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Abstract

Recently the study of modeling a non-stationary signal as a superposition of amplitude and
frequency-modulated Fourier-like oscillatory modes has been a very active research area. The
synchrosqueezing transform (SST) is a powerful method for instantaneous frequency estimation
and component separation of non-stationary multicomponent signals. The short-time Fourier
transform-based SST (FSST for short) reassigns the frequency variable to sharpen the time-
frequency representation and to separate the components of a multicomponent non-stationary
signal. Very recently the FSST with a time-varying parameter, called the adaptive FSST,
was introduced. The simulation experiments show that the adaptive FSST is very promising
in instantaneous frequency estimation of the component of a multicomponent signal, and in
accurate component recovery. However the theoretical analysis of the adaptive FSST has not
been carried out. In this paper, we study the theoretical analysis of the adaptive FSST and

obtain the error bounds for the instantaneous frequency estimation and component recovery

with the adaptive FSST and the 2nd-order adaptive FSST.
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Introduction

To model a non-stationary oscillatory signal x(t) as

o(t) =Y wi(t),  wx(t) = Ag(t)e? 0,



with Ag(t), ) (t) > 0is important to extract information, such as the underlying dynamics, hidden
in z(t).

The empirical mode decomposition (EMD) [10] is a widely used method for the representa-
tion of (1). Recently the continuous wavelet transform (CWT)-based synchrosqueezing transform
(WSST) developed in [8] provides a mathematically sound alternative to EMD. The short-time
Fourier transform (STFT)-based SST (FSST) was proposed in [24] and further studied in [27, 19].
Both WSST and FSST are a special type of the reassignment method [1]. WSST reassigns the
scale variable of the CW'T to the frequency variable and FSST reassigns the frequency variable,
both aiming to sharpen the time-frequency representation and to separate the components of a
multicomponent non-stationary signal. SST was proved to be robust to noise and small perturba-
tions [23, 11, 17]. However SST does not provide sharp representations for signals with significant
changes of instantaneous frequency. In this regard, the 2nd-order FSST and the 2nd-order WSST
were introduced in [20] and [18] respectively, and theoretical analysis of the 2nd-order FSST was
carried out in [2]. The 2nd-order SST improves the concentration of the time-frequency repre-
sentation. Other SST related methods include the generalized WSST [13], a hybrid EMT-SST
computational scheme [7], the synchrosqueezed wave packet transform [28], WSST with vanish-
ing moment wavelets [5], the multitapered WSST [9], the demodulation-transform based SST
[25, 12, 26], higher-order FSST [21], signal separation operator [6] and empirical signal separation
algorithm [16]. The statistical analysis of synchrosqueezing transforms has been studied in [29].

Most of the WSST or FSST algorithms available in the literature are based on a continuous
(admissible) wavelet or a window function with a fixed window, which means high time resolution
and frequency resolution cannot be obtained simultaneously. For broadband signals, a narrow win-
dow is suitable for the high-frequency parts while a wide window is suitable for the low-frequency
parts. Recently the authors in [22] introduced a method to select the time-varying window width
for sharp SST representation by minimizing the Rényi entropy. The window width of the signal
separation operator algorithm in [6] is also time-varying. More recently the authors of [4, 3] study
the adaptive FSST with the window function containing time and frequency parameters. Very
recently the authors of [14, 15] proposed the adaptive WSST and adaptive FSST with a time-
varying adaptive Gaussian window. They obtain the well-separated condition for multicomponent
signals using linear frequency modulation signals to approximate a non-stationary signal during
any local time, along with a new definition of bandwidth of Gaussian window. The experiments
with synthetic and real data show that the adaptive FSST is very promising in instantaneous
frequency estimation of the component of a multicomponent signal, and in accurate component
recovery. However the theoretical analysis of the adaptive FSST has not been carried out. The
goal of this paper is to study the theoretical analysis of such an FSST. We obtain the error bounds

for the instantaneous frequency estimation and component recovery with the adaptive FSST and



the 2nd-order adaptive FSST.

The rest of this paper is organized as follows. In Section 2 we briefly review FSST, the 2nd-
order FSST, the adaptive FSST and the 2nd-order adaptive FSST. In Section 3, we obtain the
theoretical analysis of the (1st-order) adaptive FSST. We establish the error bounds for the IF
estimation and component recovery. In Section 4, we consider the theoretical analysis of the 2nd-
order adaptive FSST. The error bounds for the IF estimation and component recovery for the

2nd-order adaptive FSST are obtained. The proofs of two lemmas are presented in the appendix.

2 Short-time Fourier transform-based synchrosqueezing trans-

form

In this section we briefly review the short-time Fourier transform (STFT)-based synchrosqueezing
transform (FSST) and the adaptive FSST. The (modified) STFT of z(t) € La(R) with a window
function ¢(t) € La(R) is defined by

Valt.) = [ arlgtr = O Dar,

where t and n are the time variable and the frequency variable respectively.

The original signal x(t) can be recovered back from its STFT:

w(t) = 12/ / VZ‘(T, n)meZQﬂ"r](th)den
9113 Jr Jr

If g(0) # 0, then one can show that x(¢) can also be recovered back from its STFT V,(¢,n) with

integrals involving only n:
ol
x(t) = —= [ Vi(t,n)dn. 2
(0= 55 [ Vate) @
In addition, if the window function g(t) € La(R) is real, then for a real-valued z(t) € La(R), we

have

2(t) = 9(20)R6< /0 h Vet n)dn). (3)

Here we remark that if the window function ¢(¢) has certain smoothness and certain decaying
order as t — oo, then STFT V,(t,n) of a slowly growing z(t) with g(¢) is well defined. Furthermore,
the above formulas still hold. In this following, unless otherwise stated, we always assume a
window function g(¢) has certain smoothness and decaying properties, and a signal z(t) is a
slowly growing function. In addition, in this paper we assume ¢(0) # 0. For a signal x(t), its

Fourier transform Z(¢) (maybe in the distribution sense) is defined by

(€)= /R w(t)e 2l gy,



2.1 STFT-based synchrosqueezing transform

The STFT-based synchrosqueezing transform (FSST) was first studied in [24]. For a signal x(¢),
at (t,n) for which V,(¢,n) # 0, denote

8tvx (ta 77)
t,n) = Re(———~).
wa(t, ) e(QWiVx(t,n)
The quantity w,(t,n) is called the “phase transformation” [8] or “instantaneous frequency infor-
mation” in [24]. FSST is to reassign the frequency variable n by transforming STFT V,(t,7n) of

z(t) to a quantity, denoted by R;‘ﬁ(t, €), on the time-frequency plane:

1. ,&— w(t,
R0= [ viangnEE g, ()
Ve ()| >y
where throughout this paper h(t) is a compactly supported function with certain smoothness and
Jg h(t)dt = 1. Throughout this paper f‘vﬁ(
the set {n: |Va(t,n)| >~}
We consider multicomponent signals z(t) given by (1) with Ag(t), ¢x(t) satisfying

means the integral |, (1 [Va( with n over

t,n)|>v t,n)[>~}

Ap(t) € CHR) N Loo(R), ¢1(t) € C*(R), (5)
Ag(t) > 0, inf ¢1.(t) > 0, sup P (1) < 0. (6)

Let € > 0 and A > 0, and let B. A denote the set of multicomponent signals of (1) satisfying (5),

(6), and the following conditions:

A4 (0)] < 6 (t), 1 (1)) < edfp(t), t € R; My == Sup |61 (1)] < oo, (7)

Gp(t) = 1 (t) > 21, 2 <k < K,t €R. (8)

The condition (8) is called the well-separated condition with resolution A. For the well-separated
condition, [24] uses a stronger condition than that in (8):
inf ¢, (t) —sup ¢ _(t) > 240, 2<k < K. 9)
teR teR

The condition (7), which was considered in [27], means that Aj(t) and IF ¢} (t) change slowly
compared with ¢g(t). [19] uses another condition for the change of Ay (t) and IF ¢} () :

AL <&, [gp(t)] <&, tER. (10)

We let B, A denote the set of multicomponent signals of (1) satisfying (5), (6), (10) and well-
separated condition (8).
Let

2= {(t) ¢ In— 4] < At €RY. (11)



Then the well-separated condition (8) implies that Z;,1 < k < K are not overlapping.

