
A Separation Method for Multicomponent Nonstationary Signals

with Crossover Instantaneous Frequencies∗

Lin Li1, Ningning Han2, Qingtang Jiang3, and Charles K. Chui4

Feb 8, 2020

(submitted to IEEE Trans IT on Feb 14, 2020, ms # IT-20-0113)

1. School of Electronic Engineering, Xidian University, Xi’an, China

2. Department of Mathematics, Hong Kong Baptist University, Hong Kong

3. Department of Math and CS, University of Missouri-St. Louis, St. Louis, USA

4. College of Mathematics and Statistics, Shenzhen University, China

and Department of Mathematics, Hong Kong Baptist University, Hong Kong

Abstract

In nature and engineering world, the acquired signals are usually affected by multiple com-

plicated factors and appear as multicomponent nonstationary modes. In such and many other

situations, it is necessary to separate these signals into a finite number of monocomponents

to represent the intrinsic modes and underlying dynamics implicated in the source signals.

In this paper, we consider the separation of a multicomponent signal which has crossing in-

stantaneous frequencies (IFs), meaning that some of the components of the signal overlap in

the time-frequency domain. We use a kernel function-based complex quadratic phase func-

tion to represent a multicomponent signal in the three-dimensional space of time, frequency

and chirp rate, to be called the localized quadratic-phase Fourier transform (LQFT). We an-

alyze the error bounds for IF estimation and component recovery with LQFT. In addition,

we propose a matched-filter along certain specific time-frequency lines with respect to the

chirp rate to make nonstationary signals be further separated and more concentrated in the

three-dimensional space of LQFT. Based on the approximation of source signals with linear fre-

quency modulation modes at any local time, we introduce an innovative signal reconstruction

algorithm which is suitable for signals with crossing IFs. Moreover, this algorithm decreases

component recovery errors when the IFs curves of different components are not crossover, but

fast-varying and close to one and other. Numerical experiments on synthetic and real signals

show our method is more accurate and consistent in signal separation than the empirical mode

decomposition, synchrosqueezing transform, and other approaches.
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1 Introduction

This paper studies blind source nonstationary signal separation in which a nonstationary signal

is represented as a superposition of Fourier-like oscillatory modes:

x(t) = A0(t) +

K∑
k=1

xk(t), xk(t) = Ak(t) cos
(
2πφk(t)

)
, (1)

with Ak(t), φ
′
k(t) > 0 and Ak(t), φ

′
k(t) varying more slowly than φk(t). Such a representation,

called an adaptive harmonic model (AHM) representation, is important for extracting informa-

tion, such as the underlying dynamics, hidden in the nonstationary signal, with the trend A0(t),

instantaneous amplitudes (IAs) Ak(t) and the instantaneous frequencies (IFs) φ′k(t) being used

to describe the underlying dynamics.

In nature, many real-world phenomena that can be formulated as signals (or in terms of time

series) are often affected by a number of factors and appear as time-overlapping multicomponent

signals in the form of (1). A natural approach to understand and process such phenomena is

to decompose, or even better, to separate the multicomponent signals into their basic building

blocks xk(t) (called components or sub-signals) for extracting the necessary features. Also, for

radar, communications, and other applications, signals often appear in multicomponent modes.

Since these signals are mainly nonstationary, meaning the amplitudes and/or phases of some or

all components change with the time, there have been few effective rigorous methods available for

decomposition of them.

The empirical mode decomposition (EMD) algorithm along with the Hilbert spectrum analysis

(HSA) is a popular method to decompose and analyze nonstationary signals [1]. EMD works like

a filter bank [2, 3] to decompose a nonstationary signal into a superposition of intrinsic mode

functions (IMFs) and a trend, and then the IF of each IMF is calculated by HSA. There are many

articles studying the properties of EMD and variants of EMD have been proposed to improve the

performance, see e.g. [2]-[13]. In particular, the separation ability of EMD was discussed in [4],

which shows that EMD cannot decompose two components when their frequencies are close to

each other. The ensemble EMD (EEMD) was proposed to suppress noise interferences [5]. The

original EMD was extended to multivariate signals in [6, 7, 3]. Alternative sifting algorithms and

formulations for EMD were introduced in [8] and [10]. Similar to the EMD filter bank, the wavelet

filter bank for signal decomposition was proposed in [11], called empirical wavelet transform. An

EMD-like sifting process was recently proposed in [12] to extract signal components in the linear
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time-frequency (TF) plane one by one. EMD is an efficient data-driven approach and no basis of

functions is required. A weakness of EMD or EEMD is that it can easily lead to mode mixtures

or artifacts, namely undesirable or false components [14]. In addition, there is no mathematical

theorem to guarantee the recovery of the components.

Time-frequency analysis is another method to separate multicomponent signals, which is

widely used in engineering fields such as communication, radar and sonar as a powerful tool

for analyzing signals [15]. Time-frequency signal analysis and synthesis using the eigenvalue de-

composition method have been studied [16, 17, 18]. Recently the synchrosqueezing transform

(SST) was developed in [19] to provide mathematical theorems to guarantee the component re-

covery of nonstationary multicomponent signals. The SST, which was first introduced in 1996,

intended for speech signal separation [20], is based on the continuous wavelet transform (CWT).

The short-time Fourier transform (STFT)-based SST was also proposed in [23] and further stud-

ied in [24, 25]. SST provides an alternative to the EMD method and its variants, and it overcomes

some limitations of the EMD and EEMD schemes [26, 27]. SST has been used in machine fault

diagnosis [28, 29], crystal image analysis [30, 31], welding crack acoustic emission signal analysis

[32], and medical data analysis [33, 34, 35].

SST works well for sinusoidal signals, but not for broadband time-varying frequency signals. To

provide sharp representations for signals with significantly frequency changes, two methods were

proposed. One is the matching demodulation transform-based SST (or called the instantaneous

frequency-embedded SST) proposed in [36, 37] which changes broadband signals to narrow-band

signals (see also [38]). The instantaneous frequency-embedded SST proposed in [37] preserves the

IFs of the original signals. The other method is the 2nd-order SST introduced in [39] and [40]. The

higher-order FSST was presented in [41] and [42], which aims to handle signals containing more

general types. Very recently an adaptive SST with a time-varying parameter were introduced in

[43, 44]. They obtained the well-separated condition for multicomponent signals using the linear

frequency modulation to approximate a nonstationary signal at any local time. In addition,

theoretical analysis of adaptive SST was obtained in [45]. SST with a time-varying window width

has also been studied in [46, 47].

To recover individual component xk(t), the SST method consists of two steps. First IF φ′k(t)

of xk(t) is estimated from the SST plane. Secondly, xk(t) is computed by a definite integral

along each estimated IF curve on the SST plane. The reconstruction accuracy for xk(t) depends

heavily on the accuracy of the IFs estimation carried out in the first step. On the other hand, a

direct time-frequency approach, called signal separation operator (SSO), was introduced in [48]

for multicomponent signal separation. In SSO approach, the components are reconstructed simply

by substituting the time-frequency ridge to SSO.

