∗




f0
4

f0
5

f0
6




is also finitely refinable, with refinement mask given by

(
r(ξ1, ξ2)

)k
S0(ξ1, ξ2),

where S0 is the refinement mask of




f0
4

f0
5

f0
6


. Computation of S0 as well as the

refinement masks of other initial ms and qms bivariate splines in general is usually
nontrivial and requires further investigation.
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