Denote «
p(t) = min A(t), M) := ;Ak(t) (12)
and
To(t) := KIj + wloM(t), To(t) := KIj + nlaM(t), (13)
where
L= [ aldn, L= [ g@ldr, n =12 (1)
R R

Theorem A. Let z(t) € B. o and g be a window function. Let 1(t), To(t),To(t) be defined by
(12) and (13). Suppose 2eTo(t) < u(t) and € satisfies

eTo(t) < & < pu(t) — eTo(t). (15)

Then we have the following statements.

(a) The set {n : |Vi(t,n)| > €} can be represented as the union of disjoint non-empty sets
{n: Va(t.n)| >etn{n: (t,n) € Z},1 <k < K.

(b) Suppose (t,n) satisfies |Vy(t,n)| > € and (t,n) € Zi. Then

fon(t,m) — (0] < S(To(B)A + 5 To(r). (16)

(¢) Suppose that € satisfies (To(t)A + ifo(t))a/gg A. Then, for any k € {1,--- K} and
any €z satisfying (Fo(t)A + %fo(t))e/gg g3 < A, we have

QA(EFo(t) + E)
lg(0)]

lim / R) (t,€)de — xk(t)‘ < (17)
E=op()l<es

(d) If z(t) € B A, then the above statements (a)-(c) hold with T'o(t) and To(t) in (13) replaced

by
0, 1 , 1 .
Lo(t) i= Y { k(011 + ML + m A0 (Gh(D) Lo + S M I3) | (1)
k=1
K
Fot) = 3 {ehOTs + LMy T+ m e (Gh(OD + ST} (19)

Here we remark that £ and €3 in Theorem A could be a function of ¢.

If we choose & = ¢!/3 and if ¢ is small enough such that

~ ) 1
€ < min {A, 5”#(75)”00»

1 /2 1
T(t)Hoo ’Hro(t)AJrzgjo(t)Hoo}’ (20)



then (15) holds. In addition, e(I'g(t)A + %fo(t)) < 1. Hence,
1~ ~ -
(To(t)A + 2—1“0(15))5/5 <g<A.
T

Thus, the conditions in Theorem A are satisfied, and Theorem A (with &5 = &) can be stated in
the following theorem.

Theorem B. [27, 19] Let 2(t) € B. o or B. a, and € = el/3. Let g be a window function with
supp(q9) C [-A, A]. If € is small enough, then the following statements hold.

(a) For (t,n) satisfying |Vz(t,n)| > €, there exists a unique k € {1,2,--- , K} such that (t,n) €
z,.

(b) Suppose (t,n) satisfies |Vy(t,n)| > € and (t,n) € Z;. Then

|we (t,m) — ¢ (1)] < E.

(c) For any k € {1,--- K},

1

lim/ R (t,€)d¢ — x1(t)| <
2=0g(0) Jie—gr (1))<2 &t Q

The meaning of “c is small enough” in Theorem B is that & defined by & = /3 satisfies
some inequalities like (20). Most theorems on the WSST and FSST analysis are stated in the
form of Theorem B, see e.g. [8, 24, 27, 19, 2]. Actually the statements of part (b) and part
(¢) in Theorem A give us more direct bounds of the estimates. We call the quantity on the
left-hand side (LHS) of (16) the IF estimate error, and call that on LHS of (17) the error of
component recovery (or component separation). The statements in Theorem A can be found in
[27, 19, 2] but with some different IF estimate errors. For example, [19, 2] gave IF estimate error
S(To(t)(A + 290, (1)) + %fo(t)) instead of £(To(t)A + %fo(t)) in (16). One can also find that

Theorem A is a special case of Theorem 1 in Section 3 below (see Remark 3).

Observe that the condition (7) or (10) requires the slow change of the IF ¢} (t) of each compo-
nent zx(t). There is no mathematical guarantee for the IF estimate and the component separation
for a multicomponent signal z(¢) with a component zj(¢) having a fast-changing frequency (e.g.
¢, (1), the changing rate of IF of zy(t), is not very small). To this regard, the 2nd-order FSST
was introduced in [20] and later the 2nd-order WSST was proposed in [18] with the theoretical
analysis of the 2nd-order FSST established in [2].

Suppose V. (t,n) # 0 and 8t(6"Vz(t’n)) # i2m. Denote

Vz (t,m)
atvm(tﬂ?)
i(t,) = o (i)
[ . OnValtm)\
o, (z27rt ~ Gyt )

6



The 2nd-order FSST in [2] is defined as

1, & —w(t,n)
B2 (1, €) 1= / Vot )~ (2= L)
g (Vatm)| >y A A

where w?"e(t,n) is the phase transformation for the 2nd-order FSST: for (¢,71) with V,(t,n) # 0,

)dn,

0V (2, OV (tm) 6‘/1(,) .
W2 (L ) = Re W((X% +Re{ q(t, n)%}, it 0y (Fryt) # 2,

ath(t,n)
Re ImiVatn) [ elsewhere.

Let e > 0and A > 0. B, @ ) denote the set of multicomponent signals of (1) satisfying (6), the

well-separated condition (8), and the following conditions:

Ax(t) € C*(R) N Loo(R), 61, (t) € C3(R), ¢ (1) € Loo(R), (21)
AL (t)] < e |A )] <&, 100 (t) < e, t ER. (22)

Then for z(t) € Bé%, statements for the 2nd-order FSST similar to those in Theorem B hold,
under some conditions which are more complicated than (20). See [2] for the details. Observe

2)

that there is no direct boundedness restriction on ¢, (¢) in the definition of B A

2.2 Adaptive FSST with a time-varying parameter

We consider the window function given by

9o (t) :== 59(5)7 (23)

where o > 0 is a parameter, g(t) is a function with g(0) # 0 and having certain smoothness and

decaying order as t — oo. If
1 2
t) = e 7, 24
o) = (24)

then g, (t) is the Gaussian window function. The parameter o is also called the window width

in the time-domain of the window function g,(t) since the time duration A, of g, is o (up to a

constant): Ay = oAy, where A, is the time duration of g, which is defined as

Jr g (t)[2dty1/2
8= ()
fR ’g | dt
For a signal z(t), the STFT of z(¢) with a time-varying parameter is defined in [14] as
1

Vatt.m) = /R:U(T)ga(t) (r — t)e 2= gr = /R ot + T)%g(ﬁ

where o = o(t) > 0 is a differentiable function of ¢. V,(,7) is called the adaptive STFT of z(t)

)e_i%de, (25)

with g,.



Before we move on to review the SST associated with the adaptive STFT, we introduce some

notations used in this and next sections. Denote

g1(r) == 1g(7), g2(7) := T9(7), g3(7) := 74'(7).

