
Impact of Commutative and Non-commutative Functions
on Symbolic Regression with ACGP

Cezary Z Janikow
University of Missouri St Louis

St. Louis, MO, USA 63121
1-314-516-6352

janikow@umsl.edu

John Aleshunas
Webster University

St. Louis, MO, USA 631119
1-314-246-7565

jalesh@webster.edu

ABSTRACT

Genetic Programming, as other evolutionary methods, uses

selection to drive its search toward better solutions, but its search

operators are uninformed and perform uniform search.

Constrained GP methodology changes this exploration to pruned

non-uniform search, skipping some subspaces and giving

preferences to others, according to provided heuristics. The

heuristics are position-fixed or position-independent and are just

preferences on some specific labeling. Adaptable Constrained GP

ACGP is a methodology for discovery of such useful heuristics.

Both methodologies have previously demonstrated their surprising

capabilities using only parent-child and parent-children heuristics.

This paper illustrates how the ACGP methodology applies to

symbolic regression; demonstrate the power of low-order local

heuristics, while also exploring the differences in evolutionary

search between commutative and non-commutative functions.

Keywords

Genetic Programming, Symbolic Regression, Heuristics

1. Background
Genetic Programming (GP) is a problem solving method merging

ideas from nature with computation. GP solves problems by

maintaining a population of viable candidate solutions, mimicking

nature’s chromosome representation, and by manipulating the

solutions using simulated mutation and crossover – while driven

by selection to explore better solutions. GP has been shown to

provide robust solutions for problems such as evolving computer

programs, designing logic circuits, solving many optimization and

combinatorial problems where other solutions are not practical or

unknown. GP has also been applied to function discovery, or

symbolic regression [2, 7, 8].

Even though GP methods have been devised to work with a broad

range of possible representations for the candidate solutions, the

most common representation is that of a tree [1, 7]. Tree

representation makes GP well suited for symbolic regression – the

potential solutions are trees labeled with function and terminal,

representing problem-specific elements: atomic functions,

constants, variables. The actual search space, called the genotype

space, searched by GP is uniquely determined by the labels, and

only constrained by limits on tree size or depth – the trees can be

labeled in any arity-consistent manner (the closure property [7]).

The corresponding solution space, called the phenotype space,

depends on the interpretations of the labels – the interpretations

provide a mapping from the search space to the solution space or

from genotype to phenotype. In the genotype search space, GP

looks for point(s) mapped to the actual solution (or approximate

solution) in the solution space, given some problem at hand and

using a provided black-box fitness function.

There are some important issues to consider when designing GP,

similar to those of other evolutionary methods yet specific to GP.

If a given solution does not have a search space point mapped into

it, it will never be discovered. Therefore, the mapping must be

onto. To accomplish this, in the absence of detailed information

about the problem or solution, the search space needs to be

enlarged (a part of the sufficiency principle [7]). This leads to

multiple redundant mappings in the representation. To handle

redundancy in genetic algorithms, some specific properties need

to be there, among them many-to-one mappings to the better

solutions and proximity induced by the mapping – if two solution

points are similar in phenotype, they should be mapped to from

neighboring points in the genotype space [22]. It is believed that

GP must also satisfy these properties. Specifically in GP,

sufficiency leads to huge redundancies, while often lacking the

proximity. Moreover, the large search space also generally

reduces the search efficiency [2, 4]. To answer these challenges, a

number of methods have been proposed that ultimately prune, or

reduce the effective search space, such as STGP, CFG-based GP,

etc. [1].

Constrained GP (CGP) [2] is another such method. It allows

certain constraints on the formation of labeled trees – constraints

on a parent and its children [4] (CGP also supports restrictions

based on types, along with polymorphic functions). The

constraints are processed in a closed search space by operators

with minimum overhead [2] – closed search space refers to

generating only valid parents from valid children. The heuristics

in CGP can be strong, that is conditions that must be satisfied, or

weak expressed as probabilities. Such probabilities, or heuristics,

effectively change the density or uniformity of the GP search

space, and as such they affect the proximity of the genotype and

phenotype space. CGP has been proven very successful on a

number of standard GP problems when using the strong

constraints only [3, 4, 5].

One problem facing CGP is that it requires the user to enter and

thus know the strong constraints or the weak heuristics – CGP just

provides the means of adjusting the search space based on the

inputs. However, even though knowing proper heuristics can lead

to great efficiency gains, the process of finding such heuristics can

be very slow and inefficient [5]. Adaptable CGP (ACGP) was

developed to automate the process of discovery of such useful

heuristics, and the method was also shown to efficiently discover

and apply the heuristics [4, 5].

