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ABSTRACT

GAs started with generic mutation and crossover operators, but

over the years specialized representations and/or operators de-

signed speci�cally for a given domain or problem, such as TSP,

proved the most e�ective. In this paper, we de�ne a class of new

GA operators which automatically adjust for each problem. �e

adjustments or instantiations are based on the domain model pre-

sented to the operators in the form of Bayesian Network, as gener-

ated in the hierarchical Bayesian Optimization Algorithm (hBOA).

We then show that these operators outperform standard random

operators as long as the models are of su�cient quality.
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1 INTRODUCTION

While genetic algorithms (GAs) have shown the ability to solve

many problems, in order for them to solve problems robustly and

scalably, their operators must respect the linkage between bits [4].

One solution to this problem is to design competent GAs that in-

corporate linkage learning, such as estimation of distribution algo-

rithms (EDA) [2, 10, 12, 15]. EDAs work by building a probabilistic

model of promising solutions and then sampling new candidate
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solutions from the built models. Even though EDAs have many

advantages over the standard GAs and their operators [10, 17], the

model building is very computationally intensive.

Over the years, there were a�empts at other solutions as well.

For example, many interesting problems have been solved by �rst

designing a non-binary representation, designed to reduce the con-

ceptual gap between genotype and phenotype, and then designing

problem-speci�c operators in that representation, utilizing many

domain heuristics. A good example of this approach is TSP [5, 11]

and symbolic machine learning [6]. Of course designing such rep-

resentations and operators is very time consuming. �erefore, it

would be natural to somehow automate this process. One way to

accomplish this is to allow the representation to evolve so that the

standard operators would be able to utilize some problem regular-

ities [7]. Unfortunately, this approach can be ine�cient as not all

regularities can be discovered by just rearranging bit positions.

Another approach could be to leave the representation �xed,

and allow the operators to evolve, or otherwise explore the prob-

lem regularities. �is is the approach taken in this paper. We

design a number of operators, which always perform di�erently

based on the supplied information about the domain, or rather

about the regularities and dependencies among genes and alleles.

As a source of this information, we utilize domain models discov-

ered by hBOA [14] - Bayesian Networks.

�e paper is organized as follows. Section 2 reviews the hBOA

model and its properties that we will utilize. �en we design our

recombination operator templates in Sections 3 and 4. In Section 5

we empirically analyze the resulting operators. Section 6 summa-

rizes and concludes the paper.

2 MODEL

Weuse themodel representation from hBOA [14], where themodel

is a Bayesian Network and it is represented using dependency trees.

We use this model for two reasons. First, these models can be ac-

quired through hBOA runs. Second, once we have operators able

to utilize this model, we will subsequently try to utilize them to

improve hBOA performance altogether. On the other hand, using

the hBOA model does not necessarily require running hBOA on a

problem - there may be other ways to construct these models.

2.1 Dependency trees

�e dependency trees have the following properties that we will

utilize.



GECCO ’17, July 15-19, 2017, Berlin, Germany Cezary Z Janikow and Mark Hauschild

Figure 1: An example of a possible Dependency tree for bit

i. In this example, bit i depends on bits k and n. On the le�

are the meanings of the probabilities, on the right a speci�c

case.

(1) Each dependency tree has probabilities estimated from the

current population and showing as many dependencies as

observed in the population.

(2) Dependency trees show (estimated from the population)

how a given position bit depends on other positions.

(3) Each bit position from a chromosome has a corresponding

dependency tree, as shown in Figure 3, but some of those

position-trees may have no dependencies.

(4) �e probability values in the root stand for probability of

the bit being 0 (top in Figure 3) and 1 on (bo�om).

(5) �e probability values add to 1 in the root, and add to 1

when added over all leaves.

(6) �e top probabilities (for the bit being 0) added over all

leaves add up to the same probability in the root. �e same

for bo�om values and the probability of the bit being 1.

(7) A position can appear in more than one position-tree as

dependency position but not in a way to introduce cycles.

So if a position i depends on position j, then j cannot de-

pend on i directly or indirectly

2.2 Utility Measure for Dependency Tree

Each dependency tree provides information about the bit at this

position, based on the estimate from the current population. Some

bits have dependency context, others do not.

