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Abstract

The objective of this paper is to introduce a general procedure for deriving interpolatory
surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular ver-
tices. While the precise definition of “symmetry” will be clarified in the paper, the property of
SSTs is instrumental to facilitate application of the standard procedure for finding symmetric
weights for taking weighted averages to accommodate extraordinary (or irregular) vertices in
surface subdivisions, a topic to be studied in a continuation paper. By allowing the use of
matrices as weights, the SSTs introduced in this paper may be constructed to overcome the
size barrier limited to scalar-valued interpolatory subdivision templates, and thus avoiding the
unnecessary surface oscillation artifacts. On the other hand, while the old vertices in a (scalar)
interpolatory subdivision scheme do not require a subdivision template, we will see that this is
not the case for the matrix-valued setting. Here, we employ the same definition of interpola-
tion subdivisions as in the usual scalar consideration, simply by requiring the old vertices to be
stationary in the definition of matrix-valued interpolatory subdivisions. Hence, there would be
another complication when the templates are extended to accommodate extraordinary vertices
if the template sizes are not small. In this paper, we show that even for C2 interpolatory
subdivisions, only one “ring” is sufficient in general, for both old and new vertices. For exam-
ple, for 1-to-4 split C2 interpolatory surface subdivisions, we obtain matrix-valued symmetric
interpolatory subdivision templates (SISTs) for both triangular and quadrilateral meshes with
sizes that agree with those of the Loop and Catmull-Clark schemes, respectively. Matrix-
valued SISTs of similar sizes are also constructed for C2 interpolatory

√
3 and

√
2 subdivision

schemes in this paper. In addition to small template sizes, an obvious feature of matrix-valued
weights is the flexibility for introducing shape-control parameters. Another significance is that,
in contrast to the usual scalar setting, matrix-valued SISTs can be formulated in terms of the
coefficient sequence of some vector refinement equation of interpolating bivariate C2 splines
with small support. For example, by modifying the spline function vectors introduced in our
previous work [3, 6], C2 symmetric interpolatory subdivision schemes associated with refine-
ment equations of C2 cubic and quartic splines on the 6-directional and 4-directional meshes,
respectively, are also constructed in this paper.
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author is also with the Department of Statistics, Stanford University, Stanford, CA 94305.

†Research partially supported by a University of Missouri–St.Louis Research Award.
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Figure 1: Two-directional and three-directional meshes

1. Introduction

Subdivision schemes provide an effective approach for efficient design and rendering of
surfaces in the three-dimensional space (3-D). Formulated in terms of certain templates
(also called coefficient stencils) of numerical values that are used as weights for taking
weighted averages of certain given “old” vertices (or more precisely, points in 3-D) to
generate “new” vertices, and perhaps to move the positions of the old vertices as well,
a subdivision scheme is thereby applied to yield a higher resolution of some discrete
approximation of the target (subdivision) surface, for each application (to be called
iteration) of the weighted averages. If the old vertices are not altered for each iteration,
the subdivision scheme is called an interpolatory subdivision scheme. Otherwise, it is
called an approximation subdivision scheme. Subdivision templates are displayed in the
two-dimensional space (2-D), along with certain triangles or quadrilaterals of regular
shapes, in the so-called “parametric domains” (see, for example, Fig. 6 and Fig. 7).
For regular vertices (also called ordinary vertices), these triangles and quadrilaterals,
therefore, lie on 3-directional and 2-directional meshes, since the valences of regular
vertices are 6 and 4, respectively. We will use a square grid to represent the 2-directional
mesh as shown on the left of Fig. 1, and the 3-directional mesh can be easily generated
by adding all the diagonals of the squares with only positive slope, as shown on the right
of Fig. 1. For the purpose of displaying subdivision templates, however, we will use,
as commonly done, the traditional equilateral triangular grid instead (see, for example,
Fig. 6).

In general, subdivision templates for regular vertices are derived from the refinement
equation (also called two-scale relation) of some bivariate refinable function (also called
scaling function), with a finite refinement sequence (also called two-scale coefficient
sequence). The refinement sequence is therefore called the “subdivision mask” of the
subdivision scheme. For example, in the refinement equation:

φ(x) =
∑

k∈ZZ2

pkφ(Ax− k), x ∈ IR2, (1.1)

the function φ is a refinable function with (finite) subdivision mask {pk} and dilation
matrix A. We remark here that since the summation in the refinement equation is
taken over the lattice ZZ2, it is natural and more effective to use the 2-directional and 3-
directional meshes shown in Fig. 1 to represent the quadrilateral and triangular meshes,
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Figure 2: 1-to-4 split topological rule for triangular meshes

in the parametric domain, when the discussion is on the construction, rather than display,
of subdivision masks.

Figure 3: 1-to-4 split topological rule for quadrilateral meshes

It is clear that the subdivision mask sums to | det(A)| and that selection of the
dilation matrix A necessarily depends on the connectivity rule, which is commonly called
“topological rule” in the literature. The most commonly used topological rule is the
“1-to-4 split” (dyadic) rule, that dictates the split of each triangle or square in the
parametric domain into four sub-triangles or sub-squares by connecting the mid-points
of the appropriate edges (see Fig. 2 for triangles and Fig. 3 for squares). Observe that
in Fig. 3, a “face point” is introduced when the mid-points of the opposite edges of a
square are connected. The new vertices introduced in the parametric domain, including
the face points for the quadrilateral mesh, correspond to new vertices in 3-D, when
the templates are applied to take weighted averages. Most of the well-known surface
subdivision schemes such as the Loop [25], Catmull-Clark [1], and butterfly [9] schemes
engage the 1-to-4 split topological rule. For the 1-to-4 split rule, the dilation matrix
for the corresponding refinement equation to be selected is simply 2I2, both for the
triangular and quadrilateral meshes. Other topological rules of interest include the

√
3

[23, 24, 20, 27, 21] and the
√

2 [31, 32, 12, 14] topological rules, with dilation matrices
given, for example, by

A1 =
[

2 −1
1 −2

]
, A2 =

[
1 1
1 −1

]
, (1.2)

respectively. We remark that these matrices are certainly not unique, and that while the
1-to-4 split rule applies to both triangular and quadrilateral meshes, the

√
3 rule applies
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Figure 4:
√

3 topological rule

Figure 5:
√

2 topological rule

only to the triangular mesh and the
√

2 rule to the quadrilateral mesh. See Fig. 4 and
Fig. 5 for the

√
3 and

√
2 topological rules, respectively. The interested reader is referred

to [15] for other topological rules.
To apply a subdivision scheme, the user must first select certain desirable points in 3-

D as well as connect these points to form a triangular mesh or (non-planar) quadrilateral
mesh. Hence, the points so chosen are vertices of the triangles or quadrilaterals. These
points are called “control vertices”, and the triangular or quadrilateral meshes are called
“control meshes” (or “control nets”). For a control mesh with regular (or ordinary)
control vertices v0

k, meaning that their valences are equal to 6 or 4, respectively, the
refinement equation (1.1) immediately yields a “local averaging rule”:

vm+1
k =

∑

j

vm
j pk−Aj, m = 0, 1, · · · , (1.3)

where for each m = 1, 2, · · ·, vm
k denote the set of newly generated points (vertices) in

IR3 obtained after applying the local averaging rule m times (or using the corresponding
subdivision templates to perform m iterations). Since each iteration increases the reso-
lution by (approximately) |det(A)| times, the vertices vm

k , for sufficiently large values of
m, provide an accurate discrete approximation of the target subdivision surface, which
is precisely given by the series representation

f(x) =
∑

k

v0
kφ(x− k), x ∈ IR2, (1.4)
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Figure 6: Subdivision templates of the Loop scheme for regular vertices (for moving the old
vertices and generating a new vertex corresponding to an edge point, respectively)
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Figure 7: Subdivision templates of the Catmull-Clark scheme for regular vertices (for moving
the old vertices, generating a new vertex corresponding to a face point, and generating a new
vertex corresponding to an edge point, respectively)

with the control vertices v0
k as coefficients. In other words, the subdivision scheme

provides a very efficient way to render the surface f(x) in (1.4), and the smoothness of
this limiting (subdivision) surface is directed reflected by the smoothness of the refinable
function φ(x).

The subdivision templates corresponding to the subdivision mask {pk} can be easily
formulated by applying (1.3). For example, for the dilation matrix A = 2I2, with φ being
the 3-directional box-spline B222, we have the subdivision templates for the Loop scheme
(for regular vertices) as shown in Fig. 6; and with φ being the tensor-product cardinal
B-splines of order 4 (i.e. C2 bi-cubic B-splines), we have the subdivision templates for
the Catmull-Clark scheme (for regular vertices) as shown in Fig. 7.