The idea of restricting the GP search space has a long history.

McPhee with Hopper [20], and Burke [16] analyzed the effect of

the root node selection on GP. Hall and Soule [19] concluded that

the choice of the root node had a very significant impact on the

solutions generated, and that fixing the root node properly

amounts to limiting the search space needed to be searched. Daida

has shown that later GP generations introduce little variation into

the structure of the generated trees [18], indicating that these later

generations search a smaller subspace of the search space.

Moreover, Langdon has shown that GP typically searches only a

well defined region of the potential search space [20]. Hall and

Soule call these phenomena the design evolved by GP, which

process in fact resembles the top-down design strategy [18]. These

ideas concentrated on strong constraints rather than probabilities.

Estimation Distribution Algorithms (EDA) is another approach to

deal with these design or more general structure issues at the

probabilistic level [16], as are grammar-based methods [15] and

semantic optimization methods [16]. These methods attempt to

build probabilistic models, which in turn can be used to generate

solutions. ACGP differs from EDA as it builds an imperfect

model using only very local information, which also makes it very

efficient and thus effective. It is surprising that very local

position-independent heuristics can accomplish even more for

seemingly complex problems [4].

The original ACGP methodology only used zero-order heuristics

for the root (so called global heuristics due to fixed location in the

tree; zero-order global heuristics is just frequency of labels in the

root regardless of the children) and first-order local heuristics

(parent-one-child, position-independent). Recently, the

methodology has been extended to more complex heuristics –

between parent and all of its children, called second-order, for

both global and local positions [6]. These heuristics are much

richer, able to express much more information including more

detailed context information for some labelings.

GP has been used for symbolic regression from the very

beginning [1, 7, 8], but ACGP applications in this domain have

not been reported much. This paper illustrates ACGP applicability

to symbolic regression, paying specific attention to differences

between first-order and second-order processing and between

commutative and non-commutative functions.

2. ACGP and Low-Order Heuristics

2.1 ACGP
Constrained GP (CGP) is a methodology for processing

constraints in GP [2]. The constraints are either strong or weak.

Strong constraints are those required to be satisfied, while weak

constraints are preferences, or heuristics, are of particular interest

in this work.

Constraints are either global or local. Global constraints apply to a

specific position in the tree, and due to limitations of the

constraints in practice apply only to root nodes and possibly their

children. Local constraints apply anywhere subject only to some

local context.

In CGP, constraints are very low-order and mostly local, for

reasons of efficiency rather than expressiveness [2]. There are

only three classes of heuristics. Zero-order heuristics or

probabilities of certain labels appearing in the tree – in practice,

these heuristics are only used for root constraints. First-order

heuristics are constraints on parent-one-child labelings. Second-

order heuristics are constraints on parent-all-children labelings.

The heuristics are processed in a closed search space. This means

that no trees are ever generated that would invalidate the

constraints. There is a special initialization method that guarantees

only valid trees, and mutation and crossover always guarantee to

preserve the constraints if using valid parents, with minimum

overhead [2].

CGP has been shown to dramatically improve GP performance

even with only strong constraints and without heuristics [2,5] but

the process of discovering such useful constraints can be lengthy

even for the strong constraints [5] and prohibitive for weak

constraints. Adaptable CGP (ACGP) was thus introduced to

automate the process for discovery of useful heuristics [4].

Originally proposed for zero- and first-order heuristics, ACGP has

been extended to second-order heuristics as well [6].

Heuristics in Artificial Intelligence are considered to be chunks of

information, or rules-of thumb, that can lead to some

improvements in knowledge or in processing. In ACGP, first-

order heuristics are probabilities of certain parent-one-child

structures, such as the probability that the binary function ‘+’ will

have ‘+’ as its left argument – as illustrated in Figure 1a. Second-

order heuristics are probabilities of certain parent-all-children

structures, such as the probability that the binary function ‘*’ will

apply simultaneously to two ‘y’s – as illustrated in Figure 1b.

The heuristics are very useful in guiding the GP search. For

example, if a tree is mutated in the left child of its root, which root

happens to be labeled with ‘+’, and the heuristic in Figure 1a has

high probability, then the left child is more likely to be labeled

with ‘+’ again. This is an illustration of global first-order

heuristic. If the mutation is not near the root, and the mutated

node has ‘*’ as its parent and ‘y’ as its left child, and the

heuristics in Figure 1b has high probability, then the right node is

most likely to be labeled with ‘y’ again. This is an illustration of

local second-order heuristic.

