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Abstract

Recently the study of modeling a non-stationary signal as a superposition of amplitude and

frequency-modulated Fourier-like oscillatory modes has been a very active research area. The

synchrosqueezing transform (SST) is a powerful method for instantaneous frequency estimation

and component separation of non-stationary multicomponent signals. The short-time Fourier

transform-based SST (FSST for short) reassigns the frequency variable to sharpen the time-

frequency representation and to separate the components of a multicomponent non-stationary

signal. Very recently the FSST with a time-varying parameter, called the adaptive FSST,

was introduced. The simulation experiments show that the adaptive FSST is very promising

in instantaneous frequency estimation of the component of a multicomponent signal, and in

accurate component recovery. However the theoretical analysis of the adaptive FSST has not

been carried out. In this paper, we study the theoretical analysis of the adaptive FSST and

obtain the error bounds for the instantaneous frequency estimation and component recovery

with the adaptive FSST and the 2nd-order adaptive FSST.
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1 Introduction

To model a non-stationary oscillatory signal x(t) as

x(t) =

K∑
k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)
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with Ak(t), φ
′
k(t) > 0 is important to extract information, such as the underlying dynamics, hidden

in x(t).

The empirical mode decomposition (EMD) [10] is a widely used method for the representa-

tion of (1). Recently the continuous wavelet transform (CWT)-based synchrosqueezing transform

(WSST) developed in [8] provides a mathematically sound alternative to EMD. The short-time

Fourier transform (STFT)-based SST (FSST) was proposed in [24] and further studied in [27, 19].

Both WSST and FSST are a special type of the reassignment method [1]. WSST reassigns the

scale variable of the CWT to the frequency variable and FSST reassigns the frequency variable,

both aiming to sharpen the time-frequency representation and to separate the components of a

multicomponent non-stationary signal. SST was proved to be robust to noise and small perturba-

tions [23, 11, 17]. However SST does not provide sharp representations for signals with significant

changes of instantaneous frequency. In this regard, the 2nd-order FSST and the 2nd-order WSST

were introduced in [20] and [18] respectively, and theoretical analysis of the 2nd-order FSST was

carried out in [2]. The 2nd-order SST improves the concentration of the time-frequency repre-

sentation. Other SST related methods include the generalized WSST [13], a hybrid EMT-SST

computational scheme [7], the synchrosqueezed wave packet transform [28], WSST with vanish-

ing moment wavelets [5], the multitapered WSST [9], the demodulation-transform based SST

[25, 12, 26], higher-order FSST [21], signal separation operator [6] and empirical signal separation

algorithm [16]. The statistical analysis of synchrosqueezing transforms has been studied in [29].

Most of the WSST or FSST algorithms available in the literature are based on a continuous

(admissible) wavelet or a window function with a fixed window, which means high time resolution

and frequency resolution cannot be obtained simultaneously. For broadband signals, a narrow win-

dow is suitable for the high-frequency parts while a wide window is suitable for the low-frequency

parts. Recently the authors in [22] introduced a method to select the time-varying window width

for sharp SST representation by minimizing the Rényi entropy. The window width of the signal

separation operator algorithm in [6] is also time-varying. More recently the authors of [4, 3] study

the adaptive FSST with the window function containing time and frequency parameters. Very

recently the authors of [14, 15] proposed the adaptive WSST and adaptive FSST with a time-

varying adaptive Gaussian window. They obtain the well-separated condition for multicomponent

signals using linear frequency modulation signals to approximate a non-stationary signal during

any local time, along with a new definition of bandwidth of Gaussian window. The experiments

with synthetic and real data show that the adaptive FSST is very promising in instantaneous

frequency estimation of the component of a multicomponent signal, and in accurate component

recovery. However the theoretical analysis of the adaptive FSST has not been carried out. The

goal of this paper is to study the theoretical analysis of such an FSST. We obtain the error bounds

for the instantaneous frequency estimation and component recovery with the adaptive FSST and
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the 2nd-order adaptive FSST.

The rest of this paper is organized as follows. In Section 2 we briefly review FSST, the 2nd-

order FSST, the adaptive FSST and the 2nd-order adaptive FSST. In Section 3, we obtain the

theoretical analysis of the (1st-order) adaptive FSST. We establish the error bounds for the IF

estimation and component recovery. In Section 4, we consider the theoretical analysis of the 2nd-

order adaptive FSST. The error bounds for the IF estimation and component recovery for the

2nd-order adaptive FSST are obtained. The proofs of two lemmas are presented in the appendix.

2 Short-time Fourier transform-based synchrosqueezing trans-

form

In this section we briefly review the short-time Fourier transform (STFT)-based synchrosqueezing

transform (FSST) and the adaptive FSST. The (modified) STFT of x(t) ∈ L2(R) with a window

function g(t) ∈ L2(R) is defined by

Vx(t, η) :=

∫
R
x(τ)g(τ − t)e−i2πη(τ−t)dτ,

where t and η are the time variable and the frequency variable respectively.

The original signal x(t) can be recovered back from its STFT:

x(t) =
1

‖g‖22

∫
R

∫
R
Vx(τ, η)g(t− τ)ei2πη(t−τ)dτdη.

If g(0) 6= 0, then one can show that x(t) can also be recovered back from its STFT Vx(t, η) with

integrals involving only η:

x(t) =
1

g(0)

∫
R
Vx(t, η)dη. (2)

In addition, if the window function g(t) ∈ L2(R) is real, then for a real-valued x(t) ∈ L2(R), we

have

x(t) =
2

g(0)
Re
(∫ ∞

0
Vx(t, η)dη

)
. (3)

Here we remark that if the window function g(t) has certain smoothness and certain decaying

order as t→∞, then STFT Vx(t, η) of a slowly growing x(t) with g(t) is well defined. Furthermore,

the above formulas still hold. In this following, unless otherwise stated, we always assume a

window function g(t) has certain smoothness and decaying properties, and a signal x(t) is a

slowly growing function. In addition, in this paper we assume g(0) 6= 0. For a signal x(t), its

Fourier transform x̂(ξ) (maybe in the distribution sense) is defined by

x̂(ξ) :=

∫
R
x(t)e−i2πξtdt.
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2.1 STFT-based synchrosqueezing transform

The STFT-based synchrosqueezing transform (FSST) was first studied in [24]. For a signal x(t),

at (t, η) for which Vx(t, η) 6= 0, denote

ωx(t, η) := Re
( ∂tVx(t, η)

2πiVx(t, η)

)
.

The quantity ωx(t, η) is called the “phase transformation” [8] or “instantaneous frequency infor-

mation” in [24]. FSST is to reassign the frequency variable η by transforming STFT Vx(t, η) of

x(t) to a quantity, denoted by Rλx,γ(t, ξ), on the time-frequency plane:

Rλx,γ(t, ξ) :=

∫
|Vx(t,η)|>γ

Vx(t, η)
1

λ
h
(ξ − ωx(t, η)

λ

)
dη. (4)

where throughout this paper h(t) is a compactly supported function with certain smoothness and∫
R h(t)dt = 1. Throughout this paper

∫
|Vx(t,η)|>γ means the integral

∫
{η: |Vx(t,η)|>γ} with η over

the set {η : |Vx(t, η)| > γ}.
We consider multicomponent signals x(t) given by (1) with Ak(t), φk(t) satisfying

Ak(t) ∈ C1(R) ∩ L∞(R), φk(t) ∈ C2(R), (5)

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞. (6)

Let ε > 0 and 4 > 0, and let Bε,4 denote the set of multicomponent signals of (1) satisfying (5),

(6), and the following conditions:

|A′k(t)| ≤ εφ′k(t), |φ
′′
k(t)| ≤ εφ′k(t), t ∈ R; M

′′
k := sup

t∈R
|φ′′
k(t)| <∞, (7)

φ′k(t)− φ′k−1(t) ≥ 24, 2 ≤ k ≤ K, t ∈ R. (8)

The condition (8) is called the well-separated condition with resolution 4. For the well-separated

condition, [24] uses a stronger condition than that in (8):

inf
t∈R

φ′k(t)− sup
t∈R

φ′k−1(t) ≥ 24, 2 ≤ k ≤ K. (9)

The condition (7), which was considered in [27], means that Ak(t) and IF φ′k(t) change slowly

compared with φk(t). [19] uses another condition for the change of Ak(t) and IF φ′k(t) :

|A′k(t)| ≤ ε, |φ
′′
k(t)| ≤ ε, t ∈ R. (10)

We let Bε,4 denote the set of multicomponent signals of (1) satisfying (5), (6), (10) and well-

separated condition (8).

Let

Zk := {(t, η) : |η − φ′k(t)| < 4, t ∈ R}. (11)
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Then the well-separated condition (8) implies that Zk, 1 ≤ k ≤ K are not overlapping.

Denote

µ(t) := min
1≤k≤K

Ak(t), M(t) :=
K∑
k=1

Ak(t) (12)

and

Γ0(t) := KI1 + πI2M(t), Γ̃0(t) := KĨ1 + πĨ2M(t), (13)

where

In :=

∫
R
|τng(τ)|dτ, Ĩn :=

∫
R
|τng′(τ)|dτ, n = 1, 2, · · · . (14)

Theorem A. Let x(t) ∈ Bε,4 and g be a window function. Let µ(t),Γ0(t), Γ̃0(t) be defined by

(12) and (13). Suppose 2εΓ0(t) ≤ µ(t) and ε̃ satisfies

εΓ0(t) ≤ ε̃ ≤ µ(t)− εΓ0(t). (15)

Then we have the following statements.

(a) The set {η : |Vx(t, η)| > ε̃} can be represented as the union of disjoint non-empty sets

{η : |Vx(t, η)| > ε̃} ∩ {η : (t, η) ∈ Zk}, 1 ≤ k ≤ K.

(b) Suppose (t, η) satisfies |Vx(t, η)| > ε̃ and (t, η) ∈ Zk. Then

|ωx(t, η)− φ′k(t)| <
ε

ε̃

(
Γ0(t)4+

1

2π
Γ̃0(t)

)
. (16)

(c) Suppose that ε̃ satisfies
(
Γ0(t)4 + 1

2π Γ̃0(t)
)
ε/ε̃ ≤ 4. Then, for any k ∈ {1, · · · ,K} and

any ε̃3 satisfying
(
Γ0(t)4+ 1

2π Γ̃0(t)
)
ε/ε̃ ≤ ε̃3 ≤ 4, we have∣∣∣ lim

λ→0

1

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Rλx,ε̃(t, ξ)dξ − xk(t)
∣∣∣ ≤ 24(εΓ0(t) + ε̃)

|g(0)|
. (17)

(d) If x(t) ∈ Bε,4, then the above statements (a)-(c) hold with Γ0(t) and Γ̃0(t) in (13) replaced

by

Γ0(t) :=

K∑
k=1

{
φ′k(t)I1 +

1

2
M

′′
k I2 + πAk(t)(φ

′
k(t)I2 +

1

3
M

′′
k I3)

}
, (18)

Γ̃0(t) :=
K∑
k=1

{
φ′k(t)Ĩ1 +

1

2
M

′′
k Ĩ2 + πAk(t)(φ

′
k(t)Ĩ2 +

1

3
M

′′
k Ĩ3)

}
. (19)

Here we remark that ε̃ and ε̃3 in Theorem A could be a function of t.