Thus

T T2 T T T

.
91.0(7) = 59(=), 920(7) = =9(=), 930(1) = 9 (=).

o2’ o o3 o 027 ‘o
We use V2’ (t,n) and vy (t,n) to denote the adaptive STFT defined by (25) with g, replaced by

gj.0 and g, (1) = %g’(%) respectively, where 1 < 5 < 3.
For z(t) = Ae2™0! | one can show that (see [14]) if V,(t,n) # 0, then w2 (¢ 1) defined by

N ) 270D olt) 2Vt (26)

wadp,c(t ) 815‘717 <t7 77) Ul(t) U/(t) ‘735(]3 (tv 77)

is &, the IF of z(t). Hence, for a general z(t), at (t,n) for which V,(t,n) # 0, [14] defines the
real part of the quantity w;dp’c(t,n) in the above equation, denoted by widp(t,n), as the phase
transformation of the adaptive FSST:

0Va(t,m) a'(t) V& (t,m)
21V (t,m) } " o(t) Re{ 27V (t,n

Then the (1st-order) adaptive FSST, denoted by Rg%) s defined by

WP (t ) = Re{ )}, for V,(t,n) # 0.

adp
RAPA (¢ €)= V. (t E-we (B, 927
G = [ T (T (27)

where v > 0,\ > 0 and h(t) is a compactly supported function as described in §2.1. Note
that here and below, the letter ¢ in w2 (¢, 1) denotes the complex-valued version of the phase

transformation.
Next we consider the 2nd-order adaptive FSST. For a linear chirp signal,
2(t) = Aei2mo(t) — Aei27r(ct+%rt2), (28)
it was shown in [14] that w32 defined below is ¢ + rt, the IF of z(t):

wadp,an,C - U,(t) + 8”758 (tv 77) - ‘75591 (t7 77) O'/(t) ‘795% (t7 77)

: = _ Po(t,n) + _ , 29
i2ro(t)  i2nV,(t,n)  i2aVi(t,n) ol ) o(t) i2xV,(t,n) (29)
for (t,7n) satisfying 0, (%11(?;7@)) # 0 and Vx(t, n) # 0, where
L Valt,n)\ | o'(t), (Vi (L)
Poltm) = 9 (ﬁfl(t,n)> {8 ( Va(t,n) ) + o(t) a"( Va(t,n) )} (30)
T\ Va(tm)



Thus the authors of [14] define the real part of wadP2nde 5o the phase transformation for the

2nd-order adaptive FSST. Namely, the phase transformation w2 is defined by

Re{i2ﬂ‘7x(t,77)} Re{z‘%%(tm)P (¢ 77)} 0 RG{ZQW‘Z@ ’7)}
adp2nd (g it 5 () # 0 and Vit ) # 0

OVolti) | | (Vg Vi (tn) } - Q(V (£ )) _
Re{z‘%f/z(t,n)} + 50 Re{nﬂ%(tm) ,if il e 0, V, (t,n) #0,
Finally we define the 2nd-order adaptive FSST with V. (¢t,n7) # 0 and % (
scribed by thresholds v; > 0,v2 > 0. More precisely, define

>7éOde—

V(tn

. . . 1
adpande (s ) quantity in (29), if |V, (¢,n)| > v1 and ’877 <¢‘ > s,
w ) ’ 7’,7 =
B quantity in (26), if |Va(t,n)| > v and |2 (m\ < .

dp,2nd dp,2nd,
Let wid 22 (¢ p):=Re (wiB29e (1, p)).

Again, let h(t) be a compactly supported function with certain smoothness and [ h(t)dt = 1.
We define the 2nd-order adaptive FSST Rifi%%f;d’A by

adp,2nd,)\(t 5 / fé,;(t ’I’])lh(g - wgfi%?wgd(t, 77) )dn (31)
S {77 Ve () >, ‘877( L (tm) Ve (tm) ’>72} A A
3 Analysis of adaptive FSST
We assume
d = min min(¢}(t) — ¢,_1(t)) > 0. (32)

ke{2, K} teR

Thus z(t) satisfies the well-separated condition (8) with resolution A = d'/2. However, the
value d’ may be very small. In this case, we cannot apply Theorem A directly. The reason
is that to guarantee the results in Theorem A to hold, the window function ¢ needs to satisfy
supp(g) C [—%, 7] If d’ is quite small, then g has a very good frequency resolution, which implies
by the uncertainty principle that g has a very poor time resolution, or equivalently g has a very
large time duration, which results in large errors in the IF estimate and component recovery (see
Remark 4). We use the adaptive STFT and FSST to adjust the time-varying window width o(t)
at certain local time t where the frequencies of two components are close.

In this section we consider the case that each component z () = Ay (t)e?"%®) is approximated

locally by a sinusoidal signal. More precisely, we assume A} (¢) and (b;; (t) are small:
AL (O] <er, lop(t) < ez teR, 1<k <K, (33)

for some positive number e1,e3. Let Dg, ., denote the set of multicomponent signals of (1)
satisfying (5), (6), (32) and (33).



Let z(t) € Dg, ,. Write zx(t + 7) as

Jlk(t + T) = {Ek(t)emwd);@(t)T =+ (Ak(t + 7') — Ak(t))e’iQﬂ(j)k(tJr-,—)
+xk(t)ei2ﬁ¢2(t)r (ei27r(¢k(t+‘r)f¢k(t)—¢>;€(t)7) B 1)'

Then we have

rp(t+7)—= T )e Ty

Vx(tﬂ?) O_:(I_t)g(o_(t)

%\

xk(t)eizwgc(tﬁ— T e~ 2™ dr + remy,

1
S OMEIOL

> 11

—

e
Il
—

or
K

Vit,m) = Y ax()g(o()(n — ¢ (1)) + remo,

k=1

where remy is the remainder for the expansion of V,(t,7) in (34) given by

K
remg 1= Z/ {(Ak(t + 7-) _ Ak(t))ei27r¢k(t+7)
k=1"R

. , . , 1
2 (t)e7,27r¢k ) (67,27T(¢k (t+7)—dr(t)—¢r () T) _ 1) } 79(%

o(t)” o(t)
With |Ap(t + 7) — A(t)| < e1|r| and

2@ =007 1| < 2l (i +7) — Gu(t) — 64(0)7] < Tl

we have

K
T realr P |g(—-) dr
|rem0\ S;/R€1|T|O'(t) |g(a(t))‘d +M(t)/]R €2| | a(t)‘g(a(t)”d

= Kelllo'(t) + 7r52]202(t)M(t),
where I, and M (t) are defined by (14) and (12) respectively. Hence we have
lremg| < o (t)Ao(t),

where

Ao(t) = Ke 1 + 7T€2[20’(t)M(t).

>€_i27ranT.

(36)

(37)

% (t,n) can be expanded as (34) with remainder remy, defined as remg in (35) with g(7)

replaced by ¢'(7). Then we have the estimate for the remainder similar to (36). More precisely,

we have

[remp| < o (t)Ro(?),

10



where
Ao(t) == KeiI1 + mealoo () M (1), (38)

with I,, defined in (14).

Remark 1. Condition (33) is essentially the condition (10). If Ak(t), ¢x(t) satisfy (7), then
we have a similar error bound for the expansion of Vz(t, n). More precisely, suppose A (t), o (t)

satisfy
AL (0)] < a1 (1), @ ()] < eadfy(t), t € Ry M) := sup |6 ()] < oo (39)

Then (see [8])

Ayt +7) - D] < 1lrl(@h(D) + M),

00+ 7) — 6x(0) — G (0)7] < 27 (Lo (1) + M)

Thus, we can expand Vy(t,n) as (34) with |remg| < o(t)Ao(t), where in this case Ao(t) is

K
(t) + meao(t) > Ag(t) (T20h(t) + %M,;/Iga(t)). (40)
k=1

TTMx
=
@
ET‘
_|_
S
hen.
q

With the condition of (39), we have an estimate o(t)Ao(t) for rem) with Ao(t) defined by (40)
with I; replaced by E In this paper we consider the condition (33). The statements for theoretical
analysis of the adaptive FSST with condition (39) instead of (33) are still valid as long as Ao(t)
n (37), Ay(t) in (38) and so on are replaced respectively by that in (40) and similar terms. This
also applies to the 2nd-order adaptive FSST in Section 4, where we will not repeat again this

discussion on the condition like (39). [

If the remainder remy in (34) is small, then the term x4 (¢)g (o (t)(n— ¢/,(t)) in (34) governs the
time-frequency zone of the STFT ‘N/mk of the kth component x(t) of z(¢). If in addition, g is band-
limited, that is g is compactly supported, to say supp(g) C [—A, A], then zx(¢)g(o(t)(n — ¢).(t))
lies within the zone:

{(t.m) < In — 4()] < U(At),t ¢ R}.