Figure 1 Illustration of a) global first-order and b) local

second-order heuristics

2.2 Heuristics in ACGP
The building block hypothesis asserts that evolutionary processes

work by combining relatively fit, short schema to form complete

solutions [7]. The problem is that small substructures cannot be

meaningfully evaluated. ACGP uses the assumption that building

blocks, or structures, that occur more frequently in the fittest

members contribute to the fitness of those solutions and are

therefore fit building blocks. Therefore, in ACGP, the method for

discovery of heuristics is straightforward – the heuristics are

discovered by analyzing the best performing trees for the most

often occurring patterns, or structures. This process does not take

place after every generation as it has been shown that more time is

needed for the emergence of such structures and to reduce

conflicts between heuristics from different redundant

representations. Instead, this happens after a number of

generations, usually between 10 and 25, this is called an iteration

[4].

In addition to using multi-generation iterations, ACGP also

updates its heuristics from the observed frequencies, rather than

greedily using the frequencies as its heuristics – empirical results

show that heuristics applied too greedily can lead to premature

convergence disregarding some heuristics [4].

Another method used in ACGP to increase the reliability of the

emerging heuristics is to run independent smaller-population runs

simultaneously and to select best heuristics from the independent

set.

ACGP uses tables to keep track of its heuristics, separately for

global and local structures. Table representation allows for

constant-time access and provides runtime efficiency [2]. The

table size is dependent on the function set F, terminal set T, and

the arity of each function. For zero- and first-order processing the

size is calculated below. The constant 1 is added since ACGP uses

only zero-order global heuristics even when running with first-

order heuristics.

The heuristics are updated at runtime, but can also be pre-

initialized non-uniformly using an input interface. The heuristics

discovered in ACGP are used in crossover, mutation, and a new

operator, regrow – an operator used by ACGP to start the new

iteration with freshly initialized population. However, since the

re-initialization uses the newly discovered heuristics, the new

iteration starts with population of much higher quality than the

iteration before did [4].

The newly discovered heuristics effectively change the space

being search by GP – the search space becomes non-uniform, or

the proximity between genotype and phenotype gets modified. As

shown before, this results in much more efficient search while

examining smaller number of trees [4, 5].

When using second-order heuristics, the number of heuristics, and

thus table sizes, grow much larger, as shown below (in this case,

global heuristics are second-order)

For a simple problem illustrated here, with 4 binary functions, 3

variables and 11 constants, the number of heuristics computed

from the above equations ranges from 162 for first-order to 2592

for second-order, and it would grow to about 1.37x107 for third

order if implemented.

Another important ACGP property is that it includes tree size in

determining the best trees from the population when it comes to

counting heuristics. This feature was added to dampen heuristics

coming from tress unnecessarily large for their fitness – ACGP

uses two-key sorting, the first key is the fitness, while the second

key is tree size and it applies whenever two trees are in an

equivalence class based on similar fitness. Alternatively, ACGP

can also skip counting subtrees which have not contributed to

fitness evaluation.

3. Empirical Study on Symbolic Regression

3.1 The Problem and its Expected Heuristics
To evaluate ACGP processing capabilities with second-order

heuristics with both commutative and non-commutative functions,

we constructed a problem with strongly exhibited and easily

controlled second-order structure and we used only commutative

functions at first. The problem is the three-variable parabolic

bowl.

The second-order structure apparent in this problem is that

multiplication has to apply to same-variables simultaneously, a

fact which cannot be implicitly constructed from just the first-

order heuristics. The Bowl3 function has two basic minimal

solutions (resulting from commutativity of ‘+’), illustrated in

Figure 2. Adjusting for different permutations at the leaves, there

are 6 permutations of the left tree and 6 permutations of the right

tree, giving 12 minimal solution trees. Of course, there are also

non-minimal solutions.

Figure 2 (x*x) + (y*y) + (z*z) represented as two

different trees

By analyzing the minimal solution trees and their permutations,

we can see that even though the two trees are different in the

global (root) second-order structure (they are flipped), the local

second-order heuristics are exactly the same in both:

‘*’ applies to same-variables simultaneously, and

‘+’ applies to two ‘*’ simultaneously.

Assuming only best trees as shown above, with the possible

permutations, it is apparent that the latter of these two second-

order heuristics can be implicitly computed from the available

first-order heuristics on the same trees. One local first-order

heuristic is that ‘+’ applies to “*” on the left, and another is that

‘+’ applies to ‘*’ on the right. Since there are no other first-order

local heuristics on ‘+’, if we compute second-order heuristics by

composition of its first order heuristics, we will have the exact

second heuristic above.

