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ABSTRACT 

Genetic Programming, as other evolutionary methods, uses 

selection to drive its search toward better solutions, but its search 

operators are uninformed and perform uniform search. 

Constrained GP methodology changes this exploration to pruned 

non-uniform search, skipping some subspaces and giving 

preferences to others, according to provided heuristics. The 

heuristics are position-fixed or position-independent and are just 

preferences on some specific labeling. Adaptable Constrained GP 

ACGP is a methodology for discovery of such useful heuristics. 

Both methodologies have previously demonstrated their surprising 

capabilities using only parent-child and parent-children heuristics. 

This paper illustrates how the ACGP methodology applies to 

symbolic regression; demonstrate the power of low-order local 

heuristics, while also exploring the differences in evolutionary 

search between commutative and non-commutative functions. 
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1. Background  
Genetic Programming (GP) is a problem solving method merging 

ideas from nature with computation. GP solves problems by 

maintaining a population of viable candidate solutions, mimicking 

nature’s chromosome representation, and by manipulating the 

solutions using simulated mutation and crossover – while driven 

by selection to explore better solutions. GP has been shown to 

provide robust solutions for problems such as evolving computer 

programs, designing logic circuits, solving many optimization and 

combinatorial problems where other solutions are not practical or 

unknown. GP has also been applied to function discovery, or 

symbolic regression [2, 7, 8].  

Even though GP methods have been devised to work with a broad 

range of possible representations for the candidate solutions, the 

most common representation is that of a tree [1, 7]. Tree 

representation makes GP well suited for symbolic regression – the 

potential solutions are trees labeled with function and terminal, 

representing problem-specific elements: atomic functions, 

constants, variables. The actual search space, called the genotype 

space, searched by GP is uniquely determined by the labels, and 

only constrained by limits on tree size or depth – the trees can be 

labeled in any arity-consistent manner (the closure property [7]). 

The corresponding solution space, called the phenotype space, 

depends on the interpretations of the labels – the interpretations 

provide a mapping from the search space to the solution space or 

from genotype to phenotype. In the genotype search space, GP 

looks for point(s) mapped to the actual solution (or approximate 

solution) in the solution space, given some problem at hand and 

using a provided black-box fitness function. 

There are some important issues to consider when designing GP, 

similar to those of other evolutionary methods yet specific to GP. 

If a given solution does not have a search space point mapped into 

it, it will never be discovered. Therefore, the mapping must be 

onto. To accomplish this, in the absence of detailed information 

about the problem or solution, the search space needs to be 

enlarged (a part of the sufficiency principle [7]). This leads to 

multiple redundant mappings in the representation. To handle 

redundancy in genetic algorithms, some specific properties need 

to be there, among them many-to-one mappings to the better 

solutions and proximity induced by the mapping – if two solution 

points are similar in phenotype, they should be mapped to from 

neighboring points in the genotype space [22]. It is believed that 

GP must also satisfy these properties. Specifically in GP, 

sufficiency leads to huge redundancies, while often lacking the 

proximity. Moreover, the large search space also generally 

reduces the search efficiency [2, 4]. To answer these challenges, a 

number of methods have been proposed that ultimately prune, or 

reduce the effective search space, such as STGP, CFG-based GP, 

etc. [1]. 

Constrained GP (CGP) [2] is another such method. It allows 

certain constraints on the formation of labeled trees – constraints 

on a parent and its children [4] (CGP also supports restrictions 

based on types, along with polymorphic functions). The 

constraints are processed in a closed search space by operators 

with minimum overhead [2] – closed search space refers to 

generating only valid parents from valid children. The heuristics 

in CGP can be strong, that is conditions that must be satisfied, or 

weak expressed as probabilities. Such probabilities, or heuristics, 

effectively change the density or uniformity of the GP search 

space, and as such they affect the proximity of the genotype and 

phenotype space. CGP has been proven very successful on a 

number of standard GP problems when using the strong 

constraints only [3, 4, 5]. 