If we choose ε̃ = ε1/3 and if ε is small enough such that

ε̃ ≤ min
{
4, 1

2
‖µ(t)‖∞,

∥∥∥ 1

Γ0(t)

∥∥∥1/2
∞
,
∥∥∥ 1

Γ0(t)4+ 1
2π Γ̃0(t)

∥∥∥
∞

}
, (20)
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then (15) holds. In addition, ε̃(Γ0(t)4+ 1
2π Γ̃0(t)) ≤ 1. Hence,(

Γ0(t)4+
1

2π
Γ̃0(t)

)
ε/ε̃ ≤ ε̃ ≤ 4.

Thus, the conditions in Theorem A are satisfied, and Theorem A (with ε̃3 = ε̃) can be stated in

the following theorem.

Theorem B. [27, 19] Let x(t) ∈ Bε,4 or Bε,4, and ε̃ = ε1/3. Let g be a window function with

supp(ĝ) ⊆ [−4,4]. If ε is small enough, then the following statements hold.

(a) For (t, η) satisfying |Vx(t, η)| > ε̃, there exists a unique k ∈ {1, 2, · · · ,K} such that (t, η) ∈
Zk.

(b) Suppose (t, η) satisfies |Vx(t, η)| > ε̃ and (t, η) ∈ Zk. Then

|ωx(t, η)− φ′k(t)| < ε̃.

(c) For any k ∈ {1, · · · ,K},∣∣∣ lim
λ→0

1

g(0)

∫
|ξ−φ′k(t)|<ε̃

Rλx,ε̃(t, ξ)dξ − xk(t)
∣∣∣ ≤ 44
|g(0)|

ε̃.

The meaning of “ε is small enough” in Theorem B is that ε̃ defined by ε̃ = ε1/3 satisfies

some inequalities like (20). Most theorems on the WSST and FSST analysis are stated in the

form of Theorem B, see e.g. [8, 24, 27, 19, 2]. Actually the statements of part (b) and part

(c) in Theorem A give us more direct bounds of the estimates. We call the quantity on the

left-hand side (LHS) of (16) the IF estimate error, and call that on LHS of (17) the error of

component recovery (or component separation). The statements in Theorem A can be found in

[27, 19, 2] but with some different IF estimate errors. For example, [19, 2] gave IF estimate error
ε
ε̃

(
Γ0(t)(4 + 2φ′k(t)) + 1

2π Γ̃0(t)
)

instead of ε
ε̃

(
Γ0(t)4 + 1

2π Γ̃0(t)
)

in (16). One can also find that

Theorem A is a special case of Theorem 1 in Section 3 below (see Remark 3).

Observe that the condition (7) or (10) requires the slow change of the IF φ′k(t) of each compo-

nent xk(t). There is no mathematical guarantee for the IF estimate and the component separation

for a multicomponent signal x(t) with a component xk(t) having a fast-changing frequency (e.g.

φ
′′
k(t), the changing rate of IF of xk(t), is not very small). To this regard, the 2nd-order FSST

was introduced in [20] and later the 2nd-order WSST was proposed in [18] with the theoretical

analysis of the 2nd-order FSST established in [2].

Suppose Vx(t, η) 6= 0 and ∂t
(∂ηVx(t,η)
Vx(t,η)

)
6= i2π. Denote

q̃(t, η) :=
∂t

(
∂tVx(t,η)
Vx(t,η)

)
∂t

(
i2πt− ∂ηVx(t,η)

Vx(t,η)

) .
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The 2nd-order FSST in [2] is defined as

R2nd,λ
x,γ (t, ξ) :=

∫
{|Vx(t,η)|>γ

Vx(t, η)
1

λ
h
(ξ − ω2nd

x (t, η)

λ

)
dη,

where ω2nd
x (t, η) is the phase transformation for the 2nd-order FSST: for (t, η) with Vx(t, η) 6= 0,

ω2nd
x (t, η) :=

 Re
{
∂tVx(t,η)
2πiVx(t,η)

}
+ Re

{
q̃(t, η)

∂ηVx(t,η)
i2πVx(t,η)

}
, if ∂t

(∂ηVx(t,η)
Vx(t,η)

)
6= i2π,

Re
{
∂tVx(t,η)
2πiVx(t,η)

}
, elsewhere.

Let ε > 0 and 4 > 0. B
(2)
ε,4 denote the set of multicomponent signals of (1) satisfying (6), the

well-separated condition (8), and the following conditions:

Ak(t) ∈ C2(R) ∩ L∞(R), φk(t) ∈ C3(R), φ
′′
k(t) ∈ L∞(R), (21)

|A′k(t)| ≤ ε, |A
′′
k(t)| ≤ ε, |φ(3)k (t)| ≤ ε, t ∈ R. (22)

Then for x(t) ∈ B(2)
ε,4, statements for the 2nd-order FSST similar to those in Theorem B hold,

under some conditions which are more complicated than (20). See [2] for the details. Observe

that there is no direct boundedness restriction on φ
′′
k(t) in the definition of B

(2)
ε,4.

2.2 Adaptive FSST with a time-varying parameter

We consider the window function given by

gσ(t) :=
1

σ
g(
t

σ
), (23)

where σ > 0 is a parameter, g(t) is a function with g(0) 6= 0 and having certain smoothness and

decaying order as t→∞. If

g(t) =
1√
2π
e−

t2

2 , (24)

then gσ(t) is the Gaussian window function. The parameter σ is also called the window width

in the time-domain of the window function gσ(t) since the time duration ∆gσ of gσ is σ (up to a

constant): ∆gσ = σ∆g, where ∆g is the time duration of g, which is defined as

∆g :=
(∫

R t
2|g(t)|2dt∫

R |g(t)|2dt

)1/2
.

For a signal x(t), the STFT of x(t) with a time-varying parameter is defined in [14] as

Ṽx(t, η) =

∫
R
x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ =

∫
R
x(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ, (25)

where σ = σ(t) > 0 is a differentiable function of t. Ṽx(t, η) is called the adaptive STFT of x(t)

with gσ.
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Before we move on to review the SST associated with the adaptive STFT, we introduce some

notations used in this and next sections. Denote

g1(τ) := τg(τ), g2(τ) := τ2g(τ), g3(τ) := τg′(τ).

Thus

g1,σ(τ) =
τ

σ2
g(
τ

σ
), g2,σ(τ) =

τ2

σ3
g(
τ

σ
), g3,σ(τ) =

τ

σ2
g′(
τ

σ
).

We use Ṽ
gj
x (t, η) and Ṽ g′

x (t, η) to denote the adaptive STFT defined by (25) with gσ replaced by

gj,σ and g′σ(τ) = 1
σg
′( τσ ) respectively, where 1 ≤ j ≤ 3.

For x(t) = Aei2πξ0t, one can show that (see [14]) if Ṽx(t, η) 6= 0, then ωadp,c
x (t, η) defined by

ωadp,c
x (t, η) :=

∂tṼx(t, η)

i2πṼx(t, η)
+

σ′(t)

i2πσ(t)
+
σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)
, (26)

is ξ0, the IF of x(t). Hence, for a general x(t), at (t, η) for which Ṽx(t, η) 6= 0, [14] defines the

real part of the quantity ωadp,c
x (t, η) in the above equation, denoted by ωadp

x (t, η), as the phase

transformation of the adaptive FSST:

ωadp
x (t, η) := Re

{ ∂tṼx(t, η)

i2πṼx(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g3

x (t, η)

i2πṼx(t, η)

}
, for Ṽx(t, η) 6= 0.

Then the (1st-order) adaptive FSST, denoted by Radp,λ
x,γ , is defined by

Radp,λ
x,γ (t, ξ) :=

∫
|Ṽx(t,η)|>γ

Ṽx(t, η)
1

λ
h
(ξ − ωadp

x (t, η)

λ

)
dη, (27)

where γ > 0, λ > 0 and h(t) is a compactly supported function as described in §2.1. Note

that here and below, the letter c in ωadp,c
x (t, η) denotes the complex-valued version of the phase

transformation.

Next we consider the 2nd-order adaptive FSST. For a linear chirp signal,

x(t) = Aei2πφ(t) = Aei2π(ct+
1
2
rt2), (28)

it was shown in [14] that ωadp,2nd,c
x defined below is c+ rt, the IF of x(t):

ωadp,2nd,c
x :=

σ′(t)

i2πσ(t)
+

∂tṼx(t, η)

i2πṼx(t, η)
− Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η) +

σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)
, (29)

for (t, η) satisfying ∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0, where

P0(t, η) :=
1

∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

){∂η(∂tṼx(t, η)

Ṽx(t, η)

)
+
σ′(t)

σ(t)
∂η

( Ṽ g3
x (t, η)

Ṽx(t, η)

)}
. (30)
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Thus the authors of [14] define the real part of ωadp,2nd,c
x as the phase transformation for the

2nd-order adaptive FSST. Namely, the phase transformation ωadp,2nd
x is defined by

ωadp,2nd
x (t, η) :=


Re
{
∂tṼx(t,η)

i2πṼx(t,η)

}
− Re

{
Ṽ
g1
x (t,η)

i2πṼx(t,η)
P0(t, η)

}
+ σ′(t)

σ(t) Re
{

Ṽ
g3
x (t,η)

i2πṼx(t,η)

}
,

if ∂
∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0;

Re
{
∂tṼx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{

Ṽ
g3
x (t,η)

i2πṼx(t,η)

}
, if ∂

∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

)
= 0, Ṽx(t, η) 6= 0,

Finally we define the 2nd-order adaptive FSST with Vx(t, η) 6= 0 and ∂
∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

)
6= 0 de-

scribed by thresholds γ1 > 0, γ2 > 0. More precisely, define

ωadp,2nd,c
x,γ1,γ2 (t, η) :=

 quantity in (29), if |Vx(t, η)| > γ1 and
∣∣ ∂
∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

∣∣ > γ2,

quantity in (26), if |Vx(t, η)| > γ1 and
∣∣ ∂
∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

∣∣ ≤ γ2.
Let ωadp,2nd

x,γ1,γ2 (t, η):=Re
(
ωadp,2nd,c
x,γ1,γ2 (t, η)

)
.