2.2.1 Position with no Dependency Context. �e simplest possi-

ble case for a position is when the position�s bit does not depend

on bits of other positions. In this case, the only information is the

frequency of the position�s bits, illustrated in Figure 1 assuming

only roots are present. We use the information entropy measure

I i = −((p0i )
∗loд�(p0i ) + p

1
i ∗ loд�(p1i )) to determine if the bits on

position i are random or following a pa�ern. �e best case for a

pa�ern, when either probability is 0, gives Ii = 0.�e worst case,

when both probabilities are equal, gives Ii = 1. �en we introduce

a new utility measure J = 1 − I . J can be seen as a utility mea-

sure (not a true probability metric) for the position, the higher the

measure the more information about the bit at this position. For

example, probabilities 0.5/0.5 give J = 0, probabilities 0.6/0.4, as

illustrated, give 0.03, 0.1/0.9 give 0.53, and probabilities 0.01/0.99

give 0.92.

2.2.2 Position with Dependencies. A given position can depend

on bit values from other positions. Figure 1 shows a dependency

tree for i, where i depends on k and n. �e �rst two nodes under

the root provide information on i’s dependency on the �rst addi-

tional position, here k: for k=0 on the le� and for k=1 on the right.

�e probabilities in those nodes are thus the probabilities of i=0

(top) and i=1 (bo�om) when k=0 on the le�, and the same when

k=1 on the right. �en, the two additional leaf nodes on the le�

show how the probabilities for the �rst le� node split when addi-

tional position n is used. To establish the utility measure for the

positions with dependencies, we use the information content of

the leaves instead of that of the root, weighted by importance of

the nodes, and we use the above properties. We can now use these

weights to establish weighted entropy over the leaves. For exam-

ple, in �gure 1, if the position i had no dependencies, as before,

then its utility measure was J=0.03. If the nodes based on k were

added (i depends on k now), then the tree would have the top 3

nodes only, and the utility measure of this tree would be J=0.154.

Adding also the two leaves based on n (as shown), the utility of the

entire tree is now J=0.245, an advantage over both previous cases.

As seen, the higher the utility of a tree, the more context informa-

tion it contains. In Figure 1, the full tree has the highest utility,

meaning that if bits k and n are known then bit i can be predicted

with highest certainty.

2.3 Dependency Context

�e dependency context for a bit position is the set of bit positions

on which the given position depends on. For example, if the bit in

position 1 has two positions 2 and 3 in its dependency tree, these

two positions 2 and 3 are the dependency context for position 1.

In other words, the actual bit value for position 1 can be be�er

predicted by also observing bits for positions 2 and 3.

2.3.1 Direct Dependency Context. If position i depends on posi-

tions k and n in the position-tree for position i, then positions k and

n are the context in which position i should be considered. Because

they come directly from a single dependency tree, we call this the

direct dependency context for position i ��denotedDDCi = {k,n}.

�e strength of this direct context is the JDDCi utility measure.

�erefore, JDDCi can be used to measure utility of direct context

DDCi .

2.3.2 Markov Cover Context. We can also create larger masks

by including transitive dependencies. For example, borrowing the

concept of markov cover from Pearl [13], we can de�ne markov

cover context MCCi as DDCi union all positions m found in all

trees depending on position i . �e utility JMCCi of the cover is the

utility measure computed iteratively. �e utility of markov cover

context based on only Dependency tree i is JMCCi = JDDCi . For

each new position being added to the markov cover context, the

utility becomes JMCCi = JMCCi + (1 − JMCCi ) ∗ JDDCx Note

that JMCCi�JDDCi . It is strictly larger unless the two contexts are

the same. �is utility will grow for larger contexts, with increases

decreasing with weaker dependencies - and this is what we want

to measure, the larger and stronger contexts. A potentialMMC is

illustrated in Figure 2.
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Figure 2: A potential set of related dependency trees in ad-

dition to that of Figure 1 (there could be more dependency

trees that are not related). �en, DDCi = {k,n}, MCCi =

{k,n,p, j} and EMCi = {k,n,p, j,q}.