One problem facing CGP is that it requires the user to enter and 

thus know the strong constraints or the weak heuristics – CGP just 

provides the means of adjusting the search space based on the 

inputs. However, even though knowing proper heuristics can lead 

to great efficiency gains, the process of finding such heuristics can 

be very slow and inefficient [5]. Adaptable CGP (ACGP) was 

developed to automate the process of discovery of such useful 

heuristics, and the method was also shown to efficiently discover 

and apply the heuristics [4, 5].  

The idea of restricting the GP search space has a long history. 

McPhee with Hopper [20], and Burke [16] analyzed the effect of 

the root node selection on GP. Hall and Soule [19] concluded that 

the choice of the root node had a very significant impact on the 

solutions generated, and that fixing the root node properly 

amounts to limiting the search space needed to be searched. Daida 



has shown that later GP generations introduce little variation into 

the structure of the generated trees [18], indicating that these later 

generations search a smaller subspace of the search space. 

Moreover, Langdon has shown that GP typically searches only a 

well defined region of the potential search space [20]. Hall and 

Soule call these phenomena the design evolved by GP, which 

process in fact resembles the top-down design strategy [18]. These 

ideas concentrated on strong constraints rather than probabilities. 

Estimation Distribution Algorithms (EDA) is another approach to 

deal with these design or more general structure issues at the 

probabilistic level [16], as are grammar-based methods [15] and 

semantic optimization methods [16]. These methods attempt to 

build probabilistic models, which in turn can be used to generate 

solutions. ACGP differs from EDA as it builds an imperfect 

model using only very local information, which also makes it very 

efficient and thus effective. It is surprising that very local 

position-independent heuristics can accomplish even more for 

seemingly complex problems [4]. 

The original ACGP methodology only used zero-order heuristics 

for the root (so called global heuristics due to fixed location in the 

tree; zero-order global heuristics is just frequency of labels in the 

root regardless of the children) and first-order local heuristics 

(parent-one-child, position-independent). Recently, the 

methodology has been extended to more complex heuristics – 

between parent and all of its children, called second-order, for 

both global and local positions [6]. These heuristics are much 

richer, able to express much more information including more 

detailed context information for some labelings.  

GP has been used for symbolic regression from the very 

beginning [1, 7, 8], but ACGP applications in this domain have 

not been reported much. This paper illustrates ACGP applicability 

to symbolic regression, paying specific attention to differences 

between first-order and second-order processing and between 

commutative and non-commutative functions. 

2. ACGP and Low-Order Heuristics 

2.1 ACGP 
Constrained GP (CGP) is a methodology for processing 

constraints in GP [2]. The constraints are either strong or weak. 

Strong constraints are those required to be satisfied, while weak 

constraints are preferences, or heuristics, are of particular interest 

in this work.  

Constraints are either global or local. Global constraints apply to a 

specific position in the tree, and due to limitations of the 

constraints in practice apply only to root nodes and possibly their 

children. Local constraints apply anywhere subject only to some 

local context.  

In CGP, constraints are very low-order and mostly local, for 

reasons of efficiency rather than expressiveness [2]. There are 

only three classes of heuristics. Zero-order heuristics or 

probabilities of certain labels appearing in the tree – in practice, 

these heuristics are only used for root constraints. First-order 

heuristics are constraints on parent-one-child labelings. Second-

order heuristics are constraints on parent-all-children labelings.  

The heuristics are processed in a closed search space. This means 

that no trees are ever generated that would invalidate the 

constraints. There is a special initialization method that guarantees 

only valid trees, and mutation and crossover always guarantee to 

preserve the constraints if using valid parents, with minimum 

overhead [2]. 

CGP has been shown to dramatically improve GP performance 

even with only strong constraints and without heuristics [2,5] but 

the process of discovering such useful constraints can be lengthy 

even for the strong constraints [5] and prohibitive for weak 

constraints. Adaptable CGP (ACGP) was thus introduced to 

automate the process for discovery of useful heuristics [4]. 

Originally proposed for zero- and first-order heuristics, ACGP has 

been extended to second-order heuristics as well [6]. 

Heuristics in Artificial Intelligence are considered to be chunks of 

information, or rules-of thumb, that can lead to some 

improvements in knowledge or in processing. In ACGP, first-

order heuristics are probabilities of certain parent-one-child 

structures, such as the probability that the binary function ‘+’ will 

have ‘+’ as its left argument – as illustrated in Figure 1a. Second-

order heuristics are probabilities of certain parent-all-children 

structures, such as the probability that the binary function ‘*’ will 

apply simultaneously to two ‘y’s – as illustrated in Figure 1b.  