Again, let h(t) be a compactly supported function with certain smoothness and
∫
R h(t)dt = 1.

We define the 2nd-order adaptive FSST Radp,2nd,λ
x,γ1,γ2 by

Radp,2nd,λ
x,γ1,γ2 (t, ξ) :=

∫{
η: |Ṽx(t,η)|>γ1,

∣∣∂η(Ṽ g1x (t,η)/Ṽx(t,η)
)∣∣>γ2} Ṽx(t, η)

1

λ
h
(ξ − ωadp,2nd

x,γ1,γ2 (t, η)

λ

)
dη. (31)

3 Analysis of adaptive FSST

We assume

d′ := min
k∈{2,··· ,K}

min
t∈R

(φ′k(t)− φ′k−1(t)) > 0. (32)

Thus x(t) satisfies the well-separated condition (8) with resolution 4 = d′/2. However, the

value d′ may be very small. In this case, we cannot apply Theorem A directly. The reason

is that to guarantee the results in Theorem A to hold, the window function g needs to satisfy

supp(ĝ) ⊆ [−d′

2 ,
d′

2 ]. If d′ is quite small, then g has a very good frequency resolution, which implies

by the uncertainty principle that g has a very poor time resolution, or equivalently g has a very

large time duration, which results in large errors in the IF estimate and component recovery (see

Remark 4). We use the adaptive STFT and FSST to adjust the time-varying window width σ(t)

at certain local time t where the frequencies of two components are close.

In this section we consider the case that each component xk(t) = Ak(t)e
i2πφk(t) is approximated

locally by a sinusoidal signal. More precisely, we assume A′k(t) and φ
′′
k(t) are small:

|A′k(t)| ≤ ε1, |φ
′′
k(t)| ≤ ε2, t ∈ R, 1 ≤ k ≤ K, (33)

for some positive number ε1, ε2. Let Dε1,ε2 denote the set of multicomponent signals of (1)

satisfying (5), (6), (32) and (33).
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Let x(t) ∈ Dε1,ε2 . Write xk(t+ τ) as

xk(t+ τ) = xk(t)e
i2πφ′k(t)τ + (Ak(t+ τ)−Ak(t))ei2πφk(t+τ)

+xk(t)e
i2πφ′k(t)τ

(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ) − 1

)
.

Then we have

Ṽx(t, η) =

K∑
k=1

∫
R
xk(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=1

∫
R
xk(t)e

i2πφ′k(t)τ
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + rem0,

or

Ṽx(t, η) =

K∑
k=1

xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
+ rem0, (34)

where rem0 is the remainder for the expansion of Ṽx(t, η) in (34) given by

rem0 :=

K∑
k=1

∫
R

{
(Ak(t+ τ)−Ak(t))ei2πφk(t+τ) (35)

+xk(t)e
i2πφ′k(t)τ

(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ) − 1

)} 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ.

With |Ak(t+ τ)−Ak(t)| ≤ ε1|τ | and

|ei2π(φk(t+τ)−φk(t)−φ′k(t)τ) − 1| ≤ 2π|φk(t+ τ)− φk(t)− φ′k(t)τ | ≤ πε2|τ |2,

we have

|rem0| ≤
K∑
k=1

∫
R
ε1|τ |

1

σ(t)
|g(

τ

σ(t)
)|dτ +M(t)

∫
R
πε2|τ |2

1

σ(t)
|g(

τ

σ(t)
)|dτ

= Kε1I1σ(t) + πε2I2σ
2(t)M(t),

where In and M(t) are defined by (14) and (12) respectively. Hence we have

|rem0| ≤ σ(t)Λ0(t), (36)

where

Λ0(t) := Kε1I1 + πε2I2σ(t)M(t). (37)

Ṽ g′
x (t, η) can be expanded as (34) with remainder rem′0, defined as rem0 in (35) with g(τ)

replaced by g′(τ). Then we have the estimate for the remainder similar to (36). More precisely,

we have

|rem′0| ≤ σ(t)Λ̃0(t),
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where

Λ̃0(t) := Kε1Ĩ1 + πε2Ĩ2σ(t)M(t), (38)

with Ĩn defined in (14).

Remark 1. Condition (33) is essentially the condition (10). If Ak(t), φk(t) satisfy (7), then

we have a similar error bound for the expansion of Ṽx(t, η). More precisely, suppose Ak(t), φk(t)

satisfy

|A′k(t)| ≤ ε1φ′k(t), |φ
′′
k(t)| ≤ ε2φ′k(t), t ∈ R; M

′′
k := sup

t∈R
|φ′′
k(t)| <∞. (39)

Then (see [8])

|Ak(t+ τ)−Ak(t)| ≤ ε1|τ |(φ′k(t) +
1

2
M

′′
k |τ |),

|φk(t+ τ)− φk(t)− φ′k(t)τ | ≤ ε2τ2(
1

2
φ′k(t) +

1

6
M

′′
k |τ |).

Thus, we can expand Ṽx(t, η) as (34) with |rem0| ≤ σ(t)Λ0(t), where in this case Λ0(t) is

Λ0(t) := ε1

K∑
k=1

(
I1φ
′
k(t) +

1

2
M

′′
k I2σ(t)

)
+ πε2σ(t)

K∑
k=1

Ak(t)
(
I2φ
′
k(t) +

1

3
M

′′
k I3σ(t)

)
. (40)

With the condition of (39), we have an estimate σ(t)Λ̃0(t) for rem′0 with Λ̃0(t) defined by (40)

with Ij replaced by Ĩj. In this paper we consider the condition (33). The statements for theoretical

analysis of the adaptive FSST with condition (39) instead of (33) are still valid as long as Λ0(t)

in (37), Λ′0(t) in (38) and so on are replaced respectively by that in (40) and similar terms. This

also applies to the 2nd-order adaptive FSST in Section 4, where we will not repeat again this

discussion on the condition like (39). �

If the remainder rem0 in (34) is small, then the term xk(t)ĝ
(
σ(t)(η−φ′k(t)

)
in (34) governs the

time-frequency zone of the STFT Ṽxk of the kth component xk(t) of x(t). If in addition, g is band-

limited, that is ĝ is compactly supported, to say supp(ĝ) ⊂ [−4,4], then xk(t)ĝ
(
σ(t)(η − φ′k(t)

)
lies within the zone:

{(t, η) : |η − φ′k(t)| <
4
σ(t)

, t ∈ R}.

Thus the multicomponent signal x(t) is well-separated (that is Zk ∩Z` = ∅, k 6= `), provided that

σ(t) satisfies

σ(t) ≥ 24
φ′k(t)− φ′k−1(t)

, t ∈ R, k = 2, · · · ,K. (41)

Observe that our well-separated condition (41) is different from that in (8) considered in [27] and

[19].
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If ĝ is not compactly supported, we need to define the essential support of ĝ outside which

ĝ(ξ) ≈ 0. More precisely, for a given threshold 0 < τ0 < 1, if |ĝ(ξ)| ≤ τ0 for |ξ| ≥ α, then we say

ĝ(ξ) is essentially supported in [−α, α]. When |ĝ(ξ)| is even and decreasing for ξ ≥ 0, then α can

be obtained by solving

|ĝ(α)| = τ0. (42)

For example, when g is the Gaussian function given by (24), then, with ĝ(ξ) = e−2π
2ξ2 , the

corresponding α is given by

α =
1

2π

√
2 ln(

1

τ0
). (43)

For g with ĝ(ξ) essentially supported in [−α, α], we then define the time-frequency zone Zk of

the kth-component xk(t) of x(t) by

Zk := {(t, η) : |ĝ
(
σ(t)(η − φ′k(t)

)
| > τ0, t ∈ R} = {(t, η) : |η − φ′k(t)| <

α

σ(t)
, t ∈ R}. (44)

Thus the multicomponent signal x(t) is well-separated, if σ(t) satisfies

σ(t) ≥ 2α

φ′k(t)− φ′k−1(t)
, t ∈ R, k = 2, · · · ,K. (45)

In this case Zk ∩ Z` = ∅, k 6= `. In this section we assume that (45) holds for some σ(t). Due

to (32), there always exists C1(R) and bounded σ(t) such that (45) holds. For the sinusoidal

function-based adaptive FSST, the authors in [14] suggest to choose σ(t) as

σ1(t) := max{ 2α

φ′k(t)− φ′k−1(t)
, k = 2, · · · ,K}.

In practice, φ′k(t) is in general unknown and one needs to develop an algorithm to estimate it or

to provide an approximation to σ1(t).

Observe that for σ(t) satisfying (45), since φ′k(t) is bounded, we know

‖ 1

σ(t)
‖∞ <∞.

In addition, in this case

σ(t)|φ′k(t)− φ′`(t)| ≥ 2α|k − `|. (46)

Next we will present our analysis results on the adaptive FSST in Theorem 1 below, where α

is defined by (42), and
∑

` 6=k denotes
∑

`∈{1,··· ,K}\{k}. Ṽx(t, η) is the adaptive STFT of x(t) with

such a window function g that |ĝ(ξ)| is even and decreasing for ξ ≥ 0.

Theorem 1. Let x(t) ∈ Dε1,ε2 for some small ε1, ε2 > 0 and g be a window function. Let

µ(t),M(t),Λ0(t), Λ̃0(t) be defined by (12), (37) and (38). Suppose 2σ(t)Λ0(t) + 2τ0M(t) ≤ µ(t)

and ε̃1 satisfies

σ(t)Λ0(t) + τ0M(t) ≤ ε̃1 ≤ µ(t)− σ(t)Λ0(t)− τ0M(t). (47)
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Then the following statements hold.

(a) The set Ht := {η : |Ṽx(t, η)| > ε̃1} can be represented as the union of disjoint non-empty

sets Ht,k := Ht ∩ {η : (t, η) ∈ Zk}, 1 ≤ k ≤ K.

