
A Survey of Modularity in Genetic Programming

George Gerules

Department of Math and Computer Science

University of Missouri - St. Louis

St. Louis, MO 63121

Email: georgegerules@umsl.edu

Cezary Janikow

Department of Math and Computer Science

University of Missouri - St. Louis

St. Louis, MO 63121

Email: janikowc@umsl.edu

Abstract—Here, in this paper, we survey work on modularity
in Genetic Programming GP. The motivation for modularity was
driven by research efforts, as we shall see, to make GP programs
smaller and more efficient. In the literature, modularity has
commonly used Koza’s term, Automatically Defined Functions
ADF. But, we shall see, that the modularity concept has undergone
many name and design changes. From the early ideas of Koza
and Price’s Defined Building Blocks DBB to Binard and Felty’s
work with System F and GP Briggs and O’Neill’s work with
Combinators in GP. Our goal in this paper is to survey the
literature on this evolution. This will include Automatically
Defined Functions ADFs, Automatically Defined Macros ADM,
Adaptive Representation Through Learning ARL, Module Ac-
quisition MA, Hierarchically Defined Local Modules HGP, Higher
Order Functions using λ calculus LC and Combinators. We also
include critiques by researchers on the viability these various
efforts.

I. INTRODUCTION

iModularity in GP has been explored in many different ways.

It can be roughly categorized into untyped and typed repre-

sentations. Early work by Koza and Price used untyped ADFs.

Some researchers explored modularity in the untyped realm

through Automatically Defined Macros ADM [1], Module

Acquisition MA [2], Adaptive Representation through Learning

ARL and Hierarchical Locally Defined Modules HLDM [3].

While other researchers, inspired by Montana’s early work [4],

added type systems to their exploration efforts in modularity.

These included using Higher Order Functions HOF and meth-

ods drawn from the foundations of mathematical logic using λ

calculus[5], [6], [7], [8], [9], [10]and combinators[11]. Figure

1 shows the relationship of these various efforts for typed and

untyped systems.

There are many similarities between these approaches and

many differences. We have four goals with this paper. First, it

is our goal to bring together, in one paper, the arc on which

untyped and typed ADFs have traveled. Here we use the term

ADF in a broad sense when talking about modularity and not

Koza’s original definition which we will investigate in the next

section. Second, our focus has been to include papers that

introduce new mechanisms of Automatic Function Definition

AFD. Third, we have focused on papers that tend to explain

how AFD works. Finally, we have focused on papers where

we could obtain implementations.

UnTyped Typed

ARL

MA

ADM

HLDM

Enc λ Exp

ADF

PolyGP

STGP

COMBCOMB

ABGP

Fig. 1. UnTyped and Typed ADF Systems

II. UNTYPED AFD METHODS

A. Automatically Defined Functions

In this section we take a detailed look at the changing

terminology of Koza’s work on ADFs. In addition, towards

the end of this section we take a look at other early papers on

ADFs by Andre and Woodard.

Originally Koza, in a 1990 technical report, calls code reuse

Defined Building Blocks DBB. In this report he introduces us

to DBB as a way of automatically defining building blocks for

a particular GP run. He argues that a programmer will need to

solve subproblems in order to solve an overall larger problem.

During a GP run a location is chosen in the original tree.

That location is pruned on a separate tree and in its location

a reference to the newly pruned tree is created. This DBB

becomes a zero argument function. The location of the tree

removal has a reference to the what is essentially newly created

zero argument function. This function label is inserted into the

function set. An advantage with this approach is that the newly

created function is kept intact and is now immune to potential

disruption of the crossover operation.[12]

DBB is discussed again in Koza’s first book on GP. Here he

makes reference to DBB but now prefers the term Encapsula-

tion Operation EO. What is described as an EO is essentially

the same procedure of the DBB in the 1990 report. Later

Koza, uses encapsulation to help determine the architecture of

a Neural Network via Genetic Programming. Towards the end

of the book, he builds a justification for the use of dynamically

created functions. It is here that he introduces us to the concept

of an ADF. Using the ADF concept he shows how, using the

even parity problem, code complexity is reduced through the

use of subroutines.[13]

In this part of the first GP book, Koza uses LISP and ADFs

on symbolic regression for the even–parity problem. In this

portion of his research he uses a LISP list3 function. The

list3 function for this example problem is comprised of 3
items and its main purpose is to hold together the ADF and the

result producing branch RPB. The RPB can call one or more

ADF elements. It is the RPB that returns a value that can be

compared to a fitness test case. If the returned value from a

RPB is close to the fitness test case the overall program is

kept around. For this particular problem ADF0 can accept two

arguments while ADF1 can accept three arguments. Each ADF

and RPB can have their own functions and terminals. None of

the ADFs in this section of the book call other ADF entities.

Figure II-A shows the overall use of the list3 function while

figure 3 shows how the list3 function holds together the RPB

and the two ADFs, ADF0 and ADF1, which may be used by

the RPB to generate a value to be compared against a fitness

case value.

LIST3

ADF0 ADF1 RPB

Fig. 2. list3 ADF Overall Structure

LIST3

OR OR ADF0

OR ADF0 ADF0AND ANDARG0

ARG1
ARG2

NOT

NOT

ARG0

ARG1

D0

D1

D2

D3

Fig. 3. ADF Use of list3

Crossover is constrained so that the root of the tree is not

disturbed. Koza terms this a structure preserving crossover.

In later chapters of Koza’s first GP book, he discusses

Hierarchies of Automatically Defined Functions HADF and

their evolution. Here any ADF can call any other ADF to

solve a particular problem. In fact an ADF can be composed

of other ADFs. So, the RPB may call these hierarchies with

its own function and terminal sets made up of ADFs that are

composed of other ADFs. When these hierarchies are created,

function and terminal sets are carefully constructed as to not

cause infinite loops. Symbolic regression and the even parity

problem were used as a test bed. As a result, the number of

individuals evolved in finding a good solutions is drastically

reduced.

