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Abstract

The synchrosqueezing transform, a kind of reassignment method, aims to sharpen the time-

frequency representation and to separate the components of a multicomponent non-stationary

signal. In this paper, we consider the short-time Fourier transform (STFT) with a time-varying

parameter. Based on the local approximation of linear frequency modulation mode, we analyze

the well-separated condition of non-stationary multicomponent signals with this type STFT.

In addition we propose the STFT-based synchrosqueezing transform (FSST) with a time-

varying parameter, named the adaptive FSST, to enhance the time-frequency concentration

and resolution of a multicomponent signal, and to separate its components more accurately.

We also propose the 2nd-order adaptive FSST to further improve the adaptive FSST for

the non-stationary signals with fast-varying frequencies. Furthermore, we present a localized

optimization algorithm based on our well-separated condition to estimate the time-varying

parameter adaptively and automatically. We also provide simulation results on synthetic

signals and the bat echolocation signal to demonstrate the effectiveness and robustness of the

proposed method.

1 Introduction

Recently the study of modeling a non-stationary signal as a superposition of locally band-limited,

amplitude and frequency-modulated Fourier-like oscillatory modes has been a very active re-

search area. Time-frequency analysis is widely used in engineering fields such as communica-

tion, radar and sonar as a powerful tool for analyzing time-varying non-stationary signals [1].

Time-frequency analysis is especially useful for signals containing many oscillatory components

∗This work was supported in part by the National Natural Science Foundation of China (Grant No. 61201287)

and Simons Foundation (Grant No. 353185)
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with slowly time-varying amplitudes and instantaneous frequencies (IFs). The short-time Fourier

transform (STFT), the continuous wavelet transform (CWT) and the Wigner-Ville distribution

are the most typical time-frequency analysis, see details in [1]-[3]. The Wigner-Ville distribution

is a type of bilinear time-frequency representation, and hence introduces cross-terms between mul-

tiple components, and cannot be used for the reconstruction of individual components. On the

other hand, STFT and CWT are linear time-frequency representations, which can be applied to

component reconstruction. Due to the uncertainty principle [2, 4], there is a trade-off between time

resolution and frequency resolution for STFT and CWT. To overcome the limitation, a number of

new time-frequency analysis methods have been proposed, such as the Hilbert spectrum analysis

with empirical mode decomposition (EMD) [5], the reassignment method [6] and synchrosqueezed

wavelet transform [7]. EMD is a data-driven decomposition algorithm which separates the time

series signal into a set of monocomponents, called intrinsic mode functions (IMFs) [5]. EMD has

studied by many researchers and has been used in many applications, see e.g. [8]-[16]. Because of

the presence of widely disparate scales in a single IMF, or a similar scale residing in different IMF

components, named as mode mixing [14], two close IMFs are hardly distinguished by EMD. The

CWT-based synchrosqueezing transform (WSST), introduced in [7] and future studied in [17], is

a special case of reassignment methods, which aims to sharpen the time-frequency representation

by allocation the coefficient value to a different point in the time-frequency plane. A variant of

WSST, STFT-based SST (FSST) is proposed in [18] and also studied in [19]. Similar to the CWT-

based SST (WSST), FSST is a post processing technique to sharpen the STFT plane, which was

proved to be robust to noise and small perturbations [20, 21]. But for frequency-varying signals,

the squeezing effect of FSST is not well. In this regard, a 2nd-order FSST is introduced in [22, 23]

to adapt to frequency modulated modes, and further theoretically analyzed in [24]. The 2nd-order

FSST improves the concentration of the time-frequency representation well on perturbed linear

chirps with Gaussian modulated amplitudes. The higher-order FSST is presented in [25], which

aims to handle signals containing more general types. Other SST related methods include the

generalized SST [26], a hybrid EMT-SST computational scheme [27], the synchrosqueezed wave

packet transform [28], SST with vanishing moment wavelets [29], the multitapered SST [30] and

the demodulation-transform based SST [31, 32]. The signal separation operator which is related

to FSST was studied in [33] and an empirical signal separation algorithm was proposed in [34].

Most of the FSST algorithms available in the literature are based on STFT with a fixed

window, which means high time resolution and frequency resolution cannot be obtained simul-

taneously. For broadband signals, a wide window is suitable for the low-frequency parts. On

the contrary, a narrow window is suitable for the high-frequency parts. To enhance the time-

frequency resolution and energy concentration, we propose the adaptive FSST and the 2nd-order

adaptive FSST with a time-varying adaptive Gaussian window. The main innovations in this

2



paper are: (i) the well-separated condition for multicomponent signals are updated by using the

linear frequency modulation to approximate a non-stationary signal during any local time, along

with a new definition of bandwidth of Gaussian window, (ii) the adaptive window is defined for

FSST and the corresponding signal recovery algorithm is proposed based on the adaptive FSST

and 2nd-order adaptive FSST, and (iii) a localized optimization method based on the proposed

well-separated condition is proposed to estimate the time-varying adaptive window width.

The idea of using an optimal time-varying window parameter (window width) has been studied

or considered extensively in the literature, see e.g. [35]-[39]. In particular, the authors in [39]

introduced a method to select the time-varying window width for sharp SST representation by

minimizing the Rényi entropy. Furthermore, the window width of the signal separation operator

algorithm in [33] is also time-varying. In addition, after we completed our work, we were aware of

the very recent work [40] on the adaptive STFT-based SST with the window function containing

time and frequency parameters. Our motivation is different from them in that we do not focus on

the optimal parameter such that the corresponding STFT or IF has the sharpest representation

in the time-frequency plane. Instead, we pursue the establishment of the well-separated condition

for multicomponent signals based on the adaptive STFT and propose how to select window width

σ(t) such that STFTs of the components lie in non-overlapping regions of the time-frequency

plane based on our established well-separated condition. The selected σ(t) does not necessarily

result in a sharp representation of the associated STFT. Instead, it is selected in such a way that

the FSSTs of the components are well separated and hence the components can be recovered more

accurately than those recovered by the conventional FSST.

The remainder of this paper is organized as follows. In Section 2 we provides a briefly review

of FSST. We introduce the adaptive STFT and adaptive FSST with a time-varying parameter

in Section 3, where we also introduce the 2nd-order adaptive FSST. We derive the optimal time-

varying parameter for a monocomponent signal based on the linear-chirp model in Section 4.

In Section 5, we establish the well-separated condition for multicomponent signals based on the

adaptive STFT of linear chirps. In Section 6 we propose a localized optimization method on

selection of window parameters based on the well-separated condition. Experiment results are

provided in Section 7. Finally we give the conclusion in Section 8.

2 Short-time Fourier transform-based synchrosqueezed transform

In this section we briefly review the short-time Fourier transform-based synchrosqueezed transform

(FSST). The (modified) short-time Fourier transform of x(t) ∈ L2(R) with a window function

3



g(t) ∈ L2(R) is defined by

Vx(t, η) =

∫ ∞
−∞

x(τ)g(τ − t)e−i2πη(τ−t)dτ (1)

=

∫ ∞
−∞

x(t+ τ)g(τ)e−i2πητdτ, (2)

where t and η are the time variable and the frequency variable respectively. One can verify that

STFT can be written as

Vx(t, η) =

∫ ∞
−∞

x̂(ξ)ĝ(η − ξ)ei2πtξdξ (3)

where for a signal x(t), its Fourier transform x̂(ξ) is defined by

x̂(ξ) =

∫ ∞
−∞

x(t)e−i2πξtdt.

The original signal x(t) can be recovered back from its STFT:

x(t) =
1

‖g‖22

∫ ∞
−∞

∫ ∞
−∞

Vx(t, η)g(t− τ)e−i2πη(τ−t)dτdη.

