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Abstract

The synchrosqueezing transform (SST) was developed recently to separate the compo-
nents of non-stationary multicomponent signals. The continuous wavelet transform-based
SST (WSST) reassigns the scale variable of the continuous wavelet transform of a signal to
the frequency variable and sharpens the time-frequency representation. The WSST with a
time-varying parameter, called the adaptive WSST, was introduced very recently in the pa-
per “Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary
signal separation”. The well-separated conditions of non-stationary multicomponent signals
with the adaptive WSST and a method to select the time-varying parameter were proposed in
that paper. In addition, simulation experiments in that paper show that the adaptive WSST
is very promising in estimating the instantaneous frequency of a multicomponent signal, and
in accurate component recovery. However the theoretical analysis of the adaptive WSST has
not been studied. In this paper, we carry out such analysis and obtain error bounds for com-
ponent recovery with the adaptive WSST and the 2nd-order adaptive WSST. These results
provide a mathematical guarantee to non-stationary multicomponent signal separation with
the adaptive WSST.

Keywords: Adaptive continuous wavelet transform; Adaptive synchrosqueezing transform;
Instantaneous frequency estimation; Non-stationary multicomponent signal separation.
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1 Introduction

Most real signals such as EEG and bearing signals are non-stationary multicomponent signals
given by

x(t) = A0(t) +

K∑
k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)

∗This work was supported in part by the National Natural Science Foundation of China under grants 61373087,
11871348, 61872429 and Simons Foundation under grant 353185.
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with Ak(t), φ
′
k(t) > 0, where A0(t) is the trend, and Ak(t), 1 ≤ k ≤ K, are called the instantaneous

amplitudes and φ′k(t) the instantaneous frequencies. Modeling a non-stationary signal x(t) as in
(1) is important to extract information hidden in x(t). The empirical mode decomposition (EMD)
algorithm along with the Hilbert spectrum analysis (HSA) is a popular method to decompose and
analyze nonstationary signals [19]. EMD decomposes a nonstationary signal as a superposition of
intrinsic mode functions (IMFs) and then the instantaneous frequency of each IMF is calculated
by HSA which results in a representation of the signal as in (1). The properties of EMD have been
studied and variants of EMD have been proposed to improve the performance in many articles,
see e.g. [10, 11, 12, 16, 25, 27, 32, 37, 40, 43, 47, 52]. A weakness of EMD is that it can easily lead
to mode mixtures or artifacts, namely undesirable or false components [26]. In addition, there is
no mathematical theorem to guarantee the recovery of the components.

Recently the continuous wavelet transform-based synchrosqueezed transform (WSST) was
developed in [14] to separate the components of a non-stationary multicomponent signal. In
addition, the short-time Fourier transform-based SST (FSST) was also proposed in [39] and
further studied in [44, 33] for this purpose. To provide sharp representations for signals with
significant frequency changes, the 2nd-order FSST and the 2nd-order WSST were introduced in
[34] and [31] respectively, and the theoretical analysis of them was carried out in [2] and [36]
respectively. Other SST related methods include the generalized WSST [21], a hybrid empirical
mode decomposition-SST computational scheme [9], the synchrosqueezed wave packet transform
[48], WSST with vanishing moment wavelets [7], the demodulation-transform based SST [41,
20, 42], higher-order FSST [35], signal separation operator [8] and empirical signal separation
algorithm [25]. In addition, the synchrosqueezed curvelet transform for two-dimensional mode
decomposition was introduced in [51] and the statistical analysis of synchrosqueezed transforms
has been studied in [49].

SST provides an alternative to the EMD method and its variants, and it overcomes some
limitations of the EMD scheme [1, 29]. SST has been used in multiple applications including
machine fault diagnosis [22, 42], crystal image analysis [28, 50], welding crack acoustic emission
signal analysis [17], and medical data analysis [18, 45, 46].

Most of the WSST and FSST algorithms available in the literature are based on a continuous
wavelet or a window function with a fixed window, which means high time resolution and frequency
resolution cannot be obtained simultaneously. Recently the Rényi entropy-based adaptive SST
was proposed in [38] and the adaptive FSST with the window function containing time and
frequency parameters was studied in [3]. Very recently the authors of [4, 23, 24] considered
the 2nd-order adaptive FSST and WSST with a time-varying parameter. They obtained the
well-separated condition for multicomponent signals using linear frequency modulation signals to
approximate a non-stationary signal at any local time. The experimental results show that the
adaptive SST is very promising in estimating the instantaneous frequency of a multicomponent
signal, and in accurate component recovery. However the theoretical analysis of the adaptive
SST has not been carried out. The goal of this paper is to study the theoretical analysis of the
adaptive WSST. We obtain the error bounds for component recovery with the adaptive WSST
and the 2nd-order adaptive WSST.

The rest of this paper is organized as follows. In Section 2, we briefly review WSST, the 2nd-
order WSST, the adaptive WSST and the 2nd-order adaptive WSST. We study the theoretical
analysis of the (1st-order) adaptive WSST and that of the 2nd-order adaptive WSST in Sections
3 and 4 respectively. In both cases, we obtain the error bounds for component recovery. The
proofs of theorems and lemmas are presented in the appendices.
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2 Synchrosqueezed transform

In this section we briefly review the continuous wavelet transform (CWT)-based synchrosqueezed
transform (WSST) and the adaptive WSST. A function ψ(t) ∈ L2(R) is called a continuous
wavelet (or an admissible wavelet) if it satisfies (see e.g. [13, 30]) the admissible condition:

0 < Cψ :=

∫ ∞
−∞
|ψ̂(ξ)|2 dξ

|ξ|
<∞, (2)

where ψ̂ is the Fourier transform of ψ(t) is defined by

ψ̂(ξ) :=

∫ ∞
−∞

ψ(t)e−i2πξtdt.

The CWT of a signal x(t) ∈ L2(R) with a continuous wavelet ψ is defined by

Wx(a, b) :=

∫ ∞
−∞

x(t)
1

a
ψ
( t− b

a

)
dt. (3)

The variables a and b are called the scale and time variables respectively. The signal x(t) can be
recovered by the inverse wavelet transform (see e.g. [5, 6, 13, 30])

x(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

Wx(a, b)ψa,b(t)db
da

|a|
.

A function x(t) is called an analytic signal if it satisfies x̂(ξ) = 0 for ξ < 0. For an analytic
continuous wavelets, an analytic signal x(t) ∈ L2(R) can be recovered by (refer to [15, 14]):

x(b) =
1

cψ

∫ ∞
0

Wx(a, b)
da

a
, (4)

where cψ is defined by

0 6= cψ :=

∫ ∞
0

ψ̂(ξ)
dξ

ξ
<∞. (5)

Furthermore, a real signal x(t) ∈ L2(R) can be recovered by the following formula (see [14]):

x(b) = Re
( 2

cψ

∫ ∞
0

Wx(a, b)
da

a

)
. (6)

The “bump wavelet” ψbump(x) defined by

ψ̂bump(ξ) :=

{
e

1− 1
1−σ2(ξ−µ)2 , if ξ ∈ (µ− 1

σ , µ+ 1
σ )

0, elsewhere,
(7)

where σ > 0, µ > 0 with σu > 1; and the (scaled) Morlet wavelet ψMor(x) defined by

ψ̂Mor(ξ) := e−2σ2π2(ξ−µ)2 − e−2σ2π2(ξ2+µ2), (8)

where σ > 0, µ > 0, are the commonly used continuous wavelets.
Note that the CWT given above can be applied to a slowly growing x(t) if the wavelet function

ψ(t) is in the Schwarz class S, the set of all such C∞(R) functions f(t) that f(t) and all of its
derivatives are rapidly decreasing.
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2.1 CWT-based synchrosqueezing transform

To achieve a sharper time-frequency representation of a signal, the synchrosqueezed wavelet trans-
form (WSST) reassigns the scale variable a to the frequency variable. For a given signal x(t), let
ωx(a, b) be the phase transformation [14] (also called “instantaneous frequency information” in
[39]) defined by

ωx(a, b) := Re
( ∂bWx(a, b)

i2πWx(a, b)

)
, for Wx(a, b) 6= 0. (9)

WSST is to reassign the scale variable a by transforming CWT Wx(a, b) of x(t) to a quantity,
denoted by T λx,γ(ξ, b), on the time-frequency plane:

T λx,γ(ξ, b) :=

∫
|Wx(a,b)|>γ

Wx(a, b)
1

λ
h
(ξ − ωx(a, b)

λ

)da
a
, (10)

where throughout this paper γ > 0, h(t) is a compactly supported function with certain smooth-
ness and

∫
R h(t)dt = 1, and

∫
|Wx(a,b)|>γ means the integral

∫
{a>0: |Wx(a,b)|>γ} with a ranging over

the set {a : |Wx(a, b)| > γ and a > 0}.
We consider multicomponent signals x(t) of (1) with the trend A0(t) being removed, namely,

x(t) =
K∑
k=1

xk(t) =
K∑
k=1

Ak(t)e
i2πφk(t) (11)

with Ak(t), φ
′
k(t) > 0. In addition, we assume that φ′k−1(t) < φ′k(t), t ∈ R for 2 ≤ k ≤ K.

For ε > 0 and 4 > 0, let Bε,4 denote the set of multicomponent signals of (11) satisfying the
following conditions:

Ak(t) ∈ C1(R) ∩ L∞(R), φk(t) ∈ C2(R), (12)

Ak(t) > 0, inf
t∈R

φ′k(b) > 0, sup
t∈R

φ′k(b) <∞ (13)

|A′k(t)| ≤ εφ′k(t), |φ′′k(t)| ≤ εφ′k(t), t ∈ R, M ′′k := sup
t∈R
|φ′′k(t)| <∞, (14)

φ′k(t)− φ′k−1(t)

φ′k(t) + φ′k−1(t)
≥ 4, 2 ≤ k ≤ K, t ∈ R. (15)

The condition (15) is called the well-separated condition with resolution 4. For 1 ≤ k ≤ K, let
Zk be the zone in the scale-time plane defined by

Zk := {(a, b) : |1− aφ′k(b)| < 4}. (16)

Then the well-separated condition (15) implies that Zk, 1 ≤ k ≤ K are not overlapping.
In practice, for a particular signal x(t), its CWT Wx(a, b) lies in a region of the scale-time

plane:
{(a, b) : a1(b) ≤ a ≤ a2(b), b ∈ R}

for some 0 < a1(b), a2(b) < ∞. That is Wx(a, b) is negligible for (a, b) outside this region.
Throughout this paper we assume for each b ∈ R, the scale a is in the interval:

a1(b) ≤ a ≤ a2(b). (17)
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Theorem A. [14] Let x(t) ∈ Bε,4 with 0 < 4 < 1 and ε̃ = ε1/3. Let ψ be a continuous

wavelet in S with supp(ψ̂) ⊆ [1 −4, 1 +4]. If ε is small enough, then the following statements
hold.

(a) For (a, b) satisfying |Wx(a, b)| > ε̃, there exists a unique k ∈ {1, 2, · · · ,K} such that
(a, b) ∈ Zk.

(b) Suppose (a, b) satisfies |Wx(a, b)| > ε̃ and (a, b) ∈ Zk. Then

|ωx(a, b)− φ′k(b)| < ε̃.

(c) For any k ∈ {1, · · · ,K},∣∣∣ lim
λ→0

1

cψ

∫
|ξ−φ′k(b)|<ε̃

T λx,ε̃(ξ, b)dξ − xk(b)
∣∣∣ ≤ C(b)ε̃, (18)

where C(b) <∞ is independent of ε̃.