Koza’s entire second Genetic Programming book GP2 it

is devoted to the topic of ADFs.[14] This 26 chapter book

explores a wide variety of problem implementations related

to ADFs in GP. Early in the book he credits James Rice as

the inventor of the idea of ADFs and directs the reader to a

patent both of them filed in 1992. In the patent ADFs are called

Automatic Function Definitions AFD.[15]

Early in the GP2 book he expands discussion for justification

and design (HADFs). He points out the ADFs are particularly

useful when there is ”regularity” in the problem to be solved.

A complex problem may be subdivided in to smaller solvable

problems in a divide and conquer manner. It is this identifica-

tion and grouping of tasks, or regularity as he calls it, is what

an ADF can exploit in GP when solving a problem.

Eight claims are provided in GP2 on how ADFs help GP.

They can be summarized as follows: 1), ADFs subdivide prob-

lems into smaller subproblems. 2), ADFs exploit regularities in

the problem space. 3), ADFs solve problems more efficiently

with less computation and evaluation. 4), the ending solution

generated by a GP system using ADFs are often smaller than a

solution generated from a non ADF system. 5), when scaling

up problems using ADFs, the intermediate solutions grow in

program size at a slower rate than without ADFs. 6), for

problems than can be scaled up, computation effort grows

slower than without ADFs. 7), for problems that can be scaled

up, the solutions generated by a GP system using ADFs is less

complex than GP systems without ADFs. 8), a GP using ADFs

is capable of evolving the overall architecture of a particular

program.

The question of how many ADFs are needed are explored

in Chapter 7. Sometimes it is known ahead of time how many

ADFs are needed from the overall structure of the problem.

But, as explained in this section of the book, many times it is

not known, a priori, how many ADFs are needed. Three cate-

gories of methods are introduced in this chapter. The first cate-

gory of methods requires manual analysis. There are two kinds

of analysis in this category. In the first method we can analyze

the problem and guess how many ADFs are needed based on

knowledge of the problem domain prospective analysis. In the

second method we can randomly try different combinations

of ADFs on the same GP problem, look at the results and see

which one performs better with a particular combination of

ADFs. This is retrospective analysis. The second category of

methods is based on capacity. The issue here is whether there

were a sufficiently correct number of ADFs present, sufficient

capacity, to solve a problem. This also indirectly relates to

the third category on whether enough computer resources are

available, affordable capacity, to handle various configurations

of ADFs. This third category involves whether the number of

ADFs can be dynamically determined at run time. Chapters

(22–25) explore the structure and use of ADFs when they are

dynamically generated.

During this early period in the development of ADFs, a few

researchers observed a few points of interest are worth noting.

In a paper by Andre, on Map-making, he advocates that

ADFs need to be grouped by functionality. ADFs in this paper

have constraints placed on which functions and terminals were

used. Specifying a function to be only used in a particular ADF

forced that ADF to be used. If that ADF changed, through the

evolutionary process, it changed in all locations where that

ADF was used.[16]

Woodard, in a paper on modularity in genetic programming,

introduces us to a number of proofs that state that the minimum

number of primitives needed to define a particular function

is independent of the overall number of primitives if we use

modularity to the GP problem.[17]

Around this time, because of these results, several research

efforts, ADFs started to be explored with other paradigms.

These are discussed next.

B. Module Acquisition

In Angeline and Pollack’s Module Acquisition MA, has its

roots in their work on Evolutionary Algorithms.[18] Here we

will focus on their tree representations when discussing MA.

MA works by removing a random branch in the tree. The

removed branch is then trimmed to a desired depth, regardless

of what the tree contains. Its functionality is frozen and never

changes. This operation is called compression. See figure 4.

There are two types of compression. The first is a freezing

operation. Once a module is frozen no more compression

operations can be performed on it. Furthermore, this type of

module does not contain references to other modules. The

second is an atomization operation. For this type of module,

hierarchical references to other modules can exist and. Fitness

is measured on the whole program that may use compressed

modules.

The authors’ note that a lack of diversity can be introduced

into the overall population of trees, if only the compression

operation is used. So to counteract this they use what they call

an expansion operation, which is the insertion of a module

back into the tree at random locations.

or

not

d0

and

not or

and not d1

d2 not

d0

d0

compression

or

not

d0

newfunc

d2 not

d0

d0

Fig. 4. MA compression operation

The module’s parameters are the values that are fed to

that portion of the removed tree. The module is kept in a

library manager called GLib, based on their earlier research,

in Genetic Algorithms, to identify subroutines. [2] GLib, is

used to keep track of how many times a particular module is

used. But, this number is never used as a fitness measure for

the overall fitness function.

The artificial ant and even parity problem where chosen as

the benchmark problems to demonstrate this methodology.

In summary, the success of this method is that programs that

use these immutable modules, that are created and inserted

randomly, will lead to smaller and better programs. It is

these programs that contain one or more copies of successful

modules will win out over modules with unfit modules. We

will see in the next section how several researchers improve

on this method.

C. Automatically Defined Macros

Spector introduces us to code reuse with Automatically

Defined Macros ADM.[1] In LISP, when a function is called

its results are computed in the function body and any results

are returned. But, in LISP, there is a macro facility, much like

the preprocessor macro facility in the ”C” language where the

text of the macro body is copied to the location of the macro

invocation. So, if a LISP macro was called twice, the entire

code that defines the macro body is copied twice and expanded

twice at each location of macro invocations.

On the surface it may see that all an ADM does is delay

evaluation of a part of code and increase program size. But as

Spector points out, ADMs can help in modifying the overall

program architecture in ways that a purely functional approach

cannot. If a GP problem requires the use of functions that

have side effects ADMs perform worse than ADMs because the

semantics of a particular ADM may not be consistent where a

macro expansion happens at a particular site in the GP syntax

tree. Side effects can happen when a function changes the

program state outside of the function body.