While SST and SSO are mathematically rigorous on IF estimation and component recovery,
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both of them require that the components xk(t) are well-separated in the time-frequency plane,

namely IFs of xk(t) satisfy

φ′k(t)− φ′k−1(t) ≥ 24, 2 ≤ k ≤ K, (2)

for some 4 > 0. In many applications, multicomponent signals are overlapping in the time-

frequency plane, that is the IFs of its components are crossover. For example, in radar signal

processing, the micro-Doppler effects are represented by highly nonstationary signals, when the

target or any structure on the target undergoes micro-motion dynamics, such as mechanical

vibrations, rotations, or tumbling and coning motions [49, 50]. Fig.1 shows simulated micro-

Doppler modulations (two sinusoidal signals) induced by two target’s tumbling motions and their

short-time Fourier transforms (SFTFs). In practice we need to recover each components or at

least the main body signature corresponding to the target’s motion in the radar signal processing.
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Figure 1: Micro-Doppler modulations induced by target’s tumbling (Right) and their STFTs (Left).

We say two components xk−1(t) and xk(t) in (1) are overlapping in time-frequency plane when

t = t0 or the IF curves of them are crossing at t = t0 if

φ′k−1(t0) = φ′k(t0) and φ′′k−1(t) 6= φ′′k(t) for t ∈ [t0 − δ1, t0 + δ1],

where δ1 is a positive number. In this paper we consider multicomponent signals of the form (1)

satisfying

|φ′k(t)− φ′`(t)|+ ρ|φ′′k(t)− φ′′` (t)| ≥ 24, (3)

where ρ ≥ 0 is a number decided by the user and 4 > 0 is called the separation resolution. When

ρ = 0, (3) is reduced to the well-separated condition (2) required for SST and SSO. Condition (3)

allows the IFs of some components xk(t) to cross as long as their chirp rates φ′′k(t) are different

near the time t0 where IFs crossing occurs.

To separate signals overlapping in the time-frequency plane, we propose in this paper a kernel-

based method, called the localized quadratic-phase Fourier transform (LQFT). LQFT is a gen-

eralization of the adaptive STFT from two-dimensional setting to the three-dimensional space of
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time, frequency and chirp rate. We will present a matched-filter along the specific time-frequency

lines associated with the chirp rate to make IFs crossover components be further separated and

more concentrated in the three-dimensional space of LQFT. In addition, based on the approxi-

mation of source signals with linear-frequency-modulation modes at any local time, we propose

an innovative signal reconstruction algorithm which is more suitable for signals with crossing IFs.

Moreover, when the IFs curves of different components are not crossover, but fast-varying and

close to each other, our reconstruction algorithm will decrease the recovery errors significantly.

Some methods have been proposed to estimate the IFs of nonstationary signals with crossover

IFs. For example, the time-frequency distribution (with a cross-term) [51] was used to estimate

IFs. [52] introduced an intrinsic chirp component decomposition to recover the instantaneous

amplitude, and proposed a method called the ridge path regrouping to estimate IFs. [50] developed

a compressive sensing approach to recover stationary narrowband signals contaminated by strong

nonstationary signals. The LQFT defined in Section 3 uses a kind of parametric time-frequency

analysis, see the local polynomial Fourier in [53, 54, 55]. The kernel for LQFT seems like a

kind of chirplet transform introduced in [56] (also see some variants in [57]-[59]). However, our

algorithm addresses the inverse transform and aims to decompose multicomponent signals with

fasting-varying, even crossing IFs, which is different from the existing chirplet transforms. Most

importantly, we provide a mathematically rigorous theorem which guarantees the recovery of

components for multicomponent signal satisfying (3) with the LQFT approach. To our best

knowledge, there is no other paper in the literature has established mathematical theorems to

guarantee the recovery of the components overlapping in the time-frequency plane. Furthermore,

we use a matched-filter along the specific time-frequency lines respect to the chirp rate to make

different components be further separated and more concentrated in the three dimensional space

of LQFT.

The remainder of this paper is organized as follows. In Section 2, we first review the signal

separation methods by SST and SSO. After that we state the problem of recovering sub-signals

with crossing IFs. In Section 3, we introduce LQFT and filtered LQFT for separating multicom-

ponent signals with fast-varying and crossing IFs. We present the numerical experiments and

analysis in Section 4. A conclusion is then presented in Section 5.

2 Problem statement

The (modified) STFT of signal x(t) ∈ L2(R) with a window function g(t) ∈ L2(R) is defined by,

Vx(t, η) :=

∫
R
x(τ)g(τ − t)e−i2πη(τ−t)dτ, (4)
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If g(0) 6= 0, then the original signal x(t) can be recovered back from its STFT:

x(t) =
1

g(0)

∫
R
Vx(t, η)dτ. (5)

For multicomponent signal x(t) in (1) satisfying the separation condition (2), the sub-signal xk(t)

can be recovered by

xk(t) ≈
1

g(0)

∫
|η−φ′k(t)|<Γ1

Vx(t, η)dη, (6)

for some Γ1 > 0.

To enhance the time-frequency resolution and concentration, the idea of SST is to reassign

the frequency variable. As in [23], denote

ωx(t, η) :=
∂
∂tVx(t, η)

i2πVx(t, η)
. (7)

The quantity ωx(t, η) is called the “phase transformation” [19]. The STFT-based SST is to

reassign the frequency variable η by transforming STFT Vx(t, η) of x(t) to a quantity, denoted by

Rx(t, η), on the time-frequency plane:

Rx(t, η) :=

∫
{ξ:Vx(t,ξ)6=0}

Vx(t, ξ)δ (ωx(t, ξ)− η) dξ. (8)

One also has a reconstruction formula of xk(t) similar to (6) with Vx(t, ξ) replaced by Rx(t, ξ).

Moreover, the second-order [39] and high-order [41] SSTs were introduced based on higher order

phase transformations.