The heuristics are very useful in guiding the GP search. For 

example, if a tree is mutated in the left child of its root, which root 

happens to be labeled with ‘+’, and the heuristic in Figure 1a has 

high probability, then the left child is more likely to be labeled 

with ‘+’ again. This is an illustration of global first-order 

heuristic. If the mutation is not near the root, and the mutated 

node has ‘*’ as its parent and ‘y’ as its left child, and the 

heuristics in Figure 1b has high probability, then the right node is 

most likely to be labeled with ‘y’ again. This is an illustration of 

local second-order heuristic. 

 

Figure 1 Illustration of a) global first-order and b) local 

second-order heuristics 

2.2 Heuristics in ACGP 
The building block hypothesis asserts that evolutionary processes 

work by combining relatively fit, short schema to form complete 

solutions [7]. The problem is that small substructures cannot be 

meaningfully evaluated. ACGP uses the assumption that building 

blocks, or structures, that occur more frequently in the fittest 

members contribute to the fitness of those solutions and are 

therefore fit building blocks. Therefore, in ACGP, the method for 

discovery of heuristics is straightforward – the heuristics are 

discovered by analyzing the best performing trees for the most 

often occurring patterns, or structures. This process does not take 

place after every generation as it has been shown that more time is 

needed for the emergence of such structures and to reduce 

conflicts between heuristics from different redundant 

representations. Instead, this happens after a number of 

generations, usually between 10 and 25, this is called an iteration 

[4]. 

In addition to using multi-generation iterations, ACGP also 

updates its heuristics from the observed frequencies, rather than 

greedily using the frequencies as its heuristics – empirical results 



show that heuristics applied too greedily can lead to premature 

convergence disregarding some heuristics [4]. 

Another method used in ACGP to increase the reliability of the 

emerging heuristics is to run independent smaller-population runs 

simultaneously and to select best heuristics from the independent 

set. 

ACGP uses tables to keep track of its heuristics, separately for 

global and local structures. Table representation allows for 

constant-time access and provides runtime efficiency [2]. The 

table size is dependent on the function set F, terminal set T, and 

the arity of each function. For zero- and first-order processing the 

size is calculated below. The constant 1 is added since ACGP uses 

only zero-order global heuristics even when running with first-

order heuristics. 

          

  

 

                       

The heuristics are updated at runtime, but can also be pre-

initialized non-uniformly using an input interface. The heuristics 

discovered in ACGP are used in crossover, mutation, and a new 

operator, regrow – an operator used by ACGP to start the new 

iteration with freshly initialized population. However, since the 

re-initialization uses the newly discovered heuristics, the new 

iteration starts with population of much higher quality than the 

iteration before did [4]. 

The newly discovered heuristics effectively change the space 

being search by GP – the search space becomes non-uniform, or 

the proximity between genotype and phenotype gets modified. As 

shown before, this results in much more efficient search while 

examining smaller number of trees [4, 5]. 

When using second-order heuristics, the number of heuristics, and 

thus table sizes, grow much larger, as shown below (in this case, 

global heuristics are second-order) 

                   

  

 

           

For a simple problem illustrated here, with 4 binary functions, 3 

variables and 11 constants, the number of heuristics computed 

from the above equations ranges from 162 for first-order to 2592 

for second-order, and it would grow to about 1.37x107 for third 

order if implemented. 

Another important ACGP property is that it includes tree size in 

determining the best trees from the population when it comes to 

counting heuristics. This feature was added to dampen heuristics 

coming from tress unnecessarily large for their fitness – ACGP 

uses two-key sorting, the first key is the fitness, while the second 

key is tree size and it applies whenever two trees are in an 

equivalence class based on similar fitness. Alternatively, ACGP 

can also skip counting subtrees which have not contributed to 

fitness evaluation. 

3. Empirical Study on Symbolic Regression  

3.1 The Problem and its Expected Heuristics 
To evaluate ACGP processing capabilities with second-order 

heuristics with both commutative and non-commutative functions, 

we constructed a problem with strongly exhibited and easily 

controlled second-order structure and we used only commutative 

functions at first. The problem is the three-variable parabolic 

bowl.  