For the implementation, changing a Koza type ADF to a

Spector type ADM is done by modifying the fast–eval code

in Koza’s LISP original implementation, so it treats a function

like a macro. Macro bodies are evolved in a similar fashion

to ADF function bodies. Note, that if a ADM is evolved it is

not added to the function set and no statistics are kept on the

usefulness of a particular ADM. As an aside, Spector mentions

that in Zongker’s and Punch’s lilgp, changing an ADF to a

ADM is done by replacing the function evaluation type from

EV AL DATA to EV AL EXPR. [19]

Spector does point out that there is an increased evaluation

time for all of the expanded macro invocations. This might be

a drawback for use of ADMs for some implementations.

The ADMs performed better than ADFs for the Dirt–Sensing

and Obstacle–Avoiding robot problem. But the use of ADMs in

the Lawn Mower problem performed worse when compared to

the same problem using ADMs. Spector also investigated using

ADMs on Russell and Norvig’s Whumpus World problem

where it performed favorably when compare to use of ADFs

on the same problem.

D. Hierarchy Locally Defined Modules

In Banzhaf et al. they explore modularity in GP by exploiting

a Hierarchy Locally Defined Modules, HLDM.[3] Here, locally

defined modules may define other local sub–modules.

In their work they cite previous work by Koza, ADFs,

Angeline and Pollack’s MA, and Rosca’s and Ballard’s ARL.

They also, cite Gruau’s work on using graphs as a basis for

cellular encoding for developing neural networks as inspiration

for their work. But, when referencing that work, they state

that they only use the idea of hierarchical evolution to specify

locally aware context sensitive modules.[20]

In their version, hierarchical GP modules are organized

into levels. Modules at each level are able to exchange and

mutate genetic material only within that level. This concept is

also called structure preserving crossover in Koza’s work.[13]

However in Banzhaf et al., the rate of crossover and exchange

lessens at lower levels. Thus, as good modules are created

and evolved at lower levels, they won’t change as much.

Identifying good modules is done by changing a module with

a neutral module and comparing the localized fitness. This is

based on work done by Rosen his book. The basic idea is that

there is a neutral module that doesn’t add or detract from the

overall fitness of the GP program. Now, if overall fitness of

the program is increased when a fitter module is added it must

be a good module and we keep it around.[21]

They have two different versions of their HGP system.

One being hGPminor and the other being hGP. For both

hGPminor and hGP there is only one level of modules and the

individual calling the module can only call that module once.

Also, for both mutation is only allowed on the highest level.

Evolution is not allowed for hGPminor and is allowed for

hGP. Evolutionary parameters on hGP has two capabilities.

One is the capability of having a bad sub tree being replaced

by a randomly generated sub tree. The other is setting the

crossover probability to a predefined 33%. They report that

replacing a bad sub tree with a randomly generated sub tree

performed poorly.

For their experiments they chose 4 functions for symbolic

regression and 2 different even parity problems. The details

of these can be found in table 5 hGP performed better than

hGPminor, which in turn performed better than GP without

ADFs.

They report that hGPminor out performs standard GP and

hGP out performs hGPminor for all six problems.

Problem Type

1 continuous randomly selected values

2 continuous steps

3 continuous x6 − 4x5 − 3x4+
4x3 − 2x2 − x+ 4

4 continuous x3
−x2

−x+3

x+ 5

9

5 discrete even–5–parity

6 discrete even–7–parity

Fig. 5. hGP Test Problems

For their work they created some extensions to the GPC++

0.4 version framework.

III. TYPED AFD METHODS

Data types were introduced into GP with Montana’s paper

on Strongly Typed Genetic programming.[4] While his work

didn’t specifically address ADFs, his work was used as a spring

board to constrain the search space for GP. In the next several

sections we take a look at data typing mechanisms used in the

context of AFD.

A. Adaptive Representation Through Learning

In this section we take a look at Rosca and Ballard’s original

papers introducing Adaptive Representation through Learning

ARL. This is followed by a paper from Dessi et al., analyzing

the effectiveness of the ARL method.

Rosca and Ballard introduced ARL in a series of papers

in the mid 1990’s.[22], [23], [24] They based their work on

limitations they noticed in Koza’s HGP and Angeline’s MA.

First, they point out, in Koza’s original HGP, there is no

determination of the intrinsic value of an evolved subroutine.

A subroutine’s own fitness is never differentiated from other

building blocks of code. The evolved subroutine only returns

a computed numerical value which contributes to the overall

fitness to a particular problem.

Second, for Angeline and Pollack’s MA method, they point

out that created routines are never removed, leaving a lot of

unfit routines. In addition, they cite work by Kinnear where

comparisons are made between Koza’s ADFs and Angelines

MA methods. In that work ADFs outperform MA for the

4 multiplexer problem when compared to the baseline. In

Kinnear’s research, ADFs find solutions for a particular GP

run much better than GP runs without ADFs. MA doesn’t have

an effect on finding better solutions when compared to GP runs

without ADFs.[25]

In Rosca’s and Ballard’s work, subroutines, i.e. building

blocks, are given their own fitness functions. Each subroutine’s

fitness function is run against a subset of test cases. If there are

any unused variables in a subroutine, the variables are turned

into random fixed numbers.

The goal is to dynamically identify new useful functions and

add them to the function set of the evolving genetic program.

Dynamic identification is done by a predefined, block fitness

function. If the population has enough diversity good building

blocks will evolve and beat out unfit building blocks.

Statistics are kept on the usefulness of subroutines. These

statistics are called complexity measures in their paper. There

are three kinds of complexity tracked by their method. Struc-

tural complexity, is the number of nodes in tree for a sub-

routine. Evaluation complexity, is the number of nodes in tree

for a subroutine, plus the number of times calls are made

to that routine. Evaluation complexity, also keeps track of

call hierarchies, in case the global function uses evolved sub-

functions. Description complexity, using work by Iba et al.,

is a method using Minimum Description Length MDL. To use

MDL, a problem can be coded in a minimal way to describe

the overall representation of that problem.[26] So, including

the first two complexities in the fitness function landscape,

their method outperformed HADF, MA when compared a GP

baseline. Here the GP baseline is the 4 even parity problem run

without ADFs. They did note that when MDL was used as part

of the fitness function an overall GP run was less successful.