Observe that signal reconstructions with STFT and SST depend on the IF estimation of φ′k(t)

and a given threshold Γ1, hence it is indirect. In contrast, signal separation operator (SSO) [48]

extracts signal components via local frequencies directly. The SSO Ta,δ, which is applied to signals

x in (1), is defined by

(Ta,δx) (t, θ) :=
1

~a

∑
n∈Z

x(t− nδ)h
(n
a

)
ei2πnθ, (9)

where h is an admissible window function, θ ∈ [0, 1] and δ, a > 0 are parameters, with a so chosen

that

~a :=
∑
n∈Z

h
(n
a

)
> 0. (10)

For a multicomponent signal x(t) defined in (1), satisfying the well-separation condition (2),

the set {θ ∈ [0, 1] : | (Ta,δx) (t, θ)| > Γ2} can be expressed as a disjoint union of exactly K non-

empty sets Θl, l = 1, 2, ...,K, corresponding to the K components of x(t). The sub-signal xk(t)

can be reconstructed by,

x̂k(t) = 2<e
{

(Ta,δx) (t, θ̂k)
}
, (11)
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where

θ̂k(t) = arg max
θ∈Θk

| (Ta,δx) (t, θ)|. (12)

As mentioned in Section 1, to recover components xk(t) with SST or SSO, it is required all IFs

of different components be separated from each other, namely they be far away from each other

and non-crossing as shown in (2). There are few methods available can recover the components

in (1) when the IFs are crossing. In particular, there is no theoretical theorem to guarantee the

recovery of the waveforms of components when their IFs are crossover with only one observation

x(t) available. This paper is to provide a method to recover such nonstationary multicomponent

signals and present theoretical analysis on the recovery error. Next let us consider an example

to show the performances of EMD, SST, SSO and our method LQFT in separating a signal with

crossover IFs.

Let f(t) be the two-component signal introduced in [19]:

f(t) = f1(t) + f2(t) = cos
(
t2 + t+ cos(t)

)
+ cos(8t). (13)

Here we let the sampling rate Fs = 20Hz and we only analyze the truncation signal on t ∈
[0, 256/Fs], with 256 discrete sampling points. The instantaneous frequencies of f1(t) and f2(t)

are φ′1(t) = (2t+ 1− sin(t))/(2π) and φ′2(t) = 4/π, respectively.

Fig.2 shows some recovery results of f1(t) and f2(t). Observe that compared to the STFT

and the STFT-based SST, the 2nd-order SST of f(t) represents this two-component signal with

crossing IF curves much sharper and clearer. However, the existing methods including EMD [1],

SST [24], the 2nd-order SST [39] and SSO [48] are unable to recover the waveforms f1(t) and

f2(t) accurately, see the recovered f1 and f2 by these methods in Fig.2. Our proposed LQFT

with Algorithm 1 provided in §3.2 can recover the two components accurately as shown in the 4th

panels (from the left) in row 3 and row 4 respectively in Fig.2. Note that EMD, SST, 2nd-order

SST and SSO all result in big recovery errors for either f1 or f2 around t0 = 3.38 where IFs

crossing occurs, while our method produces very small errors near t0. The boundary effect is

unavoidable for all methods since we only use the truncation signal for 0 ≤ t ≤ 12.8 and the

boundary extension has not be considered in this example. In addition, in this example we simply

use the same Gaussian window with constant variance σ = 1.6 for STFT, SST, the 2nd-order

SST, SSO and LQFT.

3 Signal separation with localized quadratic-phase Fourier trans-

form (LQFT)

In this section we introduce LQFT and provide the main theorem on component recovery with

LQFT. In addition, we introduce filtered LQFT to make IFs crossover components further sepa-
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rated and more concentrated in the three-dimensional space of LQFT. Furthermore, we propose

an algorithm based on LQFT to improve the performance of LQFT in signal separation.
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Figure 2: Results of component recovery of two-component signal f(t) in (13). The source signal f(t):

Waveform and IFs (Top row, from left to right); Time-frequency diagrams: STFT, SST, 2nd-order SST

and estimated IFs by LQFT (Second row, from left to right); Recovery results of f1(t) by different methods:

EMD, 2nd-order SST, SSO and our proposed method (Third row, from left to right); Recovery results of

f2(t) by different methods: EMD, 2nd-order SST, SSO and our proposed method (Bottom row, from left

to right).
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3.1 Main results

In this subsection, first we introduce LQFT. After that we define the class of IF crossover multi-

component signals which can be separated by LQFT and an admissible window function used in

for signal separation. The main result, Theorem 1, will be followed then.

Definition 1. (LQFT) The LQFT applied to a signal x(t) is defined by

Sx(t, η, λ) :=

∫
R
x(τ)Kσ(τ − t, η, λ)dτ =

∫
R
x(t+ τ)Kσ(τ, η, λ)dτ, (14)

where

Kσ(τ, η, λ) :=
1

σ
g
( τ
σ

)
e−i2πητ−iπλτ

2
, (15)

and g(t) is a window function and σ > 0.

Observe that when λ = 0, Sx(t, η, λ) is the adaptive STFT considered in [43]. Sx(t, η, λ) is

also called a local polynomial Fourier transform, see [53, 54, 55]. Here we call it the localized

quadratic-phase Fourier transform (LQFT). In addition, we can also regard Sx(t, η, λ) as the

continuous form of SSO (which is the adaptive STFT) after the quadratic term e−iπλτ
2

is added

to match the local change of a non-stationary signal. Thus we also call it the “matched” SSO.

LQFT represents a multicomponent signal in a three-dimension space of time, frequency and

chirp rate. Note that when the IF curves of two components xk−1(t) and xk(t) are crossing, they

may be well-separated in the three-dimensional space of LQFT since φ′′k−1(t) 6= φ′′k(t) for t near

the crossover time t0. Thus a multicomponent signal with IFs crossover components could be

well-separated and concentrated in the three-dimensional space of LQFT, and hence, it is feasible

to propose to reconstruct its components by LQFT.

Definition 2. For an α > 0, let Aα denote the set consisting of (complex) adaptive harmonic

models (AHMs) defined by

x(t) = A0(t) +
K∑
k=1

xk(t) =
K∑
k=0

Ak(t)e
i2πφk(t), (16)

with Ak(t) ∈ L∞(R), Ak(t) > 0, φk(t) ∈ C3(R), inft∈R φ
′
k(t) > 0, supt∈R φ

′
k(t) <∞, and Ak(t), φk(t)

satisfying

|Ak(t+ τ)−Ak(t)| ≤ α3B1|τ |Ak(t), k = 0, · · · ,K, (17)

sup
t∈R
|φ′′′k (t)| ≤ α7B2, k = 0, · · · ,K (18)

where B1, B2 are some positive constants independent of α.
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In Definition 2 and in the rest of this paper, we also write the trend A0(t) as x0(t) =

A0(t)ei2πφ0(t) with φ0(t) = 0. In the real world, most signals are real-valued. Here for sim-

plicity of presentation of the main result, Theorem 1, and its proof, we consider complex AHM

given in the form of (16). The statement of Theorem 1 and its proof still hold for (real-valued)

AHM given in (1) by extra agruments.

Denote

µ = µ(t) := min
0≤k≤K

|Ak(t)|, M = M(t) :=

K∑
k=0

|Ak(t)|. (19)

For a window function g ∈ L1(R), denote
(g(η, λ) :=

∫
R
g(τ)e−i2πητ−iπλτ

2
dτ. (20)

(g(η, λ) is called a polynomial Fourier transform of g [55, 60].

