
Analysis of an Adaptive Short-Time Fourier Transform-Based

Multicomponent Signal Separation Method Derived from

Linear Chirp Local Approximation∗

Charles K. Chui1, Qingtang Jiang2, Lin Li3, and Jian Lu4

1. College of Mathematics & Statistics, Shenzhen University, Shenzhen 518060, China

and Department of Mathematics, Hong Kong Baptist University, Hong Kong.

2. Department of Math & Computer Sci., Univ. of Missouri-St. Louis, St. Louis, MO 63121, USA.

3. School of Electronic Engineering, Xidian University, Xi′an 710071, China.

4. Shenzhen Key Laboratory of Advanced Machine Learning and Applications,

College of Mathematics & Statistics, Shenzhen University, Shenzhen 518060, China.

Abstract

The synchrosqueezing transform (SST) has been developed as a powerful EMD-like tool

for instantaneous frequency (IF) estimation and component separation of non-stationary mul-

ticomponent signals. Recently, a direct method of the time-frequency approach, called signal

separation operation (SSO), was introduced to solving the problem of multicomponent signal

separation. While both SST and SSO are mathematically rigorous on IF estimation, SSO

avoids the second step of the two-step SST method in component recovery (mode retrieval).

In addition, SSO is simple: the IF of a component is estimated by a time-frequency ridge of the

SSO plane; and this component is recovered by simply plugging the time-frequency ridge to

the SSO operation. In recent paper “Direct signal separation via extraction of local frequencies

with adaptive time-varying parameters”, after showing that the SSO operation is related to the

adaptive short-time Fourier transform (STFT), the authors obtained a more accurate compo-

nent recovery formula derived from the linear chirp (also called linear frequency modulation

signal) approximation at any local time and they also proposed a recovery scheme to extract
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the signal components one by one with the time-varying window updated for each component.

However the theoretical analysis of the recovery formula derived from linear chirp local ap-

proximation has not been studied there. In this paper, we carry out such analysis and obtain

error bounds for IF estimation and component recovery. These results provide a mathemat-

ical guarantee to the proposed adaptive STFT-based non-stationary multicomponent signal

separation method.

Keywords: Adaptive short-time Fourier transform; signal separation operation; linear chirp

local approximation; instantaneous frequency estimation; component recovery; multicomponent

signal separation.

AMS Mathematics Subject Classification: 42A38, 42C40, 42C15

1 Introduction

Many real-world signals are represented as a superposition of Fourier-like oscillatory modes:

x(t) = A0(t) +
K∑
k=1

xk(t), xk(t) = Ak(t) cos
(
2πφk(t)

)
, (1)

where Ak(t), φ
′
k(t) > 0 and Ak(t) varies slowly. (1) is also called an adaptive harmonic model

(AHM) representation of x(t), with A0(t) called the trend, Ak(t) instantaneous amplitudes (IAs)

and φ′k(t) the instantaneous frequencies (IFs). To represent x(t) as (1) is important for extracting

information hidden in the non-stationary source signal x(t). The empirical mode decomposition

(EMD) scheme is a popular method to decompose non-stationary signals [14]. EMD decomposes

a signal into its “IMFs” and “trend” without the concern of recovering the true IMFs and trend

of the source signal. In this paper we consider recovering trend A0(t) and components xk(t) of

the source signal x(t).

The continuous wavelet transform (CWT)-based synchrosqueezed wavelet transform (SST),

introduced in [12] and further developed in [11], provides mathematical theorems to guarantee

the recovery of oscillatory modes. Since the seminal work [11] was available to the research

community, various SSTs have been proposed and studied, see e.g. [1]-[5], [10], [15]-[18], [21]-[29].

Recently, a direct method of the time-frequency approach, called signal separation operation or

signal separation operator (SSO), was introduced in [9] to solving the problem of multicomponent

signal separation. While both SST and SSO are mathematically rigorous on IF estimation, SSO

avoids the second step of the two-step SST method in component recovery, which depends heavily

on the accuracy of the estimated IFs. In addition, SSO is simple: the IF φ′k(t) of the k-th
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component xk(t) of a multicomponent signal x(t) is estimated by a time-frequency ridge θ̂k(t) of

the SSO operation Tx(t, θ); and xk(t) is recovered by simply plugging θ̂k(t) to Tx(t, θ): xk(t) ≈
Tx(t, θ̂k(t)).

In their recent paper [19], the authors show that the SSO operation is related to the adaptive

STFT defined by

Ṽx(t, η) :=

∫ ∞
−∞

x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ (2)

=

∫ ∞
−∞

x(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ, (3)

where t and η are the time variable and the frequency variable respectively, σ = σ(t) is a positive

function of t, and gσ(t)(τ) is defined by

gσ(t)(τ) :=
1

σ(t)
g(

τ

σ(t)
), (4)

with g ∈ L2(R). The window width of gσ(t)(τ) is σ(t) (up to a constant), depending on the time

variable t.

The authors of [19] obtained a more accurate component recovery formula derived from linear

chirp (also called linear frequency modulation signal) approximation at any local time and they

also proposed a recovery scheme to extract the signal components one by one with the time-

varying window updated for each component. However the theoretical analysis of the recovery

formula derived from the linear chirp local approximation has not been studied there. In this

paper, we carry out such analysis and obtain error bounds for IF estimation and component

recovery with this new formula. These results provide a mathematical guarantee to the proposed

adaptive STFT-based non-stationary multicomponent signal separation method.

Recently our linear chirp local approximation-based approach has been extended in [20] to

3-dimensional case with variables of time, frequency and chirp rate to recover components with

crossover IFs. Very recently the STFT-based SSO method is extended to the continuous wavelet

transform ( CWT)-based SSO in [7, 9]. Furthermore, a more accurate component recovery formula

based on the adaptive CWT was derived based on linear chirp local approximation in [6].

In this paper we consider the complex version of multi-component signals x(t) of (1):

x(t) = A0(t) +

K∑
k=1

xk(t) = A0(t) +

K∑
k=1

Ak(t)e
i2πφk(t) (5)

with Ak(t), φ
′
k(t) > 0. For convenience, we let φ0(0) = 0. Thus the trend can also be written as

x0(t) := A0(t)e
i2πφ0(t). The main goal of this paper is to analyze the error bound for the recovery

formula based on linear chirp approximation (called the linear chirp-based model in this paper).
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To make this paper be self-contained, we also include the error bound for the recovery formula

based on sinusoidal signal approximation (called the sinusoidal signal-based model in this paper).

The sinusoidal signal-based model and the linear chirp-based model will be studied in Sections 2

and 3 respectively.

Note that when σ(t) ≡ σ, a positive constant, then Ṽx(t, η) in (4) is the conventional (modified)

STFT of x(t) with window function h(t) = 1
σg( tσ ):

Vx(t, η) :=

∫ ∞
−∞

x(τ)h(τ − t)e−i2πη(τ−t)dτ. (6)

Thus our linear chirp local approximation-based recovery formula and its analysis established in

Section 3 apply to the conventional STFT-based approach.