Thus the multicomponent signal z(t) is well-separated (that is Z N Zy = (), k # £), provided that
o(t) satisfies
2/
olt) > JteR k=2, K. (41)
P(t) = &1 (1)
Observe that our well-separated condition (41) is different from that in (8) considered in [27] and

19].

11



If § is not compactly supported, we need to define the essential support of § outside which
(&) = 0. More precisely, for a given threshold 0 < 79 < 1, if [g(&)| < 79 for [£] > a, then we say
9(&) is essentially supported in [—c, a]. When [g(£)| is even and decreasing for £ > 0, then « can
be obtained by solving

9(a)| = 0. (42)

For example, when ¢ is the Gaussian function given by (24), then, with g(§) = e~27¢  the

a:;ﬂﬂM;) (43)

For g with g(&) essentially supported in [—c, ], we then define the time-frequency zone Zj, of

the kth-component x(t) of z(t) by

corresponding « is given by

a

Zi = {(t0) [§(o )0 — 0)] > 7.t € B} = (1) = 0] < 5

,t e R}, (44)
Thus the multicomponent signal x(t) is well-separated, if o(t) satisfies

2cx
"2

In this case Z N Zy = 0,k # (. In this section we assume that (45) holds for some o(¢). Due
to (32), there always exists C'(R) and bounded o(t) such that (45) holds. For the sinusoidal
function-based adaptive FSST, the authors in [14] suggest to choose o(t) as

teER k=2 K. (45)

2c
O (t) = ¢y (1)’

In practice, ¢} (t) is in general unknown and one needs to develop an algorithm to estimate it or

o1(t) := max{ k=2,--- ,K}.

to provide an approximation to oy(t).
Observe that for o(t) satisfying (45), since ¢} (t) is bounded, we know

1
== lloo < 00

a(t)

In addition, in this case
o ()], (t) — ¢u(t)| = 2alk — £]. (46)

Next we will present our analysis results on the adaptive FSST in Theorem 1 below, where «
is defined by (42), and 3, denotes } jcry .. g\ (x}- V,.(t,n) is the adaptive STFT of z(t) with

such a window function g that |g(§)| is even and decreasing for £ > 0.

Theorem 1. Let z(t) € D., ., for some small e1,e2 > 0 and g be a window function. Let
w(t), M(t), Ao(t), Ao(t) be defined by (12), (37) and (38). Suppose 20 (t)Ao(t) + 2roM(t) < pu(t)
and €1 satisfies

o(t)Aolt) + M (t) < @ < u(t) — o(t)Ao(t) — ToM(1). (47)

12



Then the following statements hold.
(a) The set Hy := {n: |Vu(t,n)| > €1} can be represented as the union of disjoint non-empty
sets Hyp = HeN{n: (t,n) € Zp},1 <k < K.
(b) For (t,n) with |Vy(t,n)| # 0, we have
Rem1

i2nVy(t, ) (48)

WpPe(t ) — ¢p(1) =

where

Remy 1= 27 (n — ¢} (t))remo — ()G (o) — G(1) . (49)

=k
Hence, for (t,n) satisfying |Va(t,n)| > € and (t,n) € Zx, we have
jwp®(t, 1) — ¢, (1)] < by, (50)
where
bd 1(A(t)+1K(t))
=\« —_—
1= = (ado 9 M0

t2 max IS 40060 - 0] swp (Gt o6k - se))|}. (6D)

€1 ke{l, K} 17k {w:|ul<a}

(c) Suppose that €1 satisfies the condition in part (a) and that bdy in part (b) satisfies bdy <
OB Then for €3 satisfying bdy < €3 < %, we have

. O'(t) adp,\
tim 700 /5 o T (t,€)d¢ — mi(t)] < b, (52)
where
1
bdy := m{20¢(a(t)A0( ) +€1) + Ag(t) | o w)dul| + ;Ae(t)me,k(t)} (53)
with

ma(t) = | /| _ 3+ o064 ~ o)) du].

Remark 2. When g(§) is supported in [—a, o, we can set 79 in Theorem 1 part (a) to be zero,

and thus, the condition (47) is

o(t)ho(t) < & < p(t) — o(B)Ao(t). (54)



In addition, in this case the 2nd term in (51) is zero, and my(t) and f (u)du in (53) are

u|>a
also zero. Hence in this case, (51) and (52) are respectively reduced to
1 1~
wiP(t,m) = G (6)] < = (aho(t) + s—Ao(t)), (55)
€1 2T
and A
lim U(t)/ R;dep Mt €)de — a(t )‘ < 20(o () Ao )+e1)7 (56)
2=0g(0) Jie—gr (1)< O l9(0)]

for any € with & (aAo( )+ %Ko(t)) <& < ( 3-

Fuﬁhermore, the statement of Theorem 1 can be written in the form of Theorem B. For sim-
plicity, we just consider the case €1 = 9. Write Ao(t),Ko(t) defined by (37) and (38) respectively
as

Ao(t) = e1o(t), No(t) = e1o(t),
with
Xo(t) = KT + nloo(t)M(t), No(t) := KI, + Lo (t)M(t).

Let & = €}. If &1 is small enough such that

a < mln{a I ot )”ooa HM Moo Hit)uif’ Ha)\o(t) _:2171—3\/0(1:)”00}’ (57)

then (54) holds and

;(aAo(t) + %Ko(t)) < gl, and €1 <
™

€1

_a_
o(t)’
Thus we have the following corollary. |
Corollary 1. Suppose z(t) € D, ¢, for some small e1 > 0 and supp(g) C [—a,a]. Let ¢ = &3.
If €1 is small enough such that (57) holds, then we have the following.

(a) For (t,n) satisfying \171(75,77)] > €1, there exists a unique k € {1,2,--- ,K} such that

(ta 77) € Zk
(b) Suppose (t,n) satisfies |Vu(t,n)| > € and (t,n) € Zy. Then

wiP(t,m) — ¢ (1) < @
(c) Forany k, 1 <k < K,

. o(t) / ado
lim —=% R P, t,f dé — (b)) <
‘ 3=0g(0) Jie—gr 1<en =9 (t,€) k(1)

2a(o(t)Ao(t) +€1)

|9(0)] '
Remark 3. When o(t) =1, Radp’ (t,€) is the regular FSST R>‘ (t,€) defined by (4). Suppose
supp(g) C [—a,a]. Then (50) and (52) (which, by Remark 2, are (55) and (56)) with e, = 2 are
respectively (16) and (17) with ¢ = 1, A = «. Thus in the case o(t) = 1, Theorem 1 is reduced
to Theorem A, and Corollary 1 is Theorem B. |
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Remark 4. Observe that Ao(t) and Ag(t) defined by (37) and (38) respectively depend on o(t).
Smaller o(t) results in smaller Ao(t) and Ao(t), hence the corresponding Wi (t,m) provides a more
accurate estimate for ¢).(t) as implied by (55) and the adaptive FSST in (52) gives a recovery of

x(t) with a smaller error as shown in (56).