However, the former of the above second-order heuristics can

never be computed from the observed first-order heuristics –

computed second order heuristic that ‘*’ applies to ‘x’ and ‘x’

would have the same values as that for “x’ and ‘y’ which is not a

correct heuristic. Therefore, these two above cases can help us

determine if ACGP can improve while discovering second-level

structures over first-order structures (when working with first-

order heuristics, ACGP implicitly processes second-order

heuristics but according to second-order heuristics implied from

the available first-order heuristics; the same could be stated for

higher order heuristics).

When it comes to global (root) second-order heuristics, the two

trees (and their permutations) conflict:

‘+’ applies to ‘*’ and ‘+’ in the left subtree

 ‘+’ applies to ‘+’ and ‘*’ in the right subtree

Because these heuristics are the reverse of each other, there will

be a conflict when combining global heuristics from multiple trees

(some trees can come from the left family, others from the right

family), and we can expect the initial search for heuristics to

suffer until one of these families, or representations, takes over the

population while using its heuristics to increase the take-over

process.

Analysis of the first-order and the second-order heuristics used to

solve this problem is instructive in understanding why ACGP can

improve the solution process for this problem and how second-

order ACGP has an advantage over first-order ACGP.

The Bowl3 problem uses the

following ten explicit first-order heuristics in constructing a viable

solution. The first row lists the global heuristics, and the second

row lists the local heuristics. Since these are first-order parent-

one-child heuristics, the subscript indicates whether the heuristic

is on the first (1) or the second (2) child of the parent.

Since ACGP running with only first-order heuristics is equivalent

to ACGP run with second-order heuristics as implicitly computed

from its first-order heuristics (or ACGP can execute with second

order heuristics while only capturing first order heuristics which

are subsequently used to compute the second-order order

heuristics), we compute here those implicitly produced second-

order heuristics. No subscripts are needed here. The first row lists

the implicit global first-order heuristics.

 ,

 ,

However, only six of the above implicit second-order heuristics

are explicitly expressed in the Bowl3 equation.

Thus, we should expect only those heuristics to emerge if we

conducted ACGP run while extracting the second-order heuristics.

The remaining seven second-order heuristics are not used in

solving this problem and should be discouraged from being used.

However again, if we conduct ACGP run with first-order

heuristics only and explicitly or implicitly process second-order

heuristics without extraction, all thirteen heuristics would be

processed. The differential between the second-order heuristics

needed to construct a viable solution and the second-order

heuristics obtained from the explicit first-order heuristics is the

information differential second-order ACGP has over first-order

ACGP for this specific problem.

3.2 Experimental Setup
To increase the problem complexity (and the search space), we

the following binary functions , and in addition to the

required {x, y, z} we also included eleven integer constants

between -5 and 5. None of these additional functions or terminals

is needed in the optimal solution.

Unless otherwise noted, all experiments were conducted as

follow:

Target Equation:

Function set: (protected divide)

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Population size: 500

Generations: 500

Operators: crossover 85%, mutation 10%, selection 5%,

regrow 100% at each iteration

Number of independent runs: 30

Fitness: sum of square errors on 100 random data points

in the range -10 to 10

Iteration length: 20 generations

When tracing fitness, the best solution from the 30 independent

runs was averaged.

3.3 Problem Solving Results for the Bowl3

Problem
The first experiment was to compare the learning curves. , These

curves represent the quality of the best solution found per

generation, for a standard GP run, called Base, and for two ACGP

runs while discovering first-order and second-order heuristics.

The heuristics are extracted after each 20 generations (an

iteration). In Figure 3, the heuristics discovered in the population

replace 50% of the previous heuristics (or uniform heuristics on

the first iteration) on every iteration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 3 GP-Base, ACGP with first-order and second-order

heuristics for the Bowl3 problem with greedy updates

As seen, the Base GP is not capable of solving the problem better

than about 10% of the fitness. On the other hand, both first-order

and second-order ACGP runs can consistently solve the problem

to above 60% just after about 5 iterations (100 generations). The

observed dips correspond to re-initializing the population after

each iteration. It is interesting to observe that after just a few

iterations the depth of the dip is above the Base case – meaning

the discovered heuristics used as a model for the problem at hand

provide reinitialized population of higher quality than the final

population’s quality in the base GP. It is also interesting to note

that there is very little difference between the first-order and the

second-order run, indicating that perhaps the second-order run

cannot effectively utilize its potential information differential

which we have seen is beneficial to solving the problem.

However, in some cases, using the heuristics too greedily (too

early and too much) can lead to suboptimal convergence [4].