For some applications, such as 3-D surface reversed engineering where data points
are used as control vertices, interpolatory schemes are highly desirable. Unfortunately
both the Loop and Catmull-Clark schemes are only approximation subdivision schemes

1/8

1/8

1/2 1/2

−1/16 −1/16

−1/16−1/16

Figure 8: Subdivision template of the butterfly scheme (on right)
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Figure 9: Template sizes of the C2 1-to-4 split interpolatory scheme in [30] (on left) and the
C2

√
3 interpolatory scheme [21] (on right)

Figure 10: Two types of subdivision templates (on right) in [11] corresponding to two edge
points in the parametric domain (on left) with different orientations

as can be seen from the first templates in Fig. 6 and Fig. 7. On the other hand,
although the butterfly scheme (see Fig. 8) as well as certain more recent ones, such as
those introduced in [24] and [22], are interpolatory, yet they only apply to generating
C1 subdivision surfaces even for regular control vertices (see [10, Cor.4.3]). Observe
that in Fig. 8, there is only one template for generating a new vertex corresponding
to an edge point. Since the old vertices are stationary, independent of the adjacent
vertices, a template for the old vertices is not needed for the scalar-valued setting.
The interpolating schemes in [24] are for

√
3-subdivision, and the one in [22] applies

to the quadrilateral mesh in terms of the tensor-product of two copies of 1-D 4-point
scheme. In general, taking the tensor-product of two 1-D C2 interpolatory schemes gives
a C2 interpolatory surface subdivision scheme for regular vertices on a quadrilateral
mesh, but the templates are necessarily undesirably large, thus yielding subdivision
surfaces with undesirable oscillations. For the triangular mesh, interpolatory schemes
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for higher orders of smoothness introduced in [30] (for 1-to-4 split subdivision) and [21]
(for

√
3-subdivision) also have large template sizes (see Fig. 9 for the template sizes of

these two C2 interpolatory schemes). Furthermore, interpolatory schemes corresponding
to refinable functions with optimal smoothness order are given in [11]. However, the
templates for the triangular mesh, which can be easily derived from [11], have large
size (causing surface oscillation artifact) and depend on mesh orientations (creating
serious difficulty to modify the templates in accommodating extraordinary vertices).
See Fig. 10 for the template sizes for a C2 interpolatory scheme in [11] and observe
that to create new vertices in 3-D that correspond to the two different edge points in
the parametric domain (shown in the figures by using “circles” and “triangles”), two
different subdivision templates are used.

The objective of this paper is to present a general procedure for constructing interpo-
latory surface subdivision schemes with small symmetric subdivision templates (SSTs)
by allowing matrices as weights. Here, the notion of symmetry requires not only the use
of the same template for all old vertices and the same template for the new vertices of the
same type (such as edge points or face points for the quadrilateral mesh), but also certain
symmetric properties of the templates, regardless of orientations. To demonstrate our
procedure, we will first use 2× 2 and 3× 3 matrices as weights to construct symmetric
C2 interpolatory 1-to-4 split subdivision schemes for both triangular and quadrilateral
meshes, with template sizes identical with those of the Loop and Catmull-Clark schemes,
respectively. We will also follow this procedure to construct symmetric C2 interpolatory√

3 and
√

2 subdivision schemes with analogously small template size. Furthermore, we
will show that our procedure can be modified even for the construction of spline-based
interpolatory surface subdivision schemes with SSTs, provided that certain suitable re-
finable vectors of bivariate spline functions exist. This would eliminate the need of
adjusting free parameters to achieve smooth refinable function vectors. To demonstrate
this, we apply the conditions for matrix-valued interpolatory subdivisions to modify the
refinable spline function vectors constructed in [3, 6], resulting in two C2 interpolatory
schemes with SSTs and the corresponding refinable functions being C2 cubics splines on
the 6-directional mesh and C2 quartic splines on the 4-directional mesh, respectively. In
this regard, we point out that the interpolatory schemes in [9, 22, 30, 11, 12, 24, 20, 21]
have nothing to do with spline refinement.

The procedure outlined in this paper can be applied to other topological rules such
as
√

7 and
√

5 topological rules studied in [26] and [16], respectively. Furthermore, the
extension of the smoothness-preservation results in [29, 28] for the extraordinary vertices
from the scalar setting to the matrix-valued subdivisions are studied in our work [5].

This paper is organized as follows. In Section 2, the notion of control vectors, control
vertices, and shape-control parameters for matrix-valued surface subdivisions is intro-
duced, and a formulation of the (limiting) subdivision surfaces is given. In the first
subsection, §2.1, a precise definition of matrix-valued interpolatory subdivision is de-
fined (for the first time in the open literature, we believe), and equivalent formulations
in terms of the corresponding subdivision masks and of the refinable function vectors,
are derived in Propositions 1 and 2, respectively. In the second subsection, §2.2, the
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notion of “symmetric subdivision templates” (SSTs) is introduced, and equivalent sym-
metry properties of the corresponding subdivision masks are formulated in Theorems 1
and 2 for the topological rules discussed above. In addition, the properties of symmetry
for the corresponding refinable function (or distribution) vectors are derived in Theo-
rems 3 and 4. The main results of this paper are presented in Section 3 and the final
section, Section 4. In the first subsection, §3.1, of Section 3, matrix-valued SSTs for C2

interpolatory surface subdivision for the triangular mesh are constructed for the 1-to-4
split topological rule (in §3.1.1) and the

√
3 topological rule (in §3.1.2). Also, in the

second subsection, §3.2, of Section 3, matrix-valued SSTs for C2 interpolatory surface
subdivision for the quadrilateral mesh are constructed for the 1-to-4 split topological
rule (in §3.2.1) and the

√
2 topological rule (in §3.2.2). To facilitate the presentation

of the construction of these SSTs, as well as to discuss the order of smoothness of the
subdivision surfaces, a brief discussion is given in the beginning of Section 3. In the
final section, matrix-valued symmetric interpolatory subdivision templates (SISTs) for
designing and rendering interpolatory C2 spline surfaces of degrees 3 and 4 are derived.
These derivations are based on the refinable C2 bivariate spline function vectors of de-
grees 3 and 4, on the 6-directional and 4-directional meshes, introduced in [3] and [6],
respectively.

2. Interpolatory subdivisions with symmetric
subdivision templates (SSTs)

For regular vertices, analogous to the current subdivision schemes with scalar-valued
weights, as discussed in the previous section, a subdivision scheme with matrix-valued
weights is derived from some vector-valued refinement equation

Φ(x) =
∑

k∈ZZ2

PkΦ(Ax− k), x ∈ IR2, (2.1)

but with matrix-valued subdivision mask {Pk} for a suitable dilation matrix A, where
Φ = [φ0, φ1, · · · , φr−1]

T is called a refinable (or scaling) function vector. For the refinable
function vector to be useful for surface subdivisions in our discussion, its components
φ`, ` = 0, · · · , r− 1, must be in C2 and have compact support, and its subdivision mask
must be finite and satisfy the condition of “generalized partition of unity”:

∑

k∈ZZ2

wΦ(x− k) ≡ 1, x ∈ IR2, (2.2)

for some constant r-vector w = [w0, w1, · · · , wr−1]. By changing the order of the φ`s and
multiplying them with some constant, if necessary, we may and will, assume that

w0 = 1. (2.3)

Corresponding to the refinement equation (2.1), the local averaging rule, from which the
subdivision templates (with matrices as weights) follows immediately, is given by

vm+1
k =

∑

j

vm
j Pk−Aj, m = 0, 1, · · · , (2.4)
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where
vm

k =: [vm
k , sm

k,1 · · · , sm
k,r−1] (2.5)

are “row-vectors” with r components of points vm
k , sm

k,i, i = 1, · · · , r − 1, in IR3. We will
use the first components vm

k as the vertices of the triangular or (non-planar) quadrilateral
meshes for the m-th iteration. Therefore, for sufficiently large values of m, the vertices
vm
k provide an accurate discrete approximation of the target subdivision surface. In [5],

we have shown that this subdivision surface is precisely given by the series representation:

F (x) =
∑

k

v0
kφ0(x− k) +

∑

k

(
s0
k,1φ1(x− k) + · · ·+ s0

k,r−1φr−1(x− k)
)
. (2.6)

with [v0
k, s

0
k,1, · · · , s0

k,r−1] as coefficients, provided that the iteration process converges. Of
course, the assumption (2.3) is essential for the first components to be used as vertices.
We will call the initial row vectors v0

k, “control vectors”, their first components v0
k, “con-

trol vertices”, and the other components s0
k,1, · · · , s0

k,r−1, “shape-control parameters”.
For a mask {Pk} with dilation matrix A, let

P (ω) :=
1

| det A|
∑

k

Pke
−ikω, ω = (ω1, ω2), (2.7)

be the two-scale symbol of the mask {Pk}. Then the refinement equation (2.1) can be
re-formulated in the Fourier domain, as

Φ̂(ω) = P ((A−1)T ω)Φ̂((A−1)T ω). (2.8)

In particular, we have Φ̂(0) = P (0)Φ̂(0). In addition, since it follows from (2.2) that
Φ̂(0) 6= [0, · · · , 0]T , we see that Φ̂(0) is an eigenvector associated with the eigenvalue 1
of P (0). In the following, we only consider subdivision masks for which 1 is a simple
eigenvalue of P (0) and other eigenvalues λ of P (0) satisfy |λ| < 1. Under this additional
assumption, it is well-known that the Fourier transform of Φ is given by

Φ̂(ω) = P ((A−1)T ω)P ((A−2)T ω)Φ̂((A−2)T ω)

= P ((A−1)T ω)P ((A−2)T ω) · · ·u0 = Π∞
n=1P ((A−n)T ω)u0, (2.9)

where u0, such as Φ̂(0) above, is an eigenvector associated with the eigenvalue 1 of P (0).