Remark 5. When g(§) is not supported on [—a, ], but [g(&)| decays fast as |§| — oo, then the
terms in the summation for bdy in (51) will be small as long as T is small. Recall that we assume
|g(&)| is even and decreasing. Then for £ =k — 1, since o(t)(¢).(t) — ¢}._,(t)) > 2c, we have for
u <

5(u+ o ()@ (1) = Sy ()] < [G(u + 20)] < [§(e)] = 70

Similarly, we have supy,<ay |G(u+0(t)(9),(t) — ¢ 1(1)))| < 70. The quantities supy,<qy [9(u+
o (t)(¢},(t) — ¢j(t))| for other € # k—1,k,k+1 are much smaller than 7o since o (t)(¢},(t) — ¢} (t))

is large (see (46)) and g is rapidly decreasing. Thus the summation in bdy is dominated by

Tomaxg=2,.. Kk ~1{ Ak+1(t) (P}, 1 (t) — (1)), Ak—1(£) (9. () — &)1 (1)}

The functions my i (t) in (53) could be small if 7o is small. More precisely, for £ =k —1, we

have
7%4Aws/!:@w+amwuw—%anMu
< alu + 2a)|ldu < 2alg(a)| = 2am.
_[MJA~+ )ldu < 20]g(a)] = 207

We can show similarly that myiq i (t) < 2a19. For other £, my(t) will be much smaller than
201y

Finally, let us look at the term ‘ f du| It will be small if o is large. Here we give an

u|>cx

estimate of this term when g(t) is the Gaussian function defined by (24). In this case, one can

obtain

—27r2042
/ 67271' u d ]. T0 ' (58)
ul>a _\/27r1+\/w Vorl+yVI-no

To summarize, for g with g(&) decaying rapidly as & — oo, the statements in Corollary 1 hold if

the same conditions are assumed and that Ty is small enough (and hence « is large enough). M

In the rest of this section, we give the proof of Theorem 1.

Proof of Theorem 1 Part (a). Clearly UleHmk C H;. To show H; C UleHmk, let n € H;.
We need to show (¢,7) is in some Zj. Assume (¢,7) € UK | Z;. Then for any k, by the definition
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of Zj in (44), we have [g(c(t)(n — ¢},(t)))| < To. Hence, by (34) and (36), we have

K
Ve(t, )| Szwk )(n = ¢(1)))| + [remo]
k=1
< oM (t) + o (t)Ao(t) < €1,

a contradiction to the assumption |V, (¢,1)| > €. Thus (¢,7) is in some Z;. Hence 1 € H, . This
shows H; = UkK:1Ht,k'

Clearly H;j,1 < k < K are disjoint since Z;,1 < k < K are disjoint. Next we prove that each
H, }, is non-empty by showing ¢} (t) € Hy . It is enough to show ¢.(t) € H; since (t, ¢ (t)) € Z.
By (34) and (36) again, we have

Vit m) — 2(8)g (o () (n — 64 (6)] <D [ee()d(o(£)(n — ¢}(t)))| + [remo|
14k
<Y Ag(t)mo + o (t)Ao(t) < oM (t) + o(t)Ao(2).
04k

This, together with the fact g(0) = 1, leads to

Va(t, ¢4 (0)] > [2k()G(0)] — (oM () + o (£)Ao(t)) = ult) — (M (t) + o (t)Ao(t)) > &1

This shows ¢ (t) € Hy, and hence, Hyj, is non-empty. [

Proof of Theorem 1 Part (b). By a direct calculation, we have

AVy(t,m) = (i2mn — UUI((;))‘N/x(t, n) — UUI((:)) VI3 (t,m) — 030175' (t,n). (59)

By (34) with g replaced by ¢/,

V() =Y ze(t)(g) (o (t)(n — ¢y(t))) + remjy

gl

K
= i2m0(t) 3wt — G400 ()1 — H4(2))) + rem).
=1
This and (59) imply that

(w2 (8, m) — D (1)) i2m Vi (t,m)

_aT (t
- 3th(t777) + O'(t)

:i27r7717x(tﬂ7)—02t)‘7£/(tﬂ7) A A

K

= i2r(n — 41 (sz )(n— () + rem)

K

- (i2mo(t) Y et — S0 (o (6) (n — 64(2))) + rem))

o®) =

~—

(Va(t,n) + V(L)) — 21} () Va(t, )
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= i2m (1 — (1) remy — Ug‘; +i2m Y ae(t)(9() — G(D)F(o (1) (n — ¢4(1)))
14k
= Reml.

This shows (48).
For (50), with the assumption |V, (¢, n)| > €, we have

Wi (8, 1) = DL ()] < Wit m) — ()]

Rem; ‘ |Rem; |
~ Li2nV,(t,n) 2mey
< = {10 GOl OR0(0) + 5-Rol®) + 3 A1 ~ 4(0) [3((0)r — 64(®))1}
£k
< = {ao(®) + 5-Ralt) + 3 Ad0l04(0) — 0] (00 - 61(0)) |}
oy
< bdy,

as desired, where the second last inequality follows from |n — ¢}.(t)| < >(y since (t,m)eZ,. N

Proof of Theorem 1 Part (c). First we have the following result which can be derived as
that on p.254 in [8]:

lim RY2A(t,6)ds = | Va(t,n)dn, (60)
A=0 Jle—gy (< X,
where
Xy = {n: [Va(t,n)| > & and |1, (t) —widp(t,n)\ <€}
Let

Y= {n: [Ve(t,n)| > € and (t,7) € Zy}.

By Theorem 1 part (b), if n € Y;, then |} (¢) — WP (¢, n)| < bd; < €. Thus n € X;. Hence
Y; C Xy

On the other hand, suppose n € X;. Since ]Vw(t,n)] > €1, by Theorem 1 part (a), (t,n) € Z;
foran £in {1,2,--- , K}. If ¢ # k, then by Theorem Theorem 1 part (b),

|7.(t) — 2P (t,m)| = | (1) — ()] — |0 (t) — a2, m)|
20 Cbd 20
a(t) 12 a(t)
adp

since bd; < €3 < % This contradicts to the assumption |¢>§€( — Wy (t,n)} < €3 since n € X;.
Hence ¢ = k and n € Y;. Thus we get X; = Y;. Therefore, from (60), we have

E13 > g?n

lim REPA )ds = | Va(t,m)dn. (61)
A0 Jle—g (t)|<é {IVa(tm)[>etn{n:(tm)€Zx}
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Furthermore,

~ 0
/~ Vot mdn — 2D )]
{IVz(tm)|>e }n{n:(t.m)E€Z }

o(t)
= ‘A/Z s dn — wl’ - Vm ) d
|/{n:(t,n)€Zk} G ) o(t) 0 /{I‘Z(tm)Sa}ﬁ{n:(t,n)EZk} (47 77|
< 270‘ S zo(t)g rem, - @x
= 61U(t) + /{n'(t n)EZL} (gz_:l (3o () = 92(®) + remo)dn o(t) ()
~ . oy _@m
_610( ) + |remyg| o) +\ o OI<as 2k ()G (o (t)(n — ¢3,(t)))dn ) k(1]
+) A1) g(o(t)(n — ¢p(t)))dn|
£k In—¢,.()I<57H
= (|rem € 2o 2 (?) g(u)du — @x
= ( WQMHWM@“MJMM‘
Z glu+o(t)(¢1() — ¢i(t)))dul
K;ék: Jul<a
. 20 T - 0 T N A
= (Jremg| + €1) @} ;((tt)) /Rg(u)du - Z((t;:mg(t) — Uk((tt)) /|u>a g(u)du‘ + Z#Zk UZ((;)) my (1)
= (remol +72) 25+ |l 50 — 2wt = 8 [ gt H%Mmm
~ 2c Ak(t) ~
< (oDM0(0) +3) s+ A5 ‘/uzag(u)duH— ;Ag ot

The above estimate, together with (61), leads to (52). This completes the proof of Theorem 1
Part (c). |

4 Analysis of 2nd-order adaptive FSST

We consider multicomponent signals z(¢) of (1) satisfying (21) and being well approximated locally

by a linear chirp signal of (28) with A} (t) and qﬁ,(;’) (t) are small:
AL ()] < e1, [0 (t) < e3, tE€R, 1<k <K, (62)

for some positive number €1, €3,

For a given ¢, we use G (£) to denote the Fourier transform of €™ (B)g, ()72 g(7), namely,
Gr(6) = }"(emﬂ(twg(t)f?g(ﬂ) (&) = / eiﬂ'a?(t)d’g(t)72g<7_)e—i27r£7'd7_7
R

where F denotes the Fourier transform. Note that Gi(£) depends on t also if ¢;(t) # 0. We drop
t in Gy for simplicity.
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For each component x(t) = Ay ()2 () we write x1(t + 7) as

ot +7) = 2 ()T EOTHEO) | (A (¢ 4 7) — Ap(t))e2TOR )
g ()T OTHES () (2 (Gr(t+T)—0(0)-9) (t)T—Lp (72) _ 1).