(b) For (t, η) with |Ṽx(t, η)| 6= 0, we have

ωadp,c
x (t, η)− φ′k(t) =

Rem1

i2πṼx(t, η)
, (48)

where

Rem1 := i2π
(
η − φ′k(t)

)
rem0 −

rem′0
σ(t)

+ i2π
∑
` 6=k

x`(t)
(
φ′`(t)− φ′k(t)

)
ĝ
(
σ(t)(η − φ′`(t))

)
. (49)

Hence, for (t, η) satisfying |Ṽx(t, η)| > ε̃1 and (t, η) ∈ Zk, we have

|ωadp
x (t, η)− φ′k(t)| < bd1, (50)

where

bd1 :=
1

ε̃1

(
αΛ0(t) +

1

2π
Λ̃0(t)

)
+

1

ε̃1
max

k∈{1,··· ,K}

{∑
6̀=k
A`(t)|φ′`(t)− φ′k(t)| sup

{u:|u|<α}

∣∣ĝ(u+ σ(t)(φ′k(t)− φ′`(t))
)∣∣}. (51)

(c) Suppose that ε̃1 satisfies the condition in part (a) and that bd1 in part (b) satisfies bd1 ≤
α
σ(t) . Then for ε̃3 satisfying bd1 ≤ ε̃3 ≤ α

σ(t) , we have

∣∣∣ lim
λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Radp,λ
x,ε̃1

(t, ξ)dξ − xk(t)
∣∣∣ ≤ bd2, (52)

where

bd2 :=
1

|g(0)|

{
2α(σ(t)Λ0(t) + ε̃1) +Ak(t)

∣∣ ∫
|u|≥α

ĝ(u)du
∣∣+
∑
` 6=k

A`(t)m`,k(t)
}
, (53)

with

m`,k(t) :=
∣∣ ∫
|u|≤α

ĝ
(
u+ σ(t)(φ′k(t)− φ′`(t))

)
du
∣∣.

Remark 2. When ĝ(ξ) is supported in [−α, α], we can set τ0 in Theorem 1 part (a) to be zero,

and thus, the condition (47) is

σ(t)Λ0(t) ≤ ε̃1 ≤ µ(t)− σ(t)Λ0(t). (54)
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In addition, in this case the 2nd term in (51) is zero, and m`,k(t) and
∫
|u|≥α ĝ(u)du in (53) are

also zero. Hence in this case, (51) and (52) are respectively reduced to

|ωadp
x (t, η)− φ′k(t)| ≤

1

ε̃1

(
αΛ0(t) +

1

2π
Λ̃0(t)

)
, (55)

and ∣∣∣ lim
λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Radp,λ
x,ε̃1

(t, ξ)dξ − xk(t)
∣∣∣ ≤ 2α(σ(t)Λ0(t) + ε̃1)

|g(0)|
, (56)

for any ε̃3 with 1
ε̃1

(
αΛ0(t) + 1

2π Λ̃0(t)
)
≤ ε̃3 ≤ α

σ(t) .

Furthermore, the statement of Theorem 1 can be written in the form of Theorem B. For sim-

plicity, we just consider the case ε1 = ε2. Write Λ0(t), Λ̃0(t) defined by (37) and (38) respectively

as

Λ0(t) = ε1λ0(t), Λ̃0(t) = ε1λ̃0(t),

with

λ0(t) := KI1 + πI2σ(t)M(t), λ̃0(t) := KĨ1 + πĨ2σ(t)M(t).

Let ε̃1 = ε31. If ε1 is small enough such that

ε̃1 ≤ min
{
α ‖ 1

σ(t)
‖∞,

1

2
‖µ(t)‖∞,

∥∥∥ 1

σ(t)λ0(t)

∥∥1/2
∞ ,

∥∥∥ 1

αλ0(t) + 1
2π λ̃0(t)

∥∥∥
∞

}
, (57)

then (54) holds and
1

ε̃1

(
αΛ0(t) +

1

2π
Λ̃0(t)

)
≤ ε̃1, and ε̃1 ≤ α

σ(t) .

Thus we have the following corollary. �

Corollary 1. Suppose x(t) ∈ Dε1,ε1 for some small ε1 > 0 and supp(ĝ) ⊆ [−α, α]. Let ε̃1 = ε31.

If ε1 is small enough such that (57) holds, then we have the following.

(a) For (t, η) satisfying |Ṽx(t, η)| > ε̃1, there exists a unique k ∈ {1, 2, · · · ,K} such that

(t, η) ∈ Zk.

(b) Suppose (t, η) satisfies |Ṽx(t, η)| > ε̃1 and (t, η) ∈ Zk. Then

|ωadp
x (t, η)− φ′k(t)| < ε̃1.

(c) For any k, 1 ≤ k ≤ K,∣∣∣ lim
λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃1

Radp,λ
x,ε̃1

(t, ξ)dξ − xk(t)
∣∣∣ ≤ 2α(σ(t)Λ0(t) + ε̃1)

|g(0)|
.

Remark 3. When σ(t) ≡ 1, Radp,λ
x,ε̃1

(t, ξ) is the regular FSST Rλx,ε̃1(t, ξ) defined by (4). Suppose

supp(ĝ) ⊆ [−α, α]. Then (50) and (52) (which, by Remark 2, are (55) and (56)) with ε1 = ε2 are

respectively (16) and (17) with ε = ε1,4 = α. Thus in the case σ(t) ≡ 1, Theorem 1 is reduced

to Theorem A, and Corollary 1 is Theorem B. �
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Remark 4. Observe that Λ0(t) and Λ̃0(t) defined by (37) and (38) respectively depend on σ(t).

Smaller σ(t) results in smaller Λ0(t) and Λ̃0(t), hence the corresponding ωadp
x (t, η) provides a more

accurate estimate for φ′k(t) as implied by (55) and the adaptive FSST in (52) gives a recovery of

xk(t) with a smaller error as shown in (56).

Remark 5. When ĝ(ξ) is not supported on [−α, α], but |ĝ(ξ)| decays fast as |ξ| → ∞, then the

terms in the summation for bd1 in (51) will be small as long as τ0 is small. Recall that we assume

|ĝ(ξ)| is even and decreasing. Then for ` = k − 1, since σ(t)(φ′k(t)− φ′k−1(t)) > 2α, we have for

|u| ≤ α, ∣∣ĝ(u+ σ(t)(φ′k(t)− φ′k−1(t))
)∣∣ ≤ |ĝ(u+ 2α

)
| ≤ |ĝ(α)| = τ0

Similarly, we have sup{|u|≤α}
∣∣ĝ(u+σ(t)(φ′k(t)−φ′k+1(t))

)∣∣ ≤ τ0. The quantities sup{|u|≤α}
∣∣ĝ(u+

σ(t)(φ′k(t)−φ′`(t))
)∣∣ for other ` 6= k−1, k, k+1 are much smaller than τ0 since σ(t)(φ′k(t)−φ′`(t))

is large (see (46)) and ĝ is rapidly decreasing. Thus the summation in bd1 is dominated by

τ0 maxk=2,···K−1{Ak+1(t)(φ
′
k+1(t)− φ′k(t)), Ak−1(t)(φ′k(t)− φ′k−1(t))}.

The functions m`,k(t) in (53) could be small if τ0 is small. More precisely, for ` = k − 1, we

have

mk−1,k(t) ≤
∫
|u|≤α

|ĝ
(
u+ σ(t)(φ′k(t)− φ′k−1(t))

)
|du

≤
∫
|u|≤α

|ĝ
(
u+ 2α

)
|du ≤ 2α|ĝ(α)| = 2ατ0.

We can show similarly that mk+1,k(t) ≤ 2ατ0. For other `, m`,k(t) will be much smaller than

2ατ0.

Finally, let us look at the term
∣∣ ∫
|u|≥α ĝ(u)du

∣∣. It will be small if α is large. Here we give an

estimate of this term when g(t) is the Gaussian function defined by (24). In this case, one can

obtain

∫
|u|≥α

e−2π
2u2du ≤ 1√

2π

e−2π
2α2

1 +
√

1− e−2π2α2
=

1√
2π

τ0
1 +
√

1− τ0
. (58)

To summarize, for g with ĝ(ξ) decaying rapidly as ξ → ∞, the statements in Corollary 1 hold if

the same conditions are assumed and that τ0 is small enough (and hence α is large enough). �

In the rest of this section, we give the proof of Theorem 1.

Proof of Theorem 1 Part (a). Clearly ∪Kk=1Ht,k ⊆ Ht. To show Ht ⊆ ∪Kk=1Ht,k, let η ∈ Ht.

We need to show (t, η) is in some Zk. Assume (t, η) 6∈ ∪Kk=1Zk. Then for any k, by the definition
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of Zk in (44), we have |ĝ
(
σ(t)(η − φ′k(t))

)
| ≤ τ0. Hence, by (34) and (36), we have

|Ṽx(t, η)| ≤
K∑
k=1

|xk(t)ĝ
(
σ(t)(η − φ′k(t))

)
|+ |rem0|

≤ τ0M(t) + σ(t)Λ0(t) ≤ ε̃1,

a contradiction to the assumption |Ṽx(t, η)| > ε̃1. Thus (t, η) is in some Z`. Hence η ∈ Ht,`. This

shows Ht = ∪Kk=1Ht,k.

Clearly Ht,k, 1 ≤ k ≤ K are disjoint since Zk, 1 ≤ k ≤ K are disjoint. Next we prove that each

Ht,k is non-empty by showing φ′k(t) ∈ Ht,k. It is enough to show φ′k(t) ∈ Ht since (t, φ′k(t)) ∈ Zk.
By (34) and (36) again, we have∣∣Ṽx(t, η)− xk(t)ĝ

(
σ(t)(η − φ′k(t))

∣∣ ≤∑
`6=k
|x`(t)ĝ

(
σ(t)(η − φ′`(t))

)
|+ |rem0|

≤
∑
` 6=k

A`(t)τ0 + σ(t)Λ0(t) < τ0M(t) + σ(t)Λ0(t).

This, together with the fact ĝ(0) = 1, leads to

|Ṽx(t, φ′k(t))| > |xk(t)ĝ(0)
∣∣− (τ0M(t) + σ(t)Λ0(t)

)
≥ µ(t)−

(
τ0M(t) + σ(t)Λ0(t)

)
≥ ε̃1.

This shows φ′k(t) ∈ Ht, and hence, Ht,k is non-empty. �

Proof of Theorem 1 Part (b). By a direct calculation, we have

∂tṼx(t, η) =
(
i2πη − σ′(t)

σ(t)

)
Ṽx(t, η)− σ′(t)

σ(t)
Ṽ g3
x (t, η)− 1

σ(t)
Ṽ g′
x (t, η). (59)

By (34) with g replaced by g′,

Ṽ g′
x (t, η) =

K∑
`=1

x`(t)(g
′)∧
(
σ(t)(η − φ′`(t))

)
+ rem′0

= i2πσ(t)

K∑
`=1

x`(t)(η − φ′`(t))ĝ
(
σ(t)(η − φ′`(t))

)
+ rem′0.