2.2 Adaptive WSST with a time-varying parameter

In this paper we consider continuous wavelets of the form

ψσ(t) :=
1

σ
g
( t
σ

)
ei2πµt, (19)

where σ > 0, µ > 0, g ∈ S. In this paper, we let µ be a fixed positive number, e.g., one may
set µ = 1. Thus for the simplicity of notation, we drop µ in ψσ(t). The parameter σ in ψσ(t)
is also called the window width in the time-domain of wavelet ψσ(b). The CWT of x(t) with a
time-varying parameter considered in [24] is defined by

W̃x(a, b) :=

∫ ∞
−∞

x(t)
1

a
ψσ(b)

( t− b
a

)
dt

=

∫ ∞
−∞

x(t)
1

aσ(b)
g
( t− b
aσ(b)

)
e−i2πµ

t−b
a dt (20)

=

∫ ∞
−∞

x(b+ at)
1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt, (21)

where σ = σ(b) is a positive and differentiable function of b. We call W̃x(a, b) the adaptive CWT
of x(t) with ψσ. If

0 < cψ(b) :=

∫ ∞
0

ψ̂σ(b)(ξ)
dξ

ξ
=

∫ ∞
0

ĝ(σ(b)(µ− ξ)dξ
ξ
<∞,

then the original signal x(b) can be recovered from W̃x(a, b) (see [24]):

x(b) =
1

cψ(b)

∫ ∞
0

W̃x(a, b)
da

a
, (22)

for analytic x(t). In addition, if ψσ is analytic, then for a real-valued x(t), we have

x(b) = Re
( 2

cψ(b)

∫ ∞
0

W̃x(a, b)
da

a

)
.
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The condition ψ̂σ(b)(0) = ĝ(σ(b)µ) = 0 for ψσ is required for cψ(b) <∞. When g is bandlim-
ited, i.e., ĝ is compactly supported, to say supp(ĝ) ⊂ [−α, α] for some α > 0, then ĝ(σ(b)µ) = 0
as long as

σ(b) >
α

µ
, b ∈ R. (23)

If ĝ is not compactly supported, we consider the “support” of ĝ outside which ĝ(ξ) ≈ 0. More
precisely, for a given small positive threshold τ0, if |ĝ(ξ)| ≤ τ0 for |ξ| ≥ α for some α > 0, then we
say ĝ(ξ) is essentially supported in [−α, α]. When |ĝ(ξ)| is even and decreasing for ξ ≥ 0, then α
is obtained by solving

|ĝ(α)| = τ0. (24)

For example, when g is the Gaussian function defined by

g(t) =
1√
2π
e−

t2

2 , (25)

then, with ĝ(ξ) = e−2π2ξ2 , the corresponding α is given by

α =
1

2π

√
2 ln(1/τ0). (26)

For a non-bandlimited g, ψ̂σ(0) = 0 is not satisfied, and in this case a second term is added
to (19) such that the resulting

ψ̃σ(t) =
1

σ
g
( t
σ

)
ei2πµt − cσg

( t
σ

)
,

satisfies
̂̃
ψσ(0) = 0 (and hence c

ψ̃
(b) < ∞), where cσ is independent of t. See, for example,

Morlet’s wavelet ψMor given in (8), where a second term is required to assure ψ̂Mor(0) = 0.
In this paper we study the error bound for individual component recovery by the adaptive

WSST analogous to (18), where cψ should be replaced by cψ(b) for the adaptive WSST. However,
instead of using cψ(b), we will use a modified function of b defined by

cαψ(b) :=

∫ µ+ α
σ(b)

µ− α
σ(b)

ψ̂σ(b)(ξ)
dξ

ξ
=

∫ µ+ α
σ(b)

µ− α
σ(b)

ĝ
(
σ(b)(µ− ξ)

)dξ
ξ
. (27)

As in [24], in this paper we always assume (23) holds. Due to the condition (23), cαψ(b) < ∞
whether g is bandlimited or not.

In the following we assume g ∈ S, |ĝ(ξ)| is even and decreasing for ξ ≥ 0 unless ĝ(ξ) is
compactly supported. If ĝ is not compactly supported, then α is defined by (24) for a given small
τ0 > 0.

Next we recall the adaptive WSST introduced in [24]. First we denote

g1(t) := tg(t), g2(t) := t2g(t), g3(t) := tg′(t). (28)

We use W̃
gj
x (a, b) and W̃ g′

x (a, b) to denote the adaptive CWT defined by (21) with g replaced by
gj and g′ respectively, where 1 ≤ j ≤ 3.
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For x(t) = Aei2πξ0t with ξ0 > 0, one can show that (see [24]) if W̃x(a, b) 6= 0, then

ωadp,c
x (a, b) :=

∂
∂bW̃x(a, b)

i2πW̃x(a, b)
+

σ′(b)

i2πσ(b)
+
σ′(b)

σ(b)

W̃ g3
x (a, b)

i2πW̃x(a, b)
, (29)

is ξ0, the instantaneous frequency of x(t). Note that “c” in ωadp,c
x (a, b) means the complex version

of the phase transformation. Hence, for a general x(t), [24] defines ωadp
x (a, b):= Re(ωadp,c

x (a, b)),

the real part of ωadp,c
x (a, b), as the phase transformation of the adaptive WSST. Then the (1st-

order) adaptive WSST, denoted by T adp,λ
x,γ , is defined by

T adp,λ
x,γ (ξ, b) :=

∫
|W̃x(a,b)|>γ

W̃x(a, b)
1

λ
h
(ξ − ωadp

x (a, b)

λ

)da
a
. (30)

The 2nd-order adaptive WSST was proposed in [24]. To introduce the corresponding phase
transformation, the authors of [24] considered linear frequency modulation signal (also called
linear chirp signal)

x(t) = Aei2πφ(t) = Aei2π(ξ0t+
1
2
rt2). (31)

It was shown in [24] that ω2adp,c
x (a, b) defined below is ξ0 +rb, the instantaneous frequency of x(b):

ω2adp,c
x (a, b) :=

∂
∂bW̃x(a, b)

i2πW̃x(a, b)
+

σ′(b)

i2πσ(b)

(
1 +

W̃ g3
x (a, b)

W̃x(a, b)

)
− a W̃ g1

x (a, b)

i2πW̃x(a, b)
R0(a, b), (32)

for (a, b) satisfying ∂
∂a

(
aW̃

g1
x (a,b)

W̃x(a,b)

)
6= 0 and W̃x(a, b) 6= 0, where

R0(a, b) :=
1

∂
∂a

(
aW̃

g1
x (a,b)

W̃x(a,b)

){ ∂

∂a

( ∂
∂bW̃x(a, b)

W̃x(a, b)

)
+
σ′(b)

σ(b)

∂

∂a

(W̃ g3
x (a, b)

W̃x(a, b)

)}
. (33)

Then ω2adp
x :=Re(ω2adp,c

x ), the real part of ω2adp,c
x , is the phase transformation for the 2nd-order

adaptive WSST.
Here we consider two types of the 2nd-order adaptive WSSTs:

T 2adp,λ
x,γ1,γ2(ξ, b) :=

∫{
a: |W̃x(a,b)|>γ1, |∂a(aW̃

g1
x (a,b)/W̃x(a,b))|>γ2

} W̃x(a, b)
1

λ
h
(ξ − ω2adp

x (a, b)

λ

)da
a
, (34)

and

S2adp,λ
x,γ1,γ2(ξ, b) :=

∫
|W̃x(a,b)|>γ1

W̃x(a, b)
1

λ
h
(ξ − ω2adp

x,γ2 (a, b)

λ

)da
a
, (35)

where ω2adp
x,γ2 is the real part of ω2adp,c

x,γ2 defined by

ω2adp,c
x,γ2 (a, b) :=

 quantity in (32), if |W̃x(a, b)| 6= 0 and
∣∣∣ ∂∂a(aW̃ g1

x (a,b)

W̃x(a,b)

)∣∣∣ > γ2,

quantity in (29), if |W̃x(a, b)| 6= 0 and
∣∣∣ ∂∂a(aW̃ g1

x (a,b)

W̃x(a,b)

)∣∣∣ ≤ γ2.

Note that ω2adp,c
x,γ2 (a, b) is ω2adp,c

x (a, b) with ∂
∂a

(
aW̃

g1
x (a,b)

W̃x(a,b)

)
6= 0 described by threshold γ2 > 0.
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If σ(b) ≡ σ, a constant, then ω2adp
x (a, b) is reduced to ω2nd

x (a, b) given by

ω2nd
x (a, b) =



Re
{ ∂

∂b
Wx(a,b)

i2πWx(a,b)

}
− aRe

{
W
g1
x (a,b)

i2πWx(a,b)
1

∂
∂a

(
a
W
g1
x (a,b)
Wx(a,b)

) ∂
∂a

( ∂
∂b
Wx(a,b)

Wx(a,b)

)}
,

if ∂
∂a

(
aW

g1
x (a,b)

Wx(a,b)

)
6= 0 and Wx(a, b) 6= 0;

Re
{ ∂

∂b
Wx(a,b)

i2πWx(a,b)

}
, if ∂

∂a

(
aW

g1
x (a,b)

Wx(a,b)

)
= 0, Wx(a, b) 6= 0.

(36)

Then we define the conventional 2nd-order WSSTs as

T 2nd,λ
x,γ1,γ2(ξ, b) :=

∫
{|Wx(a,b)|>γ1, |∂a(aW

g1
x (a,b)/Wx(a,b))|>γ2}

Wx(a, b)
1

λ
h
(ξ − ω2nd

x (a, b)

λ

)da
a
,

S2nd,λ
x,γ1,γ2(ξ, b) :=

∫
|Wx(a,b)|>γ1

Wx(a, b)
1

λ
h
(ξ − ω2nd

x,γ2(a, b)

λ

)da
a
.

The conventional 2nd-order WSST was first introduced in [31]. The reader refers to [31] for
different phase transformations ω2nd

x (a, b).

3 Analysis of adaptive WSST

We assume

d′ := min
k∈{1,··· ,K}

min
t∈R

φ′k(t)− φ′k−1(t)

φ′k(t) + φ′k−1(t)
> 0. (37)

Thus x(t) satisfies the well-separated condition (15) with resolution = d′/2. However, the value
d′ may be very small. In this case, we cannot apply Theorem A directly. The reason is that to
guarantee the results in Theorem A to hold, the continuous wavelet ψ needs to satisfy supp(ψ̂) ⊆
[1 − d′

2 , 1 + d′

2 ] or at least |ψ̂(ξ)| is small for |ξ − 1| ≥ d′/2. If d′ is quite small, then ψ has a
very good frequency resolution, which implies by the uncertainty principle that ψ has a very poor
time resolution, or equivalently ψ has a very large time duration, which results in large errors in
instantaneous frequency estimate. We use the adaptive CWT to adjust the time-varying window
width σ(b) at certain local time t where the frequencies of two components are close.

In this section we consider the case that each component xk(t) = Ak(t)e
i2πφk(t) is approximated

locally by a sinusoidal signal. Here we consider conditions:

|A′k(t)| ≤ ε1, |φ′′k(t)| ≤ ε2, t ∈ R, 1 ≤ k ≤ K, (38)

for some small positive numbers ε1, ε2. Let Cε1,ε2 denote the set of multicomponent signals of (11)
satisfying (12), (13), (37) and (38).

Let x(t) ∈ Cε1,ε2 . Write xk(b+ at) as

xk(b+ at) = xk(b)e
i2πφ′k(b)at + (Ak(b+ at)−Ak(b))ei2πφk(b+at)

+xk(b)e
i2πφ′k(b)at

(
ei2π(φk(b+at)−φk(b)−φ′k(b)at) − 1

)
.

