
f the
senta-

icitly
advan-
class
tive
is is

of
ergo
are

have
r

hich
thms
989),
ion,

epre-
pro-
itrary
xed-
Cezary Z. Janikow
Dept. of Mathematics and Computer Science

University of Missouri – St. Louis

Evolutionary Learning with
Constrained Genetic

Programming

1. Introduction

Solving a problem on the computer involves two elements: representation o
problem, and a search mechanism to explore the space spanned by the repre
tion. In the simplest case of computer programs, the two elements are not expl
separated and instead are hard-coded. However, separating them has proven
tageous. This idea has been long practiced in artificial intelligence. There, one
of algorithms borrows ideas from nature, namely population dynamics, selec
pressure, and information inheritance by offspring, to organize its search. Th
the class ofevolutionary algorithms.

Genetic algorithms (GAs), proposed by Holland (1975), use a population
chromosomes coding individual potential solutions. These chromosomes und
simulated evolution facing Darwinian selective pressure. Chromosomes which
better with respect to a simulated environment (the problem being solved)
increased survival chances (reproduction). Chromosomes interact with each othe
via crossoverto produce new offspring solutions, and they are subjected tomuta-
tion. Traditional genetic algorithms operate on fixed-length chromosomes, w
may not be suitable for some problems. To deal with that, some genetic algori
adopted variable-length representation, as in machine learning: Goldberg (1
Janikow (1993). Moreover, traditional GAs use low-level binary representat
but many recent applications use more abstracted alphabets: Davis (1991).

Genetic programming (GP), proposed by Koza (1992, 1994), uses treesto r
sent individuals: also see Kinnear. At first used to generate LISP computer
grams, GP is also being used to solve problems where solutions are arb
structures: Koza (1994). Tree representation is richer than that of linear fi

or
r less
n

short-

ules

ave
fol-

ro-
itial
Every

off-

, and
ion
rs to

eans
n the
ta-
rs
per
xity
type-
pre-

ing
nte-
gh
ustive,
ntial
or
plicit
nes.

ge the
length strings. This allows for representing (functional) computer programs
other variable-size structures. However,many sought solutions have more o
severe limitations (called hereconstraints) on the context in which elementsca
appear. To avoid these constraints, GP operates underclosure:Koza (1992), which
is accomplished through extended interpretation as needed. Because of the
comings of closure, Koza has proposedstructure-preserving crossover, whose pri-
mary intention is to preserve structural constraints imposed by automatic mod
(ADFs): Koza (1994).

For applicationswith rich domain constraints, two similar GP extensions h
been proposed: Strongly Typed GP (STGP) and Constrained GP (CGP). Both
low the idea ofclosingthe search in the feasible (or desired) space, originally p
posed by Michalewicz and Janikow (1996) for GAs. In that approach, the in
population is generated so that each chromosome satisfies all constraints.
operator (mutation and crossover) is guaranteed to produce constraint-valid
spring if constraint-valid parents are used.

STGP, proposed by Montana (1995), assigns types to functions, arguments
terminals. The initial population is filled with valid structures, and every mutat
and crossover preserves this validity. STGP has been used by many othe
develop practical applications.

CGP has been at the same time developed at NASA/JSC, by Janikow, as a m
to control the search space for GP applications in robotics: Janikow (1996). O
surface, it offers similar capabilities, with the major difference in its implemen
tion - CGP is implemented intolil-gp (Zongker and Punch, on-line) and thus offe
all capabilities available there (except for ADFs for the moment). However, dee
analysis reveals that CGP offers more by providing formal closure and comple
analysis, stronger crossover: Janikow (1996), as well as means to specify non-
related constraints, heuristic constraints (Janikow, on-line), and evolution of re
sentation (work in progress).

2. State-Space Searches and GP Search Space

In artificial intelligence, solving a problem on the computer involves search
the collection of possible solutions. For example, solving a two-dimensional i
ger optimization problem with domains [1,100] would involve searching throu
the space of 10,000 solutions. This search may be random, enumerated exha
or heuristic. However, in most practical problems of interest, the space of pote
solutions is too large to be explicitly retained and/or effectively randomly
exhaustively searched by an algorithms. Instead, the space is defined by im
means, often by transition operators generating new states from existing o
Given a complete set of operators, some control strategy is then used to mana

e.

tation)
mple,
rch
hen,
solu-
ing is
d in
t find-
used
arch-

laim

ies,
ations

eled

ered
illus-
, by

nly a

sec-
search. Such approaches are calledstate-space searchesin artificial intelligence:
Bolc and Cytowski (1992).