2.1 Interpolatory subdivision schemes

As already discussed in the introduction section, a subdivision scheme is called inter-
polatory, if the positions of the vertices of the triangular or (non-planar) quadrilateral
meshes remain unchanged for each iteration of the subdivision process. In other words,
the control vertices are stationary and lie on the limiting (subdivision) surface. We adopt
this (geometric) requirement as the definition of interpolatory subdivision schemes, even
when matrix-valued subdivision templates are applied. More precisely, in view of (2.3)
and (2.4), we have the following.
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Definition 1 A matrix-valued subdivision scheme with matrix-valued mask {Pk} and
dilation matrix A is said to be interpolatory, if for any given control vectors v0

k, the
first components vm

Ak of vm
Ak, m = 1, 2, · · ·, in (2.4) are the same as the corresponding

first components of the control vectors vm−1
k ; i.e.,

vm
Ak = vm−1

k , m = 1, 2, · · · . (2.10)

We believe that this definition of interpolatory subdivisions is new for matrix-valued
subdivision, though it is clearly a natural extension of that for the scalar-valued setting
from r = 1 to the general r-dimensional matrices. We remark that in the vector-
subdivision literature, there are other more restrictive definitions. For example, in [8]
Hermite-type interpolation with other components of the refinable function vector to be
specified as certain derivatives of the first component is considered, and the definition in
[7] requires that other components of the refinable function vector to be interopolatory
as well. These definitions are too restrictive for the discovery of a general class of matrix-
valued interpolatory subdivision templates. On the other hand, Hermite interpolatory
subdivision schemes are constructed in [13, 3, 4, 6], but the templates of these schemes
do not satisfy the desirable symmetry property.

The algebraic property of an interpolatory mask {pk} for the scalar-valued setting is
given by

pAj = δ(j), j ∈ ZZ2, (2.11)

where A is the dilation matrix in the refinement equation. In fact, this property is
equivalent to the above definition of interpolatory subdivisions when the dimension r
is reduced to 1. However, for the matrix-valued setting, the subdivision mask of an
interpolatory subdivision scheme does not necessarily satisfy the condition:

PAj = 0, j ∈ ZZ2\{(0, 0)}.
In the following, we derive a precise algebraic property of an interpolatory subdivision
mask for the matrix-valued setting.

Proposition 1 A subdivision scheme with matrix-valued mask {Pk} and dilation matrix
A is interpolatory if and only if PAj takes on the form:

P0,0 =




1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗




, PAj =




0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , j ∈ ZZ2\{(0, 0)}; (2.12)

that is, the first column of P0,0 must be the unit vector [1, 0, · · · , 0]T and the first columns
of the other PAj must be the zero vector, for j 6= (0, 0).

Proof. The proof is somewhat straightforward. Indeed, since we have

vm+1
Ak =

∑

j

vm
j PAk−Aj =

∑

j

vm
k−j PAj,
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by (2.4), it follows that the first column of vm+1
Ak is given by

vm+1
Ak [1, 0, · · · , 0]T = vm

k P0,0[1, 0, · · · , 0]T +
∑

j6=(0,0)

vm
k−j PAj[1, 0, · · · , 0]T . (2.13)

Therefore, for the scheme to be interpolatory, we have, by definition, vm+1
Ak [1, 0, · · · , 0]T =

vm
k [1, 0, · · · , 0]T , and this holds, if and only if the right-hand side of (2.13) is equal to

vm
k [1, 0, · · · , 0]T , which is the same as

P0,0[1, 0, · · · , 0]T = [1, 0, · · · , 0]T , PAj[1, 0, · · · , 0]T = [0, · · · , 0], j 6= (0, 0);

that is, (2.12) holds. ¦
Since we only consider finite subdivision masks, we will assume, without loss of

generality, that Pk = 0,k /∈ [−N, N ]2, for some N ≥ 1. Let

Ω := {
∞∑

k=1

A−kxk : xk ∈ [−N, N ]2, k ∈ IN}. (2.14)

Then it follows that supp Φ := ∪r−1
`=0supp(φ`) ⊂ Ω (see e.g., [19]). In the following, we

use the notation [Ω] = Ω ∩ ZZ2, and let |[Ω]| denote its cardinality. From the refinement
equation (2.1), we have, for j ∈ [Ω],

Φ(j) =
∑

k

PkΦ(Aj− k) =
∑

k

PAj−kΦ(k) =
∑

k∈[Ω]

PAj−kΦ(k). (2.15)

So, if we consider the column r× |[Ω]|-vector, vec(Φ) :=
[
Φ(j)

]

j∈[Ω]
, then it follows from

(2.15) that

vec(Φ) =
[
PAj−k

]

j,k∈[Ω]
vec(Φ).

In other words, vec(Φ) is an eigenvector of
[
PAj−k

]

j,k∈[Ω]
associated with the eigenvalue

1. On the other hand, it is easy to verify that the Pks take on the form of (2.12), if and

only if the column vector
[
Lj

]

j∈[Ω]
, where Lj = δ(j)[1, 0, · · · , 0]T , is also an eigenvector of

[
PAj−k

]

j,k∈[Ω]
corresponding to the eigenvalue 1. Therefore, we have the following result,

of which the 1-dimensional case was already considered in [33].

Proposition 2 Let Φ be a refinable function vector with dilation matrix A and subdi-
vision mask {Pk} that satisfies Pk = 0,k /∈ [−N,N ]2. Also, let Φ be continuous and

that 1 is a simple eigenvalue of the matrix
[
PAj−k

]

j,k∈[Ω]
. Then the subdivision scheme

associated with {Pk} is interpolatory if and only if Φ satisfies:

Φ(j) = δ(j)[1, 0, · · · , 0]T , j ∈ ZZ2. (2.16)
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Figure 11: Symmetry “directions” or lines of symmetric reflection (shown in dotted lines on
left and on right)

2.2 Symmetric masks and SSTs

In this subsection, we introduce the notion of symmetric subdivision templates (SSTs)
and remark that this definition does not restrict to interpolatory subdivisions. Our
goal is to show that the subdivision templates of a matrix-valued subdivision scheme
are SSTs, if and only if the corresponding mask {Pk} satisfies the following symmetry
conditions:

(i) For the quadrilateral mesh,

Pk = PS1k = PS2k = PS3k, k ∈ ZZ2, (2.17)

where

S1 =

[
1 0
0 −1

]
, S2 =

[
−1 0
0 1

]
, S3 =

[
0 1
1 0

]
.

(ii) For the triangular mesh,

Pk = PT1k = PT2k, k ∈ ZZ2, (2.18)

where

T1 =

[
1 0
1 −1

]
, T2 =

[
1 −1
0 −1

]
.

Note that S1S2S3 = −S3. Thus, if the Pks satisfy (2.17), then P−S3k = Pk, and hence
they satisfy the four-directional symmetry property (with lines of symmetric reflection
shown on the left of Fig. 11, where the transformation matrices are also provided).

Note also that the two matrices T1 and T2 generate

T3 := T1T2 =

[
1 −1
1 0

]
, T4 := T2T1 =

[
0 1
−1 1

]
,

T5 := T1T2T1 = S3, (T1T2)
3 = −I2.

Therefore, if the Pks satisfy (2.18), then they satisfy the six-directional symmetry prop-
erty (with lines of symmetric reflection shown in the middle of Fig. 11, where the trans-
formation matrices are also provided).
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Figure 12: SSTs for the quadrilateral mesh. (Note that the bottom 2 templates are identical)

Definition 2 The matrix-valued templates of a subdivision scheme are said to be sym-
metric subdivision templates (SSTs), if the following conditions are satisfied:

(1) Each old vertex has the same template, and each new vertex of the same type
(such as edge point or face point for the quadrilateral mesh) has the same template; and

(2) all the subdivision templates satisfy the following symmetry properties:

(2.1) For the 1-to-4 subdivision scheme of the quadrilateral mesh, the templates
for the old vertices and new face vertices satisfy the four-directional symmetry property
as shown on the top of Fig. 12; the template for the new edge vertices satisfies the
two-directional symmetry property as shown in the bottom of Fig. 12.

(2.2) For the
√

2-subdivision scheme, the templates for both the old and new vertices
satisfy the four-directional symmetry property shown on the top of Fig. 12.

(2.3) For the 1-to-4 subdivision scheme of a triangular mesh, the template for the
old vertices satisfies the six-directional symmetry property as shown on the top-left of
Fig. 13; and the template for the new vertices satisfies the two-directional symmetry
property, as shown in Fig. 13.

(2.4) For the
√

3-subdivision scheme, the template for the old vertices satisfies the
six-directional symmetry property shown on the top of Fig. 14, and the template for the

13



new vertices satisfies the three-directional symmetry property as shown in the bottom of
Fig. 14.
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Figure 13: SSTs for the triangular mesh. (Note that when displayed on the equivalent trian-
gular grid, the last 3 templates for generating new vertices are identical)

Theorem 1 (a) The mask {Pk} of a 1-to-4 split subdivision scheme for the triangular
mesh generates SSTs if and only if {Pk} satisfies the symmetry property (2.18).