If g(0) 6= 0, then one can show that x(t) can also be recovered back from its STFT Vx(t, η) with

integrals involving only η:

x(t) =
1

g(0)

∫ ∞
−∞

Vx(t, η)dη. (4)

In addition, if the window function g(t) ∈ L2(R) is real, then for a real-valued x(t) ∈ L2(R), we

have

x(t) =
2

g(0)
Re
(∫ ∞

0
Vx(t, η)dη

)
. (5)

Here we remark that if the window function g(t) is in the Schwarz class S, then STFT Vx(t, η)

of a slowly growing x(t) with g(t) is well defined. Furthermore, the above formulas still hold.

STFT-based synchrosqueezing transform (FSST) The idea of FSST is to reassign the

frequency variable. For a signal x(t), at (t, η) for which Vx(t, η) 6= 0, denote

ωx(t, η) =
∂
∂tVx(t, η)

2πiVx(t, η)
. (6)

The quantity ωx(t, η) is called the “phase transformation” [17]. FSST is to reassign the frequency

variable η by transforming STFT Vx(t, η) of x(t) to a quantity, denoted by Rx(t, η), on the time-

frequency plane:

Rx(t, ξ) =

∫
{ζ:Vx(t,ζ)6=0}

Vx(t, ζ)δ
(
ωx(t, ζ)− ξ

)
dζ, (7)

where ξ is the frequency variable.
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From (4) and (5), we know the input signal x(t) can be recovered from its FSST. More precisely,

let g(t) ∈ L2(R) be a window function with g(0) 6= 0. Then for x(t) ∈ L2(R),

x(t) =
1

g(0)

∫ ∞
−∞

Rx(t, ξ)dξ. (8)

If in addition, g(t) and x(t) are real-valued, then

x(t) =
2

g(0)
Re
(∫ ∞

0
Rx(t, ξ)dξ

)
. (9)

For a multicomponent signal x(t) given by

x(t) =

K∑
k=1

xk(t) =

K∑
k=1

Ak(t)e
i2πφk(t), (10)

when Ak(t), φk(t) satisfy certain conditions, each component xk(t) can be recovered from its FSST:

xk(t) ≈
1

g(0)

∫
|ξ−φ′k(t)|<Γ

Rx(t, ξ)dξ, (11)

for certain Γ > 0. For more mathematically precise definition of FSST and the conditions on

Ak(t), φk(t) for (11), see [18, 19].

3 STFT and FSST with a time-varying parameter

3.1 Adaptive STFT and FSST with a time-varying parameter

We consider the window function given by

gσ(t) =
1

σ
g(
t

σ
), (12)

where σ > 0 is a parameter, g(t) is a positive function in L2(R) with g(0) 6= 0 and having certain

decaying order as t→∞. If

g(t) =
1√
2π
e−

t2

2 , (13)

then gσ(t) is the Gaussian window function. The parameter σ is also called the window width

in the time-domain of the window function gσ(t) since the time duration ∆gσ of gσ is σ (up to a

constant): ∆gσ = σ∆g. The parameter σ affects the shape of gσ and hence, the representation of

STFT of a signal with gσ. On the other hand, [20] indicates that for a multicomponent signal as

given in (10), if STFTs Vxk−1
(t, η) and Vxk(t, η) of two components xk−1 and xk are mixed, then

FSST cannot separate these two components xk−1(t) and xk(t) either. Thus it is desirable that

appropriate σ can be chosen so that STFTs of different components do not overlap. In this paper

we introduce STFT with a time-varying parameter and then establish the separability condition

of a multicomponent signal based on this new type of STFT.
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For a signal x(t), we define STFT of x(t) with a time-varying parameter as

Ṽx(t, η) = Vs(t, η, σ(t)) :=

∫ ∞
−∞

x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ (14)

=

∫ ∞
−∞

x(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ. (15)

where σ is a positive function of t. Sometimes we also use Vs(t, η, σ(t)) to denote the STFT of

x(t) with a time-varying parameter. We call Ṽx(t, η) the adaptive STFT of x(t) with gσ. It is

easy to obtain

Ṽx(t, η) =

∫ ∞
−∞

x̂(ξ)ĝσ(t)(η − ξ)ei2πtξdξ =

∫ ∞
−∞

x̂(ξ)ĝ
(
σ(t)(η − ξ)

)
ei2πtξdξ

We can obtain that x(t) can be recovered from Ṽx(t, η) by formulas similar to (4) and (5).

Theorem 1. Let Ṽx(t, η) be the time-varying STFT of x(t) ∈ L2(R) defined by (14). Then

x(t) =
σ(t)

g(0)

∫ ∞
−∞

Ṽx(t, η)dη. (16)

If in addition g(t) is real-valued, then for a real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞

0
Ṽx(t, η)dη

)
. (17)

The proof of Theorem 1 is presented in Appendix.

Next we consider the synchrosqueezing transform (SST) associated with the adaptive STFT.

First we need to define the phase transformation ωadpx associated with the adaptive STFT. Let

gσ(t) be the window function defined by (12). Let g2
σ(t) = t

σ2 g
′( tσ ). In the following we use

Ṽ g2
x (t, η) to denote STFT defined by (14) with gσ(t) replaced by g2

σ(t), namely,

Ṽ g2

x (t, η) :=

∫ ∞
−∞

x(t+ τ)
τ

σ2(t)
g′(

τ

σ(t)
)e−i2πητdτ. (18)

To define the phase transformation ωadpx , we first consider s(t) = Aei2πct. From

Ṽs(t, η) =

∫ ∞
−∞

s(t+ τ)gσ(t)(t)e
−i2πητdt = A

∫ ∞
−∞

ei2πc(t+τ) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ,

we have

∂

∂t
Ṽs(t, η) = A

∫ ∞
−∞

(i2πc)ei2πc(t+τ) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

+A

∫ ∞
−∞

ei2πc(t+τ)(− σ
′(t)

σ(t)2
)g(

τ

σ(t)
)e−i2πητdτ +A

∫ ∞
−∞

ei2πc(t+τ)(−σ
′(t)τ

σ(t)3
)g′(

τ

σ(t)
)e−i2πητdτ

= i2πc Ṽs(t, η)− σ′(t)

σ(t)
Ṽs(t, η)− σ′(t)

σ(t)
Ṽ g2

s (t, η).
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Thus, if Ṽs(t, η) 6= 0, we have

∂
∂t Ṽs(t, η)

i2πṼs(t, η)
= c− σ′(t)

i2πσ(t)
− σ′(t)

σ(t)

Ṽ g2
s (t, η)

i2πṼs(t, η)
.

Therefore, the IF of s(t), which is c, can be obtained by

c = Re
{ ∂

∂t Ṽs(t, η)

i2πṼs(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

s (t, η)

i2πṼs(t, η)

}
. (19)

Hence, for a general x(t), at (t, η) for which Ṽx(t, η) 6= 0, the quantity in the right-hand side of

the above equation is a good candidate for the IF of x. This quantity is also called the phase

transformation, and we denote it by ωadpx (t, η):

ωadpx (t, η) = Re
{∂t(Ṽx(t, η)

)
i2πṼx(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

x (t, η)

i2πṼx(t, η)

}
, for Ṽx(t, η) 6= 0. (20)

The FSST with a time-varying parameter (called the adaptive FSST of x(t)) is defined by

Radpx (t, ξ) :=

∫
{η∈R: Ṽx(t,η) 6=0}

Ṽx(t, η)δ
(
ωadpx (t, η)− ξ

)
dη, (21)

where ξ is the frequency variable. The reconstruction formulas in (16) and (17) lead to that x(t)

can be reconstructed from its adaptive FSST as presented in the following theorem.

Theorem 2. Let Radpx (t, ξ) be the adaptive FSST of x(t) defined by (21). Then

x(t) =
σ(t)

g(0)

∫ ∞
−∞

Radpx (t, ξ)dξ. (22)

If in addition g(t) is real-valued, then for real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞

0
Radpx (t, ξ)dξ

)
. (23)

One can use the following formula to recover the kth component xk(t) of a multicomponent

signal from the adaptive FSST:

xk(t) =
2σ(t)

g(0)
Re
(∫
|ξ−φ′k(t)|<Γ

Radpx (t, ξ)dη
)
. (24)

for some Γ > 0.