2 Sinusoidal signal-based model

Let x(t) be a non-stationary multicomponent signal of the form (5). We assume Ak(t), φk(t)

satisfy

Ak(t) ∈ C1(R) ∩ L∞(R), φk(t) ∈ C2(R), (7)

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞, (8)

d′ := min
k∈{2,··· ,K}

min
t∈R

(φ′k(t)− φ′k−1(t)) > 0. (9)

In this section we consider the case that each component xk(t) = Ak(t)e
i2πφk(t) is approximated

locally by a sinusoidal signal. More precisely, we assume Ak(t) and φ′k(t) changes slowly:

|Ak(t+ τ)−Ak(t)| ≤ ε1|τ | Ak(t), t ∈ R, 0 ≤ k ≤ K, (10)

|φ′′k(t)| ≤ ε2, t ∈ R, 1 ≤ k ≤ K, (11)

for some positive number ε1, ε2. Let Bε1,ε2 denote the set of multicomponent signals of (5)

satisfying (7)-(11).

Denote

µ = µ(t) := min
0≤k≤K

Ak(t), M = M(t) :=

K∑
k=0

Ak(t), M` = M`(t) :=
∑
k 6=`

Ak(t). (12)

Throughout this paper,
∑

k 6=` denotes
∑
{k: k 6=`,0≤k≤K}.

Let x(t) ∈ Bε1,ε2 . Write xk(t+ τ) as

xk(t+ τ) = xk(t)e
i2πφ′k(t)τ + xk,rs(t, τ), (13)
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where xk,rs(t, τ) := xk(t + τ) − xk(t)e
i2πφ′k(t)τ . Note that for any given t, xk(t)e

i2πφ′k(t)τ (as a

function of τ) is a sinusoidal function in τ . We use xk(t)e
i2πφ′k(t)τ to approximate x(t + τ) at a

local time t. By (13), we have

Ṽx(t, η) =

∫
R

K∑
k=0

(
xk(t)e

i2πφ′k(t)τ + xk,rs(t, τ)
) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=0

xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
+ rem0, (14)

where rem0 is the remainder for the expansion of Ṽx(t, η) in (14) given by

rem0 :=

K∑
k=0

∫
R
xk,rs(t, τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ.

Writing xk,rs(t, τ) as

xk,rs(t, τ) = (Ak(t+ τ)−Ak(t))ei2πφk(t+τ) + xk(t)e
i2πφ′k(t)τ

(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ) − 1

)
.

From (11), we have

|ei2π(φk(t+τ)−φk(t)−φ′k(t)τ) − 1| ≤ 2π|φk(t+ τ)− φk(t)− φ′k(t)τ | ≤ πε2|τ |2.

This, together with (10), leads to

|rem0| ≤
K∑
k=0

∫
R
ε1|τ |Ak(t)

1

σ(t)
|g(

τ

σ(t)
)|dτ +

K∑
k=1

Ak(t)

∫
R
πε2|τ |2

1

σ(t)
|g(

τ

σ(t)
)|dτ

= M(t)
(
ε1I1σ(t) + πε2I2σ

2(t)
)

=: M(t)λ0(t), (15)

where In and λ0(t) are defined by

In :=

∫
R
|τng(τ)|dτ, (16)

λ0(t) := ε1I1σ(t) + πε2I2σ
2(t). (17)

If the remainder rem0 in (14) is small, then the term xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
in (14) governs

the time-frequency zone of the STFT Ṽxk of the kth component xk(t) of x(t). In particular, if g is

band-limited, that is ĝ is compactly supported, to say supp(ĝ) ⊂ [−4,4] for some 4 > 0, then

xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
lies within the time-frequency zone:

{(t, η) : |η − φ′k(t)| <
4
σ(t)

, t ∈ R}.
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If ĝ is not compactly supported, we need to define the essential support of ĝ outside which

ĝ(ξ) ≈ 0. More precisely, for a given threshold 0 < τ0 < 1, if |ĝ(ξ)| ≤ τ0 for |ξ| ≥ α, then we say

ĝ(ξ) is essentially supported in [−α, α]. When |ĝ(ξ)| is even and decreasing for ξ ≥ 0, then α can

be obtained by solving

|ĝ(α)| = τ0. (18)

For example, when g is the Gaussian window function given by

g(t) =
1√
2π
e−

t2

2 , (19)

then, with ĝ(ξ) = e−2π
2ξ2 , the corresponding α is given by

α =
1

2π

√
2 ln(

1

τ0
). (20)

In the following we assume |ĝ(ξ)| is even. In addition, we assume |ĝ(ξ)| decreasing for ξ ≥ 0 if

ĝ(ξ) is not compactly supported, and we let |ĝ|−1 denote the inverse function of |ĝ(ξ)|, ξ ∈ (0,∞).

If suppĝ = [−β, β] for some β > 0, then we assume |ĝ(ξ)| is decreasing for ξ ∈ [0, β], and let |ĝ|−1

denote the inverse function of |ĝ(ξ)|, ξ ∈ (0, β). Moreover, we assume∫
R
g(t)dt = 1.

For g with ĝ(ξ) essentially supported in [−α, α], we then define the time-frequency zone Zk of

the kth-component xk(t) of x(t) by

Zk := {(t, η) : |ĝ
(
σ(t)(η − φ′k(t)

)
| > τ0, t ∈ R} = {(t, η) : |η − φ′k(t)| <

α

σ(t)
, t ∈ R}. (21)

Thus the multicomponent signal x(t) is well-separated, if σ(t) satisfies

σ(t) ≥ 2α

φ′k(t)− φ′k−1(t)
, t ∈ R, k = 1, 2, · · · ,K. (22)

In this case Zk ∩ Z` = ∅, k 6= `. In this section we assume that (22) holds for some σ(t). Due

to (9), there always exists a bounded σ(t) such that (22) holds. When g is the Gaussian window

function, for the sinusoidal signal-based adaptive method, we may choose σ(t) as in [17] to be

σ1(t) := max
2≤k≤K

{ 2α

φ′k(t)− φ′k−1(t)
}

=
2α

min2≤k≤K{φ′k(t)− φ′k−1(t)}
.

The reason is that from the error bound for the recovery formula (see Corollary 2 below), the

smaller σ(t) is, the smaller the error bound.

From (22), we have

σ(t)|φ′k(t)− φ′`(t)| ≥ 2α|k − `|. (23)
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and hence for (t, η) ∈ Zk,

|η − φ′`(t)| ≥ |φ′`(t)− φ′k(t)| − |η − φ′k(t)| ≥
α(2|`− k| − 1)

σ(t)
. (24)

Denote

err` = err`(t) := M(t)λ0(t) +
∑
k 6=`

Ak(t)|ĝ
(
α(2|`− k| − 1

)
|. (25)

Clearly, we have

err` ≤M(t)λ0(t) + τ0
∑
k 6=`

Ak(t). (26)

For a fixed t, and a positive number ε̃1, we let Gt and Gt,k denote the sets defined by

Gt := {η : |Ṽx(t, η)| > ε̃1}, Gt,k := {η ∈ Gt : |η − φ′k(t)| <
α

σ(t)
}. (27)

Note that Gt and Gt,k depend on ε̃1, and for simplicity of presentation, we drop ε̃1 from them.