Now when a particular GP run is underway, the number

of newly created building blocks is tracked. These building

blocks are added to the function set. If the number of newly

created building blocks is below a threshold, evolution is put

on hold while unfit building blocks are removed from individ-

uals and a new population of building blocks is generated.

The previous unfit building blocks are replaced with fitter

building blocks from the expanded function set. The function

set never gets smaller. The replacement can happen upon

immediate discovery of new fit building blocks or after some

predetermined number of generations have passed where there

has been no new building blocks discovered. The number of

generations for this to take place is called an epoch.

Several test problems were used in their work. A type

defined pac–man problem, the 3 and 5 even–parity and odd–

parity where chosen. All of which they reported that the ARL

approach came with better quality solutions than plain vanilla

GP solutions.

The key point for this approach is that typed building blocks

have fitness themselves. Next, several researchers propose a

number of modifications to the ARL approach.

Dessi et al., analyze the effectiveness of ARL where they

propose a number of modifications to the original algorithm.

[27] They note that in the original ARL algorithm, the epoch

is of fixed length, They propose a variable length to an epoch.

The variable length epoch would be adaptively determined

through monitoring the diversity of the population. They

also propose, using the concept of entropy from Information

Theory as a measure of population diversity. This measure

and a strategy they call MaxFit help guide improvements in

the population so that new routines maybe introduced into the

population.

For this work, a subroutine is considered to be a subtree of

depth between 2 and 4.

A number of heuristics are used to to test the existing

ARL algorithms and new algorithms. All of the building block

selection methods respect the depth limits of the program trees.

These heuristics are briefly described in the next few para-

graphs. Their naming scheme for their methods is represented

as a change in font in the descriptions that follow.

The RANDOM method selects blocks in the program ran-

domly.

The RANDOMFIT method selects blocks according to either

tournament selection or to a fitness proportional selection. This

selection is set prior to the run of the program.

The WHOLEPROGFITNESS method selects a block accord-

ing to the same fitness function used for the entire program.

The FITNESSBLOCK method selects blocks according to

the same fitness used for the entire program. For this one on

only 60% of the training data was used. The reduced training

set was only for the symbolic regression problem and the

multiplexer problem. And the selection of the reduced set

of input data points was tuned for each problem. The did

point out that there was a drawback on the large number of

evaluations this added to this method.

The BLOCKACTIVATION method does its selection after

crossover. The child is evaluated, if it has a better fitness

than at least one of the parents, then that child is a good

subroutine and is kept around. Poor performing subroutines

will eventually be replaced by better subroutines.

The FREQUENCY method selects a block based on the

highest number of times it occurs in the population.

The FREQUENCYPROGRAM method selects a block based

on the highest number of times it occurs in a single program.

The SCHEMA method selects a block is according to the

average fitness of a block in relation to the average fitness of

all programs.

The CORRELATION method selects blocks according to ei-

ther tournament selection or to a fitness proportional selection.

A statistical correlation is performed from the computed output

of a program in the tree against subprograms in the tree.

They also, introduce a new selection method called Saliency.

This method modifies a building block and looks for large

scale differences in fitness. If the modification of a subroutine

causes a large negative change then the subroutine must have

a high semantic relevance to the overall fitness. Saliency is

a combination of three equations. These three equations and

their relationship can be found below. Equation one measures a

subroutine’s original output out(i) against the modified output

out′(i). N is the number of fitness cases. Previous to invoking

this heuristic section of a subroutine is according to either

tournament selection or to a fitness proportional selection. For

the Saliency algorithm 10% of the population was used. For

the Saliency Elitism method 1% of the population was used.

The equation for this approach are below.

Salout =
1

N
×

N
∑

i=1

{

0 if out(i) = out′(i)

1 otherwise

Equation two, computes the difference in fitness.

Salfit = ABS(f − f ′)

Equation three, combines the two saliency measures into an

overall value for saliency.

Sal = Salout × Salfit

For the non saliency selection methods the authors cite work

from Tackett and Kinnear.[28], [29]

Dessi et al. also introduce mutation into their version of

ARL. Here they take low fitness subroutines and replace them

with randomly created routines. This approach is used in the

saliency methods. This, in theory, might generate a subroutine

of higher fitness.

For test problems they used the 6 bit multiplexer, symbolic

regression, and sorting problems for their experiments. For the

symbolic regression routine the function is f(x, y) = 2× x×
x−3×y×y+5×x×y−7×x+11×y−13. The range of the

function f(x, y) from −4 to 4 for both the x and y values. The

equation used for their test problem is a two variable equation

where Koza’s original equations in his first two books only

use one variable.

When discussing the results of their experiments, they

compared the previous selection methods against genetic pro-

gramming without subroutine discovery. Genetic programming

without subroutine discovery was called canonical genetic

programming cgp.

For the symbolic regression none of the selection methods

performed better than genetic programming without subroutine

discovery. The correlation method was the only method that

equaled cgp.

For the sort problem, only the RANDOMFIT and FRE-

QUENCY methods performed better than cgp.

In the 6 multiplexer problem, the RANDOM selection

method and the SALIENCY ELITISM method performed better

than cgp.

The authors did not investigate whether program size was

reduced or whether the number of evaluations was reduced as

a result of subroutine discovery.

The C language was used to conduct their research. The

framework they developed has many features in common with

the Zongker’s and Punch’s lilgp system. [19]

So to summarize this section, the results are mixed for

ARL. None of the test problems overlapped between the two

groups, so it might be difficult to draw conclusions when

one group is analyzing the original effectiveness of the ARL

approach. As a side note, one reason for Dessi’s heuristics

not performing better than plain vanilla GP might be due to

the non commutative nature of the function chosen for an

evolutionary target. For an in depth look at how commutative

non–commutative functions impact symbolic regression by

Janikow and Aleshunas.[30]

B. λ Calculus and Combinatory Logic Introduction

Several researchers use λ Calculus LC and Combinators

found in the foundations of mathematics and computer science

for GP. In the next few paragraphs we will first describe

LC and then Combinators before discussing their use in GP

implementations.