2.3.3 Extended Markov Cover Context. We can also create an

extended markov cover context EMCi by adding additional related

dependencies until we have no more dependencies or the set con-

tains half the positions in a chromosome (this will be used in

crossover; such a mask will mix two chromosomes by exchang-

ing about half of the chromosome). We extend the idea of markov

cover context as follows to create the extended markov cover con-

text EMCi :

(1) Start with DDCi . If the context contains at least half the

positions, stop.

(2) Move on to MCCi , with its utility measure. If the context

contains at least half the positions, stop.

(3) Add DDCx for all positions x found in MMCi , one at a

time in the order of decreasing JDDCx . For every De-

pendency tree x added, update the utility of the context

JEMCi = JEMi + (1 − JEMCi ) ∗ JDDCx . Stop a�er any x

when the context contains at least half the positions.

(4) If any new positions were added in step 3, continue step 3

for these new positions. Stop if no new positions.

A potential EMC mask is illustrated in �gure 2. Note that EMC

contexts induce a binary partition of the set of positions in a chro-

mosome into approximately equal-sized sets.

2.4 Masks

�e previously de�ned contexts can be used now to create masks,

which will be used in mutation and crossover. A mask is the set of

all positions found in a context and the utility of the mask is the

utility of the context. �e smallest mask DDC links positions most

directly related, the other masks link positions linked indirectly.

�e utility of a DDCmask will always be less or equal to the utility

of its MMCmask, etc. �is will not cause problems aswewill never

compare two di�erent kinds of masks using the utility measure.

3 MUTATION

Mutation operates on a single chromosome until a change is made.

It a�empts to ”improve” or ”repair” the chromosome rather than

making random changes and is guided by the model. �us, muta-

tion is less likely to produce improvements for chromosomes that

are closely aligned with the model. A mutation will not be com-

plete until there is a change (except for helper mutation which

is not an operator). We propose multiple mutations. Each muta-

tion operates on the position(s) chosen using the utility measures.

Here we introduce Fix-Position-In-Context (FPiC) mutation; they

a�empt to repair a bit position, improving its �t to its observed

context restricted by a mask. Each mutation has singular (post�x

s) and also uniform (post�x u) versions. Each mutation can also

use any of three di�erent masks: (post�x d for direct mask, m for

markov cover mask, e for extended markov cover mask), which

would allow the mutation to propagate to other positions depend-

ing on this position, directly or indirectly. �us, the possible mu-

tations are: FPiC{d,m,e}{s,u}. First we de�ne helper kernel muta-

tion, which itself is not a complete mutation operator but appears

in some mutations.

3.1 Kernel Mutation for Fixing Position in
Context KMiC

Kernel mutationKMiCi is a helper single trial mutation a�empting

to mutate the bit on position i based on its direct context DDCi .

(1) �e position i is already chosen.

(2) If the context is empty (DDCi mask is empty), select the

root probabilities in the dependency tree for i. If there are

other positions in the mask, it means that bit i depends

on other bits. Using the observed bit values of those other

positions, select the corresponding leaf node in the depen-

dency tree for i . Whichever node was chosen, it gives us

probability (weight) for i = 0 on the top, and separately

for i = 1 on the bo�om.

(3) Use the two weights to generate new bit i = bi (can be

the same as current or di�erent). Return success if the

bit i is changed, otherwise failure. For example, assume

the dependency tree for i as of Figure 3 right. Suppose the

current bits for k and n are 0 and 1, respectively. �ese val-

ues designate the middle leaf, which provides the weights:

0.28 for i = 0 and 0.1 for i = 1. �us i = 0 is generated with

probability 0.737 and i = 1with probability 0.263. And this

results in either changing i or not depending on the cur-

rent value of i . For example, if i = 0 was selected from the

above probabilities, and its current value is 1, then change

i to 0 and return success.

3.2 Mutation FPiCds

�is mutation works under a direct mask and it is a single version.

It considers the context for the position (using its direct mask), and

based on the context it a�empts to repair the position bit i. It op-

erates until a change is made (success), but the change is not prop-

agated to other bits.

(1) Select a chromosome for mutation.

(2) Select a direct mask with probability proportional to the

JDDC measures (can be deterministic starting with the

highest utility or stochastic). If no more masks available,

start all over from 2 with all masks available again. As-

sume the selected mask is for position i .