Also observe that Gt,k = Gt ∩ {η : (t, η) ∈ Zk}. Denote

η̂0 := 0, η̂` = η̂`(t) := argmaxη∈Gt,` |Ṽx(t, η)|, ` = 1, · · · ,K. (28)

Theorem 1. Let x(t) ∈ Bε1,ε2 for some ε1, ε2 > 0 and g be a window function. Suppose σ(t) > 0

satisfies (22) and that

2M(t)
(
τ0 + λ0(t)

)
≤ µ(t). (29)

Let ε̃1 = ε̃1(t) > 0 be a function satisfying

M(t)
(
τ0 + λ0(t)

)
≤ ε̃1 ≤ µ(t)−M(t)

(
τ0 + λ0(t)

)
. (30)

Then the following statements hold.

(a) Let Gt and Gt,k be the sets defined by (27) for some ε̃1 satisfying (30). Then Gt can be

expressed as a disjoint union of exactly K + 1 non-empty sets Gt,k, 0 ≤ k ≤ K.

(b) Let η̂` be defined by (28). Then for ` = 1, · · · ,K,

|η̂`(t)− φ
′
`(t)| ≤ bd1,` :=

1

σ(t)
|ĝ|−1

(
1− 2 err`(t)

A`(t)

)
, (31)

where err` is defined by (25).

(c) For ` = 0, 1, · · · ,K,

∣∣Ṽx(t, η̂`)− x`(t)
∣∣ ≤ bd2,` := err`(t) + 2πI1A`(t)|ĝ|−1

(
1− 2 err`(t)

A`(t)

)
. (32)
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(d) If in addition the window function g(t) ≥ 0 for t ∈ R, then for ` = 0, 1, · · · ,K,∣∣|Ṽx(t, η̂`)| −A`(t)
∣∣ ≤ err`(t). (33)

Note (29) holds if ε1, ε2, τ0 are small enough. (33) gives an error bound for IA and trend

estimate

A`(t) ≈ |Ṽx(t, η̂`)|.

The proof of Theorem 1 will delayed to the end of this section.

Remark 1. Here we remark that err`(t) < 1
2A`(t) if 2M(t)

(
τ0 + λ0(t)

)
≤ µ(t), and hence,

|ĝ|−1
(
1− 2 err`(t)

A`(t)

)
is well defined. Indeed, from (26),

err`(t) ≤M(t)λ0(t) + τ0
∑
k 6=`

Ak(t) ≤
1

2
µ(t)−M(t)τ0 + τ0

∑
k 6=`

Ak(t)

<
1

2
A`(t)−M(t)τ0 + τ0

K∑
k=1

Ak(t) =
1

2
A`(t).

�

When ĝ(ξ) is supported in [−α, α], we can set τ0 in Theorem 1 to be zero. Thus the condition

in (29) is reduced to 2M(t)λ0(t) ≤ µ(t). In addition, the error err`(t) in (25) is simply M(t)λ0(t).

To summarize, we have the following corollary.

Corollary 1. Let x(t) ∈ Bε1,ε2 for some ε1, ε2 > 0 and g be a window function with supp(ĝ) ⊆
[−α, α]. Suppose σ(t) > 0 satisfies (22). If ε1, ε2 are small enough such that 2M(t)λ0(t) ≤ µ(t),

then we have the following.

(a) Let Gt and Gt,k be the sets defined by (27) for some ε̃1 > 0. If ε̃1 satisfies M(t)λ0(t) ≤ ε̃1 ≤
µ(t)−M(t)λ0(t), then Gt can be expressed as a disjoint union of exactly K + 1 non-empty

sets Gt,k, 0 ≤ k ≤ K.

(b) Let η̂` be defined by (28). Then for ` = 1, 2, · · · ,K,

|η̂`(t)− φ
′
`(t)| ≤

1

σ(t)
|ĝ|−1

(
1− 2 M(t)λ0(t)

A`(t)

)
. (34)

(c) For ` = 0, 1, · · · ,K,∣∣Ṽx(t, η̂`)− x`(t)
∣∣ ≤M(t)λ0(t) + 2πI1A`(t)|ĝ|−1

(
1− 2 M(t)λ0(t)

A`(t)

)
. (35)

(d) If in addition the window function g(t) ≥ 0 for t ∈ R, then for ` = 0, 1, · · · ,K,∣∣|Ṽx(t, η̂`)| −A`(t)
∣∣ ≤M(t)λ0(t). (36)
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Next let us consider the case that g(t) is the Gaussian window function given by (19). In this

case ĝ(ξ) = e−2π
2ξ2 . Thus err`(t) defined by (25)is

err`(t) = ε1I1σ(t)M(t) + πε2I2σ
2(t)M(t) +

∑
k 6=`

Ak(t)e
−2π2

(
α(2|`−k|−1)

)2
. (37)

For this g, we have

|ĝ|−1(ξ) = ĝ(ξ)−1 =
1

π
√

2

√
− ln ξ, 0 < ξ < 1.

Hence the error bound bd1,` in (31) is

bd1,` =
1

σ(t)
|ĝ|−1

(
1− 2 err`(t)

A`(t)

)
=

1

σ(t)π
√

2

√
− ln

(
1− 2 err`(t)

A`(t)

)
.

Using the fact − ln(1 − t) < 2t for 0 < t < 1
2 and assuming ε1, ε2, τ0 are small enough such that

2 err`(t)
A`(t)

< 1
2 , we have

bd1,` <

√
2

σ(t)π

√
err`(t)

A`(t)
.

In this case the error bound bd2,` in (32) for component recovery satisfies

bd2,` < err`(t) + 2
√

2I1
√
A`(t)err`(t).

To summarize, we have the following corollary.

Corollary 2. Let x(t) ∈ Bε1,ε2 for some ε1, ε2 > 0. Suppose the conditions in Theorem 1 for the

Gaussian window function g given by (19) are satisfied and that err`(t) <
1
4A`(t). Then Part (a)

of Theorem 1 holds; and with η̂` defined by (28), we have

|η̂`(t)− φ
′
`(t)| <

√
2

σ(t)π

√
err`(t)

A`(t)
, ` = 1, 2, · · · ,K, (38)∣∣Ṽx(t, η̂`)− x`(t)

∣∣ < err`(t) + 2
√

2I1
√
A`(t)err`(t), ` = 0, 1, · · · ,K, (39)∣∣|Ṽx(t, η̂`)| −A`(t)

∣∣ ≤ err`(t), ` = 0, 1, · · · ,K, (40)

where err`(t) is defined by (37).