Figure 1 a) Search (representation) space and solution space of a state-space search. b) GP search spac

In such searches, an algorithm’s representation spans the search (represen
space. Usually the space is larger than the space of sought solutions. For exa
in the above 2-dim integer problem, a binary GA would likely span 128x128 sea
space. In more complex problem, the size mismatch might be more severe. T
a subspace of the space is sufficient to accomplish one-to-one mapping to the
tion space (and thus to provide feasible search). Because exhaustive mapp
needed, redundancy (or sometimes invalidity) is introduced. This is illustrate
Figure 1a, where mappings from two redundant subspaces are shown. Recen
ings suggest that the human DNA does indeed include redundant and/or un
genes, which may become activated through mutation. This has led some rese
ers to introduce such redundancies explicitly in a controllable fashion. Others c
such redundancies to be useful carriers of genetic information (e.g., introns, Koza
1992). However, heavily constrained applications, with many redundanc
researchers have proposed penalties, repair algorithms, and, if possible, oper
closed in the feasible/desired space: Michalewicz and Janikow (1996).

GP’s search space is two-dimensional. The first dimension is that of unlab
(uninstantiated) structures, which may be calledstructure templates. The second is
that ofinstancesof those templates. Assuming that structure templates are ord
by size, and that there is limit on that size, the resulting GP search space is
trated as the shaded area of Figure 1b. CGP relies on identifying (implicitly
constraints) both templates and instances whichwill not ever be explored due to
closing the search in the remaining space. This corresponds to searching o
portion (yet sufficient) of the shaded area of Figure 1b.

3. CGP

CGP offers means to provide problem constraints similar to those of STGP (

Solution Space

Representation space

Structure

Instances

size limit

Searchable
Space

templates

a) b)

.2),

on-
wed

ion-

eci-
type

s
o

h

) on
tion 3.1), closed search with negligible implementational overhead (section 3
overloaded functions (section 3.3), and heuristic (weighted) constraints.

3.1 T- and F- constraint Specifications
CGP does not rely on explicit type specifications (unlike STGP). Instead, c

straints are explicitly presented as sets of functions/terminals which are allo
(Tspecs) and disallowed (Fspecs) in a given context (function-argument).Tspecs
are indented to provide type-based constraints, given explicitly for each funct
argument. CGP uses the followingTspecs:

1. - the set of functions which return data type compatible with the problem sp
fication. Therefore, this is the set of function/terminals which produce the correct
to be computed by a program.

2. - the set of functions compatible with thejth argument of .

Example1 Assume three functions with arities 3, 2, and 1,
respectively. Assume the terminal and ephemeral constants

. Assume that the three type III functions generate random
boolean, integer, and real, respectively. Assume reads an integer. Assume
takes boolean and two integers, respectively, and returns a real. Assume take
two reals and returns a real. Assume takes a real and returns an integer. Als
assume that the problem specifications state that a solution program should
compute a real number. The example assumes that integers are compatible wit
reals, while booleans are not compatible with either. Then

,

,

,

,

,

,

However, syntactic fit does not necessarily mean that a functionshouldcall
another function. One needs additional specifications based (for instance
domain semantics or heuristics. These are provided by means ofFspecs, which fur-
ther restrict the space of trees.

3. - the set of functions disallowed at the Root.

4. - the set of functions disallowed as direct callers to

5. - the set of functions disallowed as thejth argument of .

TRoot

Ti
j f i

FI f 1 f 2 f 3, ,{ }=
FII f 4{ }=

FIII f 5 f 6 f 7, ,{ }=
f 4 f 1

f 2
f 3

TRoot f 1 f 2 f 3 f 4 f 6 f 7, , , , ,{ }=

T1
1 f 5{ }=

T1
2 f 3 f 4 f 6, ,{ }=

T1
3 f 3 f 4 f 6, ,{ }=

T2
1 f 1 f 2 f 3 f 4 f 6 f 7, , , , ,{ }=

T2
2 f 1 f 2 f 3 f 4 f 6 f 7, , , , ,{ }=

T3
1 f 1 f 2 f 3 f 4 f 6 f 7, , , , ,{ }=

FRoot

Fi f i

Fi
j f i

sed

tion
from
neg-

oned
over
6).

an
Example2 Continue Example1. Assume that we know that the sensor reading
function does not provide the solution to our problem. We also know that
boolean (generated by) cannot be the answer (this information is actually
redundant as it can be inferred fromTspecs). Also assume that for some reasons
we wish to exclude from calling itself (e.g., this is thefloor function, which
yields identity when applied to itself). These constraints are expressed with the
following Fspecs (the other sets are empty): ,