Since none of the GP runs was able to solve the problem, could

this be due to the greedy approach taken to replace 50% of the

heuristics at each iteration? Thus, in the second experiment we

reduce the rate in which the observed heuristics are used to update

the used heuristics – we only update portion of the heuristics

proportional to generation number. That is, after the first iteration

we update only 1/25 of the initial uniform heuristics, etc. The

results are presented in Figure 4. As seen, ACGP with the second-

order heuristics can now solve the problem quite easily while

ACGP with first-order heuristics only improves to about 70%. It

seems that without the greedy update, the second-order run is now

able to now utilize its information differential without being

trapped with incomplete heuristics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 3 GP-Base, ACGP with first-order and second-order

heuristics for the Bowl3 problem with less greedy updates

Another observation from Figure 3 is that even though both

ACGP runs can clearly outperform the GP Base run with uniform

search, this advantage does not emerge in the initial few iterations.

The reason for this behavior is most likely the fact that initially

there are the two competing representations with different global

(root level) heuristics for the second-order case and different local

heuristics for ‘+’ for the first-order heuristics case, as speculated

before. Once the process starts “preferring” one of the

representations, initially due to random genetic drift, the process

reinforces itself and further enhances the representation, leading

to quick and dramatic improvements. In other words, the ACGP

run probabilistically reduces the search space and also modifies

the proximity between the genotype and phenotype by modifying

the heuristics driving mutation and crossover.

However, there is more to this story. When running with better

heuristics, the tree sizes tend to be smaller due to the algorithm

learning to avoid unnecessary and non-contributing subtrees (by

probabilistically reducing the search space). This can in fact

amplify the efficiency gains. Table 1 summarizes the complexity

of the average of the best trees for each of the 30 independent runs

in the three experimental cases. It indeed shows that the trees

created using the first-order and second-order heuristics contain

fewer nodes and are shallower than the trees explored in the Base

GP. The table also illustrates some additional time complexity for

the second-order processing over first-order processing – the tree

sizes are about the same yet execution time slows to almost 50%

for ACGP second-order. Yes both ACGP runs handily outperform

GP Base.

Table 1 Average tree structure for GP Base, first-order and

second-order heuristics for the Bowl3 problem

Average
Best Tree

Size

Best Tree

Depth

Execution

Time

Base 728.40 19.43 347.6

1st OH 123.67 10.37 44.70

2nd OH 123.87 11.40 65.67

These results are interesting and illustrate a number of facts about

ACGP: very low order heuristics can be useful even for symbolic

regression, applying the heuristics effectively reduces the search

space and thus leads to faster convergence, and the heuristics

themselves are useful robust models for the problem at hand.

However, one question of interest that has not been asked or

answered is how the commutativity of the functions played a role

in the improvements.

3.4 An Alternative Problem and its Expected

Heuristics
The Bowl3 experiment shown above demonstrates the efficacy of

ACGP in discovering the necessary heuristics for a given

problem. How dependent are these results on the component

functions and terminals of the target solution? In particular, how

the fact that the solution was made up of commutative functions

only affected that solution? One could easily speculate that non-

commutative function should improve ACGP reducing the

conflicting heuristics that it encounters. On the other hand, one

could also speculate that commutative functions are better because

the local heuristics can apply the same way to both arguments of

the function and provide a richer set of candidate solutions in the

whole population. We decided to answer these questions and

resolve the conflicting speculations using another experiment with

a simple modification of the previous problem – replace the

function ‘+’ with ‘-‘.

This modification of the problem shares most of the structural and

heuristic features with Bowl3. Like the Bowl3 problem, the

Bowl3neg problem uses ten explicit first-order heuristics (here we

do not separate global from local heuristics; subscripts again

identify the child for the heuristic).

These first order heuristics combine to implicitly define thirteen

second-order heuristics

Only six of these second-order heuristics are explicitly expressed

in this equation.

The remaining seven second-order heuristics are not used in

solving this problem and should be discouraged. The differential

between the explicit second-order heuristics needed to construct a

viable solution and the implicit second-order heuristics developed

from the explicit first-order heuristics constitutes information

differential between ACGP running while discovering second-

order heuristics and ACGP running while discovering only first-

order heuristics.

Figure 5 shows the average learning curves for the Bowl3neg

regression problem using GP-Base, ACGP with first-order

heuristics, and ACGP with second-order heuristics. All three

experiments were run using the same identical GP parameters as

before. The learning curves are somehow similar to those for

Bowl3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 5 Comparison of GP-Base, ACGP with 1st order and

2nd order heuristics for the Bowl3neg problem non-greedy.