                                

The second-order structure apparent in this problem is that 

multiplication has to apply to same-variables simultaneously, a 

fact which cannot be implicitly constructed from just the first-

order heuristics. The Bowl3 function has two basic minimal 

solutions (resulting from commutativity of ‘+’), illustrated in 

Figure 2. Adjusting for different permutations at the leaves, there 

are 6 permutations of the left tree and 6 permutations of the right 

tree, giving 12 minimal solution trees. Of course, there are also 

non-minimal solutions. 

 

Figure 2 (x*x) + (y*y) + (z*z) represented as two 

different trees 

By analyzing the minimal solution trees and their permutations, 

we can see that even though the two trees are different in the 

global (root) second-order structure (they are flipped), the local 

second-order heuristics are exactly the same in both:  

‘*’ applies to same-variables simultaneously, and  

‘+’ applies to two ‘*’ simultaneously.  

Assuming only best trees as shown above, with the possible 

permutations, it is apparent that the latter of these two second-

order heuristics can be implicitly computed from the available 

first-order heuristics on the same trees. One local first-order 

heuristic is that ‘+’ applies to “*” on the left, and another is that 

‘+’ applies to ‘*’ on the right. Since there are no other first-order 

local heuristics on ‘+’, if we compute second-order heuristics by 

composition of its first order heuristics, we will have the exact 

second heuristic above. 

However, the former of the above second-order heuristics can 

never be computed from the observed first-order heuristics – 

computed second order heuristic that ‘*’ applies to ‘x’ and ‘x’ 

would have the same values as that for “x’ and ‘y’ which is not a 

correct heuristic. Therefore, these two above cases can help us 

determine if ACGP can improve while discovering second-level 

structures over first-order structures (when working with first-

order heuristics, ACGP implicitly processes second-order 

heuristics but according to second-order heuristics implied from 

the available first-order heuristics; the same could be stated for 

higher order heuristics).  

When it comes to global (root) second-order heuristics, the two 

trees (and their permutations) conflict:   

‘+’ applies to ‘*’ and ‘+’ in the left subtree 

 ‘+’ applies to ‘+’ and ‘*’ in the right subtree 

Because these heuristics are the reverse of each other, there will 

be a conflict when combining global heuristics from multiple trees 

(some trees can come from the left family, others from the right 

family), and we can expect the initial search for heuristics to 



suffer until one of these families, or representations, takes over the 

population while using its heuristics to increase the take-over 

process. 

Analysis of the first-order and the second-order heuristics used to 

solve this problem is instructive in understanding why ACGP can 

improve the solution process for this problem and how second-

order ACGP has an advantage over first-order ACGP.  

The Bowl3 problem                   uses the 

following ten explicit first-order heuristics in constructing a viable 

solution. The first row lists the global heuristics, and the second 

row lists the local heuristics. Since these are first-order parent-

one-child heuristics, the subscript indicates whether the heuristic 

is on the first (1) or the second (2) child of the parent. 

              
                                                        

Since ACGP running with only first-order heuristics is equivalent 

to ACGP run with second-order heuristics as implicitly computed 

from its first-order heuristics (or ACGP can execute with second 

order heuristics while only capturing first order heuristics which 

are subsequently used to compute the second-order order 

heuristics), we compute here those implicitly produced second-

order heuristics. No subscripts are needed here. The first row lists 

the implicit global first-order heuristics. 

                        
       ,                         

                       ,                        

However, only six of the above implicit second-order heuristics 

are explicitly expressed in the Bowl3 equation. 

                
                                

Thus, we should expect only those heuristics to emerge if we 

conducted ACGP run while extracting the second-order heuristics. 

The remaining seven second-order heuristics are not used in 

solving this problem and should be discouraged from being used. 

However again, if we conduct ACGP run with first-order 

heuristics only and explicitly or implicitly process second-order 

heuristics without extraction, all thirteen heuristics would be 

processed. The differential between the second-order heuristics 

needed to construct a viable solution and the second-order 

heuristics obtained from the explicit first-order heuristics is the 

information differential second-order ACGP has over first-order 

ACGP for this specific problem.  