(3) Perform kernel mutation KMiCi . If success, return suc-

cess, else go back to 2 selecting from positions not tried

yet.
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3.3 Mutation FPiCms

�is mutation works as FPiCds except that a�er the bit for i is

changed (FPiCds returns only when successful), the change propa-

gates to all positions inMCCi that directly depend on i (i is found

in their DDC). In other words, propagate the �rst change to all

directly a�ected bits.

(1) Perform FPiCds mutation (it is always successful when �n-

ished).

(2) Pick all dependency treesm dependent on i (this is really

a subset ofMCCi but it contains ALL bits that directly de-

pend on i), and order them in decreasing utility measure.

(3) Perform kernel mutation KMiCm in each positionm, one

at a time, always assuming current bit plus any changes

made in the current mutation (if m changes, its new

value will be used in subsequent kernel mutations in this

FPiCms mutation).

(4) Return success.

3.4 Mutation FPiCes

�is mutation works as FPiCms except that if any additional bit

m is changed (in addition to i which necessarily changes), these

changes also propagate to all positions a�ected by the new bit.

Note that because EMCi mask can be cut short of true transitive

closure (when its size covers half the chromosome), the bits poten-

tially changed in this mutation can lie outside of the EMCi mask,

but this is unlikely as the cut o� dependencies would be the weak-

est dependencies.

(1) Perform FPiCms mutation (it is always successful on i

when �nished, but it could have changed more bits j).

(2) Pick all dependency trees m dependent on all changed

positions j (the change to i was already propagated in

FPiCms) and order them in decreasing utility measure. If

no more, return success.

(3) Perform kernel mutation KMiCm in each dependency tree

m, one at a time, always assuming current bits plus any

changes done in the current mutation. If m changes, its

new value is added to j to be used in subsequent kernel

mutations in this FPiCms mutation. Go back to 2.

3.5 Uniform and Random Mutation

We also implement a randommutation, and then uniform versions

of all the mutations.

• Mutation Ms; a�er selecting chromosome, select a ran-

dom bit and �ip it

• MutationMu; as Ms but �ip each bit of the selected chro-

mosome with probability eMu/L where eMu is some pa-

rameter (standing for the expected number of �ips) and L

is the chromosome length.

4 CROSSOVER

A crossover always works with two parents, and it a�empts to

exchange some bits between the two parents. �e objective of our

crossover is to keep together bits in the same context, using masks.

�ese masks group together bits on positions that are contextu-

ally dependent, therefore the purpose of a mask is to keep a group

of bits from being disrupted. Here we introduce Chromosome-

Independent-Crossover (CiC) crossover, which can be based on di-

rect mask (d), markov cover mask (m), and extended markov cover

mask (e).

4.1 Crossover CiCd

�is crossover uses a direct mask independently of the chromo-

somes under consideration.

(1) Select one chromosomes.

(2) Select a direct mask based on J values.

(3) �e positions in the mask are grouped together, the re-

maining positions form the other group for the crossover.

�is operator is very asymmetric.

4.2 Crossover CiCm

�is crossover uses a markov cover mask independently of the

chromosomes under consideration.

(1) Select one chromosomes.

(2) Select a markov cover mask based on J values.

(3) �e positions in the mask are grouped together, the re-

maining positions form the other group for the crossover.

�is operators performs less asymmetric crossover but still not

very symmetric.

4.3 Crossover CiCe

�is crossover uses an extendedmarkov cover mask independently

of the chromosomes under consideration.

(1) Select one chromosomes.

(2) Select an extended markov cover mask based on J values.

(3) �e positions in the mask are grouped together, the re-

maining positions form the other group for the crossover.

�is operator is a very symmetric crossover (for many cases the

two parts split but the crossover are about equal in size).

4.4 Random Crossover

We also implement random uninformed crossovers for compara-

tive purposes.

• Cs; a standard one-point crossover with a random

crossover point on two parents. �is crossover is expected

towork be�er if the dependent bits for a problem are phys-

ically grouped together.

• Cu; a standard uniform crossover on two parents: walk

over all positions in the two parents, and swap bits of each

position with probability 0.5. �is crossover will swap

about half the bits and is expected towork be�er when the

dependent bits and their physical locations are not corre-

lated.