There are few apparent observations. First, neither ACGP run can

solve the problem consistently. Second, the second-order run

clearly outperforms the first-order run – as the differential in

information has much greater impact here. Third, the first-order

run has real problems on this case – this seems to support the

hypothesis the low-order heuristics, without much context

information, are less useful here or rather harder to extract.

Table 2 Average tree structure for GP Base, first-order and

second-order heuristics for the Bowl3neg problem

Average Best Tree

Size

Best Tree

Depth

Execution

Time

Base 625.93 19.07 272.83

1st OH 140.53 11.0 46.77

2nd OH 109.0 10.63 68.9

We also compare three sizes and execution times between the

runs, as before. The results are presented in Table 2. As before

with Bowl3, trees created using the first-order order and second-

order heuristics contain fewer nodes and are shallower than the

trees explored in the Base GP. These results are comparable to

those in Table1 so the operational performance of ACGP does not

explain the difference in the search performance for the two

problems. One notable difference is that the first-order ACGP

maintains somehow larger trees, which is explained by its

inability to find quality heuristics and thus subpar search when

compared to second-order.

Next we analyze the actually discovered heuristics by the ACGP

runs to further speculate on the difference in performance between

the two problems.

3.5 The Discovered Heuristics
Another way of analyzing ACGP’s performance is to look at the

actual heuristics discovered after all iterations and compare them

against the speculated values assumed from problem analysis

(computed assuming minimal tree size). Table 3 illustrates the

final first-order heuristics discovered by ACGP running in the

first-order mode in the heuristic increment as reported in Figure 4

for the Bowl3 problem.

The results are very close to what was speculated in the discussion

above. All heuristics start uniformly (no apriori information was

given) thus all initial values are the same. ACGP easily

discovered that the ‘*’ function needs to apply mostly to the

variables (about 72% combined between the three variables).

ACGP also discovered that the ‘+’ function should apply mostly

to ‘*’ and also allow association (the final probabilities are about

twice higher for ‘*’ children), but it clearly still cannot distinguish

between the two solution families (‘+’ is both left and right

associative while only one of them is sufficient). The reason for

this confusion is that except for the ‘+” association, the two

families have identical heuristics making it hard to distinguish

between them.

ACGP also easily discovered the global zero-order heuristic

stating that ‘+’ should label the root node.

Table 3 First-order heuristics discovered in the Bowl3

commutative experiment. Root’s heuristics are zero-order.

Only highly evolved heuristics are shown

1st Order Heuristics

Heuristic Initial Final

‘*’

Left arg

X 0.056 0.2289

Y 0.056 0.2426

Z 0.056 0.2403

Right arg

X 0.056 0.2323

Y 0.056 0.2489

Z 0.056 0.2087

‘+’

Left arg
‘*’ 0.056 0.4796

‘+’ 0.056 0.2171

Right arg
‘*’ 0.056 0.4168

‘+’ 0.056 0.2410

Root ‘+’ 0.056 0.7669

Average of all other heuristics 0.056 0.0371

If we estimate the second-order heuristics from the available first-

order heuristics, our estimate will be lower than needed to capture

the heuristics actually present in the Bowl3 equation. The first-

order heuristics for the function ‘*’ will estimate nine potential

second-order heuristics
 . However, we already know that Bowl3 has only 3

useful second-order heuristics for ‘*’: and

will suppress the other six heuristics. Table summarizes the final

second-order heuristics discovered in the second-order run,

against those computed from available first-order heuristics,

producing the information differential. The table clearly shows the

advantage of extracting second-order heuristics (large

differential).

Table 4 Second-order heuristics summary for ‘*’ as

discovered in the ACGP second-order run versus computed

from first order heuristics

Multiply Heuristics

Heuristic Initial Final Computed Difference

‘*’

X X 0.0031 0.2545 0.0532 + 0.2013

Y Y 0.0031 0.2368 0.0604 + 0.1764

Z Z 0.0031 0.2436 0.0502 + 0.1934

Average of all

other heuristics
0.0031 0.0008 - -

A similar discussion can be made regarding the second-order

heuristics for ‘+’ and is illustrated in Table 5. The three preferred

heuristics (in infix notation) are found

after the Bowl3 run.

The only dominant heuristics discovered for division and

subtraction are a few heuristics that have no impact on the

evaluation of the candidate solution. These neutral heuristics are

division sub-trees that evaluate to 1 or subtraction sub-trees that

evaluate to 0.