This and (59) imply that(
ωadp,c
x (t, η)− φ′k(t)

)
i2πṼx(t, η)

= ∂tṼx(t, η) +
σ′(t)

σ(t)

(
Ṽx(t, η) + Ṽ g3

x (t, η)
)
− i2πφ′k(t)Ṽx(t, η)

= i2πηṼx(t, η)− 1

σ(t)
Ṽ g′
x (t, η)− i2πφ′k(t)Ṽx(t, η)

= i2π
(
η − φ′k(t)

)( K∑
`=1

x`(t)ĝ
(
σ(t)(η − φ′`(t))

)
+ rem0

)
− 1

σ(t)

(
i2πσ(t)

K∑
`=1

x`(t)(η − φ′`(t))ĝ
(
σ(t)(η − φ′`(t))

)
+ rem′0

)

16



= i2π
(
η − φ′k(t)

)
rem0 −

rem′0
σ(t)

+ i2π
∑
`6=k

x`(t)(φ
′
`(t)− φ′k(t))ĝ

(
σ(t)(η − φ′`(t))

)
= Rem1.

This shows (48).

For (50), with the assumption |Ṽx(t, η)| > ε̃1, we have

|ωadp
x (t, η)− φ′k(t)| ≤ |ωadp,c

x (t, η)− φ′k(t)|

≤
∣∣∣ Rem1

i2πṼx(t, η)

∣∣∣ < |Rem1|
2πε̃1

≤ 1

ε̃1

{
|
(
η − φ′k(t)

)
|σ(t)Λ0(t) +

1

2π
Λ̃0(t) +

∑
`6=k

A`(t)|φ′`(t)− φ′k(t)| |ĝ
(
σ(t)(η − φ′`(t))

)
|
}

≤ 1

ε̃1

{
αΛ0(t) +

1

2π
Λ̃0(t) +

∑
6̀=k
A`(t)|φ′`(t)− φ′k(t)| |ĝ

(
σ(t)(η − φ′`(t))

)
|
}

≤ bd1,

as desired, where the second last inequality follows from |η − φ′k(t)| <
α
σ(t) since (t, η) ∈ Zk. �

Proof of Theorem 1 Part (c). First we have the following result which can be derived as

that on p.254 in [8]:

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

Radp,λ
x,ε̃1

(t, ξ)dξ =

∫
Xt

Ṽx(t, η)dη, (60)

where

Xt :=
{
η : |Ṽx(t, η)| > ε̃1 and

∣∣φ′k(t)− ωadp
x (t, η)

∣∣ < ε̃3
}
.

Let

Yt :=
{
η : |Ṽx(t, η)| > ε̃1 and (t, η) ∈ Zk

}
.

By Theorem 1 part (b), if η ∈ Yt, then
∣∣φ′k(t) − ωadp

x (t, η)
∣∣ < bd1 ≤ ε̃3. Thus η ∈ Xt. Hence

Yt ⊆ Xt.

On the other hand, suppose η ∈ Xt. Since |Ṽx(t, η)| > ε̃1, by Theorem 1 part (a), (t, η) ∈ Z`
for an ` in {1, 2, · · · ,K}. If ` 6= k, then by Theorem Theorem 1 part (b),∣∣φ′k(t)− ωadp

x (t, η)
∣∣ ≥ |φ′k(t)− φ′`(t)| − ∣∣φ′`(t)− ωadp

x (t, η)
∣∣

>
2α

σ(t)
− bd1 ≥

2α

σ(t)
− ε̃3 ≥ ε̃3,

since bd1 ≤ ε̃3 ≤ α
σ(t) . This contradicts to the assumption

∣∣φ′k(t) − ωadp
x (t, η)

∣∣ < ε̃3 since η ∈ Xt.

Hence ` = k and η ∈ Yt. Thus we get Xt = Yt. Therefore, from (60), we have

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

Radp,λ
x,ε̃1

(t, ξ)dξ =

∫
{|Ṽx(t,η)|>ε̃1}∩{η:(t,η)∈Zk}

Ṽx(t, η)dη. (61)
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Furthermore,∣∣ ∫
{|Ṽx(t,η)|>ε̃1}∩{η:(t,η)∈Zk}

Ṽx(t, η)dη − g(0)

σ(t)
xk(t)

∣∣
=
∣∣ ∫
{η:(t,η)∈Zk}

Ṽx(t, η)dη − g(0)

σ(t)
xk(t)−

∫
{|Ṽx(t,η)|≤ε̃1}∩{η:(t,η)∈Zk}

Ṽx(t, η)dη
∣∣

≤ ε̃1
2α

σ(t)
+
∣∣ ∫
{η:(t,η)∈Zk}

( K∑
`=1

x`(t)ĝ
(
σ(t)(η − φ′`(t))

)
+ rem0

)
dη − g(0)

σ(t)
xk(t)

∣∣
≤ ε̃1

2α

σ(t)
+ |rem0|

2α

σ(t)
+
∣∣ ∫
|η−φ′k(t)|<

α
σ(t)

xk(t)ĝ
(
σ(t)(η − φ′k(t))

)
dη − g(0)

σ(t)
xk(t)

∣∣
+
∑
6̀=k
A`(t)|

∫
|η−φ′k(t)|<

α
σ(t)

ĝ
(
σ(t)(η − φ′`(t))

)
dη|

= (|rem0|+ ε̃1)
2α

σ(t)
+
∣∣xk(t)
σ(t)

∫
|u|<α

ĝ(u)du− g(0)

σ(t)
xk(t)

∣∣
+
∑
6̀=k

A`(t)

σ(t)

∣∣ ∫
|u|<α

ĝ
(
u+ σ(t)(φ′k(t)− φ′`(t))

)
du
∣∣

= (|rem0|+ ε̃1)
2α

σ(t)

∣∣xk(t)
σ(t)

∫
R
ĝ(u)du− g(0)

σ(t)
xk(t)−

xk(t)

σ(t)

∫
|u|≥α

ĝ(u)du
∣∣+
∑
` 6=k

A`(t)

σ(t)
m`,k(t)

= (|rem0|+ ε̃1)
2α

σ(t)
+
∣∣xk(t)g(0)

σ(t)
− g(0)

σ(t)
xk(t)−

xk(t)

σ(t)

∫
|u|≥α

ĝ(u)du
∣∣+

1

σ(t)

∑
` 6=k

A`(t)m`,k(t)

≤
(
σ(t)Λ0(t) + ε̃1

) 2α

σ(t)
+
Ak(t)

σ(t)

∣∣ ∫
|u|≥α

ĝ(u)du
∣∣+

1

σ(t)

∑
`6=k

A`(t)m`,k(t).

The above estimate, together with (61), leads to (52). This completes the proof of Theorem 1

Part (c). �

4 Analysis of 2nd-order adaptive FSST

We consider multicomponent signals x(t) of (1) satisfying (21) and being well approximated locally

by a linear chirp signal of (28) with A′k(t) and φ
(3)
k (t) are small:

|A′k(t)| ≤ ε1, |φ
(3)
k (t)| ≤ ε3, t ∈ R, 1 ≤ k ≤ K, (62)

for some positive number ε1, ε3,

For a given t, we use Gk(ξ) to denote the Fourier transform of eiπσ(t)φ
′′
k (t)τ

2
g(τ), namely,

Gk(ξ) := F
(
eiπσ

2(t)φ
′′
k (t)τ

2
g(τ)

)(
ξ) =

∫
R
eiπσ

2(t)φ
′′
k (t)τ

2
g(τ)e−i2πξτdτ,

where F denotes the Fourier transform. Note that Gk(ξ) depends on t also if φ
′′
k(t) 6= 0. We drop

t in G` for simplicity.
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For each component xk(t) = Ak(t)e
i2πφk(t), we write xk(t+ τ) as

xk(t+ τ) = xk(t)e
i2π(φ′k(t)τ+

1
2
φ
′′
k (t)τ

2) + (Ak(t+ τ)−Ak(t))ei2πφk(t+τ)

+xk(t)e
i2π(φ′k(t)τ+

1
2
φ
′′
k (t)τ

2)
(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ−

1
2
φ
′′
k (t)τ

2) − 1
)
.

Then we have

Ṽx(t, η) =

K∑
k=1

∫
R
xk(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=1

∫
R
xk(t)e

i2π(φ′k(t)τ+
1
2
φ
′′
k (t)τ

2) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + res0 (63)

=

K∑
k=1

xk(t)Gk
(
σ(t)(η − φ′k(t))

)
+ res0, (64)

where

res0 :=
K∑
k=1

∫
R

{
(Ak(t+ τ)−Ak(t))ei2πφk(t+τ) (65)

+xk(t)e
i2π(φ′k(t)τ+

1
2
φ
′′
k (t)τ

2)
(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ−

1
2
φ
′′
k (t)τ

2) − 1
)} 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ.

To distinguish the different types of the remainders for the expansion of Ṽx(t, η) resulted from

different local approximations for xk(t+ τ), in this section we use “res”, which means residual, to

denote the remainder for the expansion of Ṽx(t, η) in (63).

With |Ak(t+ τ)−Ak(t)| ≤ ε1|τ | and

|ei2π(φk(t+τ)−φk(t)−φ′k(t)τ−
1
2
φ
′′
k (t)τ

2) − 1| ≤ 2π
1

6
sup
η∈R
|φ(3)k (η)τ3| ≤ π

3
ε2|τ |3,

we have

|res0| ≤
K∑
k=1

∫
R
ε1|τ |

1

σ(t)
|g(

τ

σ(t)
)|dτ +

K∑
k=1

Ak(t)

∫
R

π

3
ε3|τ |3

1

σ(t)
|g(

τ

σ(t)
)|dτ

= Kε1I1σ(t) +
π

3
ε3I3σ

3(t)M(t),

where In and M(t) are defined in (14) and (12) respectively. Hence we have

|res0| ≤ σ(t)Π0(t), (66)

where

Π0(t) := Kε1I1 +
π

3
ε3I3σ

2(t)M(t). (67)
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Thus if ε1, ε2 are small enough, then |res0| is small and hence, Gk
(
σ(t)(η − φ′k(t))

)
provides

the time-frequency zone for Ṽxk(t, η). In the following we describe those time-frequency zones

mathematically. Let 0 < τ0 < 1 be a given small number as the threshold. Denote

Ok := {(t, η) : |Gk
(
σ(t)(η − φ′k)

)
| > τ0, t ∈ R}. (68)

We assume again |Gk(ξ)| is even and decreasing for ξ ≥ 0. Then Ok can be written as

Ok = {(t, η) : |η − φ′k(t)| <
αk
σ(t)