5 EMPIRICAL ANALYSIS

�e objectives here are to analyze:

• Soundness of the proposed operators.

• Properties of the proposed operators with respect to qual-

ity/completeness of information provided in the model.
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• Performance of the operators as compared to the random

uninformed operators.

• Performance of groups of operators.

On the other hand, we do not set to compare the behavior or

a GA running with these new operators as compared to that of

hBOA itself. We are performing this analysis and will report the

results separately.

5.1 Test Problem: Concatenated 5-bit trap

In trap-5 [1, 3], the input string is �rst partitioned into indepen-

dent groups of 5 bits each. �is partitioning is unknown to the

algorithm and it does not change during the run. A 5-bit fully de-

ceptive trap function is applied to each group of 5 bits and the

contributions of all trap functions are added together to form the

�tness. �e contribution of each group of 5 bits is computed as

trap5 (u ) =

{

5 if u = 5

4 − u otherwise
, (1)

where u is the number of 1s in the input string of 5 bits. �e task is

to maximize the function. An n-bit trap5 function has one global

optimum in the string of all 1s and (2n/5 − 1) other local optima.

Traps of order 5 necessitate that all bits in each group are treated

together, because statistics of lower order are misleading.

5.2 Test Problem: NK Landscapes

An NK �tness landscape [8, 9] is fully de�ned by the following

components: (1)�e number of bits, n, (2) the number of neighbors

per bit, k , (3) a set of k neighbors
∏

(Xi ) for the i-th bit, Xi for

every i ∈ {0, . . . ,n − 1}, and (4) a subfunction fi de�ning a real

value for each combination of values of Xi and
∏

(Xi ) for every

i ∈ {0, . . . ,n−1}. Typically, each subfunction is de�ned as a lookup

table. �e objective function fnk to maximize is de�ned as

fnk (X0, . . . ,Xn−1) =

n−1
∑

i=0

fi (Xi ,
∏

(Xi )) (2)

�e di�culty of optimizing NK landscapes depends on all com-

ponents de�ning an NK problem landscape. For k > 1, the prob-

lem of �nding the global optimum of unrestricted NK landscapes

is NP-complete [19].

In this paper we use nearest neighbor NK landscapes, which

have the following two restrictions:

(1) Bits are arranged in a circle and the neighbors of each bit

are restricted to the k bits that follow this bit on the cir-

cle. �is restriction to nearest neighbors ensures that even

those instances of k > 1 can be solved in polynomial time

using dynamic programming.

(2) Some subproblems may be excluded to provide a mech-

anism for tuning the size of the overlap between subse-

quent subproblems. Speci�cally, the �tness is de�ned as

fnk (X0,X1, . . . ,Xn−1) =

⌊ n−1step ⌋
∑

i=0

fi (Xi×step ,
∏

(Xi )) (3)

where step ∈ {1, 2, . . . ,k + 1} is a parameter denot-

ing the step with which the basis bits are selected. �e

amount of overlap between consequent subproblems can

be reduced by increasing the value of step.

To make the instances more challenging, string positions in

each instance are shu�ed by re-ording string positions according

to a randomly generated permutation using the uniform distribu-

tion over all permutations.

�e dynamic programming algorithm used to solve the nearest

neighbor class of NK landscape instances is based on refs. [16, 18].

5.3 Experimental Setup and Parameters

To test the di�ering e�ects of model quality on the quality of the

informed operators, hBOA was run for a range of generations

(3,6,9,12,15,18, not all reported here) and the resulting hBOAmodel

was subsequently used in a GA algorithm running for 300 genera-

tions. �e GA startedwith a random uniform population, and used

either one operator at a time or a pair of operators. �e operators

included some of the informed mutation and crossover as previ-

ously de�ned, as well as random operators as a reference. We will

evaluate more operators in a separate work.

We examined trap-5 instances of 50 bits, and nearest neighbor

NK landscapes of 41 bits with one bit of overlap between its par-

titions. �is was done so that each problem we examined had ten

di�erent partitions, but the NK landscape problems had overlap be-

tween partitions and di�ering di�culty in each of these partitions.

100 di�erent instances of this size of NK landscape were used in

testing.