Remark 2. Observe that a smaller σ(t) results in smaller error bounds in (39) and (40) for

component recovery and instantaneous amplitude recovery respectively. Note that the IF estimate

error bound in (38) is

√
2

σ(t)π

√
err`(t)

A`(t)
=

√
2

π

( M(t)

A`(t)σ(t)
ε1I1 +

M(t)

A`(t)
πε2I2 +

1

σ2(t)A`(t)

∑
k 6=`

Ak(t)e
−2π2

(
α(2|`−k|−1)

)2)1/2
.

Thus for IF estimate, a larger σ(t) actually gives a smaller error bound. Of course σ(t) cannot

be arbitrarily large due to the restriction in (29).
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Finally, in this section, we give the proof of Theorem 1. Here we consider the case g is non-

bandlimited. The proof of Theorem 1 when g is bandlimited, which is Corollary 1, is the same

but simpler.

Proof of Theorem 1(a). Clearly ∪Kk=0Gt,k ⊆ Gt. Next we show Gt ⊆ ∪Kk=0Gt,k. Let η ∈ Gt.
Assume η 6∈ ∪Kk=0Gt,k. That is (t, η) 6∈ ∪Kk=0Zk. Then by the definition of Zk in (21), we have

|ĝ
(
σ(t)(η − φ′k(t))

)
| ≤ τ0. Hence, by (14) and (15), we have

|Ṽx(t, η)| ≤
K∑
k=0

|xk(t)ĝ
(
σ(t)(η − φ′k(t))

)
|+ |rem0|

≤ τ0
K∑
k=0

Ak(t) +M(t)λ0(t) ≤ ε̃1,

a contradiction to the assumption |Ṽx(t, η)| > ε̃1. Thus (t, η) ∈ Z` for some `. This shows that

η ∈ Gt,`. Hence Gt = ∪Kk=0Gt,k. Since Zk, 0 ≤ k ≤ K are not overlapping, we know Gt,k, 0 ≤ k ≤ K
are disjoint.

To show that Gt,` is non-empty, it is enough to show φ′`(t) ∈ Gt which implies φ′`(t) ∈ G`,t since

(t, φ′k(t)) ∈ Zk. From

|Ṽx(t, φ′`(t))| ≥
K∑
k=0

|xk(t)ĝ
(
σ(t)(φ′`(t)− φ′k(t))

)
| − |rem0|

≥ |x`(t)ĝ(0)| −
∑
k 6=`
|xk(t)|τ0 −M(t)λ0(t)

≥ A`(t)−M(t)τ0 −M(t)λ0(t)

≥ µ(t)−M(t)
(
τ0 + λ0(t)

)
≥ ε̃1,

we conclude that φ′`(t) ∈ Gt. Therefore, the statements in (a) hold. �

Proof of Theorem 1(b). For any η ∈ Gt,`, from (14), we have∣∣Ṽx(t, η)− x`(t)ĝ
(
σ(t)(η − φ′`(t)

)
|

=
∣∣∣∑
k 6=`

xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
+ rem0

∣∣∣
≤
∑
k 6=`

Ak(t)|ĝ
(
α(2|`− k| − 1

)
|+M(t)λ0(t),

where the last inequality follows from (15), (24) and the assumption that |ĝ(ξ)| is decreasing for

ξ ≥ 0. Thus ∣∣Ṽx(t, η)− x`(t)ĝ
(
σ(t)(η − φ′`(t)

)
| ≤ err`(t). (41)
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Hence, letting η = φ′`(t), we have∣∣Ṽx(t, φ′`(t))
∣∣ ≥ |x`(t)ĝ(0)| − err`(t) = A`(t)− err`(t), (42)

since ĝ(0) = 1. By the definition of η̂` and (41) again, we have∣∣Ṽx(t, φ′`(t))
∣∣ ≤ ∣∣Ṽx(t, η̂`)

∣∣ ≤ ∣∣x`(t)ĝ(σ(t)(η̂` − φ′`(t)
)∣∣+ err`(t)

This, together with (42), implies

A`(t)− err`(t) ≤ A`(t)
∣∣ĝ(σ(t)(η̂` − φ′`(t)

)∣∣+ err`(t),

or equivalently

0 < 1− 2 err`(t)

A`(t)
≤
∣∣ĝ(σ(t)(η̂` − φ′`(t)

)∣∣.
Then (31) follows from the above inequality and that |ĝ(ξ)| is decreasing on (0,∞). �

Proof of Theorem 1(c). From (41), we have∣∣Ṽx(t, η̂`)− x`(t)
∣∣

≤
∣∣Ṽx(t, η̂`)− x`(t)ĝ

(
σ(t)(η̂` − φ′`(t)

)∣∣+
∣∣x`(t)ĝ(σ(t)(η̂` − φ′`(t)

)
− x`(t)

∣∣
≤ err`(t) +A`(t)

∣∣∣ ∫
R
g(τ)

(
e−i2πσ(t)(η̂`−φ

′
`(t))τ − 1

)
dτ
∣∣∣

≤ err`(t) +A`(t)

∫
R
|g(τ)| 2πσ(t)

∣∣η̂` − φ′`(t)∣∣|τ |dτ
≤ err`(t) +A`(t)2π|ĝ|−1

(
1− 2 err`(t)

A`(t)

) ∫
R
|g(τ)||τ |dτ

≤ err`(t) + 2πI1A`(t)|ĝ|−1
(
1− 2 err`(t)

A`(t)

)
.

This shows (32). �

Proof of Theorem 1(d). By (42), we have∣∣Ṽx(t, η̂`)
∣∣ ≥ ∣∣Ṽx(t, φ′`(t))

∣∣ ≥ A`(t)− err`(t). (43)

On the other hand, when g(t) ≥ 0, we have |ĝ(ξ)| ≤ 1 for any ξ ∈ R. This fact and (41) imply∣∣Ṽx(t, η̂`)
∣∣ ≤ ∣∣x`(t)ĝ(σ(t)(η̂` − φ′`(t)

)∣∣+ err`(t) ≤ A`(t) + err`(t). (44)

(33) follows from (43) and (44). This completes the proof of Theorem 1(d). �
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3 Linear chirp-based model

We consider multicomponent signals x(t) of (5) with Ak(t) satisfying (10) and

φk(t) ∈ C3(R), φ′′k(t) ∈ L∞(R), (45)

|φ(3)k (t)| ≤ ε3, t ∈ R, 1 ≤ k ≤ K, (46)

for some positive number ε3. As shown below, conditions (10) and (46) imply that each component

xk(t) is well approximated locally by linear chirps. We say s(t) is a linear chirp (also called a

linear frequency modulated (LFM) signal) if

s(t) = Aei2πφ(t) = Aei2π(ct+
1
2
rt2), (47)

for some constants c, r with r 6= 0.