Here we remark that if g is the Gaussian function, then the second term on the right side of

(19) disappears. Indeed, in this case, for s(t) = Aei2πct, we have

Ṽs(t, η) =

∫ ∞
−∞

Aei2πc(t+τ)gσ(t)(τ)e−i2πητdτ

= Aei2πtcĝσ(t)(η − c)

= Aei2πtce−2π2σ(t)2(η−c)2 .
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Observe that

∂

∂t
Ṽs(t, η) = i2πcAei2πtce−2π2σ(t)2(η−c)2 +Aei2πtce−2π2σ(t)2(η−c)2(−4π2)(η − c)2σ(t)σ(t)′

= i2πc Ṽs(t, η) + Ṽs(t, η)(−4π2)(η − c)2σ(t)σ(t)′.

Thus, we have

∂
∂t Ṽs(t, η)

i2πṼs(t, η)
= c+ i 2π(η − c)2σ(t)σ(t)′.

Since both c and 2π(η − c)2σ(t)σ(t)′ are real, the IF c of s(t) can be obtained by

c = Re
{∂t(Ṽs(t, η)

)
i2πṼs(t, η)

}
.

Hence if g is the Gaussian function, for a general signal x(t), we may define the phase transfor-

mation by

ω̃x(t, η) = Re
{∂t(Ṽx(t, η)

)
i2πṼx(t, η)

}
, for Ṽx(t, η) 6= 0.

3.2 Second-order adaptive FSST

The 2nd-order SST was introduced in [22]. The main idea is to define a new phase transformation

ω2nd
x such that when x(t) is a linear frequency modulation (LFM) signal, then ω2nd

x is exactly the

IF of x(t). We say s(t) is an LFM signal or a linear chirp if

s(t) = A(t)ei2πφ(t) = Aept+
q
2
t2ei2π(ct+ 1

2
rt2) (25)

with phase function φ(t) = ct+ 1
2rt

2, IF φ′(t) = c+rt and chirp rate φ′′(t) = r, IA A(t) = Aept+
q
2
t2 ,

where p, q are real numbers and |p| and |q| are much smaller than c. In [22], the reassignment

operators are used to derive ω2nd
s . Here our phase transform ω2nd

s is derived without using the

reassignment operators and it is also slightly different from that in [22]. Our derivation can easily

be generalized to the case of adaptive STFT and FSST. In the following we show how to derive

ω2nd
s .

For a given window function g, let Vs(t, η) be STFT of s(t) with g defined by (1). For

u1(t) = tg(t), let V u1
s (t, η) denote STFT of s(t) with u1(t), namely, the integral on the right-hand

side of (1) with x(t) and g(t) replaced by s(t) and u1(t) respectively.

Observe that for s(t) given by (25)

s′(t) =
(
p+ qt+ i2π(c+ rt)

)
s(t).

Thus from

Vs(t, η) =

∫ ∞
−∞

s(t+ τ) g(τ)e−i2πητdτ,
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we have

∂

∂t
Vs(t, η) =

∫ ∞
−∞

s′(t+ τ) g(τ)e−i2πητdτ

=

∫ ∞
−∞

(
p+ q(t+ τ) + i2π(c+ rt+ rτ)

)
s(t+ τ) g(τ)e−i2πητdτ

= (p+ qt+ i2π(c+ rt)
)
Vs(t, η) + (q + i2πr)V u1

s (t, η).

Thus at (t, η) on which Vs(t, η) 6= 0, we have

∂
∂tVs(t, η)

Vs(t, η)
= p+ qt+ i2π(c+ rt) + (q + i2πr)

V u1
s (t, η)

Vs(t, η)
. (26)

Taking partial derivative ∂
∂η to both sides of (26), we have

∂

∂η

( ∂
∂tVs(t, η)

Vs(t, η)

)
= (q + i2πr)

∂

∂η

(V u1
s (t, η)

Vs(t, η)

)
.

Thus if ∂
∂η

(
V
u1
s (t,η)
Vs(t,η)

)
6= 0, then q + i2πr = p0(t, η), where

p0(t, η) =
1

∂
∂η

(
V
u1
s (t,η)
Vs(t,η)

) ∂

∂η

( ∂
∂tVs(t, η)

Vs(t, η)

)
.

Back to (26), we have

∂
∂tVs(t, η)

Vs(t, η)
= p+ qt+ i2π(c+ rt) +

V u1
s (t, η)

Vs(t, η)
p0(t, η).

Thus,

φ′(t) = c+ rt =
∂
∂tVs(t, η)

i2πVs(t, η)
− p+ qt

i2π
− V u1

s (t, η)

i2πVs(t, η)
p0(t, η).

Since φ′(t) is real, taking the real parts of the quantities in the above equation, we have

φ′(t) = c+ rt = Re
{ ∂

∂tVs(t, η)

i2πVs(t, η)

}
− Re

{ V u1
s (t, η)

i2πVs(t, η)
p0(t, η)

}
.

Hence, for a signal x(t), one may define the phase transformation as

ω2nd
x (t, η) =

 Re
{ ∂

∂t
Vx(t,η)

i2πVx(t,η)

}
− Re

{
V
u1
x (t,η)

i2πVx(t,η)p0(t, η)
}
, if ∂

∂η

(
V
u1
x (t,η)
Vx(t,η)

)
6= 0, Vx(t, η) 6= 0,

Re
{ ∂

∂t
Vx(t,η)

i2πVx(t,η)

}
, if ∂

∂η

(
V
u1
x (t,η)
Vx(t,η)

)
= 0, Vx(t, η) 6= 0.

(27)

From the above derivation, we know ω2nd
x (t, η) is exactly the IF φ′(t) of x(t) if x(t) is an LFM

signal given by (25).

Next we consider the STFT with a time-varying parameter. Let gσ(t) be the window function

defined by (12). As in Section 3.1, denote g2
σ(t) = t

σ2 g
′( tσ ), and let Ṽ g2

x (t, η) denote the adaptive

STFT defined by (18). In addition, we define

g1
σ(t) =

t

σ
gσ(t) =

t

σ2
g(
t

σ
)
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and we use Ṽ g1
x (t, η) to denote the STFT defined by (14) with gσ(t) replaced by g1

σ(t), namely,

Ṽ g1

x (t, η) :=

∫ ∞
−∞

x(t)g1
σ(t)(τ − t)e

−i2πη(τ−t)dτ =

∫ ∞
−∞

x(t+ τ)
τ

σ2(t)
g(

τ

σ(t)
)e−i2πητdτ.(28)

One can obtain that

ĝ1
σ(ξ) =

i

2π

(
ĝ
)′

(σ(ξ − µ)).

For a signal x(t), we define the phase transformation for the 2nd-order adaptive FSST as

ωadp,2ndx (t, η) =


Re
{ ∂

∂t
Ṽx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{

Ṽ g
2

x (t,η)

i2πṼx(t,η)

}
− Re

{
Ṽ g

1

x (t,η)

i2πṼx(t,η)
P0(t, η)

}
,

if ∂
∂η

(
Ṽ g

1

x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0;

Re
{ ∂

∂t
Ṽx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{

Ṽ g
2

x (t,η)

i2πṼx(t,η)

}
, if ∂

∂η

(
Ṽ g

1

x (t,η)

Ṽx(t,η)

)
= 0, Ṽx(t, η) 6= 0,

(29)

where

P0(t, η) =
1

∂
∂η

(
Ṽ g

1
x (t,η)

Ṽx(t,η)

){ ∂

∂η

( ∂
∂t Ṽx(t, η)

Ṽx(t, η)

)
+
σ′(t)

σ(t)

∂

∂η

( Ṽ g2
x (t, η)

Ṽx(t, η)

)}
. (30)

Then we have the following theorem with its proof given in Appendix.

Theorem 3. If x(t) is an LFM signal given by (25), then at (t, η) where ∂
∂η

(
Ṽ g

1

s (t,η)

Ṽs(t,η)

)
6= 0 and

Ṽs(t, η) 6= 0, ωadp,2ndx (t, η) defined by (29) is the IF of x(t), namely ωadp,2ndx (t, η) = c+ rt.