LC has its origins in the work of Alonzo Church in 1932.

It was revised a year later in 1933. In its original incarnation,

he needed a better platform to explore foundations of math-

ematical logic than the platform of Russell’s type theory or

Zermelo’s set theory. For LC he chose functions as a base

concept rather than sets. The symbol λ came about as a

modification to Whitehead’s and Russell’s symbol x̂ for class

abstraction. [31]

In LC there are two primitive operations, one of application

and the other abstraction. Application has to do with applying

a function to a function argument. For example f(5). Abstrac-

tion is a symbolic expression of what the function does. For

example, λx.x3. We will see later how LC is used in GP.

Schönfinkel’s first introduced Combinators, in a 1924 paper,

but due to health reasons abandoned the topic. Later, Haskell

Curry rediscovered them and continued work on Combinators.

Combinators are a notational system on how to combine

objects. More on how these evolved can be found in Cardone

and Hindley’s paper and in Seldin’s paper.[31], [32]

In Combinatory Logic CL the only primitive application

allowed is application. What a function does is built up from

combination operations, Combinators. These combinators are

labeled with bold faced capital letters and they denote term

rewriting rules. For example the B combinator is the compo-

sition operator which is defined in terms of other combinators

S and K. So to build the B combinator, which is S(KSK.

The K combinator is KXY ⊲X. The ⊲ symbol means reduces

to the thing on the right. The S combinator is defined as

SXYZ⊲XZ(YZ). For a full description of this and many other

combinators see Seldin’s chapter in the following work.[32]

There is a connection between Functional Programming FP,

LC and Combinators. The FP can be simplified to LC expres-

sions which are equivalent to Combinators. These Combinators

can be a template for building functional genetic programs.

One of the nice properties of Combinators is that variables

are not bound to values.

1) PolyGP System: Functional programming techniques for

GP are explored in Yu’s thesis where polymorphism, implicit

recursion and higher order Functions HOF are used on several

bench mark problems.[33], [8]

In the introduction section, she cites two methods of

problem solving in the context of programming. The first is

problem decomposition and the other is contextual checking.

In problem decomposition, a complex problem is divided

into smaller problems until solutions can be programmed for

each smaller problem. The entire system system is built from

smaller programs. Contextual checking on the other hand is

performed on code being created. Yu uses lexical and semantic

checking, done by the compiler, on a program to find errors

and verify that a program conforms to the grammar of a given

language. MA, ARL and MA are all mentioned as precursors

for her work using HOFs.

Three techniques, found in functional programing lan-

guages, are used in the PolyGP system. They are poly-

morphism higher order functions and implicit recursion. In

functional languages polymorphism is carried out through a

type system. This polymorphism is different than the C++

parameterized types found in template meta programming. A

higher order function in a functional language is a function

that can take and return functions as a program argument.

Implicit recursion is a type of recursion that will always

terminate based on input. For example the LISP functions

map, foldr, foldl and nth functions are functions that use

implicit recursion. These functions apply a recursive operation

on a finite list of elements. The recursion ends when the

list is traversed. Specifically, the foldr function works by

applying an operation on a list of elements from the right

side. Yu points out that in Koza’s first book ([13] p97) the

genetic programming process, of create test modify is similar

to the process to carried out by a programmer. In her work

she adds functional programming techniques to Koza’s GP

process, since these methods have helped out programmers

to solve problems that would be hard to solve with other

less powerful methods. The PolyGP system uses and evolves

HOF is based on LC. Subroutines are the actual Lambda

Abstractions LA, and the system can accommodate multiple

types. Type checking is done via polymorphic type checking

system.

Polymorphic functions, in functional programming, is

achieved through a type system, since there exist unnamed

λ functions in the functional programming paradigm. In the

introductory section she points out that in Koza’s original

implantation of GP, type information is not used. Yu refers

to this as ”untyped” GP. The search space for ”untyped” GP

can be very large. Constraints can be placed on the search

space in the form of introducing a type system for generating

valid GP programs. In order to introduce polymorphism to

GP a type system has to be added to GP. This type system

is different than Montana’s work involving Strongly Typed

Genetic Programming STGP, where types are stored in a look

up table. [4]

In PolyGP the type system determines dynamically what

are correct types for functions using a unification algorithm

first introduced by Robinson. Robinson unification algorithm

originated in the area of computer theorem proving. The

algorithm finds out whether two types are the same when they

are instantiated. When the unification algorithm completes, it

either returns the most general unifier or it returns nothing.

The phrase, ”most general unifier”, refers to the kind of unifier

that is returned if there is more than one unifier found. If more

than one unifier is found it returns the unifier that is the least

specialized. [34], [35]

There are two kinds of grammars at work in the PolyGP

system to help with polymorphism and the process of gener-

ating type correct programs. The first is an expression syntax.

See figure 6. The second is a type syntax. See figure 7. Both of

these, in the paper, are expressed in a form similar to functions

definition HASKELL language and Backus–Naur Form BNF .

[34]

expression :: c constant symbols or keywords

x identifier

p built in primitive operation

x application of one

expression to another

Fig. 6. Expression Syntax

σ :: τ built in type

υ type variable

σ1 → σ2 function type

[σ1] list of elements all of type σ1

(σ1 → σ2) bracketed function type

τ :: string|bool|generici
υ :: dummyi|temporaryi

Fig. 7. Type Syntax

The term structural abstraction is introduced in an earlier

work and used in this research as a name for the patterns

that emerge from usage of HOFs.[36] Yu argues that GP

simultaneously evolves the structure and the contents. It is

this meta level processing by using HOF and the type system

the PolyGP system can perform better than systems that use

ADFs, MA, or ARL. When solving the even parity problem

the HOF foldr was chosen to help find good solutions. A

boolean xor example using the foldr function for structural

abstraction can be seen next. This example shows how the

foldr function would evaluate a list of values.[37]
foldr (xor) F [T,F,F]

= T or (T or (F or F))

= T or (F or T)

= T or T

= F
LA are embedded in the previous example. The program

tree for the above example is as follows.
foldr

λ

xor

#1 #2

T [F,T,F]

#1 and #2 are program arguments for foldr. F is xor’d

on each item in the list from right to left. Overall structure of

the program is kept intact via the type system. For crossover

LA can only crossover with other similar LA.