For a given t, we use Gk(ξ) to denote the Fourier transform of eiπσ(t)φ
′′
k(t)τ

2
g(τ), τ ∈ R, namely,

Gk(ξ) = Gk,t(ξ) :=

∫
R
eiπσ

2(t)φ′′k(t)τ
2
g(τ)e−i2πξτdτ. (48)

Note that Gk(ξ) depends on t also if φ′′k(t) 6= 0. We drop t in Gk,t for simplicity. For a window

function g, define

(g(ξ, λ) := F
(
e−iπλτ

2
g(τ)

)(
ξ) =

∫
R
g(τ)e−i2πξτ−iπλτ

2
dτ. (49)

Definition 1. (Admissible window function) A window function g ∈ L1(R)∩L2(R) is called

an admissible window function if for any λ ∈ R, | (g(ξ, λ)| is even in ξ and is decreasing for ξ ≥ 0.

If g is an admissible window function, then for Gk(ξ) defined by (48), |Gk(ξ)| is even and

decreasing for ξ ≥ 0. We use |Gk|−1(ξ) to denote the inverse function of |Gk(ξ)|, ξ ≥ 0. In this

section, we assume window function g is admissible.

For each component xk(t) = Ak(t)e
i2πφk(t) in (5), 0 ≤ k ≤ K, we write xk(t+ τ) as

xk(t+ τ) = xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2) + xk,rl(t, τ),

where xk,rl(t, τ) = xk(t+τ)−xk(t)ei2π(φ
′
k(t)τ+

1
2
φ′′k(t)τ

2). Note that for a fixed t, xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2)

is a linear chirp in τ (assuming φ′′k(t) 6= 0). We use xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2) to approximate x(t+τ)

12



at a local time t in the following way:

Ṽx(t, η) =

K∑
k=0

∫
R
xk(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=0

∫
R
xk(t)e

i2π(φ′k(t)τ+
1
2
φ′′k(t)τ

2) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + res0 (50)

=

K∑
k=0

xk(t)Gk
(
σ(t)(η − φ′k(t))

)
+ res0, (51)

where

res0 :=
K∑
k=0

∫
R
xk,rl(t, τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ. (52)

Write xk,rl(t, τ) as

xk,rl(t, τ) := (Ak(t+ τ)−Ak(t))ei2πφk(t+τ)

+xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2)
(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ−

1
2
φ′′k(t)τ

2) − 1
)
.

Then by(10) and the fact:

|ei2π(φk(t+τ)−φk(t)−φ′k(t)τ−
1
2
φ′′k(t)τ

2) − 1| ≤ 2π
1

6
sup
η∈R
|φ(3)k (η)τ3| ≤ π

3
ε3|τ |3,

we have

|res0| ≤
K∑
k=0

∫
R
ε1Ak(t)|τ |

1

σ(t)
|g(

τ

σ(t)
)|dτ +

K∑
k=0

Ak(t)

∫
R

π

3
ε3|τ |3

1

σ(t)
|g(

τ

σ(t)
)|dτ

= ε1I1σ(t)M(t) +
π

3
ε3I3σ

3(t)M(t) =: M(t)Π0(t), (53)

where In is defined in (16), and

Π0(t) := ε1I1σ(t) +
π

3
ε3I3σ

3(t). (54)

Thus if ε1, ε3 are small enough, then |res0| is small and hence, Gk
(
σ(t)(η − φ′k(t))

)
provides

the time-frequency zone for Ṽxk(t, η).

Let 0 < τ0 < 1 be a given small number as the threshold for zero. Let ξk = ξk(t) > 0 denote

the unique solution of |Gk(ξk)| = τ0. (Recall that in this section we assume that |Gk(ξ)| is even

and decreasing for ξ ≥ 0.) Choose αk = αk(t) ≥ ξk(t). Denote

Ok = {(t, η) : |η − φ′k(t)| <
αk
σ(t)

, t ∈ R}. (55)
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Then we have

|Gk
(
σ(t)(η − φ′k)

)
| ≤ τ0 for any (t, η) 6∈ Ok. (56)

Next we consider, as an example, the case when g is the Gaussian function defined by (19)

One can obtain for this g (see e.g. [13, 17]),

Gk(ξ) =
1√

1− i2πφ′′k(t)σ2(t)
e
− 2π2ξ2

1+(2πφ′′
k
(t)σ2(t))2

(1+i2πφ′′k(t)σ
2(t))

, (57)

where in this paper,
√

1− ib, b ∈ R, denotes the complex root of 1− ib lying in the same quadrant

as 1− ib. Thus

|Gk(ξ)| =
1(

1 + (2πφ′′k(t)σ
2(t))2

) 1
4

e
− 2π2

1+(2πφ′′
k
(t)σ2(t))2

ξ2

. (58)

Therefore, in this case, assuming τ0(1 + (2πφ′′k(t)σ
2(t))2)

1
4 ≤ 1,

ξk =
√

1 + (2πφ′′k(t)σ
2(t))2

1

2π

√
2 ln(

1

τ0
)− 1

2
ln(1 + (2πφ′′k(t)σ

2(t))2). (59)

As in [17], one may choose

αk = α
(
1 + 2π|φ′′k(t)|σ2(t)

)
, (60)

where α is defined by (20). Then αk ≥ ξk.

In this section we will assume the multicomponent signal x(t) is well-separated, that is there

is σ(t) such that

Ok ∩O` = ∅, k 6= `. (61)

Refer to [17] for the well-separated condition when g is the Gaussian window function.

From (61) with ` = k − 1,

φ′k(t)−
αk
σ(t)

≥ φ′k−1(t) +
αk−1
σ(t)

,

or equivalently

σ(t)
(
φ′k(t)− φ′k−1(t)

)
≥ αk + αk−1.

More generally, we have for k 6= `,

σ(t)
∣∣φ′k(t)− φ′`(t)∣∣ ≥ Υk,`,

where

Υk,` :=

αk + α` + 2(αk−1 + αk−2 + · · ·+ α`+1), for k > `,

αk + α` + 2(α`−1 + α`−2 + · · ·+ αk+1), for k < `.
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Hence for (t, η) ∈ O`, the following holds

σ(t)|η − φ′k(t)| ≥ σ(t)
∣∣φ′k(t)− φ′`(t)∣∣− σ(t)

∣∣η − φ′`(t)∣∣ ≥ Υk,` − α`. (62)

Denote

Err` = Err`(t) := M(t)Π0(t) +
∑
k 6=`

Ak(t)|Gk
(
Υk,` − α`

)
|, (63)

g0 = g0(t) := min
0≤k≤K

|Gk(0)| = min{1, |Gk(0)|, 1 ≤ k ≤ K}, (64)

where Π0(t) is defined by (54).

Since Υk,` − α` ≥ αk and |Gk(αk)| ≤ τ0, we have

Err` ≤M(t)Π0(t) + τ0
∑
k 6=`

Ak(t).

For a fixed t, and a positive number ε̃1, we let Gt denote the set defined by (27), and we define

Ht,k := {η ∈ Gt : |η − φ′k(t)| <
αk
σ(t)
}. (65)

Note that Ht,k depends on ε̃1, and for simplicity of presentation, we drop ε̃1 from it. Also observe

that Ht,k = Gt ∩ {η : (t, η) ∈ Ok}. Denote

η
∧

0 := 0, η
∧

` := η
∧

`(t) := argmaxη∈Ht,` |Ṽx(t, η)|, ` = 1, · · · ,K. (66)

Let Dε1,ε3 denote the set of multicomponent signals of (5) satisfying (8)-(10), (45), (46).