, t ∈ R}. (69)

where αk = αk(t) is obtained by solving |Gk(ξ)| = τ0. We will assume the multicomponent signal

x(t) is well-separated, that is there is σ(t) such that

Ok ∩O` = ∅, k 6= `. (70)

As an example, let us look at what are Ok and αk(t) look like when g is the Gaussian function

defined by (24). One can obtain for this g (see [14]),

Gk(u) =
1√

1− i2πφ′′
k(t)σ2(t)

e
− 2π2u2

1+(2πφ
′′
k
(t)σ2(t))2

(1+i2πφ
′′
k (t)σ

2(t))

. (71)

Thus

|Gk(u)| = 1(
1 + (2πφ

′′
k(t)σ2(t))2

) 1
4

e
− 2π2

1+(2πφ
′′
k
(t)σ2(t))2

u2

. (72)

Therefore, in this case, assuming τ0(1 + (2πφ
′′
k(t)σ2(t))2)

1
4 ≤ 1,

αk =
√

1 + (2πφ
′′
k(t)σ2(t))2

1

2π

√
2 ln(

1

τ0
)− 1

2
ln(1 + (2πφ

′′
k(t)σ2(t))2). (73)

Authors of [14] consider a larger zone O′k in the time-frequency plane:

O′k :=
{

(t, η) : |η − φ′k(t)| <
α

σ(t)

(
1 + 2π|φ′′

k(t)|σ2(t)
)
, t ∈ R

}
. (74)

where α is defined by (43). They obtain that if for k = 2, · · · ,K,

4α
√
π
√
|φ′′k(t)|+ |φ′′k−1(t)| ≤ φ

′
k(t)− φ′k−1(t), and (75)

max
2≤k≤K

{ 4α

bk(t) +
√
bk(t)2 − 8αak(t)

}
≤ min

2≤k≤K

{ 4α

bk(t)−
√
bk(t)2 − 8αak(t)

}
, (76)

then the components xk(t), 1 ≤ k ≤ K of x(t) are well-separated in the time-frequency plane in

the sense that O′k ∩O′` = ∅, k 6= `, where

ak(t) := 2πα(|φ′′k−1(t)|+ |φ′′k(t)|), bk(t) := φ′k(t)− φ′k−1(t).
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[14] shows that any σ(t) between the two quantities in (76) separates the components xk(t) of

x(t) in the time-frequency plane, and it suggests to choose σ(t) to be

σ2(t) := max
2≤k≤K

{ 4α

bk(t) +
√
bk(t)2 − 8αak(t)

}
. (77)

Let g be a window function with |ĝ(ξ)| even and decreasing for ξ ≥ 0. Let D(2)
ε1,ε2 denote the

set of multicomponent signals of (1) satisfying (21), (32), (62) and that x(t) is well-separated

with g, that is there is σ(t) such that (70) holds.

We introduce more notations to describe our main theorem on the 2nd-order adaptive FSST.

For j ≥ 0, denote

Gj,k(t, η) :=

∫
R
ei2π(φ

′
k(t)τ+

1
2
φ
′′
k (t)τ

2) τ j

σ(t)j+1
g(

τ

σ(t)
)e−i2πητdτ (78)

= F
(
eiπσ

2(t)φ
′′
k (t)τ

2
τ jg(τ)

)(
σ(t)(η − φ′k(t))

)
.

Clearly,

G0,k(t, η) = Gk
(
σ(t)(η − φ′k(t))

)
,

and one can obtain for j ≥ 1,

Gj,k(t, η) =
1

(−i2π)j
G

(j)
k

(
σ(t)(η − φ′k(t))

)
. (79)

Let res1, res2, res′0, and res′1 be the residuals defined as res0 in (65) with g(τ) replaced respec-

tively by g1(τ), g2(τ), g′(τ), and g3(τ) = τg′(τ). Then we have the estimates for these residuals

similar to (66). More precisely, we have

|res1| ≤ σ(t)Π1(t), |res2| ≤ σ(t)Π2(t), |res′0| ≤ σ(t)Π̃0(t), |res′1| ≤ σ(t)Π̃1(t),

where

Π1(t) := Kε1I2 +
π

3
ε3I4σ

2(t)M(t), Π2(t) := Kε1I3 +
π

3
ε3I5σ

2(t)M(t),

Π̃0(t) := Kε1Ĩ1 +
π

3
ε3Ĩ3σ

2(t)M(t), Π̃1(t) := Kε1Ĩ2 +
π

3
ε3Ĩ4σ

2(t)M(t),

with In, Ĩn defined in (14).

Denote

Bk(t, η) :=
∑
` 6=k

x`(t)
(
φ′`(t)− φ′k(t)

)
G0,`(t, η), Dk(t, η) :=

∑
` 6=k

x`(t)
(
φ

′′
` (t)− φ′′

k(t)
)
G1,`(t, η),

Ek(t, η) :=
∑
6̀=k
x`(t)

(
φ′`(t)− φ′k(t)

)
G1,`(t, η), Fk(t, η) :=

∑
`6=k

x`(t)
(
φ

′′
` (t)− φ′′

k(t)
)
G2,`(t, η),
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and

Res1 := i2πBk(t, η) + i2πσ(t)Dk(t, η) + i2π
(
η − φ′k(t)

)
res0 −

res′0
σ(t)

− i2πφ′′
k(t)σ(t)res1, (80)

Res2 := 4π2σ(t)Ek(t, η) + 4π2σ2(t)Fk(t, η) (81)

+i2π res0 + 4π2
(
η − φ′k(t)

)
σ(t) res1 + i2π res′1 − 4π2φ

′′
k(t)σ2(t) res2.

Next we will provide Theorem 2 on the 2nd-order adaptive FSST, which also consists of parts

(a)-(c). The proof of part (b) is based on the following two lemmas whose proof is postponed to

Appendix.

Lemma 1. Let Res1 be the quantity defined by (80). Then

∂tṼx(t, η) =
(
i2πφ′k(t)−

σ′(t)

σ(t)

)
Ṽx(t, η) + i2πφ′′k(t)σ(t)Ṽ g1

x (t, η)− σ′(t)

σ(t)
Ṽ g3
x (t, η) + Res1. (82)

Lemma 2. Let P0(t, η) be the quantity defined by (30). Then for (t, η) satisfying Vx(t, η) 6= 0 and
∂
∂η

(
Ṽ
g1
x (t,η)

Ṽx(t,η)

)
6= 0, we have

P0(t, η) = i2πσ(t)φ′′k(t) + Res3, (83)

where

Res3 :=
Ṽx(t, η) Res2 − ∂ηṼx(t, η) Res1

Ṽx(t, η)∂ηṼ
g1
x (t, η)− Ṽ g1

x (t, η)∂ηṼx(t, η)
, (84)

with Res1 and Res2 defined by (80) and (81) respectively.

Denote

M`,k(t) := σ(t)

∫
{η: (t,η)∈Ok}

|G0,`(t, η)|dη =

∫
|u|<αk

|G`
(
u+ σ(t)(φ′k(t)− φ′`(t))

)
|du. (85)

Theorem 2. Suppose x(t) ∈ D(2)
ε1,ε3 with a window function g(t) for some small ε1, ε3 > 0. Let

µ(t),M(t),Π0(t) be defined by (12) and (67). Suppose 2σ(t)Π0(t)+2τ0M(t) ≤ µ(t) and ε̃1 satisfies

σ(t)Π0(t) + τ0M(t) ≤ ε̃1 ≤ µ(t)− σ(t)Π0(t)− τ0M(t).

Then the following statements hold.

(a) The set Ht := {η : |Ṽx(t, η)| > ε̃1} can be represented as the union of disjoint non-empty

sets Ht,k := Ht ∩ {η : (t, η) ∈ Ok}, 1 ≤ k ≤ K.

(b) Suppose (t, η) satisfies |Ṽx(t, η)| > ε̃1, |∂η
(
Ṽ g1
x (t, η)/Ṽx(t, η)

)
| > ε̃2, and (t, η) ∈ Ok. Then

ωadp,2nd,c
x (t, η)− φ′k(t) = Res4, (86)

where

Res4 :=
Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)Res3

i2πṼx(t, η)
.
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Furthermore,

|ωadp,2nd
x (t, η)− φ′k(t)| < Bd1, (87)

where

Bd1 := max
1≤k≤K

sup
η∈Ok

{ |Res1|
2πε̃1

+
1

2πε̃31ε̃2
|Ṽ g1
x (t, η)|

(
|∂ηṼx(t, η)| |Res1|+ ε̃1|Res2|

)}
. (88)

(c) Suppose that ε̃1 satisfies the condition in part (a) and Bd1 ≤ 1
2Lk(t), where

Lk(t) :=
1

σ(t)
min{αk + αk−1, αk + αk+1}. (89)

Then for any ε̃3 = ε̃3(t) > 0 satisfying Bd1 ≤ ε̃3 ≤ 1
2Lk(t),∣∣∣ lim

λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Radp,2nd,λ
x,ε̃1,ε̃2

(t, ξ)dξ − xk(t)
∣∣∣ ≤ Bd2, (90)

where Bd2 = Bd′2 + Bd
′′
2 with

Bd′2 := 1
|g(0)|

{
2αk

(
ε̃1 + σ(t)Π0(t)

)
+Ak(t)

∣∣ ∫
|u|≥αk Gk(u)du

∣∣+
∑

` 6=k A`(t)M`,k(t)
}
,

Bd
′′
2 := 1

|g(0)|
{

2αkσ(t)Π0(t)
)

+ σ(t)Ak(t) ‖g‖1|Ut|+
∑

`6=k A`(t)M`,k(t)
} (91)

and |Ut| denoting the Lebesgue measure of the set Ut:

Ut := {η : (t, η) ∈ Ok, |Vx(t, η)| > ε̃1,
∣∣∂η(Ṽ g1

x (t, η)/Ṽx(t, η)
)∣∣ ≤ ε̃2}. (92)

We postpone the proof of Theorem 2 to the end of this section.

Remark 6. With the decay conditions of Gk(u) and Gj,`(t, η), Theorem 2 can be stated in the

formulation in Corollary 1. Here instead of giving such a statement for the 2nd-order adaptive

FSST as in Corollary 1, we look at the estimate bounds when g(t) is the Gaussian function given

by (24).

First we look at the bounds for Res1,Res2. From (80) and (81), we have

|Res1| ≤ 2π|Bk(t, η)|+ 2πσ(t)|Dk(t, η)|+ 2παkΠ0(t) + Π2(t) + 2π|φ′′
k(t)|σ2(t)Π1(t),

|Res2| ≤ 4π2σ(t)|Ek(t, η)|+ 4π2σ2(t)|Fk(t, η)|

+2πσ(t)Π0(t) + 4π2αkσ(t)Π1(t) + 2πσ(t)Π̃1(t) + 4π2|φ′′
k(t)|σ3(t) Π2(t).