8



Then the adaptive CWT W̃x(a, b) of x(t) defined by (21) with g can be expanded as

W̃x(a, b) =
K∑
k=1

∫
R
xk(b+ at)

1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt

=

K∑
k=1

∫
R
xk(b)e

i2πφ′k(b)at 1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt+ rem0,

or

W̃x(a, b) =

K∑
k=1

xk(b)ĝ
(
σ(b)(µ− aφ′k(b))

)
+ rem0, (39)

where rem0 is the remainder for the expansion of W̃x(a, b) given by

rem0 :=
K∑
k=1

∫
R

{
(Ak(b+ at)−Ak(b))ei2πφk(b+at) (40)

+xk(b)e
i2πφ′k(b)at

(
ei2π(φk(b+at)−φk(b)−φ′k(b)at) − 1

)} 1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt.

With |Ak(b+ at)−Ak(b)| ≤ ε1a|t| and

|ei2π(φk(b+at)−φk(b)−φ′k(b)at) − 1| ≤ 2π|φk(b+ at)− φk(b)− φ′k(b)at| ≤ πε2a
2|t|2,

we have

|rem0| ≤
K∑
k=1

∫
R
ε1a|t|

1

σ(b)
|g
( t

σ(b)

)
|dt+

K∑
k=1

Ak(b)

∫
R
πε2a

2|t|2 1

σ(b)
|g
( t

σ(b)

)
|dt

= Kε1I1aσ(b) + πε2I2a
2σ2(b)

K∑
k=1

Ak(b),

where

In :=

∫
R
|tng(t)|dt, n = 1, 2, · · · , (41)

Hence we have
|rem0| ≤ aσ(b)λ0(a, b), (42)

where

λ0(a, b) := Kε1I1 + πε2I2aσ(b)
K∑
k=1

Ak(b). (43)

Similarly W̃ g′
x (a, b) can be expanded as (39) with remainder rem′0, defined as rem0 in (40) with

g(t) replaced by g′(t). Then we have the estimate for rem′0 similar to (42). More precisely, we
have

|rem′0| ≤ aσ(b)λ̃0(a, b), (44)
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where

λ̃0(a, b) := Kε1Ĩ1 + πε2Ĩ2aσ(b)

K∑
k=1

Ak(b), (45)

with

Ĩn :=

∫
R
|tng′(t)|dt, n = 1, 2, · · · . (46)

Remark 1. The condition (14), which was considered in [14], means that Ak(t) and instantaneous
frequency φ′k(b) change slowly compared with φk(t). For FSST , [33] uses another condition for
the change of Ak(t) and φ′k(b):

|A′k(t)| ≤ ε, |φ′′k(t)| ≤ ε, t ∈ R. (47)

Condition (38) is essentially the condition (47). If Ak(t), φk(t) satisfy (14), then we have a

similar error bound for the expansion of W̃x(a, b). More precisely, suppose Ak(t), φk(t) satisfy

|A′k(t)| ≤ ε1φ
′
k(t), |φ′′k(t)| ≤ ε2φ

′
k(t), t ∈ R, M ′′k := sup

t∈R
|φ′′k(t)| <∞. (48)

Then (see [14])

|Ak(b+ at)−Ak(b)| ≤ ε1a|t|(φ′k(b) +
1

2
M ′′k a|t|),

|φk(b+ at)− φk(b)− φ′k(b)at| ≤ ε2a
2t2(

1

2
φ′k(b) +

1

6
M ′′k a|t|).

Thus, we can expand W̃x(a, b) as (39) with |rem0| ≤ aσ(b)λ0(a, b), where in this case λ0(a, b) is

λ0(a, b) := ε1

K∑
k=1

(
I1φ
′
k(b) +

1

2
M ′′k I2aσ(b)

)
+ πε2aσ(b)

K∑
k=1

Ak(b)
(
I2φ
′
k(b) +

1

3
M ′′k I3aσ(b)

)
. (49)

With the condition of (48), we have an estimate aσ(b)λ̃0(a, b) for rem′0, the remainder for the

expansion of W̃ g′
x (a, b), where in this case λ̃0(a, b) is defined by (49) with Ij replaced by Ĩj. In this

paper we consider the condition (38). The statements for the theoretical analysis of the adaptive
WSST with condition (48) instead of (38) are still valid as long as λ0(a, b) in (43), λ̃0(a, b) in
(45), Λk(b) and Λ′k(b) (below in (53) and (54) respectively) and so on are replaced respectively by
that in (49) and similar terms. This also applies to the 2nd-order adaptive WSST in Section 4,
where we will not repeat this discussion on the condition like (48). �

If the remainder rem0 in (39) is small, then the term xk(b)ĝ
(
σ(b)(µ − aφ′k(b))

)
in (39) de-

termines the scale-time zone of the adaptive CWT W̃xk(a, b) of the kth component xk(t) of
x(t). More precisely, if g is band-limited, to say supp(ĝ) ⊂ [−α, α] for some α > 0, then
xk(b)ĝ

(
σ(b)(µ− aφ′k(b))

)
lies within the zone of the scale-time plane:

Zk :=
{

(a, b) : |µ− aφ′k(b)| <
α

σ(b)
, b ∈ R

}
.

The upper and lower boundaries of Zk are respectively

µ− aφ′k(b) =
α

σ(b)
and µ− aφ′k(b) = − α

σ(b)
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or equivalently

a = (µ+
α

σ(b)
)/φ′k(b) and a = (µ− α

σ(b)
)/φ′k(b).

Thus Zk−1 and Zk do not overlap (with Zk−1 lying above Zk in the scale-time plane) if

(µ+
α

σ(b)
)/φ′k(b) ≤ (µ− α

σ(b)
)/φ′k−1(b), (50)

or equivalently

σ(b) ≥ α

µ

φ′k(b) + φ′k−1(b)

φ′k(b)− φ′k−1(b)
, b ∈ R. (51)

Therefore the multicomponent signal x(t) is well-separated (that is Zk ∩ Z` = ∅, k 6= `), provided
that σ(b) satisfies (51) for k = 2, · · · ,K.

Observe that our well-separated condition (51) is different from that in (15) considered in [14].
When ĝ is not compactly supported, let α be the number defined by (24), namely assume ĝ(ξ)

is essentially supported in [−α, α]. Then xk(b)ĝ
(
σ(b)(µ− aφ′k(b))

)
lies within the scale-time zone

Zk defined by

Zk :=
{

(a, b) : |ĝ
(
σ(b)(µ− aφ′k(b))

)
| > τ0, b ∈ R} = {(a, b) : |µ− aφ′k(b)| <

α

σ(b)
, b ∈ R

}
. (52)

Thus if the remainder rem0 in (39) is small, W̃xk(a, b) lies within Zk and hence, the multicompo-
nent signal x(t) is well-separated provided that σ(b) satisfies (51) for 2 ≤ k ≤ K. In this section
we assume that (51) with k = 2, · · · ,K holds for some σ(b).

From (42) and (44), we have that for (a, b) ∈ Zk,

|rem0|
aσ(b)

≤ Λk(b) := Kε1I1 + πε2I2
µσ(b) + α

φ′k(b)

K∑
j=1

Aj(b), (53)

|rem′0|
aσ(b)

≤ Λ̃k(b) := Kε1Ĩ1 + πε2Ĩ2
µσ(b) + α

φ′k(b)

K∑
j=1

Aj(b). (54)

Here we remark that in practice φ′k(t), 1 ≤ k ≤ K are unknown. However the condition in
(15) considered in the seminal paper [14] on SST and that in (51) involve φ′k(t). Like paper [14],
our paper establishes theoretical theorems which guarantee the recovery of components, namely,
we provide conditions under which the components can be recovered.

Next we present our analysis results on the adaptive WSST in Theorem 1 below, where α is
defined by (24), and throughout this paper,

∑
`6=k denotes

∑
`∈{1,··· ,K}\{k}. Recall that we assume

that the scale variable a lies in the interval (17). Throughout this section, we may assume that

a1 = a1(b) :=
µ− α/σ(b)

φ′K(b)
≤ a ≤ a2 = a2(b) :=

µ+ α/σ(b)

φ′1(b)
. (55)

In addition, we denote

ρ`,k(b) :=

σ(b)µ−
(
σ(b)µ+ α

) φ′`(b)
φ′k(b)

, if ` < k,(
σ(b)µ− α

) φ′`(b)
φ′k(b)

− σ(b)µ, if ` > k.

Then one can obtain from (50) that for any (a, b) ∈ Zk, the following inequality holds:

|σ(b)
(
µ− aφ′`(b)

)
| > ρ`,k(b). (56)
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Theorem 1. Suppose x(t) ∈ Cε1,ε2 for some small ε1, ε2 > 0. Let Zk be the scale-time zone
defined by (52). Then we have the following.

(a) Suppose ε̃1 satisfies ε̃1 ≥ a2(b)σ(b)Λ1(b) + τ0
∑K

k=1Ak(b), where a2(b) is given in (55).

Then for (a, b) with |W̃x(a, b)| > ε̃1, there exists a unique k ∈ {1, 2, · · · ,K} such that (a, b) ∈ Zk.

(b) For (a, b) with |W̃x(a, b)| 6= 0, we have

ωadp,c
x (a, b)− φ′k(b) =

Rem1

i2πW̃x(a, b)
, (57)

where

Rem1 := i2π
(µ
a
− φ′k(b)

)
rem0 −

rem′0
aσ(b)

+ i2π
∑
`6=k

x`(b)
(
φ′`(b)− φ′k(b)

)
ĝ
(
σ(b)(µ− aφ′`(b))

)
.

Hence, for (a, b) satisfying |W̃x(a, b)| > ε̃1 and (a, b) ∈ Zk, we have

|ωadp
x (a, b)− φ′k(b)| < bdk, (58)

where

bdk :=
1

ε̃1

(
αΛk(b) +

1

2π
Λ̃k(b)

)
+

1

ε̃1

∑
`6=k

A`(b)|φ′`(b)− φ′k(b)|
∣∣ĝ(ρ`,k(b))∣∣. (59)

(c) For a k ∈ {1, · · · ,K}, suppose that ε̃1 satisfies the condition in part (a) and that bd` in
part (b) satisfies max

1≤`≤K
{bd`} ≤ 1

2Lk(b), where

Lk(b) := min{φ′k(b)− φ′k−1(b), φ′k+1(b)− φ′k(b)}. (60)

Then for ε̃3 satisfying max
1≤`≤K

{bd`} ≤ ε̃3 ≤ 1
2Lk(b), we have

∣∣∣ lim
λ→0

1

cαψ(b)

∫
|ξ−φ′k(b)|<ε̃3

T adp,λ
x,ε̃1

(ξ, b)dξ − xk(b)
∣∣∣ ≤ b̃dk, (61)

where cαψ(b) is defined by (27), and

b̃dk :=
1

|cαψ(b)|

{
ε̃1 ln

µσ(b) + α

µσ(b)− α
+

2α

φ′k(b)
Λk(b) +

∑
`6=k

A`(b)m`,k(b)
}

(62)

with

m`,k(b) :=

∫ µ+ α
σ(b)

µ− α
σ(b)

ĝ
(
σ(b)(µ−

φ′`(b)

φ′k(b)
ξ)
)dξ
ξ
.

The proof of Theorem 1(b) needs the following lemma.