Then we have

K 1
V = T T)—— T e~
_ i/ r (t)ei2ﬂ(¢§€(t)7+%¢g(t)72)L (—)e™ 2™ dr + res (63)
T o) o(t) ’
K
= wk()Gr(o(t)(n — ¢1.(1))) + reso, (64)
k=1
where
K .
resg := Z/ {(Ak(t +7)— Ak(t))612w¢k(t+7) (65)
k=1"R

+zp (t)ez‘2rr(¢;(t)r+%¢l (072) (27 (On (14 7) =9 (1) (T30, (%) _ 1) } (1t) g(%)e—i%mdr
g g

To distinguish the different types of the remainders for the expansion of Vs (t,n) resulted from
different local approximations for xy(t + 7), in this section we use “res”, which means residual, to
denote the remainder for the expansion of V,(,7) in (63).

With |Ag(t + 7) — Ak(t)| < e1|7] and

om0 O 1807 1] < o sup o (1)) < Tealrl?,
neR

we have
K 1 T K T 3 1 T
el <3 [ = latrlar + > 4t | Fealr i lat gl
= KeyLio(t) + geglga?’(t)M(t),

where I, and M(t) are defined in (14) and (12) respectively. Hence we have

Ireso| < o(t)IIo(t), (66)
where
To(t) := KeiIy + %53[302(t)M(t). (67)
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Thus if &1, are small enough, then |reso| is small and hence, Gy (o (t)(n — ¢).(t))) provides
the time-frequency zone for XN/xk (t,n). In the following we describe those time-frequency zones

mathematically. Let 0 < 79 < 1 be a given small number as the threshold. Denote

Ok = {(t,n) : |Gi(o(t)(n — #},))| > 70, € R}. (68)

We assume again |G (§)] is even and decreasing for £ > 0. Then Oy, can be written as

Qg
o(t)

where aj = ay(t) is obtained by solving |Gk (&)| = 79. We will assume the multicomponent signal

Or ={(t,n) : In — ¢(t)] < t € R} (69)

x(t) is well-separated, that is there is o(t) such that
OrNOr=0, k#L. (70)

As an example, let us look at what are Oy and ay(t) look like when g is the Gaussian function
defined by (24). One can obtain for this g (see [14]),

7r2u2 . 1"
G (u) = T A (i () -
k = .
1= i2m0y (000
Thus
1 —#uz
’Gk(u)’: e 1+(27r¢k(t)0—2(t))2 ' (72)

(1+ (276} (£)02(£))?) ¥

Therefore, in this case, assuming 79(1 + (27r¢);; (t)oz(t))Q)i <1,

1 1 1
B " 2 ) i N ! 2 2
o= 1+ 2r6 (102 (1)? 5- \/2 In() - 3 In(L+ (2ndf (1)02(2))?). (73)
Authors of [14] consider a larger zone O}, in the time-frequency plane:
;L . o « " 2
Ok i={(t:0): o= k(0] < 55 (14271000 (0)) € R} (74)

where « is defined by (43). They obtain that if for k =2, -- | K|

dav/m\Jlog(0)] + [0}, (D] < 64(t) = ¢y (), and (75)
4o . 4o
2% { be(t) + /or (D2 8aak(t)} < be(t) — /or (D) — Saan(D) joo

then the components z(t),1 < k < K of z(t) are well-separated in the time-frequency plane in
the sense that O, N O} = 0, k # ¢, where

ap(t) = 2ma(|gf 1 ()] + |5 (D)]), bi(t) = P (t) — dp 1 (1)
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[14] shows that any o(t) between the two quantities in (76) separates the components z(t) of

z(t) in the time-frequency plane, and it suggests to choose o (t) to be

4o
o2(t) = e { bi(t) + /b () — Saax (1) J (77)

Let g be a window function with |g(§)| even and decreasing for £ > 0. Let Dﬁf?ag denote the
set of multicomponent signals of (1) satisfying (21), (32), (62) and that z(t) is well-separated
with g, that is there is o(t) such that (70) holds.

We introduce more notations to describe our main theorem on the 2nd-order adaptive FSST.

For j7 > 0, denote

7" 7
s (t = 27 (¢ (t)7'+l¢ (t)72) 7—7 T —i27r177d
G.]7k( 777) /]Re k 27k U(t)3+1g(0(t))6 T (78)

= F (et 0507 2g(1) ) (o(8)(n — 64(1)):
Clearly,
Goi(t,n) = Gi(o(t)(n — ¢,(t))),

and one can obtain for j > 1,

Galtn) = 5y OF (o) = 64(1). (79)

Let resy, resg, res(, and res] be the residuals defined as resy in (65) with g(7) replaced respec-
tively by ¢1(7), g2(7), ¢'(7), and g3(7) = 7¢'(7). Then we have the estimates for these residuals

similar to (66). More precisely, we have
res1| < o (E)II1(t), |ress| < o(B)a(t), |resh| < o(t)o(t), |resi| < o(t)II1(t),
where

7T s
My (t) := Ke1lp + 5531402(75)1\4(75), Mo (t) := Key I3 + g531502(15)M(t),

To(t) := Keyy + g53E02(t)M(t), I, (t) = KeyIo + gggﬁ(;?(t)M(t),

with I, fn defined in (14).

Denote
)= we(t)(d4(t) — ¢1,() Goelt,n),  Diltn) = we(t)( — ¢p(1)) Ge(t,m),
Uk Uk
) = Zfﬁz(t) (dp(t) — % (t))Gre(t,m),  Fu(t,m) Zﬂﬁz — G (1)) Gau(t, ),
0k Uk
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and

Res; := i2n By (t,n) + 1270 (t) Dy (t, 1) + 127 (n — ¢},(t) ) reso — Z_(?i{; — i27 ¢, (t)o(t)resy, (80)

Resy := 4120 (t) Ex(t,n) + 41202 (t) Fy(t, ) (81)
+427 resy 4 4n° (n — ¢(t))o(t) resy + i27 res] — Am? ¢ ()02 (t) ress.

Next we will provide Theorem 2 on the 2nd-order adaptive FSST, which also consists of parts
(a)-(c). The proof of part (b) is based on the following two lemmas whose proof is postponed to
Appendix.

Lemma 1. Let Res; be the quantity defined by (80). Then
~ '(t) o' (t) ~
T, (tm) = (i2ng(t) — D) TV () + Resy. (82
t ( 777) (2 7Tqbk( ) U(t) J(t) T ( 777) + Resy ( )
Lemma 2. Let Py(t,n) be the quantity defined by (30). Then for (t,n) satisfying Vy(t,n) # 0 and

9 (Vi (tm)
ﬁn( AT ) # 0, we have

VValt,n) + 206} (£)o (£) VI (£,77) —

Po(t,n) = i2rno(t) ¢} (t) + Ress, (83)

where

V.(t,m) Ress — 8,V (t,n) R
Resg := = ( ’71)91 %2 7191( .71 bt ) (84)
Va(t, 77)3an (t,m) — Vi (tm)aan(t,U)

with Res; and Resg defined by (80) and (81) respectively.

Denote
Mog(t) = o(t) /
{77: (tvn)eok}

Theorem 2. Suppose z(t) € Dg?ag with a window function g(t) for some small 1,63 > 0. Let

w(t), M(t),Iy(t) be defined by (12) and (67). Suppose 20(t)Ily(t)+210M (t) < u(t) and € satisfies

(o (t, )y = / Go(u+ o (6)(Sh(t) — (1) |du.  (85)

[u|<ag

o(t)o(t) +7oM(t) <& < p(t) — o(t)o(t) — oM (t).

Then the following statements hold.

(a) The set Hy == {n: |Va(t,n)| > €1} can be represented as the union of disjoint non-empty
sets Hyp :=HeN{n: (t,n) € Oy}, 1 <k < K.