(b) The mask {Pk} of a
√

3-subdivision generates SSTs if and only if {Pk} satisfies
the symmetry property (2.18).

Theorem 2 (a) The mask {Pk} of a 1-to-4 split subdivision for the quadrilateral mesh
generates SSTs if and only if {Pk} satisfies the symmetry property (2.17).

(b) The mask {Pk} of a
√

2-subdivision generates SSTs if and only if {Pk} satisfies
the symmetry property (2.17).

Proof of Theorem 1 (a): First assume that the templates associated with {Pk}
are SSTs. Let ṽk denote the vectors obtained after applying one subdivision iteration,
namely:

ṽk =
∑

j

vjPk−2j,
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Figure 14: SSTs for the
√

3-subdivision. (Note that when displayed on the equivalent triangular
grid, the last 2 templates for generating new vertices are identical)

with the previous vectors vk. Then the vectors corresponding to the old vertices are the
vectors

ṽ2k =
∑

j

vjP2k−2j =
∑

j

vk+jP−2j.

By the property of SSTs for the old vertices, we have that

P−2j = P−2T1j = P−2T2j = P2T1j = P2T2j = P2T5j = P−2T5j.

Thus (2.18) holds for all k ∈ 2ZZ2.
On the other hand, the vectors corresponding to the new vertices are given by

ṽ(1,0)+2k =
∑

j

vk+jP(1,0)−2j, ṽ(0,1)+2k =
∑

j

vk+jP(0,1)−2j, ṽ(1,1)+2k =
∑

j

vk+jP(1,1)−2j.

The SSTs property for the new vertices implies that

P(1,0)−2j = P(1,0)−2T2j = P(1,0)−2(−T2j+(1,0)) = P(0,1)−2(−T4j) = P(1,1)−2T3j, (2.19)

where the last two equalities follow, since the template weights for the vertical and
horizontal edge vertices, and as well as the vertices on the line with slope=1, are the
same. Thus

P(1,0)−2j = PT2((1,0)−2j),
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and
PT1((1,0)−2j) = P(1,1)−2T1j = P(1,0)−2T−1

3 T1j
= P(1,0)−2T2j = P(1,0)−2j,

where the second and the last equalities follow from (2.19). Therefore, (2.18) holds for
all k with k ∈ (1, 0) + 2ZZ2. Similarly, one can easily show that (2.18) holds for all k
with k ∈ (0, 1) + 2ZZ2 and k ∈ (1, 1) + 2ZZ2. Hence, (2.18) holds for all k ∈ ZZ2.

It is clear from the above proof that if {Pk} satisfies the symmetry property (2.18),
then it yields templates that are SSTs. ¦

Proof of Theorem 1 (b): First assume that the templates associated with {Pk}
are SSTs. Let

ṽk =
∑

j

vjPk−A1j

be the vectors obtained after one subdivision iteration with previous vectors {vk}. Then
the vectors corresponding to the old vertices in the next level of iteration are

ṽA2k =
∑

j

vjPA1k−A1j =
∑

j

vk+jP−A1j.

By the SSTs property of the template for the old vertices, we have

PA1j = PA1T1j = PA1T2j.

Since
A1T1 = T2A1, A1T2 = T1A1, (2.20)

we see that
PA1j = PT1A1j = PT2A1j.

Thus (2.18) holds for k ∈ A1ZZ
2.

On the other hand, the vectors corresponding to the new vertices are given by

ṽ(1,0)+A1k =
∑

j

vk+jP(1,0)−A1j, ṽ(0,−1)+A1k =
∑

j

vk+jP(0,−1)−A1j.

By the SSTs property of the template for the new vertices, we have

P(1,0)−A1j = P(1,0)−A1T1j = P(1,0)−A1(−T2j+(1,0)) = P(1,0)−A1(−T5j+(1,1)) = P(0,−1)−A1T3j,
(2.21)

where the last equality follows, since the template weights for the new face vertices of
the both types of triangles are the same. The first equality of (2.21), together with
(2.20), leads to

P(1,0)−A1j = P(1,0)−T2A1j = PT2((1,0)−A1j). (2.22)

On the other hand,

PT1((1,0)−A1j) = P(1,1)−T1A1j = P(0,−1)+(1,2)−A1T2j = P(0,−1)−A1((0,1)+T2j)

= P(1,0)−A1T−1
3 ((0,1)+T2j)

= P(1,0)−A1((1,1)−T5j) = P(1,0)−A1j, (2.23)

16



where the first and the third equlaities in (2.23) follow from (2.21). Thus we have

P(1,0)−A1j = PT1((1,0)−A1j). (2.24)

Therefore, (2.18) holds for all k ∈ (1, 0) + A1ZZ
2. Similiary, one can easily show that

(2.18) holds for all k ∈ (0,−1) + A1ZZ
2. Since the union of A1ZZ

2, (1, 0) + A1ZZ
2, and

(0,−1) + A1ZZ
2 is all of ZZ2, (2.18) holds for all k ∈ ZZ2.

We note that it is clear from the above proof that if {Pk} satisfies the symmetry
property (2.18), then it provides templates that are SSTs. ¦

Proof of Theorem 2 (a): First assume that the templates associated with {Pk}
are SSTs. Let

ṽk =
∑

j

vjPk−2j

be the vectors obtained after one subdivision iteration with previous vectors {vk}. Then
the vectors corresponding to the old vertices in the next level of iteration are

ṽ2k =
∑

j

vjP2k−2j =
∑

j

vk+jP−2j.

By the SSTs property of the template for the old vertices, we have

P−2j = P−2S1j = P−2S2j = P−2S3j = P2S3j.

Thus (2.17) holds for k ∈ 2ZZ2.
On the other hand, the vectors corresponding to the new face vertices in the next

level of iteration are

ṽ(1,1)+2k =
∑

j

vjP(1,1)+2k−2j =
∑

j

vk+jP(1,1)−2j.

The SSTs property of the template for the new face vertices implies that

P(1,1)−2j = P(1,1)−2(S2j+(1,0)) = P(1,1)−2S3j = P(1,1)−2(S1j+(0,1)) = P(1,1)−2(−S3j+(1,1)).

That is,

P(1,1)−2j = PS2((1,1)−2j) = PS3((1,1)−2j) = PS1((1,1)−2j) = P−S3((1,1)−2j).

Thus (2.17) holds for all k with k ∈ (1, 1) + 2ZZ2.
The vectors corresponding to the new horizontal edge vertices in the next level of

iteration are
ṽ(1,0)+2k =

∑

j

vjP(1,0)+2k−2j =
∑

j

vk+jP(1,0)−2j,

and the vectors corresponding to the new vertical edge vertices in the next level of
iteration are

ṽ(0,1)+2k =
∑

j

vjP(0,1)+2k−2j =
∑

j

vk+jP(0,1)−2j.
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The SSTs property of the template for the edge vertices implies that

P(1,0)−2j = P(1,0)−2(S2j+(1,0)) = P(1,0)−2S1j = P(0,1)−2S3j,

where the last equality follows, since the templates for the horizontal and vertical edge
vertices are the same. Thus

P(1,0)−2j = PS2((1,0)−2j) = PS1((1,0)−2j) = PS3((1,0)−2j).

Therefore, (2.17) holds for all k with k ∈ (1, 0) + 2ZZ2. One can show similarly that
(2.17) holds for all k with k ∈ (0, 1) + 2ZZ2. Hence (2.17) holds for all k ∈ ZZ2.

It is clear from the above proof that if {Pk} satisfies the symmetry property (2.17),
then it yields templates that are SSTs. ¦

Proof of Theorem 2 (b): First assume that the templates associated with {Pk}
are SSTs. Let

ṽk =
∑

j

vjPk−A2j

be the vectors obtained after one subdivision iteration. Then the vectors corresponding
to the old vertices in the next level of iteration are

ṽA2k =
∑

j

vjPA2k−A2j =
∑

j

vk+jP−A2j.

By the SSTs property of the templates for the old vertices, we have

PA2j = PA2S1j = PA2S2j = PA2S3j = P−A2S3j.

Since
A2S1 = S3A2, A2S3 = S1A2, A2S2 = −S3A2, (2.25)

we have
PA2j = PS3A2j = P−S3A2j = PS1A2j = PS2A2j.

Thus (2.17) holds for k ∈ A2ZZ
2.

The vectors corresponding to the new vertices in the next level of iteration are

ṽ(1,0)+A2k =
∑

j

vjP(1,0)+A2k−A2j =
∑

j

vk+jP(1,0)−A2j.

By the SSTs property of the template for the new vertices, we have

P(1,0)−A2j = P(1,0)−A2(S2j+(1,0)) = P(1,0)−A2(S1j+(0,1)) = P(1,0)−A2S3j = P(1,0)−A2(−S3j+(1,1)).

This and (2.25) lead to

P(1,0)−A2j = P−S3((1,0)−A2j) = PS3((1,0)−A2j) = PS1((1,0)−A2j) = PS2((1,0)−A2j).