The PolyGP system is made up of a creator, an evolver,

an evaluator and a type system. The creator is responsible

for generating a population of programs. Each program is a

tree which is grown from the top down to a specified depth.

The dynamically created type correct programs based on an

contextual instantiation method. This instantiation method is

done by a unification algorithm.

Constraining the search space is a constant theme in this

dissertation. Yu cites the work of Andre, 1994 where they

recommend that ADFs be grouped by functionality. This will

lead to ADFs that evolve separately if each ADF has its own

evolution parameters. There are three potential structures in-

side a GP program with ADFs, as she points out. First an ADF is

statically defined for every program in the GP population. Each

program in the GP population has the same structure. Second,

during initial program creation for the initial population, each

program is created with a random structure. Then during

succeeding generations the structure changes bases on overall

fitness goals and the third is architecture altering operations

placed on the structure of the GP program. Yu cites Koza’s

six architecture altering operations on how to achieve this

here. Yu notes that if an incorrect sequence of architectural

altering operations are chosen, the GP program may miss

out on other better choices as the GP program evolves. Yu

observes that for the PolyGP system, that these operations

can be computationally expensive. This system was developed

using the Haskell language on the 1.4 version Glasgow Haskell

compiler.

Results based on this research can be found in a number of

Yu’s papers. In a paper on recursion and lambda abstraction

the PolyGP system successfully evolved programs to learn

the Even-N-Parity problem. This system produced smaller

programs than the ADF approach and found correct solutions

in less generations. Yu cites structure abstraction as a key

feature of this success.[36], [33]

In another paper they revisit Montana’s STGP where they

grow the LISP mapcar and nth programs 6 to 7 times faster.

They point out that their search space is smaller due to gen-

eration of type correct programs. And, their initial population

is smaller due to their improved crossover operator.[34], [33]

2) System F and Abstract Based Genetic Programming: A

system called Abstraction Based Genetic Programming ABGP,

introduced by Binard, combines ideas from many areas of

computer science and mathematics. In this work he uses

Girard–Reynold SYSTEM F, a typed LC, within a GP system.

[5], [6], [7]

His work presupposes knowledge of Type Theory and

a background in LC. A detailed history with examples on

usage, can be found Cardone and Hindley’s paper.[31] Briefly,

SYSTEM F was invented independently first by Girard in 1972

and later by Reynolds in 1974. [31], [38], [39] LC itself was

invented in the 1930s by Alonzo Church and seeks to describe

function abstraction. [40] When LC was first created it was in

an untyped form. Girard introduced a types to LC and called

it SYSTEM F. It can handle universally quantified types and

has an abstraction feature for its types that makes it attractive

to in the area of reducing terms in mathematical proofs. In

1974 Reynolds independently created a very similar system.

His main motivation was in creating a system that could handle

polymorphism used in programming languages.

A SYSTEM F is essentially defined by two grammars, one

for the data types permitted in the terms, and the other for the

terms themselves. Binard uses this property to further constrain

the search space of allowable programs population. SYSTEM

F also has the property of Curry–Howard Isomorphism. This

property states that second order logic statements can be

expressed with SYSTEM F syntax. So second order logic state-

ments involving ∃x and ∀x can be expressed and transformed

using second order proof methods. So an individual in an

ABGP system’s population is essentially a statement to be

proved using second order logic. His system evolves provably

correct individuals through the expressivity of its SYSTEM F

type system.

In the ABGP system, a GP object is made up of a kingdom.

A kingdom is made up of a proof and a species population. The

species population is made up of genotypes. The ecosystem

has species. Species have a genotype and proofs. The genotype

is made up of genes parsed nodes in the SYSTEM F parse tree.

The genes are the data types and program fragments that make

up a SYSTEM F term. Normalization of SYSTEM F programs

are done using term elimination rules that make up the second

order logic portion of the SYSTEM F framework. The species is

essentially a proof of correctness in the SYSTEM F framework.

The proof system is based on intuitionistic type theory and is

also known as constructive type theory.

During a GP run an initial population is generated randomly.

Individuals in the population have as size limit imposed. He

calls this maxComp. Only correct individuals can be generated

in the population based on the constraints imposed by the

predefined SYSTEM F statements.

Crossover in ABGP needs special care because of the ex-

pressiveness of SYSTEM F terms. In SYSTEM F an expression

can take several forms. SYSTEM F has a strong normal-

ization property meaning that depending on the abstraction

context the parse tree for a SYSTEM F expression can be

represented differently but normalize to the same irreducible

expression.[5] So crossover needs to happen on individuals

within the normalization context. For purposes of ABGP a

species is an individual of the same normalization context.

Crossover is handled in three separate ways. First material

was swapped within the same species. Second, material was

swapped and genes can be mutated within species. And third

crossover scheme was explored where material was swapped

and mutated across species.

A removal operation has the option to delete alleles, or

whole individuals from the population. The population is

rebuilt to its maximum size to get ready for the next round of

evolution.

Individuals are evaluated either by test cases or by the

results of a fitness function. If an individual evaluates correctly

for all test cases or by good results via a fitness function, it is

considered a solution.

3) Encoding λ Expressions: In a very brief two page paper

Tominaga, Suzuki and Oka use an encoding scheme to evolve

λ expressions for the objective function f(x) = 2x using

Church numerals. [10]

Church numerals are a way of describing the natural num-

bers using untyped λ expressions.[31].

The number 2, as they state in their work, would be the

following untyped LC expression.

(λx.(λy.(x(xy))))

Another example is the function D which is defined as:

(λx.(λy.(λz.((xy)(xy)z))))

So if the function D is applied to 2 using the above

equations we have:

(D2) ≡ ((λx.(λy.(λz.((xy)(xy)z))))(λx.(λy.(x(xy)))))

Now, if β reductions are applied we would get:

(λx.(λy.(x(x(x(xy))))))

And the number 4 would be produced.