Definition 3. (Admissible window function) A function g(t) ≥ 0 is called an admissible

window function if
∫
R g(t)dt = 1, supp(g) ⊆ [−N,N ] for some N > 0, and satisfies the following

conditions.

(a) There exists a constant C such that

| (g(η, λ)| ≤ C√
|η|+ |λ|

, ∀η, λ ∈ R. (21)

(b) If there exists a constant D such that

1− | (g(η, λ)| ≤ Dε, (22)

holds for sufficiently small ε > 0 and (η, λ) in the neighborhood of (0, 0), then η and λ must

satisfy

|η| = o(1) and |λ| = o(1) as ε→ 0. (23)

When g is the Gaussian function given by

g(t) =
1√
2π

e−
t2

2 , (24)

then (refer to [15, 43, 44])

(g(η, λ) =
1√

1 + i2πλ
e−

2π2η2

1+i2πλ . (25)

One can verify that | (g(η, λ)| = 1
(1+4π2λ2)1/4

e
− 2π2η2

1+(2πλ)2 satisfies conditions (a)(b) in Definition 3.

Observe that for an admissible window function g, we have

| (g(η, λ)| ≤ (g(0, 0) = 1.
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In addition, from (21), we have

| (g(η, λ)| ≤ L√
|η|+ ρ|λ|

, ∀η, λ ∈ R, (26)

where L = max(1,
√
ρ)C, and ρ ≥ is the number in (3).

Theorem 1. Let x(t) ∈ Aα for some α > 0, and Sx(t, η, λ) be the LQFT of x(t) with an

admissible window function g. Let σ := c0
α2 for some c0 > 0. If φ′k(t), 0 ≤ k ≤ K satisfy (3) for

some ρ ≥ 0, 4 > 0 and

α ≤ min
{ µ

4Mc0N(B1 + π
3B2c2

0N
2)
,
µ
√
c04

4ML

}
, (27)

then the following statements hold.

(a) The set G(t) := {(η, λ) : |Sx(t, η, λ)| ≥ µ/2} can be expressed as a disjoint union of exactly

K + 1 non-empty sets

G`(t) :=
{

(η, λ) ∈ G(t) : σ|η − φ′`(t)|+ ρσ2|λ− φ′′` (t)| ≤
(4LM

µ

)2}
, ` = 0, · · · ,K. (28)

(b) Let

(η̂`, λ̂`) := argmax(η,λ)∈G`(t)|Sx(t, η, λ)|, ` = 0, · · · ,K.

Then ∣∣|Sx(t, η̂`, λ̂`)| −A`(t)
∣∣ ≤ αM( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)
, (29)

|η̂` − φ
′
`(t)| =

1

σ
o(1) = α2o(1), |λ̂` − φ

′′
` (t)| = 1

σ2
o(1) = α4o(1) as α→ 0+, (30)

∣∣Sx(t, η̂`, λ̂`)− x`(t)
∣∣ ≤ o(1) + αM

( L√
c04

+ c0NB1 +
π

3
B2c

3
0N

3
)
, (31)

as α→ 0+.

The proof of Theorem 1 is provided in Appendix.

Remark 1. The error bounds in (29) and (31) are related to

M
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3).

We shall choose c0 such that the above quantity as small as possible. Considering that the third

power c3
0 of c0 appears in this quantity, we shall choose c0 ≤ 1. With c0 ≤ 1, one may choose c0

such that L√
c04

= c0NB1 with which L√
c04

+ c0NB1 gains its minimum. Thus we may let

c0 = min
(

1,
( L2

B2
1N

24
) 1

3

)
.

�
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Theorem 1 shows that we can use LQFT to separate a multicomponent signal, even when

the IF curves of different components are crossover. More precisely, for a multicomponent signal

x ∈ Aα, its sub-signal x`(t) can be reconstructed by

x̂`(t) = Sx(t, η̂`, λ̂`), ` = 1, 2, · · · ,K. (32)

Especially for real-valued signals, we have

x̂`(t) = <e
{
Sx(t, η̂`, λ̂`)

}
, ` = 1, 2, · · · ,K. (33)

The trend in (16) can also be recovered by

x̂0(t) = Sx(t, 0, 0) (34)

for complex signals or

x̂0(t) = <e {Sx(t, 0, 0)} (35)

for real-valued signals.

Note that σ = c0
α2 . That is to get a smaller component recover error which is proportion to

α, we need to increase the window length σ. However, for an arbitrary nonstationary signal, the

recover error cannot be reduced just by relaying on increasing the parameter σ. To this regard,

we propose a modified algorithm in the next subsection to reduce the recovery errors.

3.2 A modified algorithm derived from LFM approximation

From the uncertainty principle [15], one can get the minimum time-bandwidth product with a

Gaussian window, which means the optimal two-dimensional resolution of time and frequency is

attained when a Gaussian window is used. So next we consider the LQFT with the Gaussian

window function given by (24).

When x(t) ∈ Aα, then Conditions (17) and (18) imply that each component xk(t) is well-

approximated by linear frequency modulation (LFM) signals at any time t in the sense of (see

Appendix)

xk(t+ τ) ≈ xk(t)ei2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2), t ∈ R, (36)

for τ ≈ 0. For a fixed t, the right side of (36), as a function of τ , is an LFM signal. Thus

Sxk(t, η, λ) ≈
∫
R
xk(t)e

i2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2)Kσ(τ, θ, λ)dτ

= xk(t)

∫
R

1

σ
g
( τ
σ

)
e−i2π(η−φ′k(t))τ−iπ(λ−φ′′k(t))τ2dτ

= xk(t)

(g
(
σ(η − φ′k(t)), σ2(λ− φ′′k(t))

)
=

1√
1 + i2πσ2(λ− φ′′k(t))

xk(t)e
− 2π2σ2

1+i2πσ2(λ−φ′′
k
(t))

(η−φ′k(t))2

(by (25))

=: xk(t)A(λ− φ′′k(t))Ω(λ− φ′′k(t), η − φ′k(t)), (37)

13



where A(λ) := 1√
1+i2πσ2λ

and Ω(a, b) := e
− 2π2σ2

1+i2πσ2a
b2

.

Thus by Theorem 1 and (32), if (
η̂k, λ̂k

)
= (φ′k(t), φ

′′
k(t)),

we have,

x̂k(t) = Sxk(t, η̂k, λ̂k) ≈ xk(t). (38)

Hence in this case sub-signals xk(t) can be separated and recovered from Sxk accurately. For

a multicomponent signal x(t), we need to find the extreme points (η̂`, λ̂`), ` = 1, 2, · · · ,K of

|Sx`(t, η, λ)| with (η, λ) ∈ G`. Therefore, we first need to find these K non-empty sets G`, ` =

1, 2, · · · ,K as defined in Theorem 1 on the three-dimensional space Sx(t, η, λ). However when

the IF curves of two components x`−1(t) and x`(t) are crossing, G`−1 and G` are not separated

far to each other in the three-dimensional space of LQFT due to the fact that |Sxk(t, η, λ)| is not

a fast-decay function with respect to the chirp rate λ. Next we use an example to explain this

point.