Therefore, (2.17) holds for all k ∈ (1, 0) + A2ZZ
2. Since the union of A2ZZ

2 and (1, 0) +
A2ZZ

2 is all of ZZ2, (2.17) holds for all k ∈ ZZ2.
We note that it is clear from the above proof that if {Pk} satisfies the symmetry

property (2.17), then it provides templates that are SSTs. ¦
In the following, we derive the symmetry properties of a refinable function (or dis-

tribution) vector Φ that corresponds to subdivision templates that are SSTs.
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Theorem 3 Let Φ = [φ0, · · · , φr−1]
T be a compactly supported refinable function (or

distribution) vector with subdivision mask {Pk} and dilation matrix A = 2I2 or A = A1

in (1.2). If the mask {Pk} satisfies (2.18), then Φ satisfies

φ`(x) = φ`(T1x) = φ`(T2x), x ∈ IR2, (2.26)

for each `, ` = 0, · · · , r − 1.

Theorem 4 Let Φ = [φ0, · · · , φr−1]
T be a compactly supported refinable function (or

distribution) vector with subdivision mask {Pk} and dilation matrix A = 2I2 or A = A2

in (1.2). If the mask {Pk} satisfies (2.17), then Φ satisfies

φ`(x) = φ`(S1x) = φ`(S2x) = φ`(S3x), x ∈ IR2, (2.27)

for each `, ` = 0, · · · , r − 1.

As explained above, for φ`s to satisfy the symmetry property (2.27), it must be 4-
directional symmetric, as shown on the left of Fig. 11. Similarly, for φ` to satisfy the
symmetry property (2.26), it must be 6-directional symmetric, as shown in the middle

of Fig. 11. Set φ̃`(x) := φ`(

[
1 1

2

0 1

]
x). Denote

T̃1 :=

[
1 1

2

0 1

]−1

T1

[
1 1

2

0 1

]
=

[
1
2

3
4

1 −1
2

]

T̃2 :=

[
1 1

2

0 1

]−1

T2

[
1 1

2

0 1

]
=

[
1 0
−1

]
.

Then φ̃`(T̃1x) = φ̃`(x), φ̃`(T̃2x) = φ̃`(x). Thus φ̃` satisfies the 6-directional symmetry
property as shown on the right of Fig. 11. When constructing (scalar) 1-to-4 split
subdivision schemes [30], and

√
3-subdivision schemes [21], the authors considered the

symmetry of type (2.26) for the masks (hence for refinable functions). Here we construct
the refinable function vectors Φ such that each component φ` of Φ satisfies the symmetry
property of type (2.26) or of type (2.27).

The proofs of Theorem 3 and Theorem 4 are similar, and it is easier to consider the
dilation matrix A = 2I2 than the dilation matrices A = A1 and A = A2. Furthermore,
the proof of the theorems for the dilation matrices A = A1 and A = A2 are also similar.
Hence, in the following we only give the proof of Theorem 4 for A = A2.

Proof of Theorem 4 with A = A2. Let P (ω) be the two-scale symbol of the mask
{Pk} defined by (2.7) with A = A2. Then Φ is given by (2.9) with A = A2, i.e.,

Φ̂(ω) = Π∞
n=1P (A−n

2 ω)u0,

since AT
2 = A2, where u0 is an eigenvector associated with the eigenvalue 1 of P (0).
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On one hand, (2.17) implies that

P (Siω) = P (ω), i = 1, 2, 3.

On the other hand, it is easy to verify that A−1
2 S1 = S3A

−1
2 , and A−2

2 S1 = S1A
−2
2 . Thus,

A−n
2 S1 is either S3A

−n
2 or S1A

−n
2 . In either case, P (A−n

2 S1ω) is the same as P (A−n
2 ω),

since P (S1A
−n
2 ω) = P (S3A

−n
2 ω) = P (A−n

2 ω). Therefore, we have

Φ̂(S1ω) = Π∞
n=1P (A−n

2 S1ω)u0 = Π∞
n=1P (A−n

2 ω)u0 = Φ̂(ω);

that is, Φ(S1x) = Φ(x). Similarly, by A−1
2 S2 = S1S2S3A

−1
2 and A−1

2 S3 = S1A
−1
2 respec-

tively, we have Φ(S2x) = Φ(x) and Φ(S3x) = Φ(x). This shows that φ`, 0 ≤ ` ≤ r − 1,
satisfy the symmetry properties (2.27). ¦

3. Construction of symmetric interpolatory
subdivision templates (SISTs)

In this section, we will describe a procedure for constructing matrix-valued subdivision
templates for interpolatory surface subdivisions, and give examples of C2 templates for
both triangular and quadrilateral meshes, demonstrating each of the 1-to-4 split,

√
3,

and
√

2 topological rules. Since this paper is concerned only with regular vertices, the
bulk of the work is in the construction of the corresponding subdivision masks. In
practice, only low-dimensional matrices are of interest to us. Hence, the examples we
will derive are matrix-valued subdivision masks {Pk} of dimensions r = 2 and r = 3
for C2 interpolatory surface subdivisions. It will become obvious that larger values of
the dimension r allow more free parameters for constructing subdivision templates for
generating 3-D surfaces with a higher order of smoothness.

For the matrix-valued subdivision templates to be SSTs, the masks {Pk} to be con-
structed must satisfy (2.18) or (2.17), so that the corresponding function vectors Φ
satisfy the symmetry properties (2.26) or (2.27), for triangular or quadrilateral meshes,
respectively. Furthermore, since we are concerned with C2-subdivision schemes, it is
convenient to construct subdivision masks {Pk} that satisfy the so-called “sum rule”
of order 4, which implies that Φ locally reproduces all polynomials of total degree 3.
(See, for example, [19, 17, 20] for the notion of sum rules and the same reference for a
computational method for meeting the requirement of any desirable sum rule order.)

The general procedure suggested in this paper is to formulate a subdivision mask
{Pk} that satisfies the interpolatory condition (2.12) and the symmetry properties (2.18)
or (2.17), starting with the smallest support, but large enough so that there is enough
freedom for the matrix entries to accommodate the requirement of the sum rule of order
4. Then a set of linear equations is formulated, with the matrix entries that have not
yet been determined as unknowns, by imposing the requirement of the sum rule of order
4. The template size must be large enough for the existence of solutions, or else the
matrix dimension r can be increased from 2 to 3 or even higher. We prefer, however,
small values of r, and are happy to point out that r=2 is sufficient in general. The
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general solution of the equations are formulated in terms of some free parameters, which
are to be adjusted by applying the algorithm/software in [18]/[20] to meet the desirable
order of smoothness. Again, increasing the support or the matrix dimension r might be
needed if the desirable order of smoothness is larger than 2. As mentioned above, for
C2 interpolatory subdivisions, r=2 is large enough for the “minimum” template size in
general.

In the consideration of the order of smoothness, we will compute the Sobolev expo-
nents s. More precisely, let s ≥ 0 and denote by W s the Sobolev space consisting of
functions f(x) on IR2 with

∫

IR2
(1 + |ω|2)s|f̂(ω)|2dω < ∞,

where f̂ denotes the Fourier transform of f . Observe that by the Sobolev embedding
theorem, for s > n+1, a function in W s is necessarily in Cn, meaning that all its partial
derivatives of orders up to n are continuous. In this paper, for a function vector Φ,
by writing Φ ∈ W s, we mean that each component of Φ is in W s. Since we are only
interested in subdivision schemes that are at least C2, all refinable function vectors Φ to
be derived in this paper are in W s with s > 3. We use the smoothness formula in [18]
to compute the Sobolev exponent estimates.

We also remark that while a similar matrix transformation, applied to change the
geometric performance of a symmetric subdivision mask, preserves the property of SSTs,
it does not alter the smoothness property of the corresponding refinable function vector.
More precisely, for dimension r = 2 or 3 considered in the following examples, let

U =

[
1 ∗
0 ∗

]
or U =




1 ∗ ∗
0 ∗ ∗
0 ∗ ∗


 , (3.1)

be any non-singular constant matrix. Then if a subdivision mask {Pk} is interpola-
tory and satisfies certain appropriate symmetry properties, then {UPkU

−1} is again an
interpolatory subdivision mask that also satisfies the same symmetry property. The cor-
responding refinable function vector is given by UΦ, whose components are only linear
transformations of that of Φ.

Of course, the purpose of introducing this similar matrix transformation is to change
the functionality of the shape control parameters, as can be seen from the transformed
refinable function vector UΦ. In practice, U should be chosen according to the need
of the user. However, since we are only concerned with the issue of smoothness in this
paper, we will simply set U to be the identity matrix.

Returning to the vector-valued refinement equation (2.1), where the refinable func-
tion vector Φ satisfies (2.2), with the first component of w satisfying (2.3), we will choose
the vector w to be [1, 0] for r = 2 and [1, 0, 0] for r = 3, in all the examples to be
presented in the following subsections.
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3.1 C2-interpolatory schemes for triangular meshes

In this subsection, we demonstrate the application of the procedure described above to
compute matrix-valued subdivision templates for triangular meshes. Both the 1-to-4
split and

√
3 subdivisions are demonstrated.