Notice that the number 4 is defined as recursive function.

The authors’ developed a β conversion library for Zongker’s

lilgp system. λ expressions are evolved and later evaluated by

this system. A property of β reduction always produces valid

expressions. So no invalid expressions will be generated by

this system as a result of the GP process.

They successfully generated the λ expressions, LE, of the

described above in 13 out of 25 runs, with an initial population

of 1000, 10% reproduction with elitism selection of 1%, 89.9%
crossover and 0.1% mutation.

C. Combinators

Briggs and O’Neill in their paper of using Functional

Programming FP in GP use the concept of Combinators. A

listing of some of the combinators can be found in their work.

It is interesting to note that some of the combinators can be

defined in terms of compositions of other combinators.[41]

They point out, that using meta level combinators to evolve

functions causes problems for local variables. Does a local

variable’s meaning change as elements of a function are

combined or taken apart. If a local variable is in one sub

routine and a crossover operation is performed, that locally

defined variable might not be valid in another subroutine.

IV. SUMMARY

In this work we have traced, in GP, how ADFs are used.

Starting as a way in Koza’s original book on GP, ADFs were

used as a way to reduce complexity and size of genetic

programs. Others, after this, started researching different uses

for ADFs in GP, with MA, ARL, ADM and various hierarchal

representations. And still others approached ADFs from a meta

level, with methods found in the foundation of mathematics,

PolyGP, ABGP and combinators.

A variety of computer languages were used to explore

ADFs. These ranged from the procedural languages such as C

language, to C++, to functional languages like LISP, HASKELL

and OCAML.

Success for these various frameworks are varied and prob-

lem dependent. There was no unified test bed of problems

although there were themes through out many researchers’

work including, symbolic regression, even parity problems,

and multiplexer problems. Others used problems suited to the

domain they were operating in, like theorem proving and the

higher order functions of nth, foldr and map.

REFERENCES

[1] L. Spector, “Evolving control structures with automatically defined
macros,” in Working Notes for the AAAI Symposium on Genetic Pro-

gramming, E. V. Siegel and J. R. Koza, Eds. MIT, Cambridge, MA,
USA: AAAI, 10–12 Nov. 1995, pp. 99–105.

[2] P. J. Angeline and J. B. Pollack, “The evolutionary induction of
subroutines,” in Proceedings of the Fourteenth Annual Conference of

the Cognitive Science Society. Bloomington, Indiana, USA: Lawrence
Erlbaum, 1992, pp. 236–241.

[3] W. Banzhaf, D. Banscherus, and P. Dittrich, “Hierarchical genetic
programming using local modules,” InterJournal Complex Systems, vol.
228, 2000.

[4] D. J. Montana, “Strongly typed genetic programming,” Bolt Beranek
and Newman, Inc., 10 Moulton Street, Cambridge, MA 02138, USA,
BBN Technical Report #7866, 7 May 1993.

[5] F. Binard and A. Felty, “An abstraction-based genetic programming sys-
tem,” in Late breaking paper at Genetic and Evolutionary Computation

Conference (GECCO’2007), P. A. N. Bosman, Ed. London, United
Kingdom: ACM Press, 7-11 Jul. 2007, pp. 2415–2422.

[6] ——, “Genetic programming with polymorphic types and higher-order
functions,” in GECCO ’08: Proceedings of the 10th annual conference

on Genetic and evolutionary computation, M. Keijzer, G. Antoniol, C. B.
Congdon, K. Deb, B. Doerr, N. Hansen, J. H. Holmes, G. S. Hornby,
D. Howard, J. Kennedy, S. Kumar, F. G. Lobo, J. F. Miller, J. Moore,
F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Stoica,
E.-G. Talbi, and I. Wegener, Eds. Atlanta, GA, USA: ACM, 12-16 Jul.
2008, pp. 1187–1194.

[7] F. J. L. Binard, “Abstraction-based genetic programming,” Ph.D. disser-
tation, Ottawa-Carleton Institute for Computer Science, School of Infor-
mation Technology and Engineering, Faculty of Engineering, University
of Ottawa, Ottawa, Canada, 2009.

[8] T. Yu and C. Clack, “PolyGP: A polymorphic genetic programming
system in haskell,” in Genetic Programming 1998: Proceedings of the

Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, Eds. University of Wisconsin, Madison, Wisconsin, USA:
Morgan Kaufmann, 22-25 Jul. 1998, pp. 416–421.

[9] J. Rosca, “Towards automatic discovery of building blocks in genetic
programming,” in Working Notes for the AAAI Symposium on Genetic

Programming, E. V. Siegel and J. R. Koza, Eds. MIT, Cambridge, MA,
USA: AAAI, 10–12 Nov. 1995, pp. 78–85.

[10] K. Tominaga, T. Suzuki, and K. Oka, “An encoding scheme for
generating lambda-expressions in genetic programming,” in Genetic

and Evolutionary Computation – GECCO-2003, ser. LNCS, E. Cantú-
Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G.
Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska,
and J. Miller, Eds., vol. 2724. Chicago: Springer-Verlag, 12-16 Jul.
2003, pp. 1814–1815.

[11] F. Briggs and M. O’Neill, “Functional genetic programming and exhaus-
tive program search with combinator expressions,” International Journal

of Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 1,
pp. 47–68, 2008.

[12] J. Koza, “Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems,” Dept. of Com-
puter Science, Stanford University, Technical Report STAN-CS-90-1314,
Jun. 1990.

[13] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[14] ——, Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. Cambridge Massachusetts: MIT Press, May 1994.

[15] J. R. Koza and J. P. Rice, “A non-linear genetic process for data encoding
and for solving problems using automatically defined functions,” U.S.
Patent 5343554, May 1992, application filed May 11, 1992, issued
August 30, 1994, 5,343,554.