�e probability of crossover during GA recombination was 60%,

with 40% a simple copy performed. Informed mutations were per-

formed until a single bit is �ipped (successful operators). In order

to compare the informed mutations to the random mutations, the

probability of mutation for random mutation operators was set to

give an expected value of one bit �ipped.

A set of representative mutation operatorswere selected to com-

pare against each other. For informed mutation based on knowl-

edge gained from the hBOA model, FPiCds and FPiCms were used.

In order to test the e�ectiveness of these operators compared to

standard GA operators, Ms and Mu were used. To test the e�ec-

tiveness of selecting a bit to mutate based on J values, a variant of

FPiCds was used where the bit selected for mutation was selected

uniformly rather than through J values, which we will refer to as

uFPiCds.

A set of recombination operators was also selected. For in-

formed operators, CiCd, CiCm and CiCe were used. In order to test

the e�ectiveness of these operators compared to standard GA oper-

ators, 2-point and uniform crossover were also used - 2 point with

5-bit trap and uniform with NK landspace as these operators are

expected to perform best for these problems. To verify the useful-

ness of selecting the initial crossover point based on J values, two

variants of CiCd and CiCm were used where the crossover points

were selected uniformly rather than based on J (called uCiCd and

uCiCm respectively).

For each problem and parameter se�ing, 10 independent runs

were used.
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Figure 3: Maximum �tness by generation for trap-5 using

only mutation.

5.4 Concatenated 5-bit trap results

Figure 3 shows the performance of the GA using selected informed

and random mutations and various quality hBOA models on the 5-

bit trap problem. �e four various model cases are those collected

a�er running hBOA for 3, 6, 9 and 18 generations.

Figure 3a and b show the result when using the lowest qual-

ity models and, as expected, all of the mutation operators perform

similarly. However it can be seen that the informed runs are under

performing especially in case (a) as the poor quality model mis-

leads the operators. In case (c) we �nally notice that the informed

runs begin to outperform the runs with purely random operators.

�e two informed operators perform the best, with FPiCms contin-

uing to increase the quality of the solutions gradually. �e worst

performing informed operator at this point is uniform FPiC, which

points to a strong performance gain by selecting our bit to mutate

based on J rather than uniformly. Finally, in case (d) we can see

that hBOA was able to build a good quality model before moving

on to GA. �e FPiCms mutation quickly outperforms the other op-

erators. FPiCds is the second best. uFPiCds initially performs bet-

ter but ten falls short of the others.

Figure 4 shows the performance of the GA using selected in-

formed and random recombination operators and the same various

quality hBOA models on the same trap problem.

Figure 4a shows the GA results when the model is very poor

quality. As expected, the so-poorly informed operators do not per-

form much be�er than uniform crossover. On the other hand, the

2-point simple crossover clearly outperforms all other crossovers

because, for this problem, the operator tends to preserve the build-

ing blocks. In case (b), where the hBOA model is still poor but

be�er than in case (a), we can see that some of the informed opera-

tors start to improve substantially but still do not match the perfor-

mance of the well-suited 2-point crossover. Among the informed
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Figure 4: Maximum �tness by generation for trap-5 using

only recombination.

operators, Ud and Um, the operators selecting crossover points uni-

formly but then using the direct tree or the markov blanket to se-

lect crossover neighborhoods, are somehow be�er than the other

informed operators - which need more reliable information. Cases

(c) and (d) show that the fully informed operators perform be�er

and be�er as the quality of the model improves, eventually match-

ing the behavior of the well suited 2-point crossover. CiCe, CiCm,

CiCe and Um all perform at nearly the same level, �nding the max-

imum �tness of the problem instances in many cases. CiCd and

Ud are the two worst of the informed operators, pointing to the

necessity of a larger cover for recombination.

5.5 Nearest neighbor NK landscape results

In the previous experiments we saw that the informed operators

were superior in most cases to the random operators when given a

su�cient qualitymodel. In addition, the use of J to select crossover

and mutation points was bene�cial. However, trap-5 has no over-

lap between subproblems and all the partitions have the same dif-

�culty, and this is why a simple 2-point crossover was found to

perform as well as the informed operators. In this section we re-

peat the same experiments but for the NK landscape problem.