Lemma 1. Let W̃x(a, b) be the adaptive CWT of x(t). Then

∂bW̃x(a, b) =
( i2πµ

a
− σ′(b)

σ(b)

)
W̃x(a, b)− σ′(b)

σ(b)
W̃ g3
x (a, b)− 1

aσ(b)
W̃ g′
x (a, b). (63)
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We provide the proofs of Theorems 1 and Lemma 1 in Appendices A and C respectively. In
the rest of this section, we give some remarks on the results presented in Theorem 1.

Remark 2. When ĝ(ξ) is supported in [−α, α], then the condition in Theorem 1 part (a) for
ε̃1 is reduced to ε̃1 ≥ a2(b)Λ1(b). Furthermore, in this case cαψ(b) = cψ(b), and for ` 6= k,

ĝ
(
σ(b)(µ− aφ′`(b))

)
= 0 for (a, b) ∈ Zk and m`,k(b) = 0. Hence bdk and b̃dk in (59) and (62) are

respectively

bdk =
1

ε̃1

(
αΛk(b) +

1

2π
Λ̃k(b)

)
, b̃dk =

1

|cψ(b)|

(
ε̃1 ln

µσ(b) + α

µσ(b)− α
+

2α

φ′k(b)
Λk(b)

)
.

Also, Theorem 1 can be written as Theorem A. To show this, in the following let us just
consider the case ε1 = ε2 for simplicity. Write Λk(b), Λ̃k(b) defined by (53) and (54) respectively
as

Λk(b) = ε1λk(b), Λ̃k(b) = ε1λ̃k(b),

with

λk(b) := KI1 + πI2
µσ(b) + α

φ′k(b)

K∑
k=1

Ak(b), λ̃k(b) := KĨ1 + πĨ2
µσ(b) + α

φ′k(b)

K∑
k=1

Ak(b).

Let ε̃1 = ε
1/3
1 . If ε1 is small enough such that

ε̃1 ≤ min
{ 1√

a2(b)λ1(b)
,

1

max
1≤`≤K

{αλ`(b) + 1
2π λ̃`(b)}

,
1

2
Lk(b)

}
, (64)

then ε̃1 ≥ a2(b)ε̃31λ1(b) = a2(b)ε1λ1(b) = a2(b)Λ1(b), and

max
1≤`≤K

{bd`} =
ε1

ε̃1
max

1≤`≤K

{
αλk(b) +

1

2π
λ̃k(b)

}
≤ ε1

ε̃1

1

ε̃1
= ε̃1 ≤

1

2
Lk(b).

Thus the conditions in Theorem 1 are satisfied, and the following corollary follows from Theorem
1 immediately (with ε̃3 = ε̃1).

Corollary 1. Suppose x(t) ∈ Cε1,ε1 for some small ε1 > 0, and supp(ĝ) ⊆ [−α, α]. Let ε̃1 = ε
1/3
1 .

If ε1 is small enough such that (64) holds, then we have the following.

(a) For (a, b) satisfying |W̃x(a, b)| > ε̃1, there exists a unique k ∈ {1, 2, · · · ,K} such that
(a, b) ∈ Zk.

(b) For (a, b) satisfying |W̃x(a, b)| > ε̃1 and (a, b) ∈ Zk, we have

|ωadp
x (a, b)− φ′k(b)| < ε̃1.

(c) For any k, 1 ≤ k ≤ K,∣∣∣ lim
λ→0

1

cψ(b)

∫
|ξ−φ′k(b)|<ε̃1

T adp,λ
x,ε̃1

(ξ, b)dξ − xk(b)
∣∣∣ ≤ 1

|cψ(b)|

(
ε̃1 ln

µσ(b) + α

µσ(b)− α
+ 2αε̃31

λk(b)

φ′k(b)

)
.

�
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Remark 3. When σ(b) ≡ σ, a constant, T adp,λ
x,ε̃1

(ξ, b) is the regular WSST T λx,ε̃1(ξ, b) defined by
(10). Suppose supp(ĝ) ⊆ [−α, α]. Then Corollary 1 is Theorem A with condition (38). �

Remark 4. When ĝ(ξ) is not supported on [−α, α], but |ĝ(ξ)| decays fast at |ξ| → ∞, then the
terms in the summation

∑
6̀=k for bdk in (59) will be small as long as α is quite large (hence τ0

is very small). More precisely, from (50), we have

(µσ(b) + α)
φ′k−1(b)

φ′k(b)
≤ µσ(b)− α.

Thus
ρk−1,k(b) ≥ µσ(b)−

(
µσ(b)− α

)
= α.

Similarly, we have ρk+1,k(b) ≥ α. Recall that we assume that |ĝ(ξ)| is decreasing on ξ ≥ 0. Hence

|ĝ
(
ρk±1,k(b)

)
| ≤ |ĝ

(
± α)| = τ0.

The quantities |ĝ
(
ρ`,k(b)

)
| for other ` 6= k − 1, k, k + 1 are smaller than τ0 also since ρ`,k(b) are

larger than α. As an example, let us consider the case when g is the Gaussian function given in
(25). If we let α = 1, then

ĝ(1) = 2.675× 10−9.

Thus even in practice ε̃1 is small, for example ε̃1 = 10−4 or 10−5, and hence 1/ε̃1 is large, but the
term in the summation

∑
6̀=k for bdk in (59) is still very small.

For the functions m`,k(b) in (62), we have

|m`,k(b)| ≤
∫ µ+ α

σ(b)

µ− α
σ(b)

∣∣∣ĝ(σ(b)
(
µ−

φ′`(b)

φ′k(b)
ξ
))∣∣∣dξ

ξ

≤
∫ µ+ α

σ(b)

µ− α
σ(b)

τ0
dξ

ξ
= τ0 ln

µσ(b) + α

µσ(b)− α
≈ 2α

µσ(b)
τ0.

Thus |m`,k(b)| could be small if τ0 is small. To summarize, in the case that ĝ is not compactly
supported, the statements in Corollary 1 still hold if the same conditions are satisfied and that α
is large enough (and hence τ0 is small enough). �

Remark 5. Observe that in Corollary 1, ε̃1 = ε
1/3
1 . In [14] and [33] on theoretical analysis on

WSST and FSST, ε̃1 and ε1 have the same relationship. It means that if ε̃1 is small, then ε1 = ε̃31
will be very small. In other words, theoretically, to have small error bounds for the instantaneous
frequency estimate, |A′k(t)| and |φ′′k(t)| must be very small, which means x(t) is essentailly a
superposition of sinusoidal signals. This is the reason for that in practice WSST and FSST
work well for sinusoidal signals, but not for signals with fast changing instantaneous frequency.
The 2nd-order SSTs were introduced for signals with fast changing instantaneous frequency. We
provide the analysis of 2nd-order adaptive WSST in the next section.

Before moving on to the next section, we consider an example to show the recovery error
bound b̃dk in (61).

Example 1. Let x(t) be a two-component linear frequency modulation signal given by

x(t) := x1(t) + x2(t) = cos
(
2π(12t+ 0.5t2/2)

)
+ cos

(
2π(26t− 0.5t2/2)

)
, t ∈ [0, 1]. (65)

14



Figure 1: Example of two-component signal x(t) in (65). Top: Waveform; Middle-left: x1(t) and recovered
x1(t) (red dot-dash line); Middle-right: x2(t) and recovered x2(t) (red dot-dash line); Bottom-left: Absolute

recovery error for x1 and error bound b̃d1; Bottom-right: Absolute recovery error for x2 and error bound

b̃d2.
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The number of sampling points is N = 256 and the sampling rate is 256Hz. The instantaneous
frequencies of x1(t) and x2(t) are φ′1(t) = 12 + 0.5t and φ′2(t) = 26 − 0.5t, respectively. Hence,
x(t) ∈ Cε1,ε2 with ε1 = 0, ε2 = 0.5. In Fig.1, we show the waveform of x(t).

We let µ = 1, and choose σ(b) to be

σ1(b) :=
α

µ

φ′2(b) + φ′1(b)

φ′2(b)− φ′1(b)
.

We set τ0 = 1/20, ε̃1 = 0.01 and ε̃3 = 1
2(φ′2(b) − φ′1(b). We show the recovered x1(t), x2(t) in the

middle row of Fig.1. The absolute recovery errors (the quantity on the left-hand side of (61)) for

x1 and x2 and the error bounds b̃d1 and b̃d2 are provided in the bottom row of Fig.1. Observe
from the middle row of Fig.1 that the recovery errors are small except near boundary points t = 0
and t = 1 due to the boundary issue. Hence, we show the errors for t ∈ [0.1, 0.9] in the bottom
row of Fig.1.

4 Analysis of 2nd-order adaptive WSST

In this section we consider multicomponent signals x(t) of (11) satisfying the following conditions:

Ak(t) ∈ C2(R) ∩ L∞(R), φk(t) ∈ C3(R), φ′′k(t) ∈ L∞(R), (66)

We also assume each x(t) is well approximated locally by linear chirp signals of (31) with A′k(t)

and φ
(3)
k (t) small:

|A′k(t)| ≤ ε1, |φ(3)
k (t)| ≤ ε3, t ∈ R, 1 ≤ k ≤ K, (67)

for some small positive numbers ε1, ε3. More precisely, write x(b+ at) as

x(b+ at) = xm(a, b, t) + xr(a, b, t), (68)

where

xm(a, b, t) :=

K∑
k=1

xk(b)e
i2π(φ′k(b)at+ 1

2
φ′′k(b)(at)2) (69)

xr(a, b, t) :=
K∑
k=1

{
(Ak(b+ at)−Ak(b))ei2πφk(b+at) (70)

+xk(b)e
i2π(φ′k(b)at+ 1

2
φ′′k(b)(at)2)

(
ei2π(φk(b+at)−φk(b)−φ′k(b)at− 1

2
φ′′k(b)(at)2) − 1

)}
.

By condition (67), we have |Ak(b+ at)−Ak(b)| ≤ ε1a|t| and

|ei2π(φk(b+at)−φk(b)−φ′k(b)at− 1
2
φ′′k(b)(at)2) − 1| ≤ 2π

1

6
sup
η∈R
|φ(3)
k (η)(at)3| ≤ π

3
ε3a

3|t|3.

Thus,

|xr(a, b, t)| ≤ ε1Ka|t|+
π

3
ε3a

3|t|3
K∑
k=1

Ak(b). (71)
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Therefore, xm(a, b, t) approximates x(b + at) well if ε1, ε3 are small. Note that xm(a, b, t) is a
linear combination of linear chirps with variable t.

Next we consider the approximation of W̃x(a, b) when x(b+at) is approximated by xm(a, b, t).
With (68), we have

W̃x(a, b) =

K∑
k=1

∫
R
xk(b+ at)

1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt

=

K∑
k=1

∫
R
xk(b)e

i2π(φ′k(b)at+ 1
2
φ′′k(b)a2t2) 1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt+ res0, (72)

where

res0 :=

∫
R
xr(a, b, t)

1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt. (73)

For given a, b, we use Gk(ξ) to denote the Fourier transform of eiπφ
′′
k(b)a2σ2(b)t2g(t), namely,

Gk(ξ) := F
(
eiπφ

′′
k(b)a2σ2(b)t2g(t)

)(
ξ) =

∫
R
eiπσ

2(b)φ′′k(b)a2t2g(t)e−i2πξtdt,

where F denotes the Fourier transform. Note that Gk(ξ) depends on a, b also if φ′′k(b) 6= 0. We
drop a, b in Gk for simplicity. Thus we have

W̃x(a, b) =

K∑
k=1

xk(b)Gk
(
σ(b)(µ− aφ′k(b))

)
+ res0. (74)

Note that to distinguish the different types of the remainders for the expansion of W̃x(a, b)
resulted from different local approximations for xk(b + at), in this section we use “res”, which

means residual, to denote the remainder for the expansion of W̃x(a, b) in (72). By (71), we have
the following estimate for res0:

|res0| ≤
∫
R
Kε1a|t|

1

σ(b)

∣∣∣g( t

σ(b)

)∣∣∣dt+

∫
R

π

3
ε3a

3|t|3
K∑
k=1

Ak(b)
1

σ(b)

∣∣∣g( t

σ(b)

)∣∣∣dt
= Kε1I1aσ(b) +

π

3
ε3I3a

3σ3(b)

K∑
k=1

Ak(b),

where In is defined in (41). Hence we have

|res0| ≤ aσ(b)Π0(a, b), (75)

where

Π0(a, b) := Kε1I1 +
π

3
ε3I3a

2σ2(b)
K∑
k=1

Ak(b).