Theorem 2. Let x(t) ∈ Dε1,ε3 for some small ε1, ε3 > 0 and g be an admission window function.

Suppose for this x(t), there is a function σ(t) > 0 such that (61) holds, and ε1, ε3, τ0 are small

enough such that

Err` <
1

2
|G`(0)|A`(t), 2M(t)

(
τ0 + Π0(t)

)
≤ g0(t)µ(t).

Let ε̃1 be a function satisfying

M(t)
(
τ0 + Π0(t)

)
≤ ε̃1 ≤ g0(t)µ(t)−M(t)

(
τ0 + Π0(t)

)
. (67)

Then the following statements hold.

(a) Let Gt and Ht,k be the sets defined by (27) and (65) respectively for some ε̃1 satisfying (67).

Then Gt can be expressed as a disjoint union of exactly K+1 non-empty sets Ht,k, 0 ≤ k ≤ K.

(b) Let η

∧

` be defined by (66). Then for ` = 1, · · · ,K,

|η∧`(t)− φ
′
`(t)| ≤ Bd1,` :=

1

σ(t)
|G`|−1

(
|G`(0)| − 2 Err`(t)

A`(t)

)
, (68)

where Err` is defined by (63).
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(c) For ` = 0, · · · ,K,

∣∣Ṽx(t, η

∧

`)−G`(0)x`(t)
∣∣ ≤ Bd2,` := Err`(t) + 2πI1A`(t)|Ĝ`|−1

(
|G`(0)| − 2 Err`(t)

A`(t)

)
. (69)

The proof of Theorem 2 will be deferred to the end of this section.

From Theorem 2, we have that η

∧

` defined by (66) provides an approximation to φ
′
`(t). In

addition, we have the recovery formula

x`(t) ≈
1

G`(0)
Ṽx(t, η

∧

`). (70)

For a real x(t), the recovery formula will be

x`(t) ≈ 2Re
( 1

G`(0)
Ṽx(t, η

∧

`)
)
. (71)

In some case η

∧

` is η̂` defined by (28). Thus in this case, the linear chirp-based model does not

provide a more accurate IF approximation than the sinusoidal signal-based model. However, the

component recovery formula derived from linear chirp local approximation has a factor 1
G`(0)

as

shown in (70), which distinguishes the linear chirp-based model from the sinusoidal signal-based

model.

Recall that when g(t) is the Gaussian window function given by (19), then the corresponding

Gk(ξ) defined by (48) and |Gk(ξ)| is given by (58). Observe that if we choose αk as the quantity

given by (60), then

|Gk
(
Υk,` − α`

)
| ≤ |Gk

(
αk
)
| ≤ 1(

1 + (2πφ′′k(t)σ
2(t))2

) 1
4

e−2π
2α2 ≤ e−2π2α2

.

Hence the terms |Gk
(
Υk,` − α`

)
| in Err` defined by (63) are very small if α is quite large, say

α ≥ 1. In addition, we have

|G`|−1(ξ) =
1

π
√

2|G`(0)|2
(
− ln

ξ

|G`(0)|

)1/2
, 0 < ξ < |G`(0)|,

where

|G`(0)| =
(
1 + (2πφ′′` (t)σ

2(t))2
)− 1

4 .

Hence the error bound Bd1,` in (68) is

Bd1,` =
1

σ(t)
|G`|−1

(
|G`(0)| − 2 Err`(t)

A`(t)

)
=

1

σ(t)π
√

2|G`(0)|2
(
− ln

(
1− 2 Err`(t)

|G`(0)|A`(t)

)1/2
.
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Suppose ε1, ε3, τ0 are small enough such that Err`(t) ≤ 1
4 |G`(0)|A`(t). Then applying the fact

− ln(1− t) < 2t for 0 < t < 1
2 again, we have

Bd1,` <

√
2

σ(t)π

1

|G`(0)|5/2

√
Err`(t)

A`(t)
.

Also, in this case, we have

Bd2,` < Err`(t) +
2
√

2I2

|G`(0)|5/2
√
A`(t)Err`(t).

To summarize, we have the following corollary.

Corollary 3. Let x(t) ∈ Dε1,ε2 for some ε1, ε2 > 0. Suppose the conditions in Theorem 2 for the

Gaussian window function g given by (19) are satisfied and that Err`(t) <
1
4 |G`(0)|A`(t). Then

Part (a) of Theorem 2 holds; and with η

∧

` defined by (66), we have

|φ′
`(t)− η

∧

`(t)| <
√

2

σ(t)π

(
1 + (2πφ′′` (t)σ

2(t))2
) 5

8

√
Err`(t)

A`(t)
, ` = 1, 2, · · · ,K, (72)

∣∣x`(t)−√1− i2πφ′′` (t)σ2(t) Ṽx(t, η

∧

`)
∣∣ < (1 + (2πφ′′` (t)σ

2(t))2
) 1

4 Err`(t) (73)

+2
√

2I1
(
1 + (2πφ′′` (t)σ

2(t))2
) 7

8
√
A`(t)Err`(t), ` = 0, 1, · · · ,K,

where Err`(t) is defined by (63).

Remark 3. From (73), we will use the following recovery formula for a real x(t):

x`(t) ≈ 2Re
(√

1− i2πφ′′` (t)σ2(t) Ṽx(t, η

∧

`)
)
. (74)

(74) was first derived in [19] using linear chirp local approximation. Here we provide an error

bound as shown in (73).

Remark 4. Observe that a smaller σ(t) results in smaller error bounds in (73) for component

recovery. Note that the IF estimate error bound in (72) is
√

2

π
√
A`(t)

(
1 + (2πφ′′` (t)σ

2(t))2
) 5

8

(M(t)

σ(t)
ε1I1 +M(t)

π

3
ε3I3σ(t) +

1

σ2(t)

∑
k 6=`

Ak(t)|Gk
(
Υk,` − α`

)
|
)1/2

.

Thus for IF estimate, if φ′′` (t) is quite large, then we should choose a smaller σ(t), which should not

be too small to avoid a possible large error caused by M(t)
σ(t) ε1I1 or/and 1

σ2(t)

∑
k 6=`Ak(t)|Gk

(
Υk,`−

α`
)
|.

Remark 5. Unlike Theorem 1 and Corollaries 1 and 2, there is no restriction of the amplitude

of φ′′k(t) for the source signal x(t) to be analyzed in Theorem 2 and Corollary 3. However, as we

see from (68) (69) and (72) (73), φ′′k(t) still effects the IF estimate error and component recovery

error.
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Next we provide the proof of Theorem 2, which is similar to that of Theorem 1.