Let s(t) be a two-component signal given by

s(t) = s1(t) + s2(t) = cos
(
2πc1t+ πr1t

2
)

+ cos
(
2πc2t+ πr2t

2
)
. (39)

Here we let sampling rate Fs = 1Hz and just deal with the truncation signal on t ∈ [0, 255],

with N = 256 discrete sampling points. Especially, we consider the case c1 = 15/N , c2 = 43/N ,

r1 = 43/N2 and r2 = −20/N2. Fig.3 shows the IFs and STFT of s(t), and some special slices of

the LQFT of the two-component signal s(t) with the Gaussian window. Observe that when λ = r1

or λ = r2, s1(t) and s2(t) are well represented on the two time-frequency planes |Ss(t, η, r1)| and

|Ss(t, η, r2)|, respectively. In this example, we let σ(t) = 0.1N .

Now we focus on the crossing point of the two IFs of s1(t) and s2(t), which is located at

around (t0, η0) with t0 = 114 and η0 = 0.133. From the 1st and 3rd panels in the bottom row of

Fig.3, the two components appear to two separated peaks on the chirp rate-frequency and chirp

rate-time planes, respectively, but not very clearly and sharply. Taking t = t0 and η = η0 in (37),

we have

L(λ) = |Ss(114, η0, λ)|

=

∣∣∣∣ 1

2
√

1 + i2πσ2(λ− r1)
s̃1(t) +

1

2
√

1 + i2πσ2(λ− r2)
s̃2(t)

∣∣∣∣
≈ 1

2 4
√

1 + 4π2σ4(λ− r1)2
+

1

2 4
√

1 + 4π2σ4(λ− r2)2
,

where s̃k(t) = ei2πckt+iπrkt
2

denotes the analytic signal of sk(t), k = 1, 2. Note that the two

parts in L(λ) above are corresponding to s1(t) and s2(t), respectively, which are centered at

14



λ = r1 = 43/N2 and λ = r2 = −20/N2. Then let t = 114 and λ = r2, we obtain

T (η) = |Ss(114, η, r2)| ≈ 1

2
e−2π2σ2(η−η0)2 .

Compared to T (η), L(λ) is a slowly attenuated function from the two extrema located at λ = r1

and λ = r2. This explains why there are two components which not well separated in either the

1st or the 3rd panel in the bottom row of Fig.3, while there is only one component in the 4th

panel of the top row.

Figure 3: IFs, STFT, and some slices of the LQFT of the two-component signal s(t) in (39). Top row

(from left to right): IFs, STFT |Vx(t, η)|, |Ss(t, θ, r1)| and |Ss(t, θ, r2)|; Bottom row (from left to right):

|Ss(114, θ, λ)|, |Ss(160, θ, λ)|, |Ss(t, c2, λ)| and |Ss(t, 26/N, λ)|.

To solve the above problem, we first consider the popular integral transform, namely Radon

transform [61]. Since Ss(t, η, λ) is a three dimensional function, we may use the 3D Radon

transform as that in [62] to detect the signal components, which is similar to the case of two

dimensional Radon transform in [63].

For each time t, with a pair of angles (ϕ1, ϕ2), the 3D Radon transform is an integral transform

along the lines in the 3D space,

R(t′, ϕ1, ϕ2) :=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ss(t, η, λ)δ(t′ − η sinϕ1 cosϕ2 + η sinϕ1 sinϕ2 + t cosϕ1)dtdηdλ,

where δ is a Dirac’s delta function.

If all the components of a multicomponent signal are LFM modes, then they can be well

represented in the 3D space of R(t′, ϕ1, ϕ2). However, the computational burden is heavy for this

3D Radon transform. Moreover, a nonstationary signal is approximated to LFM mode just for

local time around t.
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Considering the relation among t, η and λ in Ss(t, η, λ), namely φ′(t+u) = η+λu, u ∈ [−b, b],
where b > 0 is small enough, we introduce a time-frequency filter operator F on Sx to make

different sub-signals more distinguishable in the LQFT space.

For a multicomponent signal x(t), the time-frequency filter-matched LQFT (FLQFT) is de-

fined by

Fh (Sx) (t, η, λ) :=
1

b

∫
R
h
(u
b

)
|Sx(t+ u, η + λu, λ)| du, (40)

where h(t) is a fast decay window function with h(t) ≥ 0 and
∫
R h(t)dt = 1. In the following

experiments, in order to simplify calculations, we will use a rectangular window with width of 2b.

Figure 4: Slices of the FLQFT defined by (40) corresponding to the slices in Fig.3. Top row (from left

to right): |Fh(Ss)(t, θ, r1)|, |Fh(Ss)(t, θ, r2)| and |Fh(Ss)(114, θ, λ)|; Bottom row (from left to right):

|Fh(Ss)(160, θ, λ)|, |Fh(Ss)(t, c2, λ)| and |Ss(t, 26/N, λ)|.

Consider again the two-component LFM signal in (39), Fig.4 shows the slices of the FLQFT

defined by (40) with Gaussian window and b = 20 (discrete points, unitless). Observe that by

comparing the corresponding pictures in Fig.3 and Fig.4, FLQFT indeed improves the separability

of the two components when their IFs are crossover.

For x ∈ Aα, we will use FLQFT to estimate φ′`(t), φ
′′
` (t) by

(η̂`, λ̂`) := argmaxη,λ∈G` |F
h(Sx)(t, η, λ)|, (41)

where G` is defined in Theorem 1. With the resulting η̂`, λ̂`, we may use LQFT (namely (32) or

(33)) to recover sub-signal x`(t), 1 ≤ ` ≤ K. Observe that the recovering formula (32) or (33)

recovers x`(t) one by one. Next, by considering all x`(t), 0 ≤ ` ≤ K as a whole group, we propose

an innovative algorithm based on LQFT to recover the sub-signals x`(t).
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Recall that when g is the Gaussian window given in (24), then (37) holds. Thus for x ∈ Aα,

we have

Sx(t, η, λ) ≈
K∑
`=0

x`(t)A(λ− φ′′` (t))Ω(λ− φ′′` (t), η − φ′`(t)).

Hence if η̂`, λ̂`, 1 ≤ ` ≤ K obtained from FSSO by (41) are good approximations to φ′`(t), φ
′′
` (t),

then, with η̂0 = λ̂0 = 0, we have

Sx(t, η, λ) ≈
K∑
`=0

x`(t)A(λ− λ̂`)Ω(λ− λ̂`, η − η̂`).