Table 5 Second-order heuristics summary for ‘+’ as

discovered in the ACGP second-order run versus computed

from first order heuristics

Addition Heuristics

Heuristic Initial Final Computed Difference

‘+’

‘*’ ‘*’ 0.0031 0.3110 0.1999 + 0.1111

‘*’ ‘+’ 0.0031 0.0688 0.1156 - 0.0468

‘+’ ‘*’ 0.0031 0.1289 0.0905 + 0.0384

Average of all

other heuristics
0.0031 0.0015 - -

The results in this table resemble those in Table 4. When the final

discovered second order heuristics are compared to those

computed from the final first order heuristics the information gain

of the explicit second order heuristics become clear. The single

exception to this observation is found in the heuristic.

This heuristic and are complementary reflections and

only one is needed in a final solution so this heuristic result is far

from surprising. The overall rate of differential is much smaller

though.

Next, we recompute these tables for the Bowl3Neg problem, with

non-commutative function ‘-’ instead of ‘+’. Table summarizes

the results for ‘*’ – they seem similar to those for Bowl3 which is

understandable since ‘*’ is still commutative.

Table 6 Second-order heuristics summary for ‘*’ as

discovered in the ACGP second-order run versus computed

from first order heuristics

Multiply Heuristics

Heuristic Initial Final Computed Difference

‘*’

X X 0.0031 0.2333 0.0905 + 0.1428

Y Y 0.0031 0.2333 0.0905 + 0.1428

Z Z 0.0031 0.2333 0.0905 + 0.1428

Average of all

other heuristics
0.0031 0.0008 - -

Table 7 Second-order heuristics summary for ‘-’ as discovered

in the ACGP second-order run versus computed from first

order heuristics

Subtraction Heuristics

Heuristic Initial Final Computed Difference

‘-’

‘*’ ‘*’ 0.0031 0.3846 0.0005 + 0.3841

‘*’ ‘-’ 0.0031 0.0001 0.0002 - 0.0001

‘-’ ‘*’ 0.0031 0.3846 0.2345 + 0.1501

Average of all

other heuristics
0.0031 0.0015 - -

However, when the heuristics are summarized for the non-

commutative ‘-’ (Table 7), we can see that the differential, or

advantage of second-order over first-order ACGP is much greater

here (comparing the differentials in Table 7 and Table 5). This

clearly explains why the Bowl3Neg runs with the second-order

ACGP outperformed those with first-order ACGP.

Another way to explain the better performance of second-order

heuristics with non-commutative functions is as follows. The

principal difference between the two target equations is the

component functions and the fact that one equation uses strictly

commutative functions whereas the other equation substitutes a

non-commutative function. Since Bowl3 uses only commutative

functions, many different structural variations will be able to form

highly fit candidate solutions. Alternatively Bowl3neg which

includes the non-commutative ‘-’ function imposes a stricter

structure of its components in the formation of a highly fit

candidate solution. This difference of component functions in the

target equation conditions the search for either problem. One

might infer that GP regression problems with only commutative

functions in their target solution find it easier to evolve solutions

because a highly fit solution can be constructed in many more

configurations than a target equation that includes a non-

commutative function. This is an interesting conjecture and

requires further experimentation to support it.

4. Conclusions
We have illustrated how the Adaptable Constrained GP (ACGP)

discovers and uses valuable low-order heuristics for problem-

solving, symbolic regression in this case. We have shown through

analysis of specifically constructed problems that ACGP running

with richer second-order heuristics has a potential information

differential over ACGP running with less informative first-order

heuristics. Empirical analysis illustrated that the differential is

beneficial if the approach is not too greedy (which causes loss of

heuristics) and that both approaches not only improve the solution

found but also do that more effectively (in time and space).

This paper demonstrates that if very strong second-order

heuristics are present, ACGP is able to process them and also to

discover them, does it very efficiently, and the discovered

heuristics are similar to what one would expect by carefully

analyzing the problem solution. Of course, some of the local

heuristics are context-specific, that is they should be different in

different subtrees. ACGP relies on the simplicity of its completely

local heuristics for its efficiency, but it is possible to provide some

context sensitivity – we hope to investigate this in the future.

We have also demonstrated that ACGP can benefit from its

heuristics differently for commutative and non-commutative

functions. In particular, second-order heuristics can capture and

utilize larger information differential over first-order heuristics,

resulting in faster learning.

The results are intended for preliminary illustration – more

experiments and analysis is needed to have a better picture of how

commutative properties affect different levels of heuristics

available in ACGP.

5. REFERENCES
[1] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and

Francone Frank D. Genetic Programming - An Introduction.

On the Automatic Evolution of Computer Programs and its

Applications. Morgan Kaufmann Publishers, Inc. 1998.

[2] Janikow, Cezary Z. A Methodology for Processing Problem

Constraints in Genetic Programming, Computers and

Mathematics with Applications. 32(8):97-113, 1996.