3.2 Experimental Setup 
To increase the problem complexity (and the search space), we 

the following binary functions          , and in addition to the 

required {x, y, z} we also included eleven integer constants 

between -5 and 5. None of these additional functions or terminals 

is needed in the optimal solution.  

Unless otherwise noted, all experiments were conducted as 

follow:  

Target Equation:                   

Function set:           (protected divide) 

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 

Population size: 500  

Generations: 500 

Operators: crossover 85%, mutation 10%, selection 5%, 

regrow 100% at each iteration 

Number of independent runs: 30  

Fitness: sum of square errors on 100 random data points 

in the range -10 to 10 

Iteration length: 20 generations  

When tracing fitness, the best solution from the 30 independent 

runs was averaged. 

3.3 Problem Solving Results for the Bowl3 

Problem  
The first experiment was to compare the learning curves. , These 

curves represent the quality of the best solution found per 

generation, for a standard GP run, called Base, and for two ACGP 

runs while discovering first-order and second-order heuristics. 

The heuristics are extracted after each 20 generations (an 

iteration). In Figure 3, the heuristics discovered in the population 

replace 50% of the previous heuristics (or uniform heuristics on 

the first iteration) on every iteration. 
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Figure 3 GP-Base, ACGP with first-order and second-order 

heuristics for the Bowl3 problem with greedy updates 

As seen, the Base GP is not capable of solving the problem better 

than about 10% of the fitness. On the other hand, both first-order 

and second-order ACGP runs can consistently solve the problem 

to above 60% just after about 5 iterations (100 generations). The 

observed dips correspond to re-initializing the population after 

each iteration. It is interesting to observe that after just a few 

iterations the depth of the dip is above the Base case – meaning 

the discovered heuristics used as a model for the problem at hand 

provide reinitialized population of higher quality than the final 

population’s quality in the base GP. It is also interesting to note 

that there is very little difference between the first-order and the 

second-order run, indicating that perhaps the second-order run 

cannot effectively utilize its potential information differential 

which we have seen is beneficial to solving the problem.  

However, in some cases, using the heuristics too greedily (too 

early and too much) can lead to suboptimal convergence [4]. 

Since none of the GP runs was able to solve the problem, could 

this be due to the greedy approach taken to replace 50% of the 

heuristics at each iteration? Thus, in the second experiment we 

reduce the rate in which the observed heuristics are used to update 

the used heuristics – we only update portion of the heuristics 

proportional to generation number. That is, after the first iteration 



we update only 1/25 of the initial uniform heuristics, etc. The 

results are presented in Figure 4. As seen, ACGP with the second-

order heuristics can now solve the problem quite easily while 

ACGP with first-order heuristics only improves to about 70%. It 

seems that without the greedy update, the second-order run is now 

able to now utilize its information differential without being 

trapped with incomplete heuristics. 
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Figure 3 GP-Base, ACGP with first-order and second-order 

heuristics for the Bowl3 problem with less greedy updates 

Another observation from Figure 3 is that even though both 

ACGP runs can clearly outperform the GP Base run with uniform 

search, this advantage does not emerge in the initial few iterations. 

The reason for this behavior is most likely the fact that initially 

there are the two competing representations with different global 

(root level) heuristics for the second-order case and different local 

heuristics for ‘+’ for the first-order heuristics case, as speculated 

before. Once the process starts “preferring” one of the 

representations, initially due to random genetic drift, the process 

reinforces itself and further enhances the representation, leading 

to quick and dramatic improvements. In other words, the ACGP 

run probabilistically reduces the search space and also modifies 

the proximity between the genotype and phenotype by modifying 

the heuristics driving mutation and crossover. 

However, there is more to this story. When running with better 

heuristics, the tree sizes tend to be smaller due to the algorithm 

learning to avoid unnecessary and non-contributing subtrees (by 

probabilistically reducing the search space). This can in fact 

amplify the efficiency gains. Table 1 summarizes the complexity 

of the average of the best trees for each of the 30 independent runs 

in the three experimental cases. It indeed shows that the trees 

created using the first-order and second-order heuristics contain 

fewer nodes and are shallower than the trees explored in the Base 

GP. The table also illustrates some additional time complexity for 

the second-order processing over first-order processing – the tree 

sizes are about the same yet execution time slows to almost 50% 

for ACGP second-order. Yes both ACGP runs handily outperform 

GP Base. 