Proof of Theorem 2(a). Clearly ∪Kk=0Ht,k ⊆ Gt. Next we show Gt ⊆ ∪Kk=0Ht,k. Let η ∈ Gt.
Assume η 6∈ ∪Kk=0Ht,k. That is (t, η) 6∈ ∪Kk=0Ok. From (56), we have |Gk

(
σ(t)(η − φ′k(t))

)
| ≤ τ0

for any k. Hence, by (51) and (53), we have

|Ṽx(t, η)| ≤
K∑
k=0

|xk(t)Gk
(
σ(t)(η − φ′k(t))

)
|+ |res0|

≤ τ0
K∑
k=0

Ak(t) +M(t)Π0(t) ≤ ε̃1,

a contradiction to the assumption |Ṽx(t, η)| > ε̃1. Thus (t, η) ∈ O` for some `, and hence η ∈ Ht,`.
This shows Gt = ∪Kk=0Ht,k. Since Ok, 0 ≤ k ≤ K are not overlapping, we know Ht,k, 0 ≤ k ≤ K

are disjoint.

To show Ht,` is non-empty, we need only to show φ′`(t) ∈ Gt which implies φ′`(t) ∈ H`,t. From

|Ṽx(t, φ′`(t))| ≥
K∑
k=0

|xk(t)Gk
(
σ(t)(φ′`(t)− φ′k(t))

)
| − |res0|

≥ |x`(t)G`(0)| −
∑
k 6=`
|xk(t)|τ0 −M(t)Π0(t)

≥ |G`(0)|A`(t)−M(t)τ0 −M(t)Π0(t)

≥ g0(t)µ(t)−M(t)
(
τ0 + Π0(t)

)
≥ ε̃1,

we conclude that φ′`(t) ∈ Gt. Therefore, the statements in (a) hold. �

Proof of Theorem 2(b). For any η ∈ Ht,`, from (51), we have∣∣Ṽx(t, η)− x`(t)G`
(
σ(t)(η − φ′`(t)

)
|

=
∣∣∣∑
k 6=`

xk(t)Gk
(
σ(t)(η − φ′k(t)

)
+ res0

∣∣∣
≤
∑
k 6=`

Ak(t)|Gk(Υk,` − α`)|+M(t)Π0(t),

where the last inequality follows from (53), (62) and the assumption that |Gk(ξ)| is decreasing for

ξ ≥ 0. Thus ∣∣Ṽx(t, η)− x`(t)G`
(
σ(t)(η − φ′`(t)

)
| ≤ Err`(t). (75)

Hence, letting η = φ′`(t), we have∣∣Ṽx(t, φ′`(t))
∣∣ ≥ |x`(t)G`(0)| − Err`(t) = |G`(0)|A`(t)− Err`(t). (76)
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By the definition of η

∧

` and (75) again, we have∣∣Ṽx(t, φ′`(t))
∣∣ ≤ ∣∣Ṽx(t, η

∧

`)
∣∣ ≤ ∣∣x`(t)G`(σ(t)(η

∧

` − φ′`(t))
)∣∣+ Err`(t)

This, together with (76), implies

|G`(0)|A`(t)− Err`(t) ≤ A`(t)
∣∣G`(σ(t)(η

∧

` − φ′`(t))
)∣∣+ Err`(t),

or equivalently

|G`(0)| − 2 Err`(t)

A`(t)
≤
∣∣G`(σ(t)(η

∧

` − φ′`(t))
)∣∣.

Since |G`(ξ)| is decreasing for ξ ≥ 0, we have

σ(t)
∣∣η∧` − φ′`(t)∣∣ ≤ |G`|−1(|G`(0)| − 2 Err`(t)

A`(t)

)
.

Thus shows (68). �

Proof of Theorem 2(c). From (75), we have∣∣Ṽx(t, η

∧

`)−G`(0)x`(t)
∣∣

≤
∣∣Ṽx(t, η

∧

`)− x`(t)G`
(
σ(t)(η

∧

` − φ′`(t))
)∣∣+

∣∣x`(t)G`(σ(t)(η

∧

` − φ′`(t))
)
−G`(0)x`(t)

∣∣
≤ Err`(t) +A`(t)

∣∣∣ ∫
R
g(τ)

(
eiπσ

2(t)φ′′` (t)τ
2
e−i2πσ(t)(η

∧
`−φ′`(t))τ − eiπσ2(t)φ′′` (t)τ

2
)
dτ
∣∣∣

≤ Err`(t) +A`(t)

∫
R
|g(τ)| 2πσ(t)

∣∣η∧` − φ′`(t)∣∣|τ |dτ
≤ Err`(t) +A`(t)2π|G`|−1

(
|G`(0)| − 2 Err`(t)

A`(t)

) ∫
R
|g(τ)||τ |dτ

= Err`(t) + 2πI1A`(t)|G`|−1
(
|G`(0)| − 2 Err`(t)

A`(t)

)
.

This completes the proof of (69). �

4 Experiments

In this section we provide some experimental results. We focus on the comparison between the

performances of sinusoidal signal-based and linear chirp-based models in component recovery.

The readers are referred to [19] for experiments which compare our linear chirp-based model

with SST and the 2nd-order SST in component recovery. In the first two examples we consider

monocomponent signals, where we simple let σ = 1
16 . In all our experiments, we use the Gaussian

function g(t) defined by (19) as the window function. The signals considered in our experiments
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are uniformly sampled. Suppose tm = m4t,m = 0, 1, · · · , N−1 be the sample points. Then finite

sequence
(
η̂`(tm)

)
0≤m<N obtained by (28) or

(
η

∧

`(tm)
)
0≤m<N in (66) is an estimate to IF φ′`(tm).

In our experiments η̂`(tm) = η

∧

`(tm). When we use an linear chirp-based model recovery formula

such as (71) or (74), we need to estimate φ′′` (t). [19] provides a method to estimate φ′′` (t). Here we

use a five-point formula (see, e.g. [3]) to obtain an approximation to φ′′` (tm). More precisely, we

first smooth η

∧

`(tm), 0 ≤ m < N by a filter (here we use cubic B-spline filter { 1
16 ,

4
16

6
16

4
16

1
16}). After

that we apply a five-point formula to the smoothed η

∧

`(tm), 0 ≤ m < N to obtain an approximation

to
(
φ′′` (tm)

)
0≤m<N , denoted as

(
r`(tm)

)
0≤m<N . Finally this approximation is smoothed by the

cubic B-spline filter and the resulting sequence, denoted as
(
r̃`(tm)

)
0≤m<N , is used in (74) as

φ′′` (t). In the following examples, in order to avoid the boundary effect, we provide the recovery

errors over [N/8 + 1 : 7N/8] in either figures or a table below.

Figure 1: Example of monocomponent signal x(t) in (77). Top-left: Waveform x(t); Top-right: IF φ′(t)

of x(t) (solid line) and estimated IF η̂(t) (red dot-dashed line); Bottom-left: Absolute recovery errors for

x(t) by sinusoidal signal-based model (blue line) and by linear chirp-based model with estimated φ′′(t) (red

line); Bottom-right: Absolute recovery error for x(t) by linear chirp-based model with ground truth φ′′(t).