[16] D. Andre, “Evolution of mapmaking ability: Strategies for the evolution
of learning, planning, and memory using genetic programming,” in
Proceedings of the 1994 IEEE World Congress on Computational

Intelligence, vol. 1. Orlando, Florida, USA: IEEE Press, 27-29 Jun.
1994, pp. 250–255.

[17] J. R. Woodward, “Modularity in genetic programming,” in Genetic

Programming, Proceedings of EuroGP’2003, ser. LNCS, C. Ryan,
T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610.
Essex: Springer-Verlag, 14-16 Apr. 2003, pp. 254–263.

[18] P. J. Angeline and J. Pollack, “Evolutionary module acquisition,” in
Proceedings of the Second Annual Conference on Evolutionary Pro-

gramming, D. Fogel and W. Atmar, Eds., La Jolla, CA, USA, 25-26
Feb. 1993, pp. 154–163.

[19] D. Zongker and B. Punch, “lilgp 1.01 user’s manual,” Michigan State
University, USA, Tech. Rep., 26 Mar. 1996.

[20] F. Gruau, “Cellular encoding of genetic neural networks,” Laboratoire
de l’Informatique du Parallilisme. Ecole Normale Supirieure de Lyon,
France, Technical report 92-21, 1992.

[21] R. Rosen, Life Itself: A Comprehensive Inquiry into the Nature, Origin,

and Fabrication of Life (Complexity in Ecological Systems). Columbia
University Press, 2005.

[22] J. P. Rosca and D. H. Ballard, “Discovery of subroutines in genetic
programming,” in Advances in Genetic Programming 2, P. J. Angeline
and K. E. Kinnear, Jr., Eds. Cambridge, MA, USA: MIT Press, 1996,
ch. 9, pp. 177–201.

[23] ——, “Genetic programming with adaptive representations,” University

of Rochester, Computer Science Department, Rochester, NY, USA, Tech.
Rep. TR 489, Feb. 1994.

[24] ——, “Hierarchical self-organization in genetic programming,” in Pro-

ceedings of the Eleventh International Conference on Machine Learning.
Morgan Kaufmann, 1994.

[25] K. E. Kinnear, Jr., “Alternatives in automatic function definition: A
comparison of performance,” in Advances in Genetic Programming,
K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 6, pp. 119–141.

[26] H. Iba, H. de Garis, and T. Sato, “Genetic programming using a
minimum description length principle,” in Advances in Genetic Pro-

gramming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 12, pp. 265–
284.

[27] A. Dessi, A. Giani, and A. Starita, “An analysis of automatic subroutine
discovery in genetic programming,” in Proceedings of the Genetic and

Evolutionary Computation Conference, W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds.,
vol. 2. Orlando, Florida, USA: Morgan Kaufmann, 13-17 Jul. 1999,
pp. 996–1001.

[28] L. Altenberg, “The evolution of evolvability in genetic programming,”
in Advances in Genetic Programming, K. E. Kinnear, Jr., Ed. MIT
Press, 1994, ch. 3, pp. 47–74.

[29] W. A. Tackett, “Recombination, selection, and the genetic construction
of computer programs,” Ph.D. dissertation, University of Southern
California, Department of Electrical Engineering Systems, USA, 1994.

[30] C. Janikow and J. Aleshunas, “Impact of commutative and non-
commutative functions on symbolic regression with ACGP,” in 2013

IEEE Conference on Evolutionary Computation, L. G. de la Fraga, Ed.,
vol. 1, Cancun, Mexico, Jun. 20-23 2013, pp. 2290–2297.

[31] F. Cardone and J. R. Hindley, “History of lambda-calculus and combi-
natory logic,” Handbook of the History of Logic, vol. 5, 2006.

[32] D. Gabbay and J. Woods, Logic from Russell to Church, Volume 5

(Handbook of the History of Logic). North Holland, 2009.
[33] G. T. Yu, “An analysis of the impact of functional programming tech-

niques on genetic programming,” Ph.D. dissertation, University College,
London, Gower Street, London, WC1E 6BT, 1999.

[34] C. Clack and T. Yu, “Performance enhanced genetic programming,” in
Proceedings of the Sixth Conference on Evolutionary Programming, ser.
Lecture Notes in Computer Science, P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, and R. Eberhart, Eds., vol. 1213. Indianapolis, Indiana,
USA: Springer-Verlag, Apr. 13-16 1997, pp. 87–100.

[35] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J. ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965. [Online].
Available: http://doi.acm.org/10.1145/321250.321253

[36] T. Yu and C. Clack, “Recursion, lambda-abstractions and genetic pro-
gramming,” in Late Breaking Papers at EuroGP’98: the First European

Workshop on Genetic Programming, R. Poli, W. B. Langdon, M. Schoe-
nauer, T. Fogarty, and W. Banzhaf, Eds. Paris, France: CSRP-98-10,
The University of Birmingham, UK, 14-15 Apr. 1998, pp. 26–30.

[37] T. Yu, “Structure abstraction and genetic programming,” in Proceed-

ings of the Congress on Evolutionary Computation, P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, Eds., vol. 1.
Mayflower Hotel, Washington D.C., USA: IEEE Press, 6-9 Jul. 1999,
pp. 652–659.

[38] J.-Y. Girard, P. Taylor, and Y. LaFont, Proofs and Types, ser. Cambridge
Tracts in Theoretical Computer Science. Great Britain: Cambridge
University Press, 1989.

[39] J. C. Reynolds, “Towards a theory of type structure,” in Colloque sur

la Programmation, ser. LNCS, vol. 19. Springer-Verlag, 1974, pp.
408–425.

[40] A. Church, “A set of postulates for the foundation of logic,” Annals of

Mathematics (2nd Series), vol. 33, no. 2, pp. 346–366, 1932.
[41] F. Briggs and M. O’Neill, “Functional genetic programming with

combinators,” in Proceedings of the Third Asian-Pacific workshop on

Genetic Programming, T. L. Pham, H. K. Le, and X. H. Nguyen, Eds.,
Military Technical Academy, Hanoi, VietNam, 2006, pp. 110–127.