Table 1 Average tree structure for GP Base, first-order and 

second-order heuristics for the Bowl3 problem 

Average 
Best Tree 

Size 

Best Tree 

Depth 

Execution 

Time 

Base 728.40 19.43 347.6 

1st OH 123.67 10.37 44.70 

2nd OH 123.87 11.40 65.67 

These results are interesting and illustrate a number of facts about 

ACGP: very low order heuristics can be useful even for symbolic 

regression, applying the heuristics effectively reduces the search 

space and thus leads to faster convergence, and the heuristics 

themselves are useful robust models for the problem at hand. 

However, one question of interest that has not been asked or 

answered is how the commutativity of the functions played a role 

in the improvements.   

3.4 An Alternative Problem and its Expected 

Heuristics  
The Bowl3 experiment shown above demonstrates the efficacy of 

ACGP in discovering the necessary heuristics for a given 

problem. How dependent are these results on the component 

functions and terminals of the target solution? In particular, how 

the fact that the solution was made up of commutative functions 

only affected that solution? One could easily speculate that non-

commutative function should improve ACGP reducing the 

conflicting heuristics that it encounters. On the other hand, one 

could also speculate that commutative functions are better because 

the local heuristics can apply the same way to both arguments of 

the function and provide a richer set of candidate solutions in the 

whole population. We decided to answer these questions and 

resolve the conflicting speculations using another experiment with 

a simple modification of the previous problem – replace the 

function ‘+’ with ‘-‘.   

                                  

This modification of the problem shares most of the structural and 

heuristic features with Bowl3. Like the Bowl3 problem, the 

Bowl3neg problem uses ten explicit first-order heuristics (here we 

do not separate global from local heuristics; subscripts again 

identify the child for the heuristic). 

                            
                                          

These first order heuristics combine to implicitly define thirteen 

second-order heuristics  

                                
                        
                        
                        

Only six of these second-order heuristics are explicitly expressed 

in this equation.  
                        
                        

The remaining seven second-order heuristics are not used in 

solving this problem and should be discouraged. The differential 

between the explicit second-order heuristics needed to construct a 

viable solution and the implicit second-order heuristics developed 

from the explicit first-order heuristics constitutes information 

differential between ACGP running while discovering second-

order heuristics and ACGP running while discovering only first-

order heuristics.  

Figure 5 shows the average learning curves for the Bowl3neg 

regression problem using GP-Base, ACGP with first-order 

heuristics, and ACGP with second-order heuristics. All three 

experiments were run using the same identical GP parameters as 



before. The learning curves are somehow similar to those for 

Bowl3.  
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Figure 5 Comparison of GP-Base, ACGP with 1st order and 

2nd order heuristics for the Bowl3neg problem non-greedy. 

There are few apparent observations. First, neither ACGP run can 

solve the problem consistently. Second, the second-order run 

clearly outperforms the first-order run – as the differential in 

information has much greater impact here. Third, the first-order 

run has real problems on this case – this seems to support the 

hypothesis the low-order heuristics, without much context 

information, are less useful here or rather harder to extract. 

Table 2 Average tree structure for GP Base, first-order and 

second-order heuristics for the Bowl3neg problem 

Average Best Tree 

Size 

Best Tree 

Depth 

Execution 

Time 

Base 625.93 19.07 272.83 

1st OH 140.53 11.0 46.77 

2nd OH 109.0 10.63 68.9 

We also compare three sizes and execution times between the 

runs, as before. The results are presented in Table 2. As before 

with Bowl3, trees created using the first-order order and second-

order heuristics contain fewer nodes and are shallower than the 

trees explored in the Base GP. These results are comparable to 

those in Table1 so the operational performance of ACGP does not 

explain the difference in the search performance for the two 

problems. One notable difference is that the first-order ACGP 

maintains somehow larger trees, which is explained by its 

inability to find quality heuristics and thus subpar search when 

compared to second-order. 