By (75), we know |res0| is small if ε1, ε3 are small enough. Hence, in this case Gk
(
σ(b)(µ −

aφ′k(b))
)

determines the scale-time zone for W̃xk(a, b). More precisely, let 0 < τ0 < 1 be a given
small number as the threshold. Denote

O′k := {(a, b) : |Gk
(
σ(b)(µ− aφ′k(b))

)
| > τ0, b ∈ R}.
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If |Gk(ξ)| is even and decreasing for ξ ≥ 0. Then O′k can be written as

O′k =
{

(a, b) : |µ− aφ′k(b)| <
αk
σ(b)

, b ∈ R
}
. (76)

where αk is obtained by solving |Gk(ξ)| = τ0. In general αk = αk(a, b) depends on both b and a,
and it is hard to obtain the explicit expressions for the boundaries of Q′k. As suggested in [24], in
this paper, we assume αk(a, b) can be replaced by βk(a, b) with αk(a, b) ≤ βk(a, b) such that O′k
defined by (76) with αk = βk(a, b) can be written as

Ok := {(a, b) : lk(b) < a < uk(b), b ∈ R}, (77)

for some 0 < lk(b) < uk(b), and∣∣Gk(σ(b)(µ− aφ′k(b))
)∣∣ ≤ τ0, for (a, b) 6∈ Qk. (78)

In addition, we will assume the multicomponent signal x(t) is well-separated, that is there is σ(b)
such that

uk(b) ≤ lk−1(b), b ∈ R, k = 2, · · · ,K, (79)

or equivalently
Ok ∩O` = ∅, k 6= `. (80)

Next we consider the case that g is the Gaussian function defined by (25) as an example to
illustrate our approach. One can obtain for this g (see [24]),

Gk(u) =
1√

1− i2πφ′′k(b)a2σ2(b)
e
− 2π2u2

1+(2πφ′′
k
(b)a2σ2(b))2

(1+i2πφ′′k(b)a2σ2(b))
. (81)

Thus

|Gk(u)| = 1(
1 + (2πφ′′k(b)a

2σ2(b))2
) 1

4

e
− 2π2

1+(2πφ′′
k
(b)a2σ2(b))2

u2

. (82)

Therefore, in this case, assuming τ0(1 + (2πφ′′k(b)a
2σ2(b))2)

1
4 ≤ 1 (otherwise, |Gk(u)| < τ0 for any

u),

αk = α
√

1 + (2πφ′′k(b)a
2σ2(b))2

1

2π

√
2 ln(

1

τ0
)− 1

2
ln(1 + (2πφ′′k(b)a

2σ2(b))2).

Authors of [24] replaced αk by

βk = α
(
1 + 2π|φ′′k(b)|a2σ2(b)

)
,

where α = 1
2π

√
2 ln(1/τ0) as defined by (26). Since αk ≤ βk, we know (78) holds. That is

W̃xk(a, b) lies within the scale-time zone:{
(a, b) : |µ− aφ′k(b)| <

α

σ(b)

(
1 + 2π|φ′′k(b)|a2σ2(b)

)
, b ∈ R

}
,

which can written as (77) with (see [24])

uk(b) =
2(µ+ α

σ(b)
)

φ′k(b)+
√
φ′k(b)2−8πα(α+µσ(b))|φ′′k(b)|

,

lk(b) =
2(µ− α

σ(b)
)

φ′k(b)+
√
φ′k(b)2+8πα(µσ(b)−α)|φ′′k(b)|

.

(83)
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It was shown in [24] that if

4α
√
π
√
|φ′′k(b)|+ |φ′′k−1(b)| ≤ φ′k(b)− φ′k−1(b), k = 2, · · · ,K, (84)

then (79) holds if and only if σ satisfies

βk(b)−
√

Υk(b)

2αk(b)
≤ σ ≤

βk(b) +
√

Υk(b)

2αk(b)
, (85)

where

αk(b) := 2παµ(|φ′′k(b)|+ |φ′′k−1(b)|)2,

βk(b) :=
(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)(
φ′k(b)− φ′k−1(b)

)
+ 4πα2

(
φ′′k(b)

2 − φ′′k−1(b)2
)
,

γk(b) :=
α

µ

{(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)(
φ′k(b) + φ′k−1(b)

)
+ 2πα2

(
|φ′′k(b)| − |φ′′k−1(b)|

)2}
,

and

Υk(b) := βk(b)
2 − 4αk(b)γk(b)

=
(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)2{(
φ′k(b)− φ′k−1(b)

)2 − 16πα2
(
|φ′′k(b)|+ |φ′′k−1(b)|

)}
.

Thus [24] calls (84) and (86) below the well-separated conditions:

max
{α
µ
,
βk(b)−

√
Υk(b)

2αk(b)
: 2 ≤ k ≤ K

}
≤ min

2≤k≤K

{βk(b) +
√

Υk(b)

2αk(b)

}
. (86)

[24] suggests to choose σ(b) to be σ2(b) defined by

σ2(b) :=


max

{
α
µ ,

βk(b)−
√

Υk(b)

2αk(b) : 2 ≤ k ≤ K
}
, if |φ′′k(b)|+ |φ′′k−1(b)| 6= 0,

max
{
α
µ

φ′k(b)+φ′k−1(b)

φ′k(b)−φ′k−1(b)
: 2 ≤ k ≤ K

}
, if φ′′k(b) = φ′′k−1(b) = 0.

(87)

In the following we assume x(t) given by (11) satisfy (37) and (66), and that the adaptive

CWTs W̃xk(a, b) of its components with a window function g ∈ S lie within scale-time zones
Qk in the sense that (78) holds and each Qk is given by (77). In addition, we assume x(t)
is well-separated, that is there is σ(b) such that (80) holds. Let Eε1,ε3 denote the set of such
multicomponent signals x(t) satisfying (67).

Next we introduce more notations to describe our main theorems on the 2nd-order adaptive
WSST. For j ≥ 0, denote

Gj,k(a, b) :=

∫
R
ei2π(φ′k(b)at+ 1

2
φ′′k(b)a2t2) tj

σ(b)j+1
g
( t

σ(b)

)
e−i2πµtdt (88)

= F
(
eiπφ

′′
k(b)a2σ2(b)t2tjg(t)

)(
σ(b)(µ− aφ′k(b))

))
.

Clearly
G0,k(a, b) = Gk

(
σ(b)(µ− aφ′k(b))

)
.
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We also denote

Bk(a, b) :=
∑
6̀=k
x`(b)

(
φ′`(b)− φ′k(b)

)
G0,`(a, b),

Dk(a, b) :=
∑
6̀=k
x`(b)

(
φ′′` (b)− φ′′k(b)

)
G1,`(a, b),

Ek(a, b) :=
∑
6̀=k
x`(b)

(
φ′`(b)− φ′k(b)

)(
φ′`(b)G1,`(a, b) + φ′′` (b)aσ(b)G2,`(a, b)

)
,

Fk(a, b) :=
∑
6̀=k
x`(b)

(
φ′′` (b)− φ′′k(b)

)(
φ′`(b)G2,`(a, b) + φ′′` (b)aσ(b)G3,`(a, b)

)
,

and denote

M`,k(b) :=

∫
{a: (a,b)∈Ok}

|G0,`(a, b)|
da

a
=

∫ uk(b)

lk(b)

∣∣G`(σ(b)(µ− aφ′`(b))
)∣∣da
a
. (89)

Recall that W̃
gj
x (a, b), j = 1, 2, 3 and W̃ g′

x (a, b) denote respectively the adaptive CWTs defined

by (21) with g replaced by gj and g′, where gj are defined by (28). Expand W̃
gj
x (a, b), j = 1, 2, 3

and W̃ g′
x (a, b) as W̃x(a, b) in (72), and let res1, res2, res′1 and res′0 be the corresponding residuals.

Then res1, res2, res′1, and res′0 are given as res0 in (73) with g(t) replaced respectively by tg(t),
t2g(t), tg′(t), and g′(t). Thus we have the estimates for these residuals similar to (75). More
precisely, we have

|res1| ≤ aσ(b)Π1(a, b), |res2| ≤ aσ(b)Π2(a, b), |res′0| ≤ aσ(b)Π̃0(a, b), |res′1| ≤ aσ(b)Π̃1(a, b), (90)

where

Π1(a, b) := Kε1I2 +
π

3
ε3I4a

2σ2(b)

K∑
k=1

Ak(b),

Π2(a, b) := Kε1I3 +
π

3
ε3I5a

2σ2(b)
K∑
k=1

Ak(b),

Π̃0(a, b) := Kε1Ĩ1 +
π

3
ε3Ĩ3a

2σ2(b)
K∑
k=1

Ak(b),

Π̃1(a, b) := Kε1Ĩ2 +
π

3
ε3Ĩ4a

2σ2(b)

K∑
k=1

Ak(b)

with In and Ĩn defined by (41) and (46) respectively.

Next we provide Theorem 2 on the 2nd-order adaptive WSST. The proof of Part (b) of
Theorem 2 is based on the following three lemmas whose proofs are postponed to Appendix C.
The residuals Res1,Res2 in these lemmas are defined as

Res1 := Res1,1 + Res1,2, Res2 := Res2,1 + Res2,2, (91)
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where

Res1,1 := i2πBk(a, b) + i2πaσ(b)Dk(a, b),

Res1,2 := i2π
(µ
a
− φ′k(b)

)
res0 −

res′0
aσ(b)

− i2πφ′′k(b)aσ(b)res1,

Res2,1 := −4π2σ(b)Ek(a, b) + i2πσ(b)Dk(a, b)− 4π2aσ2(b)Fk(a, b)

Res2,2 :=
i2π

a2
(aφ′k(b)− 2µ) (res0 + res′1) + i2πσ(b)

(
φ′′k(b)−

i2πµ

a2
(aφ′k(b)− µ)

)
res1

−i2πσ(b)φ′′k(b)
(
i2πµσ(b) res2 − res′2

)
+

1

a2σ(b)
(2 res′0 + res′′1)

with res′2 and res′′1 are the errors defined by (73) with g(t) replaced by t2g′(t) and tg′′(t) respec-
tively.

Lemma 2. Let Res1 be the quantity defined by (91). Then

∂bW̃x(a, b) =
(
i2πφ′k(b)−

σ′(b)

σ(b)

)
W̃x(a, b)+ i2πφ′′k(b)aσ(b)W̃ g1

x (a, b)− σ
′(b)

σ(b)
W̃ g3
x (a, b)+Res1. (92)

Lemma 3. Let Res2 be the quantity defined by (91). Then ∂aRes1 = Res2, and

∂a∂bW̃x(a, b) =
(
i2πφ′k(b)−

σ′(b)

σ(b)

)
∂aW̃x(a, b) (93)

+i2πφ′′k(b)σ(b)
(
W̃ g1
x (a, b) + a∂aW̃

g1
x (a, b)

)
− σ′(b)

σ(b)
∂aW̃

g3
x (a, b) + Res2.