We need to look at the estimates for Bk(t, η), Dk(t, η), Ek(t, η), Fk(t, η), which are determined by

Gj,`(t, η), for (t, η) ∈ Ok.
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When g(t) is given by (24), then Gk(u) is given by (71), and αk by solving |Gk(u)| = τ0 for u

is given by (73). For (t, η) ∈ Ok, we have

η − φ′k−1(t) ≥ φ′k(t)−
αk
σ(t)

− φ′k−1(t) ≥
(αk−1
σ(t)

+
αk
σ(t)

)
− αk
σ(t)

=
αk−1
σ(t)

.

Thus

|G0,k−1(t, η)| = |Gk−1(σ(η − φ′k−1(t))| ≤ |Gk−1(αk−1)| = τ0.

Similarly, we can obtain for (t, η) ∈ Ok

|G0,k+1(t, η)| ≤ τ0.

For other `, |G0,`(t, η)| is much smaller than τ0.

Gj,`(t, η) can be estimated similarly. For example, for G1,k−1(t, η), with (79) and

G′k−1(u) = Gk−1(u)(−2u)
2π2
(
1 + i2πφ

′′
k−1(t)σ

2(t)
)

1 +
(
2πφ

′′
k−1(t)σ

2(t)
)2 ,

we have

|G1,k−1(t, η)| = 1

2π
|G′k−1

(
σ(t)(η − φ′k−1(t))

)
|

= |Gk−1
(
σ(t)(η − φ′k−1(t))

)
|

2π|σ(t)(η − φ′k−1(t))|√
1 +

(
2πφ

′′
k−1(t)σ

2(t)
)2

≤ |Gk−1
(
αk−1

)
| 2π(φ′k(t)− φ′k−1(t) + αk) = 2πτ0(φ

′
k(t)− φ′k−1(t) + αk).

since for (t, η) ∈ Ok, αk−1 ≤ σ(t)(η − φ′k−1(t)) ≤ φ′k(t)− φ′k−1(t) + αk. We also can get

|G1,k+1(t, η)| ≤ 2πτ0(φ
′
k+1(t)− φ′k(t) + αk).

For other `, |G1,`(t, η)| are much smaller than 2πτ0(φ
′
k(t)−φ′k−1(t)+αk) or 2πτ0(φ

′
k+1(t)−φ′k(t)+

αk).

For other j, one can show that |Gj,k±1(t, η)| are bounded by Ckτ0, where Ck is a polynomial

of (|φ′k±1(t)− φ′k(t)|+ αk), and |Gj,`(t, η)| for other ` with |`− k| ≥ 2 are much smaller.

By the above discussion, we can conclude that for (t, η) ∈ Ok, Bk(t, η), Dk(t, η), Ek(t, η), Fk(t, η)

are dominated by C ′kτ0, where C ′k is a polynomial of (φ′k(t)−φ′k−1(t)+αk) and (φ′k+1(t)−φ′k(t)+αk)
with degree ≤ 2. Therefore, if ε1, ε3, τ0 are small, then Bd1 in (88) is small.

Next we look at Bd2 in (91). First we consider M`,k(t) defined by (85). For ` = k − 1, since

σ(t)(φ′k(t)− φ′k−1(t)) > αk−1 + αk and |Gk−1(u)| is a decreasing and even function of u, we have

Mk−1,k(t) =

∫
|u|<αk

|Gk−1
(
u+ σ(t)(φ′k(t)− φ′k−1(t))

)
|du

≤
∫
|u|<αk

|Gk−1(u+ αk−1 + αk)|du

≤ 2αk|Gk−1(αk−1)| = 2αkτ0.
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We can show similarly Mk+1,k(t) ≤ 2αkτ0. For other `, M`,k(t) will be much smaller than 2αkτ0.

Now let us look at
∫
|u|≥αk Gk(u)du:

|
∫
|u|≥αk

Gk(u)du| ≤
∫
|u|≥αk

|Gk(u)|du =
1(

1 + (2πφ
′′
k(t)σ2(t))2

) 1
4

∫
|u|≥αk

e
− 2π2

1+(2πφ
′′
k
(t)σ2(t))2

u2

du

=
(
1 + (2πφ

′′
k(t)σ2(t))2

) 1
4

∫
|u|≥ αk√

1+(2πφ
′′
k
(t)σ2(t))2

e−2π
2u2du

≤
(
1 + (2πφ

′′
k(t)σ2(t))2

) 1
4

∫
|u|≥α

e−2π
2u2du ≤

(
1 + (2πφ

′′
k(t)σ2(t))2

) 1
4

1√
2π

τ0
1 +
√

1− τ0
,

where the last inequality follows from (58).

Finally we present the proof of Theorem 2. The proof of Theorem 2 Part (a) is similar to that

for Theorem 1 Part (a) and we skip the details.

Proof of Theorem 2 Part (b). Plugging ∂tṼx(t, η) in (82) to ωadp,2nd,c
x in (29), we have

ωadp,2nd,c
x =

∂tṼx(t, η)

i2πṼx(t, η)
+

σ′(t)

i2πσ(t)
− Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η) +

σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)

=
1

i2πṼx(t, η)

{(
i2πφ′k(t)−

σ′(t)

σ(t)

)
Ṽx(t, η) + i2πφ′′k(t)σ(t)Ṽ g1

x (t, η)− σ′(t)

σ(t)
Ṽ g3
x (t, η) + Res1

}
+

σ′(t)

i2πσ(t)
− Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η) +

σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)

= φ′k(t) + φ′′k(t)σ(t)
Ṽ g1
x (t, η)

Ṽx(t, η)
+

Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η)

= φ′k(t) + φ′′k(t)σ(t)
Ṽ g1
x (t, η)

Ṽx(t, η)
+

Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)

i2πṼx(t, η)

(
i2πσ(t)φ′′k(t) + Res3

)
= φ′k(t) +

Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)Res3

i2πṼx(t, η)

= φ′k(t) + Res4,

where the last third equation follows from (83). This shows (86).

For (87), with the assumptions |Ṽx(t, η)| > ε̃1 and

|∂η
(
Ṽ g1
x (t, η)/Ṽx(t, η)

)
| =

∣∣∣Ṽx(t, η)∂ηṼ
g1
x (t, η)− ∂ηṼx(t, η)Ṽ g1

x (t, η)
∣∣∣/|Ṽx(t, η)|2 > ε̃2,
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we have

|Res4| =
∣∣∣ Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)Res3

i2πṼx(t, η)

∣∣∣
=
∣∣∣ Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)

i2πṼx(t, η)

Ṽx(t, η)Res2 − ∂ηṼx(t, η)Res1

Ṽx(t, η)∂ηṼ
g1
x (t, η)− Ṽ g1

x (t, η)∂ηṼx(t, η)

∣∣∣
≤ |Res1|

2π|Ṽx(t, η)|
+
|Ṽ g1
x (t, η)|

2π|Ṽx(t, η)|

(
|∂ηṼx(t, η)| |Res1|+ |Ṽx(t, η)| |Res2|

)/
|Ṽx(t, η)|2∣∣∣Ṽx(t, η)∂ηṼ

g1
x (t, η)− Ṽ g1

x (t, η)∂ηṼx(t, η)
∣∣∣/|Ṽx(t, η)|2

<
|Res1|
2πε̃1

+
1

2πε̃31ε̃2
|Ṽ g1
x (t, η)|

(
|∂ηṼx(t, η)| |Res1|+ ε̃1 |Res2|

)
. (93)

Thus |Res4| < Bd1, as desired. �

Proof of Theorem 2 Part (c). First we have the following result which can be derived as

that on p.254 in [8]:

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

Radp,2nd,λ
x,ε̃1,ε̃2

(t, ξ)dξ =

∫
Zt

Ṽx(t, η)dη, (94)

where

Zt :=
{
η : |Ṽx(t, η)| > ε̃1,

∣∣∂η(Ṽ g1
x (t, η)/Ṽx(t, η)

)∣∣ > ε̃2 and
∣∣φ′k(t)− ωadp,2nd

x,ε̃1,ε̃2
(t, η)

∣∣ < ε̃3
}
.

Denote

Wt :=
{
η : |Ṽx(t, η)| > ε̃1,

∣∣∂η(Ṽ g1
x (t, η)/Ṽx(t, η)

)∣∣ > ε̃2 and (t, η) ∈ Ok
}
.

Then we have Wt = Zt. Indeed, by Theorem 2 part (b), if η ∈Wt, then
∣∣φ′k(t)− ωadp,2nd

x,ε̃1,ε̃2
(t, η)

∣∣ <
Bd1 ≤ ε̃3. Thus η ∈ Zt. Hence Wt ⊆ Zt.

On the other hand, suppose η ∈ Zt. Since |Ṽx(t, η)| > ε̃1, by Theorem 2 part (a), (t, η) ∈ O`
for an ` in {1, 2, · · · ,K}. If ` 6= k, then∣∣φ′k(t)− ωadp,2nd

x,ε̃1,ε̃2
(t, η)

∣∣ ≥ |φ′k(t)− φ′`(t)| − ∣∣φ′`(t)− ωadp,2nd
x,ε̃1,ε̃2

(t, η)
∣∣

> Lk(t)− ε̃3 ≥ ε̃3,

and this contradicts to the assumption η ∈ Zt with
∣∣φ′k(t) − ωadp,2nd

x,ε̃1,ε̃2
(t, η)

∣∣ < ε̃3, where we have

used the fact |φ′k(t) − φ′`(t)| ≥ Lk(t) and
∣∣φ′`(t) − ωadp,2nd

x,ε̃1,ε̃2
(t, η)

∣∣ < Bd1 ≤ ε̃3 by Theorem 2 part

(b). Hence ` = k and η ∈Wt. Thus we know Zt = Wt.