Figure 5 shows GA performance when using selected informed

and random mutations on the la�er problem when provided with

various quality models. In cases (a) and (b) the random mutations

tend to performbe�er, as before, as the information provided in the

models is misleading the informed mutations. However, in case (c)

and especially (d) when the model is relatively good, the informed

mutations start to outperform the random mutations. Among the

informed mutations, the one based on the markov cover seems to

outperform themutations operating on onemask at a time - FPiCm

is the best operator, with FPiCd the best of the other operators but

notably worse. uFPiC initially performs be�er thanMs and Mu but

later on in generations are able to match its performance.
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Figure 5: Maximum �tness by generation for NN NK land-

scapes using only mutation.
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Figure 6: Maximum �tness by generation for NN NK land-

scapes using only recombination.

Figure 6 shows GA performance when using selected informed

and random recombination operators on the NK landscape prob-

lem when provided with various quality models. Figure 6a shows

the results obtained with a very poor model. As expected, the 2-

point crossover does not outperform the other operators as the

problem characteristics changed. In fact, in this case (a) the uni-

form crossover seems to outperform the other operators as the in-

formation in the model is misleading. However, CiCe performs

surprisingly well for an informed operator based on bad informa-

tion. However, this operator swaps 50% of the bits from the two
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Figure 7: Maximum �tness by generation for trap5 and nnk

using recombination and mutation a�er 18 generations of

hBOAmodel building.

parents, becoming similar to the uniform crossover. Also, while

uniform and CiCe do the best over time, they do poorly in compar-

ison to the other operators at the beginning of the runs.

In cases (b) and (c) the informed operators catch up and exceed

the quality of the uniform crossover, as the models become more

reliable. Overall, CiCe is the best performing operator. CiCd and

CiCm initially do well but eventually plateau.

Finally in case (d), the hBOA model is much be�er even though

it is far from good (the GA still clearly outperforms the hBOA alone

thus the hBOA model was not complete yet). Now Um and CiCm

both perform nearly equally with this level of model quality, beat-

ing out all the other operators during the entirety of the runs. CiCe,

CiCd and Ud are nearly equal in performance, starting out worse

than Um and CiCm, but managing to reach nearly the same aver-

age �tness given enough generations. �e two worst operators are

the random operators, with two-point doing slightly be�er early

on but then uniform surpassing its performance later.

5.6 Combined results

In Section 5.4 and Section 5.5 it was observed that given su�cient

model quality, the informed operators (both mutation and recom-

bination) performed well individually, clearly outperforming the

random operators (except when speci�c problem characteristics

match the operator). But even though a GA needs both mutation

and crossover, it needs them both together to fully succeed. �ere-

fore, in this section we pair the best crossovers with the best mu-

tations to see if in combination they can indeed outperform the

singular runs.

CiCd and CiCm were the strongest recombination operators

across NNK and trap-5 instances, so we selected them for this

experiment. For mutation, we picked FPiCd and FPiCm, as they

were the overall winners. Due to the noisiness of the results, in

the following results 100 instances for each parameter se�ing for

trap 5 were used. We show results only up to 100 generations, for

more detail. We also only show the results for the best models

(18 hBOA generations) as this is when the informed operators per-

formed best.

Figure 7 shows the GA results for both trap5 (a) and nnk (b). As

seen, the combinations of crossover and mutations improve on the

results with one operator at a time. �e combinations of operators
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based on the markov cover seem to outperform those based on

single covers, in both cases.

6 SUMMARY AND CONCLUSIONS

We have de�ned generic mutation and crossover operators that do

account for some problem-speci�c information presented to them

in the form of hBOA model. Using two standard problems with

various characteristics, we have shown that the so-informed op-

erators outperform the standard random operators as long as the

information given to the operators is fairly reliable even if not per-

fect. We have then shown that a mix of such operators will outper-

form these operators alone.

With these results in place, we validated the assumption that

a generic information model, hBOA model here, can be useful to

create GAs which will outperform standard random GAs. �is can

be useful if building domain/problem speci�c representations and

operators is costly or di�cult. �e next step will be to perform

more empirical analysis to be�er assess and understand various

properties of these operators, and the impact of model quality on

their performance. Finally, with such informed operators in place,

the �nal step will be to assess if a combination of hBOA and such

informed GA can be a good alternative to hBOA alone.
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