(b) Suppose (t,n) satisfies |Vy(t,n)| > &1, |0y (‘7;5‘71 (t,n)/Va(t, n)| > &, and (t,n) € Oy. Then

wgdp,Qnd,C(t’ ,’7) _ qb;c(t) = ReS4’ (86)

where _
Resi  Vi'(t,n)Res;

i2nV(t,n)  i2aVi(t,n)

Resy :=
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Furthermore,
w2 (¢, m) — ¢ (1)] < Bdi,

where

|Res | 1 ~ ~ _
3z gz V2 (6 (10, V2 (1)l [Resa| + 21 Resa]) .
1

Bd; := max sup {
1<k<K yc0,

(c) Suppose that € satisfies the condition in part (a) and Bdy < $Lg(t), where

.
Lk(t) = — mln{ak + op—1, 0k + ozk+1}.

a(t)

Then for any €3 = €3(t) > 0 satisfying Bd; < &3 < %Lk(t),

. U(t) / adp,2nd, A
lim 2 R0, (t,f)d&—xk(t)’ < Bds,
’HO 900) Jie—g, i<z

where Bdy = Bd), + Bdg with

Bd) := m{Qak (1 + o (t)o(t)) + A(t) | S, Gr(u)du| + 3y Ac(t) My (1)},
Bdy := gy {2060 (OTTo(8)) + 0/(1) A(t) lgll1|Us] + Sy, Ae(t) Meg(t)}

and |Uy| denoting the Lebesgue measure of the set Uy:

Upi=A{n: (t,n) € Ok, [Va(t,m)| > &1, |0y (Vi (t,m)/Va(t,m)) | < &}

We postpone the proof of Theorem 2 to the end of this section.

(89)

(92)

Remark 6. With the decay conditions of Gi(u) and Gj(t,n), Theorem 2 can be stated in the

formulation in Corollary 1. Here instead of giving such a statement for the 2nd-order adaptive

FSST as in Corollary 1, we look at the estimate bounds when ¢(t) is the Gaussian function given

by (24).

First we look at the bounds for Res;, Ress. From (80) and (81), we have

Resy| < 27| Bi(t, )| + 270 (£)| D (t,m)| + 2w Tlo (t) + o (t) + 27|y ()| o™ (£)TT (8),

Res| < 4n?0 ()| By (t,n)| + 4m°0> () | Fy (¢, 1)
+2m0 (£) Mo (t) + Am2 oo (I () + 2w (E)IL1(£) + 4n2| ¢y, (1) |0 (£) TLa(2).

We need to look at the estimates for By(t,n), Dk(t,n), Ex(t,n), Fx(t,n), which are determined by

ij(t,ﬁ), for (t,’l]) € Og.
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When ¢(t) is given by (24), then G (u) is given by (71), and «y, by solving |G (u)| = 7o for u
is given by (73). For (t,n) € Ok, we have
n =G (t) = ¢ (t) —

573

=i

Thus
|Gor-1(t,n)| = |Gr_1(c(n — ¢}_1(1))| < |Gr-1(ar_1)| = T0.

Similarly, we can obtain for (t,7) € Oy

|Gox+1(t,m)| < 70.

For other ¢, |G ¢(t,n)| is much smaller than .
Gj(t,n) can be estimated similarly. For example, for G ;—1(¢,n), with (79) and

212 (1 + i2n ¢y, (t)o(t))
1+ (27¢;_, (t)02(1))?

j1(u) = G (u)(—2u)
we have
Gt )] = §|G;,1(a<t><n ~ (1)
27?!0( )(n = B, (1))]
\/1 + (216, (1)a2(t))”
<|Gro1(ar—1)] 2w () (t) — Bp_1(t) + ar) = 2m70( (1) — P (t) + ).

since for (t,n) € Ok, ap—1 < o(t)(n — ¢)_1(t)) < @).(t) — ¢, (t) + . We also can get

= |Gr-1(a(t)(n — S)_1(

|G ger1 (,m)] < 2770 (D41 (1) — SR (2) + n).

For other £, |G ¢(t,n)| are much smaller than 277o(¢),(t) — ¢, (t) + ) or 2m70(¢) . (1) — &), (1) +
ag).

For other j, one can show that |G ;+1(t,n)| are bounded by Cj1y, where C}, is a polynomial
of (|1 (t) — ¢, (t)| + ), and |G, ¢(t,n)| for other £ with |¢ — k| > 2 are much smaller.

By the above discussion, we can conclude that for (¢,n) € Oy, By(t,n), Di(t,n), Ex(t,n), Fr(t,n)
are dominated by C} 79, where C}, is a polynomial of (¢7,(t) —¢,_, (t)+au) and (¢}, (t) =, (t) +ax)

with degree < 2. Therefore, if £, e3, 79 are small, then Bd; in (88) is small.

Next we look at Bdy in (91). First we consider M j(t) defined by (85). For £ = k — 1, since

o(t)(¢,(t) — ¢, (t)) > ag—1 + o and |Gj—_1(u)| is a decreasing and even function of u, we have
Meaal)= [ 1Gka(ut o640~ s (1)
u|<ag

S/ |Gr—1(u + a1 + ag)|du
ul <o

< 204 Gr—1(ag—1)| = 2a 7.
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We can show similarly My 5 (t) < 2a,79. For other ¢, My (t) will be much smaller than 2oy,7.

Now let us look at f‘ Gr(u)du:

ul>og,

2
2w 2
1 T e

[ Grtanl = [ G- [,
|ul>ay, |ul>ay, (14 (2mg, (t)o2(t)2)* Jlul>ey

= (1+ 2rey(H)o?(1)) / 2R g

|| > Sk

1+ @mey (1)o2(1)2

< (1+ 2rop ()02 (1)?) /| i 2 gy < (14 (276 (H)o2(1)%)

1 70

\/27'('14-\/1—7'07

where the last inequality follows from (58).

Finally we present the proof of Theorem 2. The proof of Theorem 2 Part (a) is similar to that
for Theorem 1 Part (a) and we skip the details.

Proof of Theorem 2 Part (b). Plugging 8;V,(t,7) in (82) to w2™®%¢ in (29), we have

e ol ng(itnv)n P+ 35 Zgﬁ(itn;)

- o {0 = STt + im0 072 1) — TV ) + R
o~ e ™ S et

= lt) D0 V;g;;) ! Z-%l;j; n ;?(t(tnr)n ot

— 40 + () wan”; e ;v“(t"f?) (127 ()6} (t) + Ress)

s B VR

27V (t,m) 27V (t,m)
= QZ);:(t) + Resy,

where the last third equation follows from (83). This shows (86).
For (87), with the assumptions |V, (t,1)| > & and

‘67] (‘N/xgl (t7 n)/vx(ta 77)) | =

Vx(ty 77)67]‘73691 (t, 77) - aﬂvz(tv n)f/iiql (tv 77) ’/’Vx(t, 77)’2 > g27
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we have

Res; V' (t,m)Ress
|Resy| = ‘ — - — ‘
2wV (t,m) i2m Ve (t,m)
_ | Ress V' (t,n) Vo (t,n)Resy — 8, Vi (t, n)Res; ‘
2rVy(t,n)  i2xVu(t,n) Vo(t,n)0,Va" (¢,n) — Vi (t,1)0,Va(t, n)
Resi| [0t (10aValt;m] [Resi| + |Va(t,m)]| [Ress] ) /IVa(t, m) |2

B 271—“7$(t777)| 27r“7$(t7 77)

Vi (t, )0y Vi (£, 1) — Vi (£,1) 0, Vit ’/!V t,n)]

Res; ~ ~
S+ gz V2 ) (9,1 1)| [Ress 45 [Resa). (93)

Thus |Ress| < Bdj, as desired. [

Proof of Theorem 2 Part (c). First we have the following result which can be derived as

that on p.254 in [8]:

lim RPN e = [ V(¢ n)dn, (94)
A0 Jie— gt (1) <25 221,82 7

where

O (V2 (8, 0)/Va(t,m)) | > B and (1) — w222t )| < 55},

Z,€1,€2

Zy={n: Va(t,n)| > &,
Denote

Wi = {n: [Valt,n)| > &1, |0y (VI (t,)/Vi(t,m))| > & and (t,n) € O }.