3.1.1 Interpolatory 1-to-4 split subdivision schemes

We first derive a family of interpolatory masks {Pk} that generate SISTs and satisfy the
sum rule of order 4:

P0,0 =

[
1 3

2
t3 + 9t4 − 3

8

0 t3

]
, (3.2)

P1,0 = P1,1 = P0,1 = P−1,0 = P−1,−1 = P0,−1 = B, (3.3)

P2,1 = P1,2 = P−1,1 = P−2,−1 = P−1,−2 = P1,−1 = C, (3.4)

P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = D, (3.5)

where

B =

[
3
8

0
−1

8
− t1

1
8
− t2

]
,

C =

[
1
8

0
t1 t2

]
,

D =

[
0 1

16
− 1

4
t3 − 3

2
t4

0 t4

]
,

P0,0

D D

DD

D D

B B

C

C

Figure 15: Subdivision templates for the local averaging rule of C2 interpolatory 1-to-4 split
subdivision scheme

See Fig. 15 for the subdivision templates. Note that the sizes of the templates are
the same as those of the Loop scheme in Fig. 6. Also note that the (1, 1)-entries of B, C
are the same as the weights 3

8
, 1

8
of the Loop scheme. (This is also the case for r = 3.)

For the choice of

t1 = −0.03295922922033, t2 = −0.01031166415430,

t3 = −0.35533104771638, t4 = −0.08729664374763,
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Figure 16: Interpolatory refinable function vector components: φ0 (on left) and φ1 (on right)

the corresponding refinable function vector Φ = [φ0, φ1]
T is in W 3.03532. If we choose

[t1, · · · , t4] =
1

512
[−17, −5, −182, −45], (3.6)

the resulting Φ is in W 3.03450. See Fig. 16 for the pictures of the two components of Φ
with the parameters tjs given in (3.6).

For r = 3, let P0,0 be the matrix defined by (3.7) and the other nonzero matrices of
the mask be given by (3.3), (3.4), (3.5) with B, C, D as follows:

P0,0 =




1 3
2
t12 + 9t16

3
2
t13 + 9t17 − 3

8

0 t10 t11

0 t12 t13


 , (3.7)

B =




3
8

0 0
t1 t2 t3

−1
8
− t7 −t8

1
8
− t9


 ,

C =




1
8

0 0
t4 t5 t6
t7 t8 t9


 ,

D =




0 −1
4
t12 − 3

2
t16

1
16
− 1

4
t13 − 3

2
t17

0 t14 t15

0 t16 t17


 ,

There are 17 free parameters in this family. For an appropriate choice of t1, · · · , t17 (the
numerical values of tjs are not provided here), the resulting Φ is in W 3.162644. If we
choose the numerical values:

[t1, · · · , t17] =
1

1024
[14, 6, 9, 89, −13, −183, −37, 5, 2,

14, 54, −49, −352, −18, 152, −2, −95],

then the resulting Φ is in W 3.16183.
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3.1.2 Interpolatory
√

3-subdivision schemes

For r = 2, we derive a family of
√

3-subdivision interpolatory masks {Gk} that generate
SISTs and satisfy the sum rule of order 4:

G0,0 =

[
1 18t3 + 3t4 − 1
0 t4

]
, (3.8)

G1,0 = G1,1 = G0,1 = G−1,0 = G−1,−1 = G0,−1 = X, (3.9)

G2,0 = G−2,0 = G0,2 = G0,−2 = G2,2 = G−2,−2 = Y, (3.10)

G2,1 = G1,2 = G−1,1 = G−2,−1 = G−1,−2 = G1,−1 = W, (3.11)

where

X =

[
8
27

0
− 4

81
− t1

1
9
− t2

]
,

Y =

[
1
27

0
t1 t2

]
,

W =

[
0 1

6
− 3t3 − 1

2
t4

0 t3

]
,

See Fig. 17 for the subdivision templates, and observe that the template size for new
vertices here is even smaller than that in [24] for C1 scalar interpolatory

√
3-subdivision

scheme.

P0,0

WW

W W

WW

X X

X

Y

YY

Figure 17: Subdivision templates for the local averaging rule for C2 interpolatory
√

3-
subdivision scheme

For the choice of

t1 = −0.00688446701758, t2 = −0.01078888570421,

t3 = −0.11334594212367, t4 = −0.29446533980366,

the refinable function vector Φ = [φ0, φ1]
T is in W 3.80780; while if we choose

[t1, · · · , t4] = − 1

81× 16
[9, 14, 147, 382], (3.12)
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Figure 18: Interpolatory refinable function vector: φ0 (on left) and φ1 (on right)

the resulting Φ is in W 3.80778. See Fig. 18 for the pictures of the two components of Φ
with the parameters tjs given in (3.12).

For r = 3, let G0,0 be the matrix defined by (3.13) and the other nonzero matrices
of the mask be given by (3.9), (3.10), (3.11) with X,Y,W as follows:

G0,0 =




1 9t10 + 3
2
t14 − 1

2
9t11 + 3

2
t15

0 t14 t15

0 t16 t17


 , (3.13)

X =




8
27

0 0
t1 t2 t3
t4 t5 t6


 ,

Y =




1
27

0 0
− 8

81
− t1

1
9
− t2 −t3

t7 t8 t9


 ,

W =




0 1
12
− 3

2
t10 − 1

4
t14 −3

2
t11 − 1

4
t15

0 t10 t11

0 t12 t13


 ,

We may choose t1, · · · , t17 so that the resulting Φ = [φ0, φ1, φ2]
T is in W 3.92864 (again,

the numerical values of tjs are not provided here). With the choice of

[t1, · · · , t17] =
1

81× 16
[−110, 129, 16, −236, 328, −2, −31, −56, 12,

−58, −36, −146, −71, −142, −105, −171, −207],

the corresponding Φ is in W 3.92212.

3.2 C2-Interpolatory schemes for quadrilateral meshes

In this subsection, we demonstrate our procedure by deriving C2-interpolatory 1-to-4
split and

√
2 subdivision templates for the quadrilateral mesh.
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3.2.1 Interpolatory 1-to-4 split subdivision schemes

We give a family of interpolatory masks {Rk} that generate SISTs and satisfy the sum
rule of order 4:

R0,0 =

[
1 r1,2

0 t6

]
, r1,2 =

1

2
+ 4t3 − 8t4 − 8t5 − 2t6, (3.14)

R1,0 = R0,1 = R−1,0 = R0,−1 = J, (3.15)

R1,1 = R1,−1 = R−1,1 = R−1,−1 = K, (3.16)

R2,0 = R−2,0 = R0,2 = R0,−2 = L, (3.17)

R2,1 = R1,2 = R−1,−2 = R−2,−1 = R2,−1 = R−2,1 = R−1,2 = R1,−2 = M, (3.18)

R2,2 = R−2,2 = R2,−2 = R−2,−2 = N, (3.19)

where

J =

[
3
8

0
1
8
− 2t1

1
8
− 2t2

]
,

K =

[
1
4

0
1
16

1
16

]
,

L =

[
0 −t3 − 1

4
r1,2

0 t5

]
,

M =

[
1
16

0
t1 t2

]
,

N =

[
0 t3
0 t4

]
,

K
M

J J

NN

L

L

L

L

N N

0,0R

M

M

K

K

M

K

Figure 19: Subdivision templates for the local averaging rule of C2 interpolatory 1-to-4 split
subdivision scheme

See Fig. 19 for the subdivision templates, and observe that their sizes are the same
as those of the Catmull-Clark scheme in Fig. 7. Also note that the (1, 1)-entry of K
agrees with the weight 1

4
in the Catmull-Clark scheme in the averaging rule for the (new)

face vertices and that the (1, 1)-entries of J,M are exactly the same as the weights 3
8
, 1

16

in the Catmull-Clark scheme in the averaging rule for the (new) edge vertices. (This is
also the case for r = 3.)
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Next, we choose t1, · · · , t6 so that the resulting Φ = [φ0, φ1]
T is in W 3.27720 (the

numerical values of tjs are not provided here). For the choice of

[t1, · · · , t6] =
1

256
[5, −1, −30, −9, −33, −86], (3.20)

the corresponding Φ is in W 3.27323. See Fig. 20 for the refinable function vector with
components φ0 (on the left) and −φ1 (on the right), with tjs given by (3.20).
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Figure 20: Interpolatory refinable functions φ0 (on left) and −φ1 (on right)

For r = 3, we may consider R0,0 to be the matrix defined by (3.21) and the other
nonzero matrices of the mask given by (3.15)-(3.19) with J,K, L, M,N given below:

R0,0 =




1 r̃1,2 r̃1,3

0 t23 t24

0 t25 t26


 , (3.21)

J =




3
8

0 0
t1 t2 t3

−1
8
− 2t10 −2t11

1
8
− 2t12


 ,

K =




1
4

0 0
t4 t5 t6
− 1

16
0 1

16


 ,

L =




0 −t17 − 1
4
r̃1,2 −t18 − 1

4
r̃1,3

0 t13 t14

0 t15 t16


 ,

M =




1
16

0 0
t7 t8 t9
t10 t11 t12


 , N =




0 t17 t18

0 t19 t20

0 t21 t22


 ,

where

r̃1,2 = 4(2t15 + 2t21 + t25 + t17), r̃1,3 = 4(2t16 + 2t22 + t26 + t18)− 1

2
.
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We may choose some appropriate tjs so that the resulting Φ is in W 3.56225 (the numerical
values of tjs are not provided here). For the choice of

[t1, · · · , t26] =
1

512
[−28, 12, 40, −16, 16, 28, −4, −4, −2, −45

4
, 0,

5

2
−12, −32, −20, −58, 0, 64, 0, −8, −4, −21, −56, −96, −48, −144],

the resulting Φ is in W 3.52612.