The facts Zt = Wt and Wt ∩ Ut = ∅, together with (94), imply that

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

Radp,2nd,λ
x,ε̃1,ε̃2

(t, ξ)dξ =

∫
Wt

Ṽx(t, η)dη =

∫
Wt∪Ut

Ṽx(t, η)dη −
∫
Ut

Ṽx(t, η)dη

=

∫
{|Ṽx(t,η)|>ε̃1}∩{η:(t,η)∈Ok}

Ṽx(t, η)dη −
∫
Ut

Ṽx(t, η)dη. (95)
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Furthermore,∣∣σ(t)

∫
{|Ṽx(t,η)|>ε̃1}∩{η:(t,η)∈Ok}

Ṽx(t, η)dη − g(0)xk(t)
∣∣

=
∣∣σ(t)

∫
{η:(t,η)∈Ok}

Ṽx(t, η)dη − g(0)xk(t)− σ(t)

∫
{|Ṽx(t,η)|≤ε̃1}∩{η:(t,η)∈Ok}

Ṽx(t, η)dη
∣∣

≤ σ(t)ε̃1
2αk
σ(t)

+
∣∣σ(t)

∫
{η:(t,η)∈Ok}

( K∑
`=1

x`(t)G0,`(t, η) + res0
)
dη − g(0)xk(t)

∣∣
≤ 2ε̃1αk + σ(t) σ(t)Π0(t)

2αk
σ(t)

+
∣∣xk(t)∫

|u|<αk
Gk(u)du− g(0)xk(t)

∣∣
+
∑
6̀=k
A`(t)|σ(t)

∫
{η:(t,η)∈Ok}

G0,`(t, η)dη|

≤ 2αk
(
ε̃1 + σ(t)Π0(t)

)
+
∣∣xk(t)∫

R
Gk(u)du− g(0)xk(t)− xk(t)

∫
|u|≥αk

Gk(u)du
∣∣+
∑
`6=k

A`(t)M`,k(t)

= 2αk
(
ε̃1 + σ(t)Π0(t)

)
+
∣∣xk(t)g(0)− g(0)xk(t)− xk(t)

∫
|u|≥αk

Gk(u)du
∣∣+
∑
`6=k

A`(t)M`,k(t)

= 2αk
(
ε̃1 + σ(t)Π0(t)

)
+Ak(t)

∣∣ ∫
|u|≥αk

Gk(u)du
∣∣+
∑
`6=k

A`(t)M`,k(t),

where we have used the fact:∫
R
Gk(u)du =

∫
R
F
{
eiπφ

′′
k (t)τ

2
g(τ)

}
(u)du =

(
eiπφ

′′
k (t)τ

2
g(τ)

)∣∣∣
τ=0

= g(0).

Hence, we have ∣∣σ(t)

g(0)

∫
{|Ṽx(t,η)|>ε̃1}∩{η:(t,η)∈Ok}

Ṽx(t, η)dη − xk(t)
∣∣ ≤ Bd′2. (96)

In addition,

∣∣σ(t)

∫
Ut

Ṽx(t, η)dη
∣∣ = σ(t)

∣∣ ∫
Ut

( K∑
`=1

x`(t)G0,`(t, η) + res0
)
dη
∣∣

≤ σ(t) σ(t)Π0(t)
2αk
σ(t)

+ σ(t)Ak(t) sup
η∈Ut
|Gk
(
σ(t)(η − φ′

k(t)
)
| |Ut|+

∑
`6=k

A`(t)|σ(t)

∫
{η:(t,η)∈Ok}

G0,`(t, η)dη|

≤ 2αkσ(t)Π0(t) + σ(t)Ak(t)‖g‖1 |Ut|+
∑
`6=k

A`(t)M`,k(t) ≤ Bd
′′
2 |g(0)|.

The above estimates, together with (95), lead to (90). This completes the proof of Theorem 2

part (c). �

Appendix

In this appendix, we provide the proofs of Lemmas 1 and 2. For simplicity of presentation, we

drop x, t, η in Ṽx(t, η).
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Proof of Lemma 1. By (63) with g replaced by g′,

Ṽ g′ =
K∑
`=1

∫
R
x`(t)e

i2π(φ′`(t)τ+
1
2
φ
′′
` (t)τ

2) 1

σ(t)
g′(

τ

σ(t)
)e−i2πητdτ + res′0

=

K∑
`=1

∫
R
x`(t)e

−i2π(η−φ′`(t))τ+iπφ
′′
` (t)τ

2 ∂

∂τ

(
g(

τ

σ(t)
)
)
dτ + res′0

= −
K∑
`=1

∫
R

∂

∂τ

(
x`(t)e

−i2π(η−φ′`(t))τ+iπφ
′′
` (t)τ

2
)
g(

τ

σ(t)
)dτ + res′0

= i2π

K∑
`=1

x`(t)(η − φ′`(t))
∫
R
e−i2π(η−φ

′
`(t))τ+iπφ

′′
` (t)τ

2
g(

τ

σ(t)
)dτ

−i2π
K∑
`=1

x`(t)φ
′′
` (t)

∫
R
e−i2π(η−φ

′
`(t))τ+iπφ

′′
` (t)τ

2
τg(

τ

σ(t)
)dτ + res′0

= i2πσ(t)

K∑
`=1

x`(t)(η − φ′`(t))G0,`(t, η)− i2πσ2(t)
K∑
`=1

x`(t)φ
′′
` (t)G1,`(t, η) + res′0.

This and (59) imply that

∂tṼ +
σ′(t)

σ(t)
(Ṽ + Ṽ g3)− i2πφ′k(t)Ṽ − i2πφ′′k(t)σ(t)Ṽ g1

= i2πηṼ − 1

σ(t)
Ṽ g′ − i2πφ′k(t)Ṽ − i2πφ′′k(t)σ(t)Ṽ g1

= i2π
(
η − φ′k(t)

)( K∑
`=1

x`(t)G0,`(t, η) + res0

)
− 1

σ(t)

(
i2πσ(t)

K∑
`=1

x`(t)(η − φ′`(t))G0,`(t, η)− i2πσ2(t)
K∑
`=1

x`(t)φ
′′
` (t)G1,`(t, η) + res′0

)
−i2πφ′′k(t)σ(t)

( K∑
`=1

x`(t)G1,`(t, η) + res1

)
= i2π

∑
6̀=k
x`(t)(φ

′
`(t)− φ′k(t))G0,`(t, η) + i2πσ(t)

∑
` 6=k

x`(t)(φ
′′
` (t)− φ′′

k(t))G1,`(t, η)

+i2π
(
η − φ′k(t)

)
res0 −

res′0
σ(t)

− i2πφ′′k(t)σ(t) res1

= i2πBk(t, η) + i2πσ(t)Dk(t, η) + i2π
(
η − φ′k(t)

)
res0 −

res′0
σ(t)

− i2πφ′′k(t)σ(t) res1

= Res1.

This completes the proof of Lemma 1. �

Proof of Lemma 2. One can obtain for j ≥ 1,

∂

∂η
Gj,k(t, η) = −i2πσ(t)Gj+1,k(t, η).
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Thus we have

∂ηBk(t, η) = −i2πσ(t)Ek(t, η), ∂ηDk(t, η) = −i2πσ(t)Fk(t, η).

In addition, it is straightforward to verify that

∂ηresj = −i2πσ(t) resj+1, ∂ηres′j = −i2πσ(t) res′j+1.

Hence we have

∂ηRes1 = Res2. (97)

Taking the partial derivate with respect to η to both sides of (82) and using (97), we have

∂η∂tṼ =
(
i2πφ′k(t)−

σ′(t)

σ(t)

)
∂ηṼ + i2πφ′′k(t)σ(t)∂ηṼ

g1 − σ′(t)

σ(t)
∂ηṼ

g3 + Res2. (98)

Note that

P0(t, η) =
1

Ṽ ∂ηṼ g1 − Ṽ g1∂ηṼ

(
Ṽ ∂η∂tṼ − ∂ηṼ ∂tṼ +

σ′(t)

σ(t)
(Ṽ ∂ηṼ

g3 − Ṽ g3∂ηṼ )
)
.

Thus, by (82) and (98),(
P0(t, η)− i2πσ(t)φ′′k(t)

)(
Ṽ ∂ηṼ

g1 − Ṽ g1∂ηṼ )

= Ṽ ∂η∂tṼ − ∂ηṼ ∂tṼ +
σ′(t)

σ(t)
(Ṽ ∂ηṼ

g3 − Ṽ g3∂ηṼ )− i2πσ(t)φ′′k(t)
(
Ṽ ∂ηṼ

g1 − Ṽ g1∂ηṼ )

= Ṽ
((
i2πφ′k(t)−

σ′(t)

σ(t)

)
∂ηṼ + i2πφ′′k(t)σ(t)∂ηṼ

g1 − σ′(t)

σ(t)
∂ηṼ

g3 + Res2

)
−∂ηṼ

((
i2πφ′k(t)−

σ′(t)

σ(t)

)
Ṽ + i2πφ′′k(t)σ(t)Ṽ g1 − σ′(t)

σ(t)
Ṽ g3 + Res1

)
+
σ′(t)

σ(t)
(Ṽ ∂ηṼ

g3 − Ṽ g3∂ηṼ )− i2πσ(t)φ′′k(t)
(
Ṽ ∂ηṼ

g1 − Ṽ g1∂ηṼ )

= Ṽ Res2 − ∂ηṼ Res1.

Therefore, we have P0(t, η) − i2πσ(t)φ′′k(t) =
Ṽ Res2−∂ηṼ Res1

Ṽ ∂ηṼ g1−Ṽ g1∂ηṼ
= Res3, as desired. This completes

the proof of Lemma 2. �
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[23] G. Thakur, E. Brevdo, N. Fučkar, and H.-T. Wu, The synchrosqueezing algorithm for time-

varying spectral analysis: Robustness properties and new paleoclimate applications, Signal

Proc., 93 (2013), pp. 1079–1094.

[24] G. Thakur and H.-T. Wu, Synchrosqueezing based recovery of instantaneous frequency from

nonuniform samples, SIAM J. Math. Anal., 43 (2011), pp. 2078–2095.

31



[25] S.B. Wang, X.F. Chen, G.G. Cai, B.Q. Chen, X. Li, and Z.J. He, Matching demodulation

transform and synchrosqueezing in time-frequency analysis, IEEE Trans. Signal Proc., 62

(2014), pp. 69–84.

[26] S.B. Wang, X.F. Chen, I.W. Selesnick, Y.J. Guo, C.W. Tong and X.W. Zhang, Matching

synchrosqueezing transform: A useful tool for characterizing signals with fast varying in-

stantaneous frequency and application to machine fault diagnosis, Mechanical Systems and

Signal Proc., 100 (2018), pp. 242–288.

[27] H.-T. Wu, Adaptive Analysis of Complex Data Sets, Ph.D. dissertation, Princeton Univ.,

Princeton, NJ, 2012.

[28] H.Z. Yang, Synchrosqueezed wave packet transforms and diffeomorphism based spectral anal-

ysis for 1D general mode decompositions, Appl. Comput. Harmon. Anal., 39 (2015), pp.33–66.

[29] H.Z. Yang, Statistical analysis of synchrosqueezed transforms, Appl. Comput. Harmon. Anal.,

45 (2018), pp.526–550.

32