In particular, with η = η̂m, λ = λ̂m, we have

Sx(t, η̂m, λ̂m) ≈
K∑
`=0

am,`x`(t), m = 0, 1, · · · ,K, (42)

where

am,` := A(λ̂m − λ̂`)Ω(λ̂m − λ̂`, η̂m − η̂`). (43)

Based on (42), we propose the following algorithm to recover components x`(t) and trend x0(t).

Algorithm 1. (Signal reconstruction with improved LQFT). Let x(t) be a multicomponent signal

x ∈ Aα satisfying (3) and Sx(t, η, λ) be the LQFT of x with the Gaussian window function.

Step 1. Set η̂0 = λ̂0 = 0. Calculate η̂`, λ̂`, 1 ≤ ` ≤ K by (41), where G` is defined in Theorem 1.

Step 2. Calculate

X̃t := A−1X̂t =


1 a0,1 · · · a0,K

a1,0 1 · · · a1,K

...
...

. . .
...

aK,0 aK,1 · · · 1


−1

X̂t, (44)

where X̂t := [x̂0(t), x̂1(t), · · · , x̂K(t)]T with x̂`(t) = Sx(t, η̂`, λ̂`), am,` are defined by (43)

and A = [am,`]0≤m,`≤K .

Step 3. The components x̃`(t) of X̃t =: [x̃0(t), x̃1(t), · · · , x̃K(t)]T are the recovered sub-signals x`(t)

of x(t).

Note that Ω(r, η) is a fast decay function with respect to η. If the IF of sub-signal xm(t) is well-

separated (satisfying (2)) from other signals’ IF, then we have a`,m ≈ 0 for ` 6= m. Furthermore,

if all the sub-signals Xt are well-separated in the time-frequency plane, namely satisfy (2), then

A in (44) is essentially the identity matrix. So the reconstruction algorithm above is fit for both

cases in (2) and (3).
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Figure 5: The waveform of s(t) in (45) with enlarged picture around t = 1 (Left) and the IFs of two

AM-FM components (Right).

Finally, we discuss the algorithm of real-time processing of an consecutive input signal. To

reduce the computational cost, we need to predefine some variables. Let T ∈ Z+ denote the

truncation length of the input signal, e.g. T = 128 or T = 256, then frequency η is dis-

cretized into η = 0, 1/T, ..., (T/2 − 1)/T and λ is discretized into λ = −(T/2 − 1)/T 2,−(T/2 −
2)/T, ..., 0, ...(T/2 − 1)/T 2. Define StmT/2×(T−1) = Sx(tm, ·, ·), where tm is a fixed time. Suppose

we will separate x when t = tm, then we need to calculate Stm−M , · · · ,Stm+M first, where 2M +1

should equivalent to the window length b in (40) and 2M+1� T . Then for the next time instant

t = tm + 1, we just need to calculate Stm+1+M , and continue the procedure.

4 Numerical experiments

Fig.2 demonstrates our proposed method (Algorithm 1) is efficient for the two-component signal

in (13) with one cross point of the IFs. In this section, we first consider another synthetic

multicomponent signal s(t), given as

s(t) = s1(t) + s2(t) +A0(t)

= 1.2 cos
(
2300πt+ 90 sin(20πt)

)
+ cos

(
2438πt

)
+
(
1 + (t2 + t)e1−t1.5), (45)

where t > 0. Note that the IFs of s1(t) and s2(t) are φ′1(t) = 1150+900 cos(20πt) and φ′2(t) = 1219,

respectively, called IF1 and IF2 in Fig.6.

In this experiment, we discretize s(t) with a sampling rate Fs = 8kHz and data length N = 214,

namely t ∈ [0, 2.048]. Fig.5 shows the waveform of s(t) and the IFs of two AM-FM components,

s1(t) and s2(t). As the expression in (45), s(t) consists of one trend and two oscillating AM-FM

components. Meanwhile, the IFs of the two AM-FM components are crossover.

Observe that the signal s(t) to be processed contains lots of samples, which should be analyzed

or separated locally. Here we use a sliding truncated Gaussian window with length of N =

28 points for methods of STFT, SST and LQFT. Hence the frequency bins is discretized as
Fs
N {−N/2 + 1,−N/2 + 2, ..., N/2− 1, N/2} for complex signals, or just Fs

N {0, 1, ..., N/2− 1, N/2}
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Figure 6: Recovered IFs of s(t) in (45) with SST and LQFT (with enlarged picture around t = 1).

Top: Time-frequency diagram of STFT; Middle: Time-frequency diagram of the second-order SST in [39];

Bottom: recovered IFs with Algorithm 1.

for real signals. Note that we set N as a power of 2 to take full advantage of the fast Fourier

transform. Fig.6 shows some of the experimental results of SST and LQFT. The enlarged pictures

around t = 1 are also attached with each sub-figure. Obviously, when the IFs of s1(t) and s2(t)

are crossover, either the STFT or the 2nd-order FSST hardly represents the sub-signals reliably.

Thus we cannot use the time-frequency diagram of STFT or the 2nd-order FSST to extract the

IFs of the sub-signals for the purpose of recovering their waveforms. However, using our LQFT

method, we can extract the IFs of s(t) accurately.

Fig.7 provides the recovered waveforms with Algorithm 1 proposed in §3.2. Since there are so

many sample periods of the signal s(t), we just show a small truncation around t = 1. Observe

the differences between the recovered waveforms and the truth ones are extremely small. Since

the existing signal decomposition methods based on EMD or SST cannot solve the IF crossover
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Figure 7: Recovery results of s(t) in (45) with the proposed Algorithm 1. Top: the recovered trend with

enlarged picture around t = 1; Middle: signal component s1(t); Bottom: signal component s2(t).

problem, we will not provide the recovery results of those methods here.

Finally, we consider a real signal, the radar echoes. Fig.8 shows the waveform and spectrum

of the radar echoes. Note that the sampling rate here is equal to 400 Hz, which is just the pulse

repetition frequency of the radar. The bottom panel of Fig.8, namely the spectrum shows that

this signal consists of several broadband components and a trend.

Fig.9 shows some results of the radar echoes in Fig.8. From their STFTs (top-left panel in

Fig.9), there are two components (two radar targets) in the echoes. Meanwhile, the IF curves

of these two targets are crossover with the trend component. Although the 2nd-order SST can

squeeze the time-frequency plane of STFT, it is still affected by the trend component when they

are crossover. The top-right panel of Fig.9 shows a specific slice of the 3D LQFT matrix, where

the chirp rate is approximately equal to the average chirp rate of Component 1 and Component

2. Observe that the trend component is weakened in the specific slice. The results demonstrate
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Figure 8: Waveform and spectrum of the radar echoes. Top-left: the real part of the waveform; Top-right:

the imaginary part of the waveform; Bottom: the spectrum.

the proposed method in this paper is efficient in separating multicomponent with crossover IF

curves.