Let x(t) be a linear chirp given by

x(t) = cos
(
2π(9t+ 5t2)

)
, t ∈ [0, 4), (77)
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Figure 2: Example of signal x(t) in (77) contaminated by a noise with 10dB. Top-left: Noisy x(t); Top-

right: IF φ′(t) of x(t) (solid line) and estimated IF η̂(t) of noisy x(t) (red dot-dashed line); Bottom: Absolute

recovery errors for noisy x(t) by sinusoidal signal-based model (blue line) and by linear chirp-based model

with an estimated φ′′(t) (red dot-dashed line).

where the number of sampling points is N = 512 and the sampling rate is 128Hz. The IF of x(t)

is φ′(t) = 9 + 10t, and the chirp rate of x(t) is φ′′(t) = 10. In the top row of Fig.1, we show the

waveform of x(t) and IF φ′(t). In this example and next example, we simply let σ(t) ≡ σ = 1
16 .

The estimated IF,
(
η̂(tm)

)
0≤m<N (where η̂(tm) = η

∧

(tm)), is shown on the top-right panel in Fig.1

as a red dot-dashed line. The absolute recovery errors∣∣x(tm)− 2Re
(
Ṽx(tm, η̂(tm))

)∣∣ and
∣∣x(tm)− 2Re

(√
1− i2πr̃(tm)σ2 Ṽx(tm, η

∧

(tm))
)∣∣

by sinusoidal signal-based model and by linear chirp-based model with r̃(tm) as an approximation

to φ′′(t) by five-point formula are shown on the bottom-left panel in Fig.1 as a blue line and a red

line respectively. Clearly, the recovery error by linear chirp-based model is much smaller. In the

bottom-right panel in Fig.1, we provide recovery error
∣∣x(tm)−2Re

(√
1− i2πφ′′(tm)σ2 Ṽx(tm, η

∧

(tm))
)∣∣.

We know in this case, the error is very small.

We also consider the performance of models in noisy environment. The results are provided

in Fig.2. Again, linear chirp-based model performs better than sinusoidal signal-based model.

21



Figure 3: Example of monocomponent signal y(t) in (78). Top-left: Waveform y(t); Top-right: IF φ′(t)

of y(t) (solid line) and estimated IF η̂(t) (red dot-dashed line); Bottom-left: Absolute recovery errors for

y(t) by sinusoidal signal-based model (blue line) and by linear chirp-based model with estimated φ′′(t) (red

line); Bottom-right: Absolute recovery error for y(t) by linear chirp-based model with ground truth φ′′(t).

Next we consider another type of signal given by

y(t) = ln(10 +
√
t) cos

(
2π(16t+ 0.5 cos(4t))

)
, t ∈ [0, 8). (78)

This time IF of y(t) is a sinusoidal function. y(t) is uniformly sampled with the number of

sampling points N = 1024 and the sampling rate 128Hz. The waveform of y(t) and its IF φ′(t)

are shown in the top row of Fig.3, where the estimated IF
(
η̂(tm)

)
0≤m<N is also provided (on the

top-right panel) as a red dot-dashed line. The absolute recovery errors by sinusoidal signal-based

model and by linear chirp-based model with r̃(tm) as an approximation to φ′′(t) by five-point

formula are shown on the bottom-left panel in Fig.3 as a blue line and a red line respectively. By

the way, we also provide the recovery error by linear chirp-based model with ground truth φ′′(t).

In addition, we also provide recovery errors for noisy y(t) in Fig.4. Again, linear chirp-based

model results in smaller recovery errors.
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Figure 4: Example of signal y(t) in (78) contaminated by a noise with 15dB. Top-left: Added noise;

Top-right: IF φ′(t) of y(t) (solid line) and estimated IF η̂(t) of noisy y(t) (red dot-dashed line); Bottom:

Absolute recovery errors for noisy y(t) by sinusoidal signal-based model (blue line) and by linear chirp-based

model with an estimated φ′′(t) (red dot-dashed line).

Finally, we consider a two-component signal given by

z(t) = z1(t) + z2(t) = cos
(
2π(10t+ 5t2)

)
+ cos

(
2π(20t+ 9t2)

)
, t ∈ [0, 1), (79)

where z(t) is uniformly sampled with the number of sampling points N = 128 and the sampling

rate 128Hz. The waveform of z(t) and its IFs φ′1(t), φ
′
2(t) are shown in the top row of Fig.5. In this

example, we also use a time-varying parameter σ(t). The authors in [17] propose an algorithm to

select σ(t). Here we let σ(t) = σ2(t) suggested in [17]. σ2(t) is shown in the second row of Fig.5.

With this σ2(t), the estimated IFs
(
η̂`(tm)

)
0≤m<N , ` = 1, 2 are provided on the top-right panel

of Fig.5 as red dot-dashed lines. The absolute recovery errors for z1(t) by sinusoidal signal-based

model and by linear chirp-based model with r̃1(tm) as an approximation to φ′′1(t) by five-point

formula are shown on the bottom-left panel of Fig.5 as a blue line and a red line respectively, while

the recovery errors for z2(t) are presented on the bottom-right panel of Fig.5. Linear chirp-based

model clearly separates the components z1(t), z2(t) of z(t) better than sinusoidal signal-based

model.
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Figure 5: Example of monocomponent signal z(t) in (79). Top-left: Waveform Z(t); Top-right: IFs

φ′1(t), φ′2(t) of z1(t), z2(t) (solid line) and estimated IFs η̂1(t), η̂2(t) (red dot-dashed line); Middle: Time-

varying parameter σ2(t); Bottom-left: Absolute recovery errors for z1(t) by sinusoidal signal-based model

(blue line) and by linear chirp-based model with estimated φ′′1(t) (red line); Absolute recovery errors for

z2(t) by sinusoidal signal-based model (blue line) and by linear chirp-based model with estimated φ′′2(t)

(red line).
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ASTFTsi ASTFTlc ASTFTlc with φ′′(t)

σ = 1
16 0.3254 0.0308 0.0123

σ = σ2(t) 0.1458 0.0264 0.0090

Table 1: RMSEs for z(t).

We also consider the recovery results with σ(t) ≡ σ = 1
16 . Here instead of providing pictures,

we use the relative root of mean square error (RMSE) to evaluate the error of component recovery.

The RMSE is defined by

RMSEυ :=
1

K

K∑
k=1

‖υk − υ̂k‖2
‖υk‖2

,

where υ is a vector and υ̂ is an estimation of υ. Note that as mentioned above, the RMSE

is calculated over [N/8 + 1 : 7N/8] to avoid the errors near the end points, which are usually

large. We use ASTFTsi and ASTFTlc to denote the sinusoidal signal-based model and the linear

chirp-based model respectively. From Table 1, we see the recovery formula based on adaptive

STFT with time-varying σ(t) results in smaller component recovery errors than that based on the

conventional STFT.
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