Then we have W; = Z;. Indeed, by Theorem 2 part (b), if n € W, then | ¢} (t) — w?aP2nd n)| <

T,21,82
Bd; < &3. Thus n € Z;. Hence Wy C Z,.
On the other hand, suppose n € Z;. Since \171(15, n)| > €1, by Theorem 2 part (a), (t,17) € Oy
foran £in {1,2,--- ,K}. If ¢ # k, then

dp,2nd dp,2nd
[64() — w224, )| > 64 (8) — G4(0)] — [dh(t) — w22t )|
> Lk(t) — gg > gg,
adp,2nd
x,E1,E2 (t 77)

used the fact |/ (¢ > Li(t) and |¢)(t) — w™P2 (¢ n)| < Bd; < &5 by Theorem 2 part
k 0

.'L’ ,€1,E2

(b). Hence ¢ =k and ne Wt. Thus we know Zt = W;.
The facts Z; = Wy and W N U = (), together with (94), imply that

and this contradicts to the assumption n e Zt with ‘(ﬁ;(t) —w ‘ < €3, where we have

lim RE2O g = [ Vattmdn= [ Vattdy— [ Vattmn
A0 Sl ()] <83 ’ W, W,UU; U

/ ~ V., (t,n)dn — / Ve (t, m)dn. (95)
(Vs (b [>E1 3N {m:(tm) €04 } U,

26



Furthermore,

o () / ) V(. m)dn — g(0)an(0)]
{IVa(t,m)|>e1}n{n:(t,n) €0}

— |o(t) / V. (t, mdn — g(0)zx(t) — o(t) V. (t, )|
{n:(t,;n)€0k}

/{|‘7x(t77l)|S51}ﬁ{771(t777)€0k}
K

< ot 22 4 |o(1) /{ oy (Gt + xeso)d — g O) (1)
n:(tm)€0ky  p_q

20y,

o(t)
+)Ag(t)|o(t) / Go,e(t,m)dn|

oy {n:@t;m €0k}
< 20k (&1 + o (o (1)) + }fﬂk(f)/ Gre(u)du — g(0)ay(t) — »"Ck(t)/ Grlu)du| + Y Ag(t)Mey(t)
R [u]>ou, £k

= 2ay,(81 + o ()Mo (1)) + |xx(t)g(0) — g(0)ax(t) — xx(t) /| | Gr(uw)du| + Y Ag(t) My (t)
ulza t£k

— 20 (&1 + o (OIa(t)) + 4¢(t) | [ L Grdn] £ A M),
ulzog £k

< 2e10p + o(t) o(t)p(t) + |$k(t) /| - Gr(u)du — g(O)xk(t)’

where we have used the fact:
/Rka)du = /Rf {707 (1)} (w)du = (7O g (7))

Hence, we have

__, = 9(0).

120

/| Vit — ai(0)| < B, (96)
9(0) S, (t.m) >3 30 {m: () €0k }

In addition,

_ K
|a(t) /Ut Vx(t,n)dn’ =o(t)| /Ut (;ﬂ?z(t)Gojg(t,ﬁ) —f—reSQ)dn‘

20y, /
< o(t) o(t)o(t) o) T o(t)Ak(t) sup G (o(t)(n — (1)) U] + #ZkAe(t)la(t) /{n:(t,n)eok} Go,e(t, n)dn|

< 2040 ()Mo (t) + o () A () lgll1 [Us] + Y Ae(t)Mei(t) < Bdy |g(0)].
£k

The above estimates, together with (95), lead to (90). This completes the proof of Theorem 2
part (c). [
Appendix

In this appendix, we provide the proofs of Lemmas 1 and 2. For simplicity of presentation, we

drop x,t,7n in XN/x(t,n).

27



Proof of Lemma 1. By (63) with g replaced by ¢/,

1 T ;
Ve — / )ei2m (@ (OT+3 &y ()7 ) g/ (——)e 2T 4 res)
Z =OMTIOL 0

K
_ e—izm(n— () rimgy (2 O (T /
;/ (! Z ‘ or (g(a(t)))dT+reSO
- Z/ o7 wy(t _Z%(n G(O)r+indy ()7 ) (7))d7 + res,
= 127['233@ 77 ¢€ )/ 67i27r(77*¢2(t))7'+i7r¢>;’(t)ng(L)dT
R

__i2ﬂ'§E:3%(t)¢Z(t)b/n€izﬂ(n¢2@»T+i”¢g(07279(E;))d7'+—re86
_ R g

K K
= i2mo(t) > we(t)(n — ¢)(t)Goslt,n) — i2ma>(t) Y we(t)dy (£)Ga,e(t, ) + res),.
=1 =1

This and (59) imply that

oV + ‘;/((tt)) (V + V%) — i2n),(t)V — i2n )l (t)o (t) VI

:iszf—agt)f/ — 27, (H)V — i2m g () o (t) VI
K

= i2n(n — (1)) (D we(t)Go (t,m) + reso)
/=1
K

K
_0-:(lt) (ZQT['O'(t) xé(t) (77 - (z)lé(t))GO,Z(t, 77) — 2102 (t) Z xg(t)gﬁg (t)GLg (t, 7]) —+ 1'686)
¢ /=1

[y

=

—m%®WKZw@%Nm+mQ

(=1

= i2m »  we(t)( $1.())Goe(t,n) + 20 (t) > wa(t) (b (1) — ¢, (£)Gae(t, )
£k ok

/
+i2m (n — ¢y,(t))reso — D _ 27 (t)o(t) res;

a(t)
= i2n By (t,n) + 20 (t) Di(t,n) + i2m (n — ¢}, (t))resy —
= Res.

L(t)o(t) res;

res
o(t)
This completes the proof of Lemma 1.

Proof of Lemma 2. One can obtain for j > 1,

o .
%ijk(t, 77) = —Z27TO'(t)G]+1,k:(t7 77)
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Thus we have
OyBi(t,n) = —i2n0(t)Ey(t,n), 0,Di(t,n) = —i2n0(t)Fi(t,n).
In addition, it is straightforward to verify that

- , r_ /
Opres; = —i2mwo(t) resjy1, Opres; = —i2mwo(t) res) 4.

Hence we have
OpResi = Ress. (97)

Taking the partial derivate with respect to n to both sides of (82) and using (97), we have

7 . / o'(t) o I T a'(t) , =
8778tv = (’LQT{'(bk(t) — W)anv =+ ZQF(ZSk(t)U(t)aanl — (t) anVQS =+ ReSQ. (98)
g g
Note that
Rt = ——————— (Va7 - 0,707 + 20 (7a,im — 720,7)).
VoV —vag, v\ ! o) !

Thus, by (82) and (98),

(Po(t,n) — i2ma(t) (1)) (VI VI — V99, V)

_ Vo017 —o,7a + ‘:((f)) (Vo,7% — 790, V) — i2mo(D)gl(t) (V,7% — 790, 7)
7 / (t 7 . 1" 17 (t 7
= V((iQngk(t) - (;((t)))anv + i2m ¢y (t)o (t)0, VI — Uo(t)) 0, V9 + ReSQ)
17 / ')\ . " 7 ') =
fanV((imek(t) - ‘;((t)) W+ i2n gl (o (VI — C;((t)) Vs 4 Resl)
LT G, — 790, 7) — izna(t)el (1) (VO,70 — V910, 7)

o(t)
=V Resy — 0,7‘7 Res;.
, V Reso—9,V R
Therefore, we have Py(t,n) — i2wo(t)¢)(t) = M
the proof of Lemma 2. |

= Ress, as desired. This completes
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