Observe that when σ = σ(t) is a constant function, ωadp,2ndx (t, η) is reduced to ω2nd
x (t, η) in

(27).

With the phase transformation ωadp,2ndx (t, η) in (29), we define the 2nd-order FSST with a

time-varying parameter, called the 2nd-order adaptive FSST, of a signal x(t) as in (21):

Radp,2ndx (ξ, t) :=

∫
{η∈R: Ṽx(t,η) 6=0}

Ṽx(t, η)δ
(
ωadp,2ndx (t, η)− ξ

)
dη, (31)

where ξ is the frequency variable. We also have the reconstruction formulas for x(t) and xk(t)

similar to (22), (23) and (24) with Radpx (ξ, t) replaced by Radp,2ndx (ξ, t).

4 Support zones of STFTs of LFM signals

The article [20] studies the relation between CWT and WSST, and that between STFT and FSST

as well. For a multicomponent signal as given in (10), [20] notes that if CWTs Wxk−1
(t, η) and

Wxk(t, η) of two components are mixed, then WSST is unable to separate these two components

xk−1(t) and xk(t) either. This also happens for STFT and FSST. The parameter σ for the window

function gσ affects the sharpness of STFT of a signal. In this section, we study how the time-

varying parameter σ(t) controls the representation of STFT Ṽx(t, η) and provide the parameter

10



σ(t) with which STFT has the sharpest representation in the time-frequency plane. In the next

section, we will consider the problem that under which condition, if any, for a multicomponent

signal as given in (10), with a suitable choice of σ(t), the STFTs of Ṽxk(t, η), 1 ≤ k ≤ K are well

separated, and hence, the associated FSST has a sharper representation than the conventional

FSST and the components xk can be recovered more accurately.

To study the sharpness of STFT of a monocomponent signal or the separability of STFTs

(including STFTs with a time-varying parameter) of different components xk of x(t), we need to

consider the support zone of STFTs in the time-frequency plane, the region outside which STFT

≈ 0 . For s(t) = Aei2πct, its STFT Vs(t, η) is Aei2πtcĝ(η − c). Thus the support zone of Vs(t, η)

in the time-frequency plane is determined by the support of ĝ outside which ĝ(ξ) ≈ 0. Therefore,

first of all, we need to define the “support” of ĝ. More precise, for a given threshold 0 < ε < 1, if

|ĝ(ξ)|/maxξ |g(ξ)| < ε for |ξ| ≥ ξ0, then we say ĝ(ξ) is “supported” in [−ξ0, ξ0]. We use Lĝ = 2ξ0

to denote the length of the “support” interval of ĝ and we call it the duration of ĝ.

In the rest of this paper, we consider g given by (13) and thus gσ(t) is the Gaussian window

function defined by

gσ(t) =
1

σ
√

2π
e−

t2

2σ2 , (32)

with its Fourier transform given by

ĝσ(ξ) = e−2π2σ2ξ2 . (33)

For g given by (13), |ĝ(ξ)| = e−2π2ξ2 < ε if and only if |ξ| > α, where

α =
1

2π

√
2 ln(1/ε). (34)

Thus we regard that ĝ is “supported” in [−α, α]. Hence, ĝσ, defined by (33), is “supported” in

[−α
σ ,

α
σ ], and Lĝσ = 2α

σ .

For s(t) = Aei2πct, since its STFT with gσ is

Vs(t, η) = Aei2πtcĝσ(η − c),

and ĝσ(η − c) is “supported” in c − α
σ ≤ η ≤ c + α

σ , Vs(t, η) concentrates around η = c and lies

within the zone (a strip) of the time-frequency plane (t, η):{
(t, η) : c− α

σ
≤ η ≤ c+

α

σ
, t ∈ R

}
. (35)

Next we consider the LFM signal. We start with a simple version of (25):

s1(t) = Aei2π(ct+ 1
2
rt2). (36)

Here we assume φ′(t) = c+ rt > 0. First we find STFT of the LFM signals.

11



Proposition 1. Let s1(t) be the linear chirp signal given by (36). The STFT of s1(t) with the

Gaussian window function gσ(t) is given by

Vs1(t, η) =
A√

1− i2πσ2r
ei2π(ct+rt2/2) h1

(
η − (c+ rt)

)
, (37)

where

h1(ξ) = e
− 2π2σ2

1+(2πrσ2)2
(1+i2πσ2r)ξ2

.

The proof of Proposition 1 will be provided in Appendix. Observe that |h1(ξ)| is a Gaussian

function with duration

L|h1| = 2α

√
1 + (2πrσ2)2

σ2
= 2α

√
1

σ2
+ (2πrσ)2.

Thus the ridge of Vs1(t, η) concentrates around η = c+rt in the time-frequency plane, and Vs1(t, η)

lies within the zone of time-frequency plane of (t, η):

−1

2
L|h1| ≤ c+ rt− η ≤ 1

2
L|h1|,

or equivalently

c+ rt− α
√

1

σ2
+ (2πrσ)2 ≤ η ≤ c+ rt+ α

√
1

σ2
+ (2πrσ)2. (38)

L|h1| gains its minimum when 1
σ2 = (2πrσ)2, namely,

σ =
1√

2π|r|
=

1√
2π|φ′′(t)|

. (39)

The choice of σ given in (39) results in the sharpest representation of Vs1(t, η).

Next we consider the LFM signal s(t) given by (25). We obtain (see Appendix) that its STFT

with the Gaussian window function gσ(t) is

Vs(t, η) =
A√

1− qσ2 − i2πσ2r
ep+

q
2
t2+i2π(ct+rt2/2) h

(
η − (c+ rt)

)
, (40)

where

h(ξ) = e
−2π2(ξ− p+qt

i2π
)2 σ2

1−qσ2−i2πσ2r .

By direct calculations, we have

|h(ξ)| = e
σ2(p+qt)2

2(1−qσ2)2 e
− 2π2σ2(1−qσ2)

(1−qσ2)2+(2πrσ2)2

(
ξ− p+qt

1−qσ2
rσ2
)2
.

Thus |h(ξ)| is a Gaussian function with duration

L|h| = 2α

√
(1− qσ2)2 + (2πrσ2)2

σ2(1− qσ2)
= 2α

√
1− qσ2

σ2
+

(2πrσ)2

1− qσ2
.
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Therefore the ridge of Vs(t, η) concentrates around η = c + rt + p+qt
1−qσ2 rσ

2 in the time-frequency

plane, and Vs(t, η) lies within the zone of time-frequency plane of (t, η):

−α

√
1− qσ2

σ2
+

(2πrσ)2

1− qσ2
≤ c+ rt+

p+ qt

1− qσ2
rσ2 − η ≤ α

√
1− qσ2

σ2
+

(2πrσ)2

1− qσ2
.

Since we assume p, q are very small, we may drop the terms with p, q, and hence, the time-

frequency zone of Vs(t, η) is reduced to that given by (38). In the following, for simplicity of

presentation, we focus on the LFM signals given by (36) though our method/model can be applied

to the LFM signals given by (25).

For a monocomponent signal x(t) = A(t)ei2πφ(t), if its STFT with gσ, which is also given by

(refer to (2)),

Vx(t, η) =

∫ ∞
−∞

A(t+ τ)ei2πφ(t+τ)gσ(τ)e−i2πητdτ

can be well approximated by

Vx(t, η) ≈
∫ ∞
−∞

A(t)ei2π
(
φ(t)+φ′(t)τ+ 1

2
φ′′(t)τ2

)
gσ(τ)e−i2πητdτ,

then the choice of σ given

σ =
1√

2π|φ′′(t)|
(41)

results in the sharpest representation of Vx(t, η). The choice of σ = σ(t) in (41) coincides the

result derived in [1].

Observe that σ in (41) is the optimal parameter for the representation of a monocomponent

signal. In the next section, we will use the obtained time-frequency zone in (38) for STFT of a

linear chirp to study the well-separated condition for a multicomponent signal.