Lemma 4. Let R0(a, b) be the quantity defined by (33). Then for (a, b) satisfying W̃x(a, b) 6= 0

and ∂
∂a

(
aW̃

g1
x (a,b)

W̃x(a,b)

)
6= 0, we have

R0(a, b) = i2πσ(b)φ′′k(b) + Res3, (94)

where

Res3 :=
W̃x(a, b) Res2 − ∂aW̃x(a, b) Res1

W̃x(a, b)W̃ g1
x (a, b) + aW̃x(a, b)∂aW̃

g1
x (a, b)− aW̃ g1

x (a, b)∂aW̃x(a, b)
(95)

with Res1 and Res2 defined by (91).

Theorem 2. Suppose x(t) ∈ Eε1,ε3 for some small ε1, ε3 > 0. Then we have the following.

(a) Suppose ε̃1 satisfies ε̃1 ≥ a2(b)σ(b)Π0(a2(b), b) + τ0
∑K

k=1Ak(b). Then for (a, b) with

|W̃x(a, b)| > ε̃1, there exists k ∈ {1, 2, · · · ,K} such that (a, b) ∈ Ok.

(b) Suppose (a, b) satisfies |W̃x(a, b)| > ε̃1, |∂a
(
aW̃ g1

x (a, b)/W̃x(a, b)
)
| > ε̃2, and (a, b) ∈ Ok.

Then
ω2adp,c
x (a, b)− φ′k(b) = Res4, (96)

where

Res4 :=
1

i2πW̃x(a, b)

(
Res1 − aW̃ g1

x (a, b)Res3

)
.
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Furthermore,
|ω2adp
x (a, b)− φ′k(b)| < Bdk, (97)

where

Bdk := sup
lk(b)<a<uk(b)

{ |Res1|
2πε̃1

+
1

2πε̃3
1ε̃2

a|W̃ g1
x (a, b)|

(
ε̃1| Res2|+ |∂aW̃x(a, b)| |Res1|

)}
. (98)

(c) Suppose that ε̃1 satisfies the condition in part (a) and max
1≤`≤K

{Bd`} ≤ 1
2Lk(b), where Lk(b)

is defined by (60). Then for any ε̃3 = ε̃3(b) > 0 satisfying max
1≤`≤K

{Bd`} ≤ ε̃3 ≤ 1
2Lk(b), we have

∣∣∣ lim
λ→0

1

ckψ(b)

∫
|ξ−φ′k(b)|<ε̃3

T 2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ − xk(b)
∣∣∣ ≤ 1

|ckψ(b)|
B̃dk, (99)

where

ckψ(b) :=

∫ uk(b)

lk(b)
Gk
(
σ(b)(µ− aφ′k(b))

)da
a

(100)

and B̃dk := B̃d
′
k + B̃d

′′
k with

B̃d
′
k := ε̃1 ln

uk(b)

lk(b)
+ σ(b)Kε1I1(uk − lk) (101)

+
π

9
ε3I3(uk − lk)3σ3(b)

K∑
j=1

Aj(b) +
∑
` 6=k

A`(b)M`,k(b)

B̃d
′′
k :=

Ak(b)

lk(b)
‖g‖1|Ub|+ σ(b)Kε1I1(uk − lk)

+
π

9
ε3I3(uk − lk)3σ3(b)

K∑
j=1

Aj(b) +
∑
` 6=k

A`(b)M`,k(b)

and |Ub| denoting the Lebesgue measure of the set Ub:

Ub :=
{
a : (a, b) ∈ Ok, |Wx(a, b)| > ε̃1,

∣∣∂a(aW̃ g1
x (a, b)/W̃x(a, b)

)∣∣ ≤ ε̃2

}
. (102)

Note that the error bound B̃dk for the component recovery (99) also depends on the Lebesgue

measure of the set Ub. This makes sense since T 2adp,λ
x,ε̃1,ε̃2

(ξ, b) defined by (34) takes the integral along
the set {

a > 0 : |W̃x(a, b)| > ε̃1, |∂a(aW̃ g1
x (a, b)/W̃x(a, b))| > ε̃2

}
,

namely, T 2adp,λ
x,ε̃1,ε̃2

(ξ, b) does not take account of a in Ub. Thus only in the case that |Ub| is small,

the integral of T 2adp,λ
x,ε̃1,ε̃2

(ξ, b) in (99) can provide accurate component recovery.

Next we consider another type of 2nd-order WSST S2adp,λ
x,ε̃1,ε̃2

(ξ, b) defined by (35), where the

integral is taken along {a > 0 : |W̃x(a, b)| > ε̃1}. To this regard, for a given b ∈ R, denote

Vb :=
{
a : (a, b) ∈ Ok, |W̃x(a, b)| > ε̃1,

∣∣∂a(aW̃ g1
x (a, b)/W̃x(a, b)

)∣∣ > ε̃2

}
. (103)
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Theorem 3. Suppose x(t) ∈ Eε1,ε3 with a window function g(t) for some small ε1, ε3 > 0. Then
besides (a) in Theorem 2, the following hold:

(b1) Suppose (a, b) with a ∈ Vb, we have

|ω2adp
x (a, b)− φ′k(b)| < Bd′1, (104)

where

Bd′1 := max
1≤k≤K

sup
a∈Vb

{ |Res1|
2πε̃1

+
1

2πε̃3
1ε̃2

a|W̃ g1
x (a, b)|

(
|∂aW̃x(a, b)| |Res1|+ ε̃1|Res2|

)}
. (105)

(b2) Suppose (a, b) satisfies |W̃x(a, b)| > ε̃1 and (a, b) ∈ Ok. Then

ωadp,c
x (a, b)− φ′k(b) = φ′′k(b)aσ(b)

W̃ g1
x (a, b)

W̃x(a, b)
+

Res1

i2πW̃x(a, b)
. (106)

Thus, for a ∈ Ub, we have

|ωadp
x (a, b)− φ′k(b)| < Bd′2 := max

1≤k≤K
sup
a∈Ub

{ 1

ε̃1
|φ′′k(b)|aσ(b)|W̃ g1

x (a, b)|+ 1

2πε̃1
|Res1|

}
. (107)

(c) Suppose that ε̃1 satisfies the condition in part (a) of Theorem 2. In addition, suppose the
following two conditions hold: (i) Bd′1 ≤ 1

2Lk(b), (ii) Bd′2 ≤ 1
2Lk(b), where Lk(b) is given in (60).

Then for any ε̃3 = ε̃3(b) > 0 satisfying max{Bd′1,Bd′3} ≤ ε̃3 ≤ 1
2Lk(b),∣∣∣ lim

λ→0

1

ckψ(b)

∫
|ξ−φ′k(b)|<ε̃3

S2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ − xk(b)
∣∣∣ ≤ 1

|ckψ(b)|
B̃d
′
k, (108)

where ckψ(b) is defined by (100), and B̃d
′
k is defined by (101).

The proofs of Theorems 2 and 3 will be provided in Appendix B.

Compared with (99), the integral of S2adp,λ
x,ε̃1,ε̃2

(ξ, b) in (108) provides more accurate component

recovery. However, in this case there is a restriction on φ′′k(b) on the set Ub: Bd′2 ≤ 1
2Lk(b).

The error bounds Bdk, Bd′1, Bd′2 in (98), (105) and (107) for instantaneous frequency esti-
mates are determined by Res1 and Res2. From their definitions in (91), we know Res1 and Res2

are bounded by |Bk(a, b)|, and/or |Dk(a, b)|, |Ek(a, b)|, |Fk(a, b)|, and/or Πj(a, b), Π̃j(a, b) for

j = 0, 1, 2 (refer to (90)), and
˜̃
Π1(a, b), where

˜̃
Π1(a, b) is defined as Π1(a, b) with I2, I4 replaced

respectively by ∫
R
t2|g′′(t)|dt,

∫
R
t4|g′′(t)|dt.

Under decay conditions on Gk(u) and Gj,`(a, b), |Bk(a, b)|, |Dk(a, b)|, |Ek(a, b)|, |Fk(a, b)| are small

for (a, b) ∈ Ok, while Πj(a, b), Π̃j(a, b),
˜̃
Πj(a, b) are small as long as ε1, ε3 are small. Thus Res1

and Res2 are small. For the component recovery error bounds in (99) and (108), M`,k(b), ` 6= k
are small if Gk(u) has certain decay. Thus under certain extra conditions, Theorem 2 and 3 can
be stated in the formulation in Corollary 1.

Finally we consider another example to illustrate the recovery error bounds B̃d
′
k in (108).
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Example 2. Let y(t) be another two-component linear frequency modulation signal given by

y(t) := y1(t) + y2(t) = cos
(
2π(20t+ 18t2/2)

)
+ cos

(
2π(42t+ 36t2/2)

)
, t ∈ [0, 1]. (109)

Again we set the number of sampling points to be N = 256 and the sampling rate 256Hz. The
instantaneous frequencies of y1(t) and y2(t) are φ′1(t) = 20+18t and φ′2(t) = 42+36t, respectively.
Clearly y1(t) and y2(t) have fast changing frequencies. In Fig.2, we show the waveform of y(t).

We choose µ = 1, and σ(b) to be σ2(b) defined by (87). We set τ0 = 1/20, ε̃1 = 0.01,
ε̃3 = 1

2(φ′2(b) − φ′1(b). In addition, we use uk and lk given by (83). We show the recovered
y1(t), y2(t) in the middle row of Fig.2. The absolute recovery errors for y1 and y2 and the error

bounds B̃d
′
1 and B̃d

′
2 are provided in the bottom row of Fig.2. From Fig.2, we know the recovery

errors are small except near boundary points t = 0 and t = 1.

Appendices

Appendix A: Proof of Theorem 1

In this appendix, we present the proof of Theorem 1.

Proof of Theorem 1 Part (a). Assume (a, b) 6∈ ∪Kk=1Zk. Then for any k, by the definition
of Zk in (52), we have |ĝ

(
σ(b)(µ− aφ′k(b))

)
| ≤ τ0. Thus, by (39) and (42), we have

|W̃x(a, b)| ≤
K∑
k=1

|xk(b)ĝ
(
σ(b)(µ− aφ′k(b))

)
|+ |rem0|

≤ aσ(b)λ0(a, b) + τ0

K∑
k=1

Ak(b)

≤ a2(b)σ(b)Λ1(b) + τ0

K∑
k=1

Ak(b) ≤ ε̃1,

a contradiction to the assumption |W̃x(a, b)| > ε̃1. Therefore, (a, b) ∈ Z` for some `. Since
Zk, 1 ≤ k ≤ K are disjoint, this ` is unique. Hence, the statement in (a) holds. �

Proof of Theorem 1 Part (b). By (39) with g replaced by g′,

W̃ g′
x (a, b) =

K∑
`=1

∫
R
x`(b)e

i2πφ′`(b)at
1

σ(b)
g′
( t

σ(b)

)
e−i2πµtdt+ rem′0

=
K∑
`=1

x`(b)(̂g′)
(
σ(b)(µ− aφ′`(b))

)
+ rem′0

= i2πσ(b)

K∑
`=1

x`(b)(µ− aφ′`(t))ĝ
(
σ(b)(µ− aφ′`(b))

)
+ rem′0.
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Figure 2: Example of two-component signal y(t) in (109). Top: Waveform; Middle-left: y1(t) and recovered
y1(t) (red dot-dash line); Middle-right: y2(t) and recovered y2(t) (red dot-dash line); Bottom-left: Absolute

recovery error for y1 and error bound B̃d
′
1; Bottom-right: Absolute recovery error for y2 and error bound

B̃d
′
2.
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This and (63) imply that(
ωadp,c
x (a, b)− φ′k(b)

)
i2πW̃x(a, b)

= ∂bW̃x(a, b) +
σ′(b)

σ(b)

(
W̃x(a, b) + W̃ g3

x (a, b)
)
− i2πφ′k(b)W̃x(a, b)

=
i2πµ

a
W̃x(a, b)− 1

aσ(b)
W̃ g′
x (a, b)− i2πφ′k(b)W̃x(a, b)

= i2π
(µ
a
− φ′k(b)

)( K∑
`=1

x`(b)ĝ
(
σ(b)(µ− aφ′`(b))

)
+ rem0

)
− 1

aσ(b)

(
i2πσ(b)

K∑
`=1

x`(b)(µ− aφ′`(b))ĝ
(
σ(b)(µ− aφ′`(b))

)
+ rem′0

)

= i2π
(µ
a
− φ′k(b)

)
rem0 −

rem′0
aσ(b)

+ i2π
∑
`6=k

x`(b)(φ
′
`(b)− φ′k(b))ĝ

(
σ(b)(µ− aφ′`(b))

)
= Rem1.