3.2.2 Interpolatory
√

2-subdivision schemes

We now derive a family of interpolatory masks {Lk} that generate SISTs and satisfy the
sum rule of order 4, namely:

L0,0 =

[
1 8t1 + 2t2 − 1
0 t2

]
, (3.22)

L1,0 = L0,1 = L−1,0 = L0,−1 = H, (3.23)

L1,1 = L1,−1 = L−1,1 = L−1,−1 = I, (3.24)

where

H =

[
1
4

0
− 1

16
1
8

]
,

I =

[
0 1

4
− 2t1 − 1

2
t2

0 t1

]
.

See Fig. 21 for the subdivision templates. If we choose t1 = −0.15911662281039, t2 =
0.10323661586963, the resulting Φ is in W 3.18743; if t1 = − 5

32
, t2 = 1

8
, Φ is in W 3.17794;

and if t1 = −1
8
, t2 = 1

8
, then Φ is in W 3.05094. See Fig. 22 for the refinable function vector

with components φ0 (on the left) and φ1 (on the right), for t1 = − 5
32

, t2 = 1
8
.

I

I

HH

H H

L0,0

I

I

Figure 21: Subdivision templates for the local averaging rule of C2 interpolatory
√

2-subdivision
scheme
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Figure 22: Interpolatory refinable function vector with components: φ0 (on left) and φ1 (on
right)

For r = 3, let L0,0 be the matrix in (3.25) and the other nonzero matrices of the
mask be defined by (3.23), (3.24), with H, I given below:

L0,0 =




1 1
2
− 4t4 − t8 −4t5 − t9

0 t8 t9
0 t10 t11


 , (3.25)

H =




1
4

0 0
1
8

1
8

0
t1 t2 t3


 ,

I =




0 t4 + 1
4
t8 − 1

8
t5 + 1

4
t9

0 t4 t5
0 t6 t7


 .

For the choice of

[t1, · · · , t11] =
1

512
[20, −46, 2, −90, 31, −54, −15, 36, −16, 70, −36],

the resulting Φ is in W 3.92491.

4. C2 Spline interpolatory subdivision schemes

Suppose we are already given a refinable function vector Φ associated with an approx-
imation, but not interpolatory, subdivision scheme. If Φ is a very desirable function
vector, such as C2 bivariate splines that locally reproduce polynomials of total degree at
least 3 and have very small supports and explicit formulations, say, in terms of Bézier
coefficients, it is very tempting just to modify Φ by taking a linear combination of the
integer translates of its components to preserve the knowledge of the Bézier coefficients,
in order to achieve the interpolation property, as long as the supports are enlarged, if
necessary, only by a little. Hence, instead of introducing parameters in the matrix en-
tries of some unknown subdivision mask, we only apply the interpolation and symmetry
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rules (2.16) and (2.17) or (2.18) to find a suitable linear combination. Therefore, the
procedure described in the previous section is simplified significantly. In particular, there
is no need to impose the fourth order sum rule requirement and to find the Sobolev ex-
ponents to verify for the order of smoothness. We demonstrate this simplified procedure
by giving two examples in this section.

4.1 C2-cubic spline interpolatory schemes
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Figure 23: Support and Bézier coefficients of φb
0

Let φb
0 be the C2 cubic spline introduced in [3] with its support and Bézier coefficients

shown in Fig. 23, where the zero coefficients are not displayed. Define

φb
1 := φb

0(A
−1
1 ·),

where A1 is the dilation matrix in (1.2). See Fig. 24 for the support and the Bézier
coefficients of φb

1, where only a portion of the Bézier coefficients are displayed due to
the six-directional symmetry property of φb

1. It was shown in [3] that Φb := [φb
0, φb

1]
T

is refinable with both dilation matrix A = 2I2 and dilation matrix A = A1, and its
corresponding subdivision masks are calculated in [3] with the symbols P2I2 and PA1

given by

P2I2(ω) :=
1

32

[
−1 + p(z) 9

1 + 2
3
p(z) + 1

3
p(z2) + 1

3
q(z) 5 + 3p(z) + q(z)

]
,

PA1(ω) :=
1

3

[
0 1

1
9

+ 2
27

p(z) + 1
27

p(z2) + 1
27

q(z) 2
3

+ 1
3
p(z)

]
,

where ω = (ω1, ω2), z := (e−iω1 , e−iω2), z2 := (e−i2ω1 , e−i2ω2), and
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Figure 24: Support and Bézier coefficients of 9φb
1

p(z) := z1 + z−1
1 + z2 + z−1

2 + z1z2 + (z1z2)
−1, (4.1)

q(z) := z2
1z2 + z−2

1 z−1
2 + z1z

2
2 + z−1

1 z−2
2 + z1z

−1
2 + z−1

1 z2.

These masks with dilation matrices A = 2I2 and A = A1 yield SSTs for 1-to-4 split
and

√
3-subdivision schemes, respectively. The sizes of the templates of the 1-to-4 split

subdivision scheme are the same as those of the Loop scheme, see [3]. However, these
schemes are not interpolatory. So, we modify φb

1 so that the new subdivision schemes
are interpolatory and remain SSTs. To do so, we define

φ̃b
1 := φb

1 − φb
0 −

1

9
{φb

0(· − (1, 0)) + φb
0(· − (1, 1)) + φb

0(· − (0, 1)) (4.2)

+φb
0(·+ (1, 0)) + φb

0(·+ (1, 1)) + φb
0(·+ (0, 1))},

and consider
Φ̃b := [φb

0, 9φ̃b
1]

T .

Then Φ̃b satisfies (2.16), and is still refinable with dilation matrices 2I2 and A1. Thus
the masks associated with dilation matrices 2I2 and A1, denoted by {P̃k} and {G̃k}
respectively, yield interpolatory 1-to-4 split and

√
3-subdivision schemes. One can easily

find the the support and the Bézier coefficients of φ̃b
1 from that for φb

0 and φb
1. See Fig. 25

for the pictures of φb
0 and −9φ̃b

1.
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Figure 25: Interpolatory refinable function vector with components: φb
0 (on left), −9φ̃b

1 (on
right)

Denote

U1(ω1, ω2) :=

[
1 0

−9− p(z) 9

]
, z = (e−iω1 , e−iω2),

where p(z) is given in (4.1). Then by the relationship between Φb and Φ̃b, namely:
̂̃
Φ

b

(ω) = U1(ω)Φ̂b(ω), we see that the symbols P̃ (ω) and G̃(ω) for Φ̃b with dilation
matrices 2I2 and A1 are given respectively by

P̃ (ω) = U1(2ω)P2I2(ω)U1(ω)−1, G̃(ω) = U1(A
T
1 ω)PA1(ω)U1(ω)−1.

It is easy to find the nonzero matrix-valued coefficients P̃k, namely:

P̃0,0 =

[
1 1

8

0 −1
2

]
,

P̃1,0 = P̃1,1 = P̃0,1 = P̃−1,0 = P̃−1,−1 = P̃0,−1 = B,

P̃2,1 = P̃1,2 = P̃−1,1 = P̃−2,−1 = P̃−1,−2 = P̃1,−1 = C,

P̃2,0 = P̃−2,0 = P̃0,2 = P̃0,−2 = P̃2,2 = P̃−2,−2 = D,

P̃3,1 = P̃3,2 = P̃2,3 = P̃1,3 = P̃−1,2 = P̃−2,1 = P̃−3,−1 =

P̃−3,−2 = P̃−2,−3 = P̃−1,−3 = P̃1,−2 = P̃2,−1 = E,

P̃3,0 = P̃3,3 = P̃0,3 = P̃−3,0 = P̃−3,−3 = P̃0,−3 = F,

where

B =

[
1
4

0
13
4

3
8

]
, C =

[
0 0
7
4

1
8

]
, D =

[
0 0
0 −1

8

]
, E =

[
0 0
−1

8
0

]
, F =

[
0 0
−1

4
0

]

This mask {P̃k} yields immediately the subdivision templates, as shown in Fig. 26, for
C2 interpolatory 1-to-4 split subdivision scheme.
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Figure 26: Subdivision template for the local averaging rule of C2-cubic spline interpolatory
1-to-4 split subdivision scheme
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Figure 27: Subdivision templates for the local averaging rule of C2-cubic spline interpolatory√
3-subdivision

It is also easy to find the nonzero matrix-valued coefficients G̃k, namely:

G̃0,0 =

[
1 1

9

0 −1
3

]
,

G̃1,0 = G̃1,1 = G̃0,1 = G̃−1,0 = G̃−1,−1 = G̃0,−1 = X,

G̃2,1 = G̃1,2 = G̃−1,1 = G̃−2,−1 = G̃−1,−2 = G̃1,−1 = W,

G̃2,0 = G̃−2,0 = G̃0,2 = G̃0,−2 = G̃2,2 = G̃−2,−2 = Y,

G̃3,1 = G̃3,2 = G̃2,3 = G̃1,3 = G̃−1,2 = G̃−2,1 = G̃−3,−1 =

G̃−3,−2 = G̃−2,−3 = G̃−1,−3 = G̃1,−2 = G̃2,−1 = Z,

where

X =

[
1
9

0
34
9

1
3

]
, W =

[
0 0
0 −1

9

]
, Y =

[
0 0
4
9

0

]
, Z =

[
0 0
−1

9
0

]
.