5 Separability of multicomponent signals and selection of time-

varying parameter

In this section, we will consider the problem that under which condition, if any, for a multicom-

ponent signal as given in (10), with a suitable choice of σ(t), STFTs Ṽxk(t, η), 1 ≤ k ≤ K of

different components xk defined in (14) are well separated, and hence, the associated FSST has

a sharper representation than the conventional FSST and the components xk can be recovered

more accurately.

First we consider the choice for σ(t) based on the sinusoidal signal model. Recall that STFT

of s(t) = Aei2πct with gσ(t) is supported in the zone of the time-frequency plane given by (35).
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Suppose x(t) is a finite summation of sinusoidal signals:

x(t) =

K∑
k=1

Ake
i2πckt, (42)

where Ak, ck are positive constants with 0 < ck < ck+1. Since the STFT of the k-component of

x(t) lies within the zone of the time-frequency plane (t, η): ck − α/σ ≤ η ≤ ck + α/σ for any t,

the components of x(t) will be well-separated in the time-frequency plane if

ck−1 +
α

σ
≤ ck −

α

σ
,

or equivalently

σ ≥ 2α

ck − ck−1
, for k = 2, 3, · · · ,K.

More general, for x(t) given by (10), if for each k, the time-varying STFT of xk(t) =

Ak(t)e
i2πφk(t) with gσ(t), which is (refer to (15))∫ ∞

−∞
Ak(t+ τ)ei2πφk(t+τ)gσ(t)(τ)e−i2πητdτ (43)

can be well-approximated by∫ ∞
−∞

Ak(t)e
i2π
(
φk(t)+φ′k(t)τ

)
gσ(t)(τ)e−i2πητdτ,

then the well-separable condition for this x(t) is

σ(t) ≥ 2α

φ′k(t)− φ′k−1(t)
, for k = 2, 3, · · · ,K

for each t.

We observe in our experiments that in general a big σ will result in low time-resolution and

unreliable representation of the FSST of a signal x(t). Actually, the error bounds derived in [17]

imply that for a signal, its synchrosqueezed representation is sharper when the window width in

the time domain of the window function gσ, which is σ (up to a constant), is smaller. Thus we

should choose σ(t) as small as possible. Hence, we propose the sinusoidal signal-based choice for

σ, denoted by σ1(t), to be

σ1(t) = max
2≤k≤K

{ 2α

φ′k(t)− φ′k−1(t)

}
. (44)

In this paper we focus on the LFM model, namely, we will derive the well-separated condition

based on the linear chirp model. More precisely, we consider x(t) =
∑K

k=1 xk(t), where each xk(t)

is a linear chirp, namely,

xk(t) = Ake
i2π(ckt+

1
2
rkt

2)
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with the phase φk(t) = ckt+ 1
2rkt

2 and φ′k−1(t) < φ′k(t).

From (38), STFT Vxk(t, η) of xk with gσ lies within the zone of time-frequency plane (t, η):

ck + rkt− α
√

1

σ2
+ (2πrkσ)2 ≤ η ≤ ck + rkt+ α

√
1

σ2
+ (2πrkσ)2, (45)

for all t. Since √
2

2
(
1

σ
+ 2π|rk|σ) ≤

√
1

σ2
+ (2π|rk|σ)2 ≤ 1

σ
+ 2π|rk|σ,

we replace the time-frequency zone of Vxk(t, η) in (45) by a larger zone for Vxk(t, η) by using
1
σ + 2π|rk|σ to replace

√
1
σ2 + (2π|rk|σ)2:

ck + rkt− α(
1

σ
+ 2π|rk|σ) ≤ η ≤ ck + rkt+ α(

1

σ
+ 2π|rk|σ). (46)

Therefore, in this case, xk−1(t) and xk(t) are separable in the time-frequency plane if

ck−1 + rk−1t+ α(
1

σ
+ 2π|rk−1|σ) ≤ ck + rkt− α(

1

σ
+ 2π|rk|σ).

More general, for x(t) given by (10), if for each k, the time-varying STFT Ṽxk(t, η) of xk(t)

with gσ(t), which is (refer to (15))∫ ∞
−∞

Ak(t+ τ)ei2πφk(t+τ)gσ(t)(τ)e−i2πητdτ,

can be well-approximated by∫ ∞
−∞

Ak(t)e
i2π
(
φk(t)+φ′k(t)τ+ 1

2
φ′k
′(t)τ2

)
gσ(t)(τ)e−i2πητdτ, (47)

then Ṽxk(t, η) lies within the zone of time-frequency plane:

φ′k(t)− α(
1

σ
+ 2π|φ′′k(t)|σ) ≤ η ≤ φ′k(t) + α(

1

σ
+ 2π|φ′′k(t)|σ),

and hence the well-separable condition for this x(t) is

φ′k−1(t)− α(
1

σ
+ 2π|φ′′k−1(t)|σ) ≤ φ′k(t) + α(

1

σ
+ 2π|φ′′k(t)|σ), (48)

or equivalently

ak(t)σ(t)2 − bk(t)σ(t) + 2α ≤ 0, for k = 2, · · · ,K, (49)

where

ak(t) = 2πα(|φ′′k−1(t)|+ |φ′′k(t)|), bk(t) = φ′k(t)− φ′k−1(t). (50)

If

bk(t)
2 − 8αak(t) =

(
φ′k(t)− φ′k−1(t)

)2 − 16πα2
(
|φ′′k(t)|+ |φ′′k−1(t)|

)
≥ 0,
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then (48) is equivalent to

bk(t)−
√
bk(t)2 − 8αak(t)

2ak(t)
≤ σ(t) ≤

bk(t) +
√
bk(t)2 − 8αak(t)

2ak(t)
, (51)

for k = 2, · · · ,K. Otherwise, if bk(t)
2 − 8αak(t) < 0, then there is no suitable solution of the

parameter σ for (48) or equivalently (49), which means that components xk−1(t) and xk(t) of

multicomponent signal x(t) cannot be separated in the time-frequency plane. Thus we reach our

well-separated condition of STFTs with a time-varying σ = σ(t).

Theorem 4. Let x(t) =
∑K

k=1 xk(t), where each xk(t) = Ak(t)e
i2πφk(t) is a linear chirp signal or

its adaptive STFT Ṽxk(t, η) with gσ(t) can be well approximated by (47), and φ′k−1(t) < φ′k(t). If

for any t with |φ′′k(t)|+ |φ′′k−1(t)| 6= 0,

4α
√
π
√
|φ′′k(t)|+ |φ′′k−1(t)| ≤ φ′k(t)− φ′k−1(t), k = 2, · · · ,K, and (52)

max
2≤k≤K

{bk(t)−√bk(t)2 − 8αak(t)

2ak(t)

}
≤ min

2≤k≤K

{bk(t) +
√
bk(t)2 − 8αak(t)

2ak(t)

}
, (53)

then the components of x(t) are well-separable in time-frequency plane in the sense that Ṽxk(t, η), 1 ≤
k ≤ K with σ(t) chosen to satisfy (51) lie in non-overlapping regions in the time-frequency plane.

As discussed above, a smaller σ(t) gives a sharper synchrosqueezed representation. Thus we

should choose σ(t) as small as possible. Hence, we propose the linear chirp signal-based choice

for σ, denoted by σ2(t), to be

σ2(t) =

 max
{
bk(t)−

√
bk(t)2−8αak(t)

2ak(t) : 2 ≤ k ≤ K
}
, if |φ′′k(t)|+ |φ′′k−1(t)| 6= 0,

max
{

2α
φ′k(t)−φ′k−1(t)

: 2 ≤ k ≤ K
}
, if φ′′k(t) = φ′′k−1(t) = 0.

(54)

where ak(t) and bk(t) are defined by (50), and α is defined by (34).