This shows (57).
When (a, b) ∈ Zk, we have |µa − φ

′
k(b)| <

α
aσ(b) . Thus

|Rem1| ≤ 2πα
|rem0|
aσ(b)

+
|rem′0|
aσ(b)

+ 2π
∑
`6=k

A`(b)|φ′`(b)− φ′k(b)| |ĝ
(
σ(b)(µ− aφ′`(b))

)
|

≤ 2παΛk(b) + Λ̃k(b) + 2π
∑
` 6=k

A`(b)|φ′`(b)− φ′k(b)|
∣∣ĝ(ρ`,k(b))∣∣

= 2πε̃1bdk,

where the second inequality follows from (53), (54) and (56). Hence, with the assumptions

|W̃x(a, b)| > ε̃1, we have

|ωadp
x (a, b)− φ′k(b)| ≤ |ωadp,c

x (a, b)− φ′k(b)|

=
∣∣∣ Rem1

i2πW̃x(a, b)

∣∣∣ < |Rem1|
2πε̃1

≤ bdk.

This proves (58). �

Proof of Theorem 1 Part (c). Following similar discussions in [14], one can obtain that

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

T adp,λ
x,ε̃1

(ξ, b)dξ =

∫
Xb

W̃x(a, b)
da

a
, (110)

where
Xb :=

{
a > 0 : |W̃x(a, b)| > ε̃1 and

∣∣φ′k(b)− ωadp
x (a, b)

∣∣ < ε̃3
}
.

Next we show that Xb is the set Yb defined by

Yb :=
{
a > 0 : |W̃x(a, b)| > ε̃1 and (a, b) ∈ Zk

}
.

26



Indeed, by Theorem 1 Part (b), if a ∈ Yb, then
∣∣φ′k(b) − ωadp

x (a, b)
∣∣ < bdk ≤ ε̃3. Thus a ∈ Xb.

Hence Yb ⊆ Xb. On the other hand, suppose a ∈ Xb. Since |W̃x(a, b)| > ε̃1, by Theorem 1 Part
(a), (a, b) ∈ Z` for an ` in {1, 2, · · · ,K}. If ` 6= k, then by Theorem 1 Part (b),∣∣φ′k(b)− ωadp

x (a, b)
∣∣ ≥ |φ′k(b)− φ′`(b)| − ∣∣φ′`(b)− ωadp

x (a, b)
∣∣

> min{φ′k(b)− φ′k−1(b), φ′k+1(b)− φ′k(b)} − bd`

≥ min{φ′k(b)− φ′k−1(b), φ′k+1(b)− φ′k(b)} − ε̃3 ≥ ε̃3.

since max
1≤`≤K

{bd`} ≤ ε̃3 ≤ 1
2 min{φ′k(b) − φ′k−1(b), φ′k+1(b) − φ′k(b)}. This contradicts to the as-

sumption
∣∣φ′k(b)− ωadp

x (a, b)
∣∣ < ε̃3 since a ∈ Xb. Hence ` = k and a ∈ Yb. Thus we get Xb = Yb.

This , together with (110), leads to

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

T adp,λ
x,ε̃1

(ξ, b)dξ =

∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Zk}

W̃x(a, b)
da

a
. (111)

To prove the estimate (61), we consider∣∣∣ ∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Zk}

W̃x(a, b)
da

a
− cαψ(b)xk(b)

∣∣∣
=
∣∣∣ ∫
{a:(a,b)∈Zk}

W̃x(a, b)
da

a
−
∫
{|W̃x(a,b)|≤ε̃1}∩{a:(a,b)∈Zk}

W̃x(a, b)
da

a
− cαψ(b)xk(b)

∣∣∣
≤
∫
{a:(a,b)∈Zk}

ε̃1
da

a
+
∣∣∣ ∫
{a:(a,b)∈Zk}

( K∑
`=1

x`(b)ĝ
(
σ(b)(µ− aφ′`(b))

)
+ rem0

)da
a
− cαψ(b)xk(b)

∣∣∣
≤ ε̃1

∫ µ+α/σ(b)

φ′
k
(b)

µ−α/σ(b)
φ′
k
(b)

da

a
+

∫
Zk

|rem0|
da

a
+
∣∣∣ ∫
|µ−aφ′k(b)|< α

σ(b)

xk(b)ĝ
(
σ(b)(µ− aφ′k(b))

)da
a
− cαψ(b)xk(b)

∣∣∣
+
∑
6̀=k
A`(b)

∣∣∣ ∫
|µ−aφ′k(b)|< α

σ(b)

ĝ
(
σ(b)(µ− aφ′`(b))

)da
a

∣∣∣
≤ ε̃1 ln

µσ(b) + α

µσ(b)− α
+

∫ µ+α/σ(b)

φ′
k
(b)

µ−α/σ(b)
φ′
k
(b)

aσ(b)Λk(b)
da

a
+
∣∣∣xk(b) ∫ µ+α/σ(b)

µ−α/σ(b)
ĝ
(
σ(b)(µ− ξ)

)dξ
ξ
− cαψ(b)xk(b)

∣∣∣
+
∑
6̀=k
A`(b)

∣∣∣ ∫ µ+α/σ(b)

µ−α/σ(b)
ĝ
(
σ(b)(µ−

φ′`(b)

φ′k(b)
ξ)
)dξ
ξ

∣∣∣
= ε̃1 ln

µσ(b) + α

µσ(b)− α
+

2α

φ′k(b)
Λk(b) +

∑
` 6=k

A`(b)m`,k(b) = |cαψ(b)| b̃dk.

This estimate and (111) imply that (61) holds. This completes the proof of Theorem 1 Part (c).
�

Appendix B: Proofs of Theorems 2-3

In this appendix, we provide the proof of Theorems 2 and 3.
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Proof of Theorem 2 Part (a). Assume (a, b) 6∈ ∪Kk=1Ok. Then for any k, by (74), (75) and
(78), we have

|W̃x(a, b)| ≤ |res0|+
K∑
k=1

|xk(b)Gk
(
σ(b)(µ− aφ′k(b))

)
|

≤ aσ(b)Π0(a, b) + τ0

K∑
k=1

Ak(b)

≤ a2(b)σ(b)Π0(a2(b), b) + τ0

K∑
k=1

Ak(b) ≤ ε̃1,

a contradiction to the assumption |W̃x(a, b)| > ε̃1. Thus (a, b) ∈ O` for some `. Since Ok, 1 ≤ k ≤
K are not overlapping, this ` is unique. This completes the proof of the statement in (a). �

Proof of Theorem 2 Part (b). Plugging ∂bW̃x(a, b) in (92) to ω2adp,c
x in (32), we have

ω2adp,c
x =

∂bW̃x(a, b)

i2πW̃x(a, b)
+

σ′(b)

i2πσ(b)
− a W̃ g1

x (a, b)

i2πW̃x(a, b)
R0(a, b) +

σ′(b)

σ(b)

W̃ g3
x (a, b)

i2πW̃x(a, b)

=
1

i2πW̃x(a, b)

{(
i2πφ′k(b)−

σ′(b)

σ(b)

)
W̃x(a, b) + i2πφ′′k(b)aσ(b)W̃ g1

x (a, b)− σ′(b)

σ(b)
W̃ g3
x (a, b) + Res1

}
+

σ′(b)

i2πσ(b)
− a W̃ g1

x (a, b)

i2πW̃x(a, b)
R0(a, b) +

σ′(b)

σ(b)

W̃ g3
x (a, b)

i2πW̃x(a, b)

= φ′k(b) + φ′′k(b)aσ(b)
W̃ g1
x (a, b)

W̃x(a, b)
+

Res1

i2πW̃x(a, b)
− a W̃ g1

x (a, b)

i2πW̃x(a, b)
R0(a, b)

= φ′k(b) + φ′′k(b)aσ(b)
W̃ g1
x (a, b)

W̃x(a, b)
+

Res1

i2πW̃x(a, b)
− a W̃ g1

x (a, b)

i2πW̃x(a, b)

(
i2πσ(b)φ′′k(b) + Res3

)
= φ′k(b) +

Res1

i2πW̃x(a, b)
− aW̃

g1
x (a, b)Res3

i2πW̃x(a, b)

= φ′k(b) + Res4,

where (94) has been used above. Thus (96) holds.
To prove (97), observe that

Res3 =

Res2
W̃x(a,b)

− ∂aW̃x(a,b) Res1

W̃x(a,b)2

∂a

(
aW̃

g1
x (a,b)

W̃x(a,b)

) .

Thus for (a, b) ∈ Ok and |W̃x(a, b)| ≥ ε̃1 and
∣∣∂a(aW̃ g1

x (a,b)

W̃x(a,b)

)∣∣ ≥ ε̃2, we have

|Res3| ≤
1

ε̃2

( |Res2|
ε̃1

+
|∂aW̃x(a, b) Res1|

ε̃2
1

)
=

1

ε̃2
1ε̃2

(|Res2|ε̃1 + |∂aW̃x(a, b)| |Res1|).
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Hence

|Res4| =
∣∣∣ Res1

i2πW̃x(a, b)
− aW̃

g1
x (a, b)Res3

i2πW̃x(a, b)

∣∣∣
<
|Res1|
2πε̃1

+
1

2πε̃3
1ε̃2
|aW̃ g1

x (a, b)|
(
|Res2|ε̃1 + |∂aW̃x(a, b)| |Res1|

)
(112)

≤ Bdk.

This proves (97). �

Proof of Theorem 2 Part (c). First we have the following result which can be derived as
that on p.254 in [14]:

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

T 2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ =

∫
Zb

W̃x(a, b)
da

a
, (113)

where

Zb :=
{
a : |W̃x(a, b)| > ε̃1,

∣∣∂a(aW̃ g1
x (a, b)/W̃x(a, b)

)∣∣ > ε̃2 and
∣∣φ′k(b)− ω2adp

x,ε̃2
(a, b)

∣∣ < ε̃3

}
.