Next we analyze the actually discovered heuristics by the ACGP 

runs to further speculate on the difference in performance between 

the two problems. 

3.5 The Discovered Heuristics 
Another way of analyzing ACGP’s performance is to look at the 

actual heuristics discovered after all iterations and compare them 

against the speculated values assumed from problem analysis 

(computed assuming minimal tree size). Table 3 illustrates the 

final first-order heuristics discovered by ACGP running in the 

first-order mode in the heuristic increment as reported in Figure 4 

for the Bowl3 problem.  

The results are very close to what was speculated in the discussion 

above. All heuristics start uniformly (no apriori information was 

given) thus all initial values are the same. ACGP easily 

discovered that the ‘*’ function needs to apply mostly to the 

variables (about 72% combined between the three variables). 

ACGP also discovered that the ‘+’ function should apply mostly 

to ‘*’ and also allow association (the final probabilities are about 

twice higher for ‘*’ children), but it clearly still cannot distinguish 

between the two solution families (‘+’ is both left and right 

associative while only one of them is sufficient). The reason for 

this confusion is that except for the ‘+” association, the two 

families have identical heuristics making it hard to distinguish 

between them.  

ACGP also easily discovered the global zero-order heuristic 

stating that ‘+’ should label the root node. 

Table 3 First-order heuristics discovered in the Bowl3 

commutative experiment. Root’s heuristics are zero-order. 

Only highly evolved heuristics are shown 

1st Order Heuristics 

Heuristic Initial Final 

‘*’ 

Left arg 

X 0.056 0.2289 

Y 0.056 0.2426 

Z 0.056 0.2403 

Right arg 

X 0.056 0.2323 

Y 0.056 0.2489 

Z 0.056 0.2087 

‘+’ 

Left arg 
‘*’ 0.056 0.4796 

‘+’ 0.056 0.2171 

Right arg 
‘*’ 0.056 0.4168 

‘+’ 0.056 0.2410 

Root ‘+’ 0.056 0.7669 

Average of all other heuristics 0.056 0.0371 

If we estimate the second-order heuristics from the available first-

order heuristics, our estimate will be lower than needed to capture 

the heuristics actually present in the Bowl3 equation. The first-

order heuristics for the function ‘*’ will estimate nine potential 

second-order heuristics                            
          . However, we already know that Bowl3 has only 3 

useful second-order heuristics for ‘*’:                     and 

will suppress the other six heuristics. Table  summarizes the final 

second-order heuristics discovered in the second-order run, 

against those computed from available first-order heuristics, 

producing the information differential. The table clearly shows the 

advantage of extracting second-order heuristics (large 

differential). 

Table 4 Second-order heuristics summary for ‘*’ as 

discovered in the ACGP second-order run versus computed 

from first order heuristics 

Multiply Heuristics 

Heuristic Initial Final Computed Difference 

‘*’ 

X X 0.0031 0.2545 0.0532 + 0.2013 

Y Y 0.0031 0.2368 0.0604 + 0.1764 

Z Z 0.0031 0.2436 0.0502 + 0.1934 

Average of all 

other heuristics 
0.0031 0.0008 - - 



A similar discussion can be made regarding the second-order 

heuristics for ‘+’ and is illustrated in Table 5. The three preferred 

heuristics (in infix notation)                     are found 

after the Bowl3 run.  

The only dominant heuristics discovered for division and 

subtraction are a few heuristics that have no impact on the 

evaluation of the candidate solution. These neutral heuristics are 

division sub-trees that evaluate to 1 or subtraction sub-trees that 

evaluate to 0.  

Table 5 Second-order heuristics summary for ‘+’ as 

discovered in the ACGP second-order run versus computed 

from first order heuristics 

Addition Heuristics 

Heuristic Initial Final Computed Difference 

‘+’ 

‘*’ ‘*’ 0.0031 0.3110 0.1999 + 0.1111 

‘*’ ‘+’ 0.0031 0.0688 0.1156 - 0.0468 

‘+’ ‘*’ 0.0031 0.1289 0.0905 + 0.0384 

Average of all 

other heuristics 
0.0031 0.0015 - - 

The results in this table resemble those in Table 4. When the final 

discovered second order heuristics are compared to those 

computed from the final first order heuristics the information gain 

of the explicit second order heuristics become clear. The single 

exception to this observation is found in the          heuristic. 