[3] Janikow, Cezary Z., Deshpande, Rahul, Adaptation of

Representation in GP. AMS 2003

[4] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic

Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo,

Rick L., editors. Genetic Programming Theory and Practice

(II). Springer, New York, NY, 2005, 191-206.

[5] Janikow, Cezary Z., and Mann, Christopher J. CGP Visits the

Santa Fe Trail – Effects of Heuristics on GP. GECCO’05,

June 25-29, 2005.

[6] Janikow, Cezary Z., Aleshunas, John, Hauschild, Mark W.

Second-Order Heuristics in ACGP. In ACM Genetic and

Evolutionary Computation Conference (GECCO) (Dublin,

Ireland 2011), ACM.

[7] Koza, John R. Genetic Programming. The MIT Press. 1992.

[8] Koza, John R. Genetic Programming II. The MIT Press.

1994.

[9] Looks, Moshe, Competent Program Evolution, Sever

Institute of Washington University, December 2006

[10] McKay, Robert I., Hoai, Nguyen X., Whigham, Peter A.,

Shan, Yin, O’Neill, Michael, Grammar-based Genetic

Programming: a survey, Genetic Programming and

Evolvable Machines, Springer Science + Business Media,

September 2010

[11] Poli, Riccardo, Langdon, William, B., Schema Theory for

Genetic Programming with One-point Crossover and Point

Mutation, Evolutionary Computation, MIT Press, Fall 1998

[12] Sastry, Kumara, O’Reilly, Una-May, Goldberg, David, Hill,

David, Building-Block Supply in Genetic Programming,

IlliGAL Report No. 2003012, April 2003

[13] Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein,

A Survey of Probabilistic Model Building Genetic

Programming, The Artificial Life and Adaptive Robotics

Laboratory, School of Information Technology and Electrical

Engineering, University of New South Wales, Australia,

2005

[14] Looks, Moshe, Competent Program Evolution, Sever

Institute of Washington University, December 2006

[15] McKay, Robert I., Hoai, Nguyen X., Whigham, Peter A.,

Shan, Yin, O’Neill, Michael, Grammar-based Genetic

Programming: a survey, Genetic Programming and

Evolvable Machines, Springer Science + Business Media,

September 2010

[16] Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein,

A Survey of Probabilistic Model Building Genetic

Programming, The Artificial Life and Adaptive Robotics

Laboratory, School of Information Technology and Electrical

Engineering, University of New South Wales, Australia,

2005

[17] Burke, Edmund, Gustafson, Steven, and Kendall, Graham. A

survey and analysis of diversity measures in genetic

programming. In Langdon, W., Cantu-Paz, E. Mathias, K.,

Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,

Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A.,

Miller, J., Burke, E. and Jonoska, N., editors. GECCO2002:

Proceedings of the Genetic and Evolutionary Computation

Conference, 716-723, New York. Morgan Kaufmann.

[18] Daida, Jason, Hills, Adam, Ward, David, and Long, Stephen.

Visualizing tree structures in genetic programming. In Cantu-

Paz, E., Foster, J., Deb, K., Davis, D., Roy, R., O’Reilly, U.,

Beyer, H., Standish, R., Kendall, G., Wilson, S., Harman, M.,

Wegener, J., Dasgupta, D., Potter, M., Schultz, A.,

Dowsland, K., Jonoska, N., and Miller, J., editors, Genetic

and Evolutionary Computation – GECCO-2003, volume

2724 of LNCS, 1652-1664, Chicago. Springer Verlag.

[19] Hall, John M. and Soule, Terence. Does Genetic

Programming Inherently Adopt Structured Design

Techniques? In O’Reilly, Una-May, Yu, Tina, and Riolo,

Rick L., editors. Genetic Programming Theory and Practice

(II). Springer, New York, NY, 2005, 159-174.

[20] Langon, William. Quadratic bloat in genetic programming.

In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L.,

Parmee, I., and Beyer, H-G., editors, Proceedings of the

Genetic and Evolutionary Conference GECCO 2000, 451-

458, Las Vegas. Morgan Kaufmann.

[21] McPhee, Nicholas F. and Hopper, Nicholas J. Analysis of

genetic diversity through population history. In Banzhaf, W.,

Daida, J., Eiben, A. Garzon, M. Honavar, V., Jakiela, M. and

Smith, R., editors Proceedings of the Genetic and

Evolutionary Computation Conference, volume 2, pages

1112-1120, Orlando, Florida, USA. Morgan Kaufmann.

[22] Franz Rothlauf. Representations for Genetic and

Evolutionary Algorithm. Springer, 2010.