Let Vb be the set defined by (103). Next we show that Vb = Zb. First we have that if a ∈ Vb,
then by Theorem 2 Part (b),

∣∣φ′k(b) − ω2adp
x,ε̃2

(a, b)
∣∣ < Bdk ≤ ε̃3. Thus a ∈ Zb. Hence we have

Vb ⊆ Zb.
On the other hand, suppose a ∈ Zb. Since |W̃x(a, b)| > ε̃1, by Theorem 2 Part (a), (a, b) ∈ O`

for an ` in {1, 2, · · · ,K}. If ` 6= k, then∣∣φ′k(b)− ω2adp
x,ε̃2

(a, b)
∣∣ ≥ |φ′k(b)− φ′`(b)| − ∣∣φ′`(b)− ω2adp

x,ε̃2
(a, b)

∣∣
> Lk(b)− Bd` ≥ Lk(b)− ε̃3 ≥ ε̃3,

and this contradicts to the assumption a ∈ Zb with
∣∣φ′k(b) − ω2adp

x,ε̃2
(a, b)

∣∣ < ε̃3, where we have

used the fact |φ′k(b)−φ′`(b)| ≥ Lk(b) and
∣∣φ′`(b)−ω2adp

x,ε̃2
(a, b)

∣∣ < Bdk ≤ ε̃3 by Theorem 2 Part (b).
Hence ` = k and a ∈ Vb. Therefore Vb = Zb.

The facts Zb = Vb and Vb ∩ Ub = ∅, together with (113), imply that

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

T 2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ =

∫
Vb

W̃x(a, b)
da

a
=

∫
Vb∪Ub

W̃x(a, b)
da

a
−
∫
Ub

W̃x(a, b)
da

a

=

∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Ok}

W̃x(a, b)
da

a
−
∫
Ub

W̃x(a, b)
da

a
. (114)
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Furthermore,∣∣∣ ∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Ok}

W̃x(a, b)
da

a
− ckψ(b)xk(b)

∣∣∣
=
∣∣∣ ∫
{a:(a,b)∈Ok}

W̃x(a, b)
da

a
−
∫
{|W̃x(a,b)|≤ε̃1}∩{a:(a,b)∈Ok}

W̃x(a, b)
da

a
− ckψ(b)xk(b)

∣∣∣
≤
∫
{a:(a,b)∈Ok}

ε̃1
da

a
+
∣∣∣ ∫
{a:(a,b)∈Ok}

( K∑
`=1

x`(b)Gk
(
σ(b)(µ− aφ′`(b))

)
+ res0

)da
a
− ckψ(b)xk(b)

∣∣∣
≤ ε̃1

∫ uk

lk

da

a
+

∫ uk

lk

|res0|
da

a
+
∣∣∣ ∫ uk

lk

xk(b)Gk
(
σ(b)(µ− aφ′k(b))

)da
a
− ckψ(b)xk(b)

∣∣∣
+
∑
6̀=k
A`(b)

∣∣∣ ∫ uk

lk

Gk
(
σ(b)(µ− aφ′`(b))

)da
a

∣∣∣
≤ ε̃1 ln

uk(b)

lk(b)
+

∫ uk

lk

aσ(b)Π0(a, b)
da

a
+
∣∣xk(b)ckψ(b)− ckψ(b)xk(b)

∣∣+
∑
` 6=k

A`(b)M`,k(b)

= ε̃1 ln
uk(b)

lk(b)
+ σ(b)Kε1I1(uk − lk) +

π

9
ε3I3(uk − lk)3σ3(b)

K∑
j=1

Aj(b) +
∑
` 6=k

A`(b)M`,k(b)

= B̃d
′
k.

Hence, we have∣∣∣ 1

ckψ(b)

∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Ok}

W̃x(a, b)
da

a
− xk(b)

∣∣∣ ≤ 1

|ckψ(b)|
B̃d
′
k. (115)

In addition,

∣∣∣ ∫
Ub

W̃x(a, b)
da

a

∣∣∣ =
∣∣∣ ∫

Ub

( K∑
`=1

x`(b)Gk(σ(b)(µ− aφ′k(b)) + res0

)da
a

∣∣∣
≤
∫
{a:(a,b)∈Ok}

|res0|
da

a
+
Ak(b)

lk(b)
sup
a∈Ub
|Gk(σ(b)(µ− aφ′k(b))| |Ub|

+
∑
6̀=k
A`(b)

∫
{a:(a,b)∈Ok}

|Gk(σ(b)(µ− aφ′k(b))|
da

a

≤ σ(b)Kε1I1(uk − lk) +
π

9
ε3I3(uk − lk)3σ3(b)

K∑
j=1

Aj(b) +
Ak(b)

lk(b)
‖g‖1 |Ub|+

∑
`6=k

A`(b)M`,k(b)

= B̃d
′′
k,

where we have used the fact

sup
ξ
|Gk(ξ)| ≤

∫
R
|eiπσ2(b)φ′′k(b)a2t2g(t)e−i2πξt|dt = ‖g‖1.

The above estimates, together with (114), leads to (99). This completes the proof of Theorem 2
Part (c). �
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Theorem 3 Part (b1) follows immediately from (112).

Proof of Theorem 3 Part (b2). By (92) in Lemma 1, we have

ωadp,c
x =

∂bW̃x(a, b)

i2πW̃x(a, b)
+

σ′(b)

i2πσ(b)
+
σ′(b)

σ(b)

W̃ g3
x (a, b)

i2πW̃x(a, b)

=
1

i2πW̃x(a, b)

{(
i2πφ′k(b)−

σ′(b)

σ(b)

)
W̃x(a, b) + i2πφ′′k(b)aσ(b)W̃ g1

x (a, b)− σ′(b)

σ(b)
W̃ g3
x (a, b) + Res1

}
+

σ′(b)

i2πσ(b)
+
σ′(b)

σ(b)

W̃ g3
x (a, b)

i2πW̃x(a, b)

= φ′k(b) + φ′′k(b)aσ(b)
W̃ g1
x (a, b)

W̃x(a, b)
+

Res1

i2πW̃x(a, b)
.

This shows (106). (107) follows from (106) and the assumption |W̃x(a, b)| > ε̃1. �

Proof of Theorem 3 Part (c). First we have the following result which can be derived as
that on p.254 in [14]:

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

S2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ =

∫
X̃b

W̃x(a, b)
da

a
, (116)

where
X̃b :=

{
a > 0 : |W̃x(a, b)| > ε̃1 and

∣∣φ′k(b)− ω2adp
x,ε̃2

(a, b)
∣∣ < ε̃3

}
.

Let
Ỹb :=

{
a > 0 : |W̃x(a, b)| > ε̃1 and (a, b) ∈ Ok

}
.

Next we show that X̃b = Ỹb. By Theorem 3 Part (b1)(b2), if a ∈ Ỹb, then
∣∣φ′k(b)−ω2adp

x,ε̃2
(a, b)

∣∣ < ε̃3

since Bd′1,Bd′2 ≤ ε̃3. Thus a ∈ X̃b. Hence Ỹb ⊆ X̃b.

On the other hand, suppose a ∈ X̃b. Since |W̃x(a, b)| > ε̃1, by Theorem 2 Part (a), (a, b) ∈ O`
for an ` in {1, 2, · · · ,K}. If ` 6= k, then∣∣φ′k(b)− ω2adp

x,ε̃2
(a, b)

∣∣ ≥ |φ′k(b)− φ′`(b)| − ∣∣φ′`(b)− ω2adp
x,ε̃2

(a, b)
∣∣

> Lk(b)−max{Bd′1,Bd′2} ≥ Lk(b)− ε̃3 ≥ ε̃3,

and this contradicts to the assumption a ∈ X̃b with
∣∣φ′k(b) − ω2adp

x,ε̃2
(a, b)

∣∣ < ε̃3, where we have

used the fact |φ′k(b)− φ′`(b)| ≥ Lk(b) and
∣∣φ′`(b)− ω2adp

x,ε̃2
(a, b)

∣∣ < max(Bd′1,Bd′2) ≤ ε̃3 by Theorem

3 Part (b1)(b2). Hence ` = k and a ∈ Ỹb. Thus we know X̃b = Ỹb. This and (116) imply

lim
λ→0

∫
|ξ−φ′k(b)|<ε̃3

S2adp,λ
x,ε̃1,ε̃2

(ξ, b)dξ =

∫
{|W̃x(a,b)|>ε̃1}∩{a:(a,b)∈Ok}

W̃x(a, b)
da

a
. (117)

The estimate (115), together with (117), leads to (108). This completes the proof of Theorem
3 Part (c). �
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Appendix C: Proofs of Lemmas 1-4

In this appendix, we provide the proof of Lemmas 1-4. For simplicity of presentation, we drop

x, a, b in W̃x(a, b), W̃ g′
x (a, b), W̃

gj
x (a, b) below.

Proof of Lemma 1. By (20), we have

∂bW̃ =

∫ ∞
−∞

x(t)∂b

{ 1

aσ(b)
g
( t− b
aσ(b)

)
e−i2πµ

t−b
a

}
dt

=

∫ ∞
−∞

x(t)
{
− σ′(b)

aσ2(b)
g
( t− b
aσ(b)

)
+

1

aσ(b)
g′
( t− b
aσ(b)

)(
− 1

aσ(b)
− σ′(b)

σ2(b)

t− b
a

)}
e−i2πµ
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+
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1
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a
i2πµ

a
dt
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′(b)

σ(b)
W̃ − 1

aσ(b)
W̃ g′ − σ′(b)

σ(b)
W̃ g3 +

i2πµ

a
W̃ ,

which is the right-hand side of (63). Thus (63) holds. �

Proof of Lemma 2. By (72) with g replaced by g′,

W̃ g′ =
K∑
`=1

∫
R
x`(b)e

i2π(φ′`(b)at+
1
2
φ′′` (b)a2t2) 1
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)
e−i2πµtdt+ res′0

=
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2
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σ(b)

)
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= i2πσ(b)
K∑
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x`(b)(µ− aφ′`(b))G0,`(a, b)− i2πa2σ2(b)
K∑
`=1

x`(b)φ
′′
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This and (63) imply that

∂bW̃ +
σ′(b)

σ(b)
(W̃ + W̃ g3)− i2πφ′k(b)W̃ − i2πφ′′k(b)aσ(b)W̃ g1

=
i2πµ

a
W̃ − 1

aσ(b)
W̃ g′ − i2πφ′k(b)W̃ − i2πφ′′k(b)aσ(b)W̃ g1
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a
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a
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This completes the proof of Lemma 2. �

Proof of Lemma 3. (93) follows immediately from (92) if ∂aRes1 = Res2. Thus to prove
Lemma 3, it is enough to show ∂aRes1 = Res2. By the definition of Gj,k in (88), one can easily
obtain that for j ≥ 0,

∂aGj,k(a, b) = i2πσ(b)φ′k(b)Gj+1,k(a, b) + i2πaσ2(b)φ′′k(b)Gj+2,k(a, b).

By this and direct calculations, one can get ∂aRes1,1 = Res2,1. So we need merely to show
∂aRes1,2 = Res2,2. To this regard, first we notice that

∂a
(
xr(a, b, t)

)
=
t

a
∂t
(
xr(a, b, t)

)
.
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This follows from ∂a
(
x(b+at)

)
= t

a∂t
(
x(b+at)

)
and ∂a

(
xm(a, b, t)

)
= t
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. The latter

can be verified straightforward by the definition of xm(a, b, t). Thus, we have
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Therefore,

∂ares0 = −1

a

(
res0 + res′1 − i2πµσ(b) res1

)
. (118)

One can show similarly that

∂ares1 = −1

a

(
2res1 + res′2 − i2πµσ(b) res2

)
. (119)

In addition, from (118), we have

∂ares′0 = −1

a

(
res′0 + res′′1 − i2πµσ(b) res′1

)
. (120)

Finally, by (118)-(120) and tedious calculations, one can obtain ∂aRes1,2 = Res2,2. This shows
∂aRes1 = Res2 and hence Lemma 3 holds. �

Proof of Lemma 4. Note that
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as desired. This completes the proof of Lemma 4. �
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