This heuristic and          are complementary reflections and 

only one is needed in a final solution so this heuristic result is far 

from surprising. The overall rate of differential is much smaller 

though. 

Next, we recompute these tables for the Bowl3Neg problem, with 

non-commutative function ‘-’ instead of ‘+’. Table  summarizes 

the results for ‘*’ – they seem similar to those for Bowl3 which is 

understandable since ‘*’ is still commutative.  

Table 6 Second-order heuristics summary for ‘*’ as 

discovered in the ACGP second-order run versus computed 

from first order heuristics 

Multiply Heuristics 

Heuristic Initial Final Computed Difference 

‘*’ 

X X 0.0031 0.2333 0.0905 + 0.1428 

Y Y 0.0031 0.2333 0.0905 + 0.1428 

Z Z 0.0031 0.2333 0.0905 + 0.1428 

Average of all 

other heuristics 
0.0031 0.0008 - - 

 

Table 7 Second-order heuristics summary for ‘-’ as discovered 

in the ACGP second-order run versus computed from first 

order heuristics 

Subtraction Heuristics 

Heuristic Initial Final Computed Difference 

‘-’ 

‘*’ ‘*’ 0.0031 0.3846 0.0005 + 0.3841 

‘*’ ‘-’ 0.0031 0.0001 0.0002 - 0.0001 

‘-’ ‘*’ 0.0031 0.3846 0.2345 + 0.1501 

Average of all 

other heuristics 
0.0031 0.0015 - - 

However, when the heuristics are summarized for the non-

commutative ‘-’ (Table 7), we can see that the differential, or 

advantage of second-order over first-order ACGP is much greater 

here (comparing the differentials in Table 7 and Table 5). This 

clearly explains why the Bowl3Neg runs with the second-order 

ACGP outperformed those with first-order ACGP.  

Another way to explain the better performance of second-order 

heuristics with non-commutative functions is as follows. The 

principal difference between the two target equations is the 

component functions and the fact that one equation uses strictly 

commutative functions whereas the other equation substitutes a 

non-commutative function. Since Bowl3 uses only commutative 

functions, many different structural variations will be able to form 

highly fit candidate solutions. Alternatively Bowl3neg which 

includes the non-commutative ‘-’ function imposes a stricter 

structure of its components in the formation of a highly fit 

candidate solution. This difference of component functions in the 

target equation conditions the search for either problem. One 

might infer that GP regression problems with only commutative 

functions in their target solution find it easier to evolve solutions 

because a highly fit solution can be constructed in many more 

configurations than a target equation that includes a non-

commutative function. This is an interesting conjecture and 

requires further experimentation to support it. 

4. Conclusions 
We have illustrated how the Adaptable Constrained GP (ACGP) 

discovers and uses valuable low-order heuristics for problem-

solving, symbolic regression in this case. We have shown through 

analysis of specifically constructed problems that ACGP running 

with richer second-order heuristics has a potential information 

differential over ACGP running with less informative first-order 

heuristics. Empirical analysis illustrated that the differential is 

beneficial if the approach is not too greedy (which causes loss of 

heuristics) and that both approaches not only improve the solution 

found but also do that more effectively (in time and space).  

This paper demonstrates that if very strong second-order 

heuristics are present, ACGP is able to process them and also to 

discover them, does it very efficiently, and the discovered 

heuristics are similar to what one would expect by carefully 

analyzing the problem solution. Of course, some of the local 

heuristics are context-specific, that is they should be different in 

different subtrees. ACGP relies on the simplicity of its completely 

local heuristics for its efficiency, but it is possible to provide some 

context sensitivity – we hope to investigate this in the future. 

We have also demonstrated that ACGP can benefit from its 

heuristics differently for commutative and non-commutative 

functions. In particular, second-order heuristics can capture and 

utilize larger information differential over first-order heuristics, 

resulting in faster learning. 

The results are intended for preliminary illustration – more 

experiments and analysis is needed to have a better picture of how 

commutative properties affect different levels of heuristics 

available in ACGP. 
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