5 Conclusions

In this paper, we propose the localized quadratic-phase Fourier transform (LQFT) for multi-

component signal separation with crossover instantaneous frequencies. We define the modified

adaptive harmonic model and the conditions to represent crossover components separately by

LQFT. The error bounds for instantaneous frequency estimation and sub-signal recovery are pro-

vided. Based on the approximation of source signals with linear frequency modulation (LFM)

modes at any local time, we propose an improved signal reconstruction algorithm. The numerical

experiments demonstrate the proposed method are more accurate and consistent in signal sepa-

ration than EMD, SST and other approaches. The proposed method has a great potential for a

variety of engineering applications such as channel detection in communication, fault monitoring

in mechanical systems etc.
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Figure 9: Results of the radar echoes. Top row (from left to right): STFT, 2nd-order SST, a specific slice

of the 3D LQFT matrix; Bottom row (from left to right): the estimated IFs by the proposed method, the

recovered waveform of Component 1 (real part) and the recovered waveform of Component 2 (real part).

Appendix

In this appendix we provide the proof of Theorem 1. Write

x(t+ τ) = xm(t, τ) + xr(t, τ),

where

xm(t, τ) :=

K∑
k=0

xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2),

xr(t, τ) :=
K∑
k=0

{
(Ak(t+ τ)−Ak(t))ei2πφk(t+τ)

+xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)

(
ei2π(φk(t+τ)−φk(t)−φ′k(t)τ− 1

2
φ′′k(t)τ2) − 1

)}
.

Denote

Rx(t, η, λ) :=

∫
R
xm(t, τ)Kσ(τ, η, λ)dτ =

∫
R

1

σ
g
( τ
σ

)
xm(t, τ)e−i2πτη−iπλτ

2
dτ. (46)

Then we have

Rx(t, η, λ) =
K∑
k=0

xk(t)

(g
(
σ(η − φ′k(t)), σ2(λ− φ′′k(t))

)
. (47)
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In following, σ = c0
α2 as in Theorem 1. In addition, since in general α is small, we assume

σ ≥ 1 for simplicity of presentation. Furthermore, since x, t will be fixed throughout the proof, in

the following we use S(η, λ), R(η, λ), G and G` to denote Sx(t, η, λ), Rx(t, η, λ), G(t) and G`(t)
respectively. First we establish a few lemmas.

Lemma 1. For x(t) ∈ Aα, let xm(t, τ) be the LFM approximation to x(t + τ) at time t defined

above. Then

|x(t+ τ)− xm(t, τ)| ≤M
(
B1α

3|τ |+ π

3
B2α

7|τ |3
)
. (48)

Proof. The proof is straightforward. Indeed, by (17) and (18),

|x(t+ τ)− xm(t, τ)| = |xr(t, τ)|

≤
K∑
k=0

{
|Ak(t+ τ)−Ak(t)|+Ak(t)

∣∣i2π(φk(t+ τ)− φk(t)− φ′k(t)τ −
1

2
φ′′k(t)τ

2
)∣∣}

≤
K∑
k=0

{
Ak(t)B1α

3|τ |+Ak(t)2π sup
ξ∈R

1

6

∣∣φ′′′k(ξ)τ3
∣∣

≤M(t)B1α
3|τ |+

K∑
k=0

Ak(t)
π

3
B2α

7|τ |3 = M
(
B1α

3|τ |+ π

3
B2α

7|τ |3
)
,

as desired.

Lemma 2. For x(t) ∈ Aα, let S(η, λ) be its transform by LQFT and R(η, λ) be the approximation

of S(η, λ) with LFMs defined by (46). Then∣∣S(η, λ)−R(η, λ)
∣∣ ≤ αM(B1c0N +

π

3
B2c

3
0N

3
)
. (49)

Proof. By (48) and the facts g ≥ 0, suppg ⊆ [−N,N ], we have∣∣S(η, λ)−R(η, λ)
∣∣ =

∣∣∣ ∫
R

(x(t+ τ)− xm(t, τ))
1

σ
g(
τ

σ
)e−i2π(ητ+ 1

2
λτ2)dτ

∣∣∣
≤
∫ Nσ

−Nσ
M
(
B1α

3|τ |+ π

3
B2α

7|τ |3
) 1

σ
g(
τ

σ
)dτ

≤M
(
B1α

3Nσ +
π

3
B2α

7σ3N3
)

= αM
(
B1c0N +

π

3
B2c

3
0N

3
)
.

Lemma 3. Let G`, 0 ≤ ` ≤ K be the sets defined by (28). If α ≤ µ
√
c04

4ML , then G` are nonoverlap-

ping, namely, G` ∩ Gk = ∅ for ` 6= k.
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Proof. Assume (η, λ) ∈ G` ∩ Gk for some ` 6= k. By the definition of G`, we have

|φ′k(t)− φ′`(t)|+ ρ|φ′′k(t)− φ′′` (t)|

≤ |φ′k(t)− η|+ ρ|φ′′k(t)− λ|+ |φ′`(t)− η|+ ρ|φ′′` (t)− λ|

≤ 1

σ

(
σ|φ′k(t)− η|+ ρσ2|φ′′k(t)− λ|

)
+

1

σ

(
σ|φ′`(t)− η|+ ρσ2|φ′′` (t)− λ|

)
(since σ ≥ 1)

≤ 2

σ

(4ML

µ

)2
≤ 24,

a contradiction to the well-separated condition (3). Thus the sets G`, 0 ≤ ` ≤ K are nonoverlap-

ping.

Since we assume σ ≥ 1, from (3), we have

σ|φ′k(t)− φ′`(t)|+ ρ σ2|φ′′k(t)− φ′′` (t)|

≥ σ
(
|φ′k(t)− φ′`(t)|+ ρ|φ′′k(t)− φ′′` (t)|

≥ 2σ4. (50)

Lemma 4. For x(t) ∈ Aα, let R(η, λ) be defined by (46). If σ4 ≥
(

4ML
µ

)2
, that is α ≤ µ

√
c04

4ML

when σ = c0
α2 , then

∣∣R(η, λ)− x`(t) (g
(
σ(η − φ′`(t)), σ2(λ− φ′′` (t))

)∣∣ ≤ ML√
σ4

, ∀(η, λ) ∈ G`, (51)∣∣R(φ′`(t), φ
′′
` (t))− x`(t)

∣∣ ≤ ML√
2σ4

. (52)

Proof. By (47), we have for any (η, λ) ∈ G`,∣∣R(η, λ)− x`(t) (g
(
σ(η − φ′`(t)), σ2(λ− φ′′` (t))

)∣∣
=
∣∣∣∑
k 6=`

xk(t)

(g
(
σ(η − φ′k(t)), σ2(λ− φ′′k(t))

)∣∣∣
≤
∑
k 6=`

Ak(t)L
(
σ|η − φ′k(t)|+ ρσ2|λ− φ′′k(t)|

)− 1
2 (by (21))

≤
∑
k 6=`

Ak(t)L
(
σ|φ′`(t)− φ′k(t)| − σ|η − φ′`(t)|+ ρσ2|φ′′` (t)− φ′′k(t)| − ρσ2|λ− φ′′` (t)|

)− 1
2

≤
∑
k 6=`

Ak(t)L
(
2σ4−

(4ML

µ

)2)− 1
2 (by (50) and (28))

≤ ML√
σ4

,

since σ4 ≥
(

4ML
µ

)2
. This proves (51). The proof (52) is similar and the details are omitted.
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Proof of Theorem (a). Let (η, λ) ∈ G. Suppose (η, λ) 6∈ G` for any `. Then

σ|η − φ′k(t)|+ ρσ2|λ− φ′′k(t)| >
(4ML

µ

)2
.