Next we show some experiment results. We consider a two-component LFM signal,

y(t) = y1(t) + y2(t) = cos(2π(12t+ 25t2)) + cos(2π(34t+ 32t2)), t ∈ [0, 1], (55)

where the number of sampling points is 256, namely the sampling rate is 256Hz. The IFs of

y1(t) and y2(t) are φ′(t) = 12 + 50t and φ′2(t) = 34 + 64t, respectively. The top-left figure shows

the instantaneous frequencies of y1(t) and y2(t). With σ2(t), both the proposed adaptive FSST

defined by (21) and 2nd-order adaptive FSST defined by (31) can represent this signal sharply.

Here and below, we choose λ = 1
5 , and hence α which is defined by (34) and used in (54) is

α ≈ 0.2855. Obverse that the 2nd-order adaptive FSST further improves the time-frequency

energy concentration of the adaptive FSST. Here we also give the results of conventional FSST

defined in [18, 19], and conventional 2nd-order FSST defined in [22]. Observe that the 2nd-order
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Figure 1: Experiment results on the two-component LFM signal in (55): IFs (Top-left); adaptive FSST

with time-varying parameter σ2(t) (Top-middle); 2nd-order adaptive FSST with time-varying parameter

σ2(t) (Top-right); conventional FSSTs with σ = 0.01, σ = 0.05 and σ = 0.1 (Middle row, from left to right)

and conventional 2nd-order FSSTs with σ = 0.01, σ = 0.05 and σ = 0.1 (Bottom row, from left to right).

FSST is better than the original FSST with the same σ. When σ =0.01, 0.05 and 0.1, the time-

frequency representations of conventional 2nd-order FSST are not as sharp or clear as that of the

2nd-order adaptive FSST. Actually, it is hard to find a constant σ to represent non-stationary

signals with fast frequency-varying.

6 Selecting the time-varying parameter automatically

Suppose x(t) given by (10) is separable, meaning (52) and (53) hold. If we know φ′k(t) and

φ′′k(t), then we can choose a σ(t) such as that in (54) to satisfy (51) to define the adaptive STFT

and adaptive FSST for sharp representations of xk(t) in the time-frequency plane and accurate

recovery of xk(t). However in practice, we in general have no prior knowledge of φ′k(t) and φ′′k(t).

Hence, we need to have a method which provides suitable σ(t). In this paper, we propose an
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algorithm for estimation of σ(t) which is based on the well-separated condition in (48).

First for temporarily fixed t and σ, denote Vx,(t,σ)(η) = Vx(t, η, σ), x(t)′s STFT with a time-

varying parameter defined by (14). We extract the peaks (local maxima) of |Vx,(t,σ)(η)| with

certain height. More precisely, assuming Γ3 > 0 is a given threshold, we find local maximum

points η1, η2, · · · , ηm of |Vx,(t,σ)(η)| at which |Vx,(t,σ)(η)| attains local maxima with

|Vx,(t,σ)(ηk)|
max |Vx,(t,σ)(η)|

> Γ3, k = 1, · · · ,m.

Note that m may depend on t and σ. We assume η1 < η2 < · · · < ηm.

For each local maximum point ηk, we regards ηk is the local maximum of the adaptive STFT

Vxk,(t,σ)(η) of a potential component, denoted by xk(t) of x(t). To check whether xk is in-

deed a component of x(t) or not, we consider the support interval [lk, hk] for Vxk,(t,σ)(η) with

|Vxk,(t,σ)(η)| > 0 for η ∈ [lk, hk]. If there is no overlap among [lk, hk], [lk−1, hk−1], [lk+1, hk+1],

then we decide that xk(t) is indeed a component of x(t), where [lk−1, hk−1], [lk+1, hk+1] are the

support intervals for xk−1 and xk+1 defined similarly. With our LMF model, if the estimated IF

φ′k(t) of xk(t) is ĉk + r̂kt, then by (48),

hk = ĉk + α
( 1

σ
+ 2π|r̂k|σ

)
, (56)

lk = ĉk−1 − α
( 1

σ
+ 2π|r̂k−1|σ

)
. (57)

Notice that ĉk = ηk. Thus we need to estimate the chirp rate r̂k of xk(t). To this regard,

we extract a small piece of curve in the time-frequency plane passing through (t, ηk) which corre-

sponding to the local ridge on |Vxk,(t,σ)(η)|. More precisely, letting

tk1 = t− 1

2
Lgσ = t− 2πασ, tk2 = t− 1

2
Lgσ = t+ 2πασ,

define

d̂k(τ) = argmax
η: η is near ηk

|V(τ,σ)(η)|, τ ∈ [tk1, tk2].

In the above we have used the fact that the duration of gσ(t) is (refer to (34))

Lgσ = 2σ
√

2 ln(1/ε) = 4πσα.

Note that d̂k(t) = ηk and (t, ηk) is a point lying on the curve in the time-frequency of (τ, η)

given by

L = {(τ, d̂k(τ)) : τ ∈ [tk1, tk2]} = {(τ, η) : η = d̂k(τ), τ ∈ [tk1, tk2]}.

Most importantly, {|Vxk,(τ,σ)(η)| : (τ, η) ∈ L} is the local ridge on |Vxk,(τ,σ)(η)| near (t, ηk), and

thus, it is also the local ridge on |Vx(t, η, σ)|. Observe that from STFT of an LFM given by
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Proposition 1, the local ridge on |Vxk(t, η, σ)| occurs when φ′k(t) = ck + rkt. Thus we use the

linear function

dk(τ) = r̂k(τ − t) + ĉk, τ ∈ [tk1, tk2]

to fit d̂k(τ). The obtained r̂k is the estimated chirp rate rk of xk(t). With this r̂k and ĉk = ηk as

given above, we have hk, lk given in (56) and (57). Especially when r̂k = 0, recalling the support

zone of a sinusoidal signal mode in (35), we have

hk = ĉk +
α

σ
, lk = ĉk −

α

σ
.

In this way we obtain the collection of support intervals for Vx(t, η, σ) for fixed t and σ:

s = {[l1, h1], · · · , [lm, hm]}. (58)

If adjacent intervals of s do not overlap, namely,

hk ≤ lk+1, for all k = 1, 2, · · · ,m− 1 (59)

holds, then this σ is a right parameter to separate the components and such a σ is a good candidate

which we consider to select. Otherwise, if a pair of adjacent intervals of s overlap, namely, (59)

does not hold, then this σ is not the parameter we shall choose and we need to consider a different

σ.

In the above description of our idea for the algorithm, we start with a σ and (temporarily

fixed) t, then we decide whether this σ is a good candidate to select or not based our proposed

criterion: (59) holds or does not. The choice of the initial σ plays a critical role for the success of

our algorithm due to the fact that on one hand, as we have mentioned above, in general a smaller

σ will result in a sharper representation of SST, and hence, we should find σ as small as possible

such that (59) holds; and on the other hand, different σ with which (59) holds may result in

different number of intervals m in (58) even for the same time instance t. To keep the number m

(the number of components) unchanged when we search for different σ with a fixed t, the initial

σ is required to provide a good estimation of the components of a multicomponent signal x(t).

To this regard, in this paper we propose to use the Rényi entropy to determine the initial σ(t).

The Rényi entropy is a method to evaluate the concentration of a time-frequency representation

such as STFT, SST, etc. of a signal of x(t) [41]. Taking STFT Vx(t, η) of a signal x(t) as an

example, the Rényi entropy with Vx(t, η) is

Eζ(t) =
1

1− `
log2

∫ t+ζ
t−ζ

∫∞
0 |Vx(b, ξ)|2` dξdb(∫ t+ζ

t−ζ
∫∞

0 |Vx(b, ξ)|2 dξdb
)` , (60)

where ζ and ` are positive constants. In this paper we choose ` = 2.5. Note that the smaller the

Rényi entropy, the better the time-frequency resolution. So for a fixed time t, we can use (60)
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to find a σ (denoted as σu(t)) with the best time-frequency concentration of Vx(t, η, σ), where

Vx(t, η, σ) is STFT of x(t) defined by (1) with the window function gσ having a parameter σ.