Similarly, the mask {G̃k} yields the subdivision templates, as shown in Fig. 27, for a C2

interpolatory
√

3-subdivision scheme. Observe that the template size for the new vertices
here is the same as that in [24] for C1 scalar (non-spline) interpolatory

√
3-subdivision

scheme.

4.2 C2-quartic spline interpolatory schemes

Let φd
0 be the C2 quartic spline introduced in [6] with its support and Bézier coefficients

shown in Fig. 28, where the zero coefficients are not displayed.
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Figure 28: Support and Bézier coefficients of φd
0 ∈ S2
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Figure 29: Support and Bézier coefficients of φd
1 ∈ S2

4(42)
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Figure 30: Support and Bézier coefficients of φd
2 ∈ S2

4(42)

Define

φd
1 := φd

0(A
−1
2 ·), (4.3)

φd
2 := φd

0(
·
2
)− 1

8
{φd

0(· − (1, 0)) + φd
0(· − (0, 1)) + φd

0(·+ (1, 0)) + φd
0(·+ (0, 1))}

− 1

16
{φd

0(· − (1, 1)) + φd
0(·+ (1,−1)) + φd

0(·+ (1, 1)) + φd
0(· − (1,−1))}, (4.4)

where A2 is the dilation matrix given in (1.2). See Fig. 29 and Fig. 30 for the supports
and Bézier coefficients of φd

1 and φd
2, respectively, where only a portion of Bézier coeffi-

cients are displayed due to the four-directional symmetry of φd
1 and φd

2. It was shown in
[6] that Φd := [φd

0, φd
1, φd

2]
T is refinable with both dilation matrix A = 2I2 and dilation

matrix A = A2, and the corresponding subdivision masks are calculated in [6] with the
symbols R2I2(ω) and LA2(ω) given by

R2I2(ω) = LA2(A2ω)LA2(ω),

LA2(ω) =
1

32




0 32 0
2(2r(z) + u(z)) 0 32

u(z) 4(2 + r(z)) 8(2 + r(z))


 ,
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where again z := (e−iω1 , e−iω2), z2 := (e−i2ω1 , e−i2ω2), and

r(z) := z1 + z−1
1 + z2 + z−1

2 , (4.5)

u(z) := z1z2 + (z1z2)
−1 + z1z

−1
2 + z−1

1 z2. (4.6)

These masks yield SSTs for 1-to-4 split and
√

2 subdivisions. The sizes of the templates
of the 1-to-4 split subdivision scheme are the same as those of the Catmull-Clark scheme
(see [6]), but the schemes are not interpolatory. So, again we modify φd

1, φ
d
2 so that the

new subdivision schemes are interpolatory and remain SSTs. To do so, we define

φ̃d
1 := φd

1 − φd
0 −

1

8
{φd

0(· − (1, 0)) + φd
0(·+ (1, 0)) (4.7)

+φd
0(· − (0, 1)) + φd

0(·+ (0, 1))},
φ̃d

2 := φd
2 − φd

0 −
3

16
{φd

0(· − (1, 0)) + φd
0(·+ (1, 0)) (4.8)

+φd
0(· − (0, 1)) + φd

0(·+ (0, 1))}
− 1

16
{φd

0(· − (1, 1)) + φd
0(·+ (1,−1)) + φd

0(·+ (1, 1)) + φd
0(· − (1,−1))},

and consider
Φ̃d := [φd

0, φ̃d
1, φ̃d

2]
T .

Then Φ̃d satisfies (2.16) and is still refinable with both of the dilation matrices 2I2 and
A2. Therefore, their subdivision masks immediately result in interpolatory 1-to-4 split
and

√
2 subdivision schemes. One can easily find the Bézier coefficients for φ̃d

1 and φ̃d
2

from those for φd
0, φd

1, and φd
2. See Fig. 31 for the pictures of the components φd

0, −φ̃d
1,

and −φ̃d
2.
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Figure 31: Interpolatory refinable function vector with components: φd
0 (on left), −φ̃d

1 (in
middle), −φ̃d

2 (on right)

Denote

U2(ω1, ω2) :=




1 0 0
−1− r(z) 1 0

−1− 3
16

r(z)− 1
16

u(z) 0 1


 , z = (e−iω1 , e−iω2),
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where r(z) and u(z) are given in (4.5) and (4.6). Then in view of the relationship

between Φd and Φ̃d given by
̂̃
Φ

d

(ω) = U2(ω)Φ̂d(ω), we see that the symbols R̃(ω) and
L̃(ω) for Φ̃d with dilation matrices 2I2 and A2 are given, respectively, by

R̃(ω) = U2(2ω)R2I2(ω)U2(ω)−1, L̃(ω) = U2(A2ω)LA2(ω)U2(ω)−1.

It is easy to find the nonzero matrix-valued coefficients R̃k, given by

R̃0,0 =




1 0 1
0 1

4
−1

2

0 1
8
−1

2


 ,

R̃1,0 = R̃0,1 = R̃−1,0 = R̃0,−1 = J, R̃1,1 = R̃1,−1 = R̃−1,1 = R̃−1,−1 = K,

R̃2,0 = R̃−2,0 = R̃0,2 = R̃0,−2 = L,

R̃2,1 = R̃1,2 = R̃−1,−2 = R̃−2,−1 = R̃2,−1 = R̃−2,1 = R̃−1,2 = R̃1,−2 = M,

R̃2,2 = R̃−2,2 = R̃2,−2 = R̃−2,−2 = N, R̃3,0 = R̃−3,0 = R̃0,3 = R̃0,−3 = O,

R̃3,1 = R̃1,3 = R̃−1,−3 = R̃−3,−1 = R̃3,−1 = R̃−3,1 = R̃−1,3 = R̃1,−3 = Q,

R̃3,2 = R̃2,3 = R̃−2,−3 = R̃−3,−2 = R̃3,−2 = R̃−3,2 = R̃−2,3 = R̃2,−3 = S,

R̃3,3 = R̃−3,3 = R̃3,−3 = R̃−3,−3 = T,

where

J =




5
16

0 0
7
32

1
8

1
4

21
64

1
8

1
4


 , K =




1
8

0 0
5
32

1
8

0
45
128

1
16

1
4


 , L =




0 0 0
0 1

16
−1

8

0 1
32

− 3
16


 ,

M =




0 0 0
0 0 0
7
64

1
32

1
16


 , N =




0 0 0
0 0 0
0 0 − 1

16


 , O =




0 0 0
− 1

32
0 0

− 3
64

0 0




Q =




0 0 0
− 1

64
0 0

− 1
64

0 0


 , S =




0 0 0
0 0 0
− 1

64
0 0


 , T =




0 0 0
0 0 0

− 1
128

0 0


 .

The subdivision templates of the local averaging rule of this interpolatory scheme are
shown in Fig. 32.

We may also find the nonzero matrix-valued coefficients L̃k of the mask {L̃k} for Φ̃d

with dilation matrix A2, listed as follows:

L̃0,0 =




1 1 0
0 −1 1
0 −3

4
1
2


 ,

L̃1,0 = L̃0,1 = L̃−1,0 = L̃0,−1 = H,

L̃1,1 = L̃1,−1 = L̃−1,1 = L̃−1,−1 = I,

L̃2,1 = L̃1,2 = L̃−1,−2 = L̃−2,−1 = L̃2−,1 = L̃−2,1 = L̃−1,2 = L̃1,−2 = H̃,

L̃2,0 = L̃−2,0 = L̃0,2 = L̃0,−2 = Ĩ ,

L̃3,0 = L̃−3,0 = L̃0,3 = L̃0,−3 = T̃ ,
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Figure 32: Subdivision templates for the local averaging rule of C2-quartic spline interpolatory
1-to-4 split subdivision scheme

where

H =




1
8

0 0
5
32

0 0
45
128

1
8

1
4


 , I =




0 0 0
0 −1

8
0

0 − 3
16

0


 , H̃ =




0 0 0
− 1

64
0 0

− 1
64

0 0


 ,

Ĩ =




0 0 0
0 0 0
0 − 1

16
0


 , T̃ =




0 0 0
0 0 0

− 1
128

0 0


 .

The subdivision templates for the local averaging rule of this interpolatory
√

2-
subdivision scheme are shown in Fig. 33.
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Figure 33: Subdivision templates for the local averaging rule of C2-quartic spline interpolatory√
2-subdivision scheme
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