Hence,

∣∣R(η, λ)
∣∣ =

∣∣∣ K∑
k=0

xk(t)

(g
(
σ(η − φ′k(t)), σ2(λ− φ′′k(t))

)∣∣∣
≤

K∑
k=0

Ak(t)
L(

σ|η − φ′k(t)|+ σ2|λ− φ′′k(t)|
) 1

2

(by (21))

<

K∑
k=0

Ak(t)L

4ML/µ
=
µ

4
.

This, together with (49), implies∣∣S(η, λ)
∣∣ ≤ ∣∣S(η, λ)−R(η, λ)

∣∣+
∣∣R(η, λ)

∣∣
≤ αM

(
B1c0N +

π

3
B2c

3
0N

3
)

+
µ

4

≤ µ

4
+
µ

4
=
µ

2
,

where the second last inequality follows (27) on the condition for α. This leads to a contradiction

that (η, λ) ∈ G. Hence there must exist ` such that (η, λ) ∈ G`. Lemma 3 has shown that

G`, 0 ≤ ` ≤ K are disjoint.

Finally we show that each G` is non-empty. To this regard, we show (φ′`(t), φ
′′
` (t)) ∈ G. Indeed,

the following fact followed from (52)∣∣R(φ′`(t), φ
′′
` (t))

∣∣ ≥ |x`(t)| − ML√
2σ4

≥ µ− µ

4
√

2
>

3µ

4

implies ∣∣S(φ′`(t), φ
′′
` (t))

∣∣ ≥ ∣∣R(φ′`(t), φ
′′
` (t))

∣∣− ∣∣S(φ′`(t), φ
′′
` (t))−R(φ′`(t), φ

′′
` (t))

∣∣
>

3µ

4
− µ

4
=
µ

2
.

Hence (φ′`(t), φ
′′
` (t)) ∈ G. �

Proof of (29). By the definition of η̂` and λ̂`, (49) and (52), we have

|S(η̂`, λ̂`)| ≥ |S(φ′`(t), φ
′′
` (t))|

≥ |R(φ′`(t), φ
′′
` (t))| − αM

(
c0NB1 +

π

3
B2c

3
0N

3
)

≥ A`(t)−
LM√
2σ4

− αM
(
c0NB1 +

π

3
B2c

3
0N

3
)

≥ A`(t)− αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)
. (53)
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On the other hand, by (49) and (51), we have

|S(η̂`, λ̂`)| ≤ |R(η̂`, λ̂`)|+ αM
(
c0NB1 +

π

3
B2c

3
0N

3
)

≤ |x`(t) (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)∣∣+
LM√
σ4

+ αM
(
c0NB1 +

π

3
B2c

3
0N

3
)

≤ A`(t) + αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)

(since | (g(η, λ)| ≤ 1). (54)

Relationship of |S(η̂`, λ̂`)| and A`(t) in (53) and (54) leads to (29). �

Proof of (30). Write S(η̂`, λ̂`) = |S(η̂`, λ̂`)|ei2πψ(t) for some real-valued function ψ(t). Since

for any complex number z1, z2,
∣∣|z1| − |z2|

∣∣ ≤ |z1 − z2|, we have

A`(t)
∣∣| (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)
| − 1

∣∣
≤ A`(t)

∣∣ (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)
ei2πφ`(t) − e−i2πψ(t)

∣∣
=
∣∣ (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)
x`(t)−A`(t)e−i2πψ(t)

∣∣
≤
∣∣ (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)
x`(t)−S(η̂`, λ̂`)

∣∣+
∣∣S(η̂`, λ̂`)−A`(t)e−i2πψ(t)

∣∣
≤
∣∣ (g
(
σ(η̂` − φ′`(t)), σ2(λ̂` − φ′′` (t))

)
x`(t)−R(η̂`, λ̂`)

∣∣+
∣∣S(η̂`, λ̂`)−R(η̂`, λ̂`)

∣∣+
∣∣|S(η̂`, λ̂`)| −A`(t)

∣∣
≤ ML√

σ4
+ αM

(
c0NB1 +

π

3
MB2c

3
0N

3
)

+ αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)

= 2αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)
,

where the second inequality follows from (51), (49), and (29). Thus (g satisfies (22) with η =

σ(η̂`−φ′`(t)), λ = σ2(λ̂`−φ′′` (t) and ε = α. Hence (30) holds by the property (b) of the admissible

window function g. �

Proof of (31). By (49) and (52), we have∣∣S(η̂`, λ̂`)− x`(t)
∣∣

≤
∣∣S(η̂`, λ̂`)−S(φ′`(t), φ

′′
` (t))

∣∣+
∣∣S(φ′`(t), φ

′′
` (t))−R(φ′`(t), φ

′′
` (t))

∣∣+
∣∣R(φ′`(t), φ

′′
` (t))− x`(t)

∣∣
≤
∣∣∣ 1
σ

∫
R
g(
τ

σ
)
(
e−i2πη̂`τ−iπλ̂`τ

2 − e−i2πφ̂′`(t)τ−iπφ̂′′` (t)τ2
)
dτ
∣∣∣+ αM

(
c0NB1 +

π

3
B2c

3
0N

3
)

+
LM√
σ4

≤ 1

σ

∫
R
g(
τ

σ
)
∣∣2πη̂`τ + πλ̂`τ

2 − 2πφ′`(t)τ − πφ′′` (t)τ2
∣∣dτ + αM

( L√
c04

+ c0NB1 +
π

3
B2c

3
0N

3
)

≤ 2π|η̂` − φ′`(t)|
1

σ

∫
R
g(
τ

σ
)|τ |dτ + π|λ̂` − φ′′` (t)|

1

σ

∫
R
g(
τ

σ
)τ2dτ + αM

( L√
c04

+ c0NB1 +
π

3
B2c

3
0N

3
)

≤ 2π|η̂` − φ′`(t)σN + π|λ̂` − φ′′` (t)|σ2N2 + αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)

= o(1) + αM
( L√

c04
+ c0NB1 +

π

3
B2c

3
0N

3
)
,

where the last equality follows from (30). This completes the proof of (31). �
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