More precisely, replacing Vx(b, ξ) in (60) by Vx(b, η, σ), we define the Rényi entropy Eς(t, σ) of

Vx(t, η, σ), and then, obtain

σu(t) = argmin
σ>0

{Eς(t, σ)} . (61)

We set σu(t) as the upper bound of σ(t) for a fixed t.

With these discussions, we propose an algorithm to estimate σ(t) as follows.

Algorithm 1. (Separability parameter estimation) Let {σj , j = 1, 2, · · · , n} be an uniform

discretization of σ with σ1 > σ2 > · · · > σn > 0 and sampling step ∆σ = σj−1 − σj . The discrete

sequence s(t), t = t1, t2, · · · , tN (or t = 0, 1, · · · , N − 1) is the signal to be analyzed.

Step 1. Let t be one of t1, t2, · · · , tN . Find σu in (61) with σ ∈ {σj , j = 1, 2, · · · , n}.

Step 2. Let s be the set of the intervals given by (58) with σ = σu. Let z = σu. If (59)

holds, then go to Step 3. Otherwise, go to Step 5.

Step 3. Let σ = z − ∆σ. If the number of intervals m in (58) with this new σ remains

unchanged, σ ≥ σn and (59) holds, then go to Step 4. Otherwise, go to Step 5.

Step 4. Repeat Step 3 with z = σ.

Step 5. Let C(t) = z, and do Step 1 to Step 4 for different time t of t1, t2, · · · , tN .

Step 6. Smooth C(t) with a low-pass filter B(t):

σest(t) = (C ∗B)(t). (62)

We call σest(t) the estimation of the separability time-varying parameter σ2(t) in (54). In Step

6, we use a low-pass filter B(t) to smooth C(t). This is because of the assumption of the continuity

condition for Ak(t) and φk(t). With the estimated σest(t), we can define the adaptive STFT, the

adaptive FSST and the 2nd-order adaptive FSST with a time-varying parameter σ(t) = σest(t).

We use the proposed algorithm to process the two-component linear chirp signal in (55). The

different time-varying parameters σ2(t), σu(t) and σest(t) are shown in the left of Fig.2. Here we let

σ ∈ [0.001, 0.2] with ∆σ = 0.001, namely σ1 = 0.2 in Algorithm 1. We set ` = 2.5, ζ = 4 (sampling

points, for discrete signal) and Γ3 = 0.3. Note that we set the same values of `, ζ, and Γ3 for

all the following experiments. We use a simple rectangular window B = {1/5, 1/5, 1/5, 1/5, 1/5}
as the low-pass filter. The estimation σest(t) by Algorithm 1 is very close to σ2(t) except for the

start near t = 0. So the estimation algorithm is an efficient method to estimate the well-separated

time-varying parameter σ2(t). Fig.2 shows the proposed adaptive FSST and 2nd-order adaptive

FSST with σest(t).
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Figure 2: From left to right: Time-varying parameters, adaptive FSST with σest(t), 2nd-order adaptive

FSST with σest(t).

7 Experiments and results

In this section, we provide two more numerical examples to further illustrate the effectiveness and

robustness of the proposed algorithm.

7.1 Experiments with a three-component synthetic signal

The three-component signal we consider is given by

z(t) = z1(t) + z2(t) + z3(t), (63)

where

z1(t) = cos
(
20π(t− 1/3) + 100π(t− 1/3)2

)
, t ∈ [1/3, 1],

z2(t) = cos
(
74πt+ 13 cos(4πt) + 110πt2

)
, t ∈ [0, 1],

z3(t) = cos
(
196πt+ 120πt2

)
, t ∈ [0, 2/3].

Note that the durations of the three components in (63) are different. The sampling rate for

this experiment is 512Hz. The IFs of the three components are φ′1(t) = 10 + 100(t − 1/3),

φ′2(t) = 37− 26 sin(4πt) + 110t and φ′3(t) = 98 + 120t, respectively.

The top-left picture of Fig.3 shows the IFs of the three components in z(t). Then we calculate

various time-varying parameters as those in Fig.2. The top-right picture of Fig.3 shows the time-

varying parameters σ2(t), σu(t) and σest(t). Again σest(t) is very close to σ2(t). In the bottom

row of Fig.3, we show the 2nd-order adaptive FSST with σest(t), and the conventional 2nd-order

FSST with a constant σ = 0.05. Observe that the reassignment result of the conventional 2nd-

order FSST does not give sharp representation of the sub-signal with fast varying frequency.

Instead, the 2nd-order adaptive FSST not only represents the signal sharply, but also gives better

representation for the time-frequency ridges.
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Figure 3: Experiment results on the three-component signal in (63). Top-left: IFs of three components;

Top-right: time-varying parameters; Bottom-left: conventional 2nd-order FSST with constant σ = 0.05;

Bottom-right: 2nd-order adaptive FSST with σest(t).

7.2 Application to bat echolocation signal

In order to further verify the reliability of the proposed algorithm, we test our method on a bat

echolocation signal emitted by a large brown bat in real world [42]. There are 400 samples with

the sampling period 7 microseconds (sampling rate Fs ≈ 142.86 KHz). From STFT and FSSTs

presented in Fig.4, the echolocation signal is a multicomponent signal, which consists of four

nonlinear FM components. Recall that compared with other positive constants, σ = 0.05 works

well for y(t) in (55) and z(t) in (63). However, the representations of STFT, conventional SST

and 2nd-order SST are very poor if σ = 0.05. For a given real-world signal, how to select an

appropriate constant σ such that the rseulting coventional SST or 2nd-order SST has a sharp

represenation is probably not very simple. Here we choose σ = 8 × 10−5, which is close to the

mean of σest(t) obtained by Algorithm 1. Fig.4 shows the time-frequency representations of the

echolocation signal: STFT, conventional 2nd-order FSST with σ = 8 × 10−5 and the 2nd-order

adaptive FSST with time-varying parameter σest(t). Unlike the three-component signal in Fig.3,

the four components in the bat signal are much well separated. Thus, both the conventional

2nd-order FSST and the 2nd-order adaptive FSST can separate well the components of the sig-

nal. In addition, they give sharp representations in the time-frequency plane. Comparing with
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Figure 4: Example of the bat echolocation signal. Top-left: waveform; Top-right: conventional STFT

with σ = 8×10−5; Bottom-left: conventional 2nd-order FSST with σ = 8×10−5; Bottom-right: 2nd-order

adaptive FSST with time-varying parameter σest(t) obtained by our proposed Algorithm 1.

the conventional 2nd-order FSST, the 2nd-order adaptive FSST with σest(t) gives a better repre-

sentation for the fourth component (the highest frequency component) and the two ends of the

signal. Furthermore, σest(t) provides a hint how to select σ for the conventional 2nd-order FSST.

7.3 Signal separation

Final we consider the reconstruction of z(t). Due to the page limitation of the paper, we consider

only the three-component signal z(t) in (63) and the 2nd-order FSST. We use (11) and (24) to

recover the signal components for conventional 2nd-order FSST and 2nd-order adaptive FSST,

respectively. Here we use the maximum values on the FSST plane to search for the IF ridges

φ′k(t) one by one, see details in [21]. Then integrate around the ridges with Γ = 15 (discrete

value, unitless). In Fig.6 we show the reconstructed components. Essentially there is no error

noticeable except for at boundaries of the signals. So our method separates the signals well. We

also compare the separation result by our 2nd-order FSST and that by conventional 2nd FSST.

Fig.6 provides the differences between the reconstructed components and the original components

by these two methods. It is clear our method outperforms the 2nd-order FSST.

We also consider signal separation in noise environment. We add Gaussian noises to the
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Figure 5: Reconstruction results of the signal in (63). Top-left, top-right and bottom-left: reconstructions

of z1(t), z2(t) and z3(t) by 2nd-order adaptive FSST, respectively; Bottom-right: RMSE under different

SNRs.

original signal (63) with different signal-to-noise ratios (SNRs). We use the relative “root mean

square error” (RMSE) to evaluate the separation performance, which is defined by

RMSE =
1

K

K∑
k=1

‖zk − ẑk‖2
‖zk‖2

, (64)

where ẑk is the reconstruction result of zk, K is the number of components. The bottom-right

picture of Fig.6 gives the RMSEs of conventional 2nd-order FSST with σ = 0.05 and 2nd-order

adaptive FSST when SNR varies from 10dB to 30dB. Under each SNR, we do Monte-Carlo

experiment for 50 runs. Obviously, the reconstruction error of the 2nd-order adaptive FSST is

less than that of the conventional 2nd-order FSST.

8 Conclusion

In this paper, we introduce the adaptive STFT with a time-varying parameter and adaptive

STFT-based SST (FSST). We also introduce the second order adaptive FSST. We analyze the

support zone of STFT for LFM signals, based on which we develop the well-separated condition for

multicomponent signals by approximating a multicomponent signal to a mixture of LFM signals
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Figure 6: Reconstruction results of the signal in (63). Top-left, top-right and bottom-left: difference of

reconstructed zj(t) with original component zj(t) by 2nd-order adaptive FSST and conventional 2nd-order

FSST, respectively; Bottom-right: RMSE under different SNRs.

during any local time. We propose a method to select the time-varying parameter automatically.

The experiments on both synthetic and real data demonstrate that the adaptive FSST is efficient

for the instantaneous frequency estimation, sharp representation in the time-frequency and the

separation of multicomponent non-stationary signals with fast-varying frequencies. Except for

the Gaussian window, further study may focus on other types of time-varying window functions.
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Appendix

Proof of Theorem 1. From (3), we have∫ ∞
−∞

Ṽx(t, η)dη =

∫ ∞
−∞

∫ ∞
−∞

x̂(ζ)ĝσ(t)(η − ζ)ei2πtζdζdη

=

∫ ∞
−∞

x̂(ζ)ei2πtζ
∫ ∞
−∞

ĝσ(t)(η − ζ)dηdζ

=

∫ ∞
−∞

x̂(ζ)ei2πtζ
∫ ∞
−∞

ĝσ(t)(η)dηdζ

=

∫ ∞
−∞

ĝσ(t)(η)ei2π·0·ηdη

∫ ∞
−∞

x̂(ζ)ei2πtζdζ

= gσ(t)(0)x(t) =
g(0)

σ(t)
x(t),

where exchanging the order of dη and dζ follows from the Fubini’s theorem. This shows (16).

To prove (17), note that for real-valued x(t), since gσ(t)(τ) is real-valued, we have

Ṽx(t,−η) = Ṽx(t, η).

Hence, from (16), we have

g(0)

σ(t)
x(t) =

∫ ∞
0

Ṽx(t, η)dη +

∫ 0

−∞
Ṽx(t, η)dη

=

∫ ∞
0

Ṽx(t, η)dη +

∫ ∞
0

Ṽx(t,−η)dη

=

∫ ∞
0

Ṽx(t, η)dη +

∫ ∞
0

Ṽx(t, η)dη

= 2Re
(∫ ∞

0
Ṽx(t, η)dη

)
.

Thus (17) holds. �

Proof of Proposition 1. The formula (37) is a special case of (40) with p = q = 0. In the

following we show (40).
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Let s(t) be the linear chirp signal given by (25). Then its STFT with gσ is

Vs(t, η) =

∫ ∞
−∞

s(t+ τ)gσ(τ)e−i2πητdτ

=

∫ ∞
−∞

Aep(t+τ)+ q
2

(t+τ)2+i2π
(
c(t+τ)+ 1

2
r(t+τ)2

)
gσ(τ)e−i2πητdτ

=
A

σ
√

2π

∫ ∞
−∞

ept+pτ+ q
2
t2+qtτ+ q

2
τ2+i2π

(
ct+cτ+ r

2
t2+rtτ+ r

2
τ2
)
e−

τ2

2σ2 e−i2πητdτ

=
A

σ
√

2π
ept+

q
2
t2+i2π

(
ct+ r

2
t2
) ∫ ∞
−∞

e−
τ2

2σ2
+ q

2
τ2+iπrτ2+τ

(
p+qt+i2π(c+rt−η)

)
dτ

=
A

σ
√

2π
ept+

q
2
t2+i2π

(
ct+ r

2
t2
) √

π√
1

2σ2 − q
2 − iπr

e

(p+qt+i2π(c+rt−η))2

4( 1
2σ2
− q2−iπr)

=
A√

1− qσ2 − i2πσ2r
ept+

q
2
t2+i2π

(
ct+ r

2
t2
)
e
−2π2(η−c−rt− p+qt

i2π
)2 σ2

1−qσ2−i2πσ2r ,

where in the second last equality, we have applied the following formula (see [1])∫ ∞
−∞

e−(α+iβ)t2+iωtdt =

√
π√

α+ iβ
e
− ω2

4(α+iβ) ,

for real α and β with α > 0. This shows (40) holds. �

Proof of Theorem 3. For s = s(t) given by (25), from s′(t) =
(
p+ qt+ i2π(c+ rt)

)
s(t) and

Ṽs(t, η) =

∫ ∞
−∞

s(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ,

we have

∂

∂t
Ṽs(t, η) =

∫ ∞
−∞

s′(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ +

∫ ∞
−∞

s(t+ τ)(− σ
′(t)

σ(t)2
)g(

τ

σ(t)
)e−i2πητdτ

+

∫ ∞
−∞

s(t+ τ)(−σ
′(t)τ

σ(t)3
)g′(

τ

σ(t)
)e−i2πητdτ

= (p+ qt+ i2π(c+ rt)
)
Ṽs(t, η) + (q + i2πr)

∫ ∞
−∞

τs(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

−σ
′(t)

σ(t)
Ṽs(t, η)− σ′(t)

σ(t)
Ṽ g2

s (t, η)

=
(
p+ qt+ i2π(c+ rt)− σ′(t)

σ(t)

)
Ṽs(t, η) + (q + i2πr)σ(t)Ṽ g1

s (t, η)− σ′(t)

σ(t)
Ṽ g2

s (t, η)

Thus, if Ṽs(t, η) 6= 0, we have

∂
∂t Ṽs(t, η)

Ṽs(t, η)
= p+ qt− σ′(t)

σ(t)
+ i2π(c+ rt) + (q + i2πr)σ(t)

Ṽ g1
s (t, η)

Ṽs(t, η)
− σ′(t)

σ(t)

Ṽ g2
s (t, η)

Ṽs(t, η)
. (65)
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Taking partial derivative ∂
∂η to both sides of (65),

∂

∂η

( ∂
∂t Ṽs(t, η)

Ṽs(t, η)

)
= (q + i2πr)σ(t)

∂

∂η

( Ṽ g1
s (t, η)

Ṽs(t, η)

)
− σ′(t)

σ(t)

∂

∂η

( Ṽ g2
s (t, η)

Ṽs(t, η)

)
.

Therefore, if in addition, ∂
∂η

(
Ṽ g

1

s (t,η)

Ṽs(t,η)

)
6= 0, then (q+i2πr)σ(t) = P0(t, η), where P0(t, η) is defined

by (30).

Back to (65) , we have

∂
∂t Ṽs(t, η)

Ṽs(t, η)
= p+ qt− σ′(t)

σ(t)
+ i2π(c+ rt) + P0(t, η)

Ṽ g1
s (t, η)

Ṽs(t, η)
− σ′(t)

σ(t)

Ṽ g2
s (t, η)

Ṽs(t, η)
.

Hence,

φ′(t) = c+ rt = Re
{ ∂

∂t Ṽs(t, η)

i2πṼs(t, η)

}
− Re

{ Ṽ g1
s (t, η)

i2πṼs(t, η)
P0(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

s (t, η)

i2πṼs(t, η)

}
.

Thus for an LFM signal x(t) given by (25), at (t, η) where ∂
∂η

(
Ṽ g

1

x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0,

ωadp,2ndx (t, η) defined by (29) is φ′(t) = c+ rt, the IF of x(t). This shows Theorem 3. �
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