3.2 Normal Form, Mutations sets, and Closed Evolution
In Janikow (1996) we have shown (constructively) that constraints expres

with the above language can be uniquely represented in a minimalnormal form.
Such constraints can then be represented asmutation sets- to be used by closed
evolution. Moreover, we have shown that given proper data structures (muta
sets), closed operators (which guarantee to produce constraint-valid offspring
constraint-valid parents) can be implemented with the same complexity (and
ligible constant overhead) as the unconstrained operators oflil-gp. Except for the
different means to specify constraints, and the resulting implications as menti
above, this part of CGP is similar to STGP except for crossover - CGP’s cross
is able to produce more constraint-valid trees than does STGP: Janikow (199

Example3 Here are selected examples of mutation sets generated for Example1
and Example2. is the set of functions which can label the first
child of a node labeled as without constraint-invalidating a structure.

 is the set of such terminals.

.

Figure 2 Illustration of mutation and crossover.

Example4 Assume mutation sets of Example3. Assumeparent1andparent2as
in Figure 2. Assume the nodeN is selected for replacing with a subtree ofparent2.
It is the 1st child of a node labeled with . Then, and

, and the shaded nodes identify subtrees that crossover
could use to replaceN.

3.3 Overloaded Types
In CGP2.1 type information has been integrated, but in a different capacity th

f 4
f 5

f 3

FRoot f 4 f 5,{ }= F3 f 3{ }=

F 3
1 f 1 f 2,{ }=

f 3
T 3

1 f 4 f 6 f 7, ,{ }=

f2

f5

f1

f3

f4f6

parent2

nodeN

subtree to be
replaced by
crossover

f1

f4

f5 f4 f3

parent1

f4

f3

f 3 T N T 3
1 f 4 f 6 f 7, ,{ }==

F N F 3
1 f 1 f 2,{ }==

con-
o
ning
r to

fer to

han
func-

ive
to

r to

an-
t two
in STGP. First, types could be used to automatically generate type-based
straints (in place of/in addition toTspecs). However, types can also be used t
define overloaded functions - those generating different types (and thus span
different constraints) based on types of their actual arguments. This is simila
having context-based constraints. For additional information and examples re
CGP2.1 User’s Manual (Janikow, on-line).

Example5 Assume domain types are . Then,
could be overloaded to generatenumbers when applied tonumbers, andlength
when arguments are mixed. Twolengtharguments may not be allowed - unless
length2 is also defined as a possible type.

3.4 Heuristic (weighted) Constraints
CGP2.1 also allows heuristic constraints, which are similar toweakconstraints

of many optimization problems. This capability allows for preferences rather t
absolute constraints to be processed. For example, in the domain of boolean
tions, one may desire that boolean betwiceas likely to apply to as to itself.
Constraints of this form could be used to identify, for example, DNF (disjunct
normal) forms as those preferable for evolution, while still allowing other forms
coexist without penalizing them. For more information and examples refe
CGP2.1 User’s Manual (Janikow, on-line).

3.5 Language for File Constraints
CGP2.1 allows the constraints to be listed in a file, using specially crafted l

guage. Syntax and details can be found in (Janikow, on-line). Here we presen
examples.

Example6 The following file section definesT- and Fspecsfor the inverse
kinematics problem:

FTSPEC
F_(*)= #not required since it’s empty
F_(*)[*]= #not required since it’s empty
F_(sin)[0]=add #prevent sin(_+_)
F_ROOT=asin #prevent asin() from Root
#must specify some TSpecs
T_(*)[*]=* #allow all TSpecs
T_ROOT=* #allow all func/term for Root
ENDSECTION

Example7 The following file section defines types and overloads some
functions for the same problem.

TYPE
TYPELIST = float integer angle #list valid types
(add)(float float)=float #float + float = float

length number, multiply a b,()

or and

type
This

er
eter-

and
),

ol-

i-
ith
tion.
2048

to be
nc-

pace.
(add)(integer float)=float #integer + float = float
(add)(float integer)=float #float + integer = float
(add)(integer integer)=integer

#integer + integer = integer
(add)(angle angle)=angle #angle + angle = float
(asin)(float)=angle

#asin can take float and integer only
(asin)(integer)=angle
(sin)(angle)=float

#sin can take anything producing angle
(1)=integer #terminal types
(PI)=angle #PI is an angle, not a float
(x y)=float
ROOT=angle #Root’s return type
ENDSECTION

4. Illustrative Experiment with Multiplexer

In this section, we follow a practical example intended to illustrate howT- and
Fspecscan be used to control CGP’s search space even though there are no
constraints - boolean is the unique type and thus closure is trivially satisfied.
will also illustrate how the search space affects GP evolution.

We use the widely studied 11-multiplexer problem: Koza (1992). Multiplex
has two kinds of binary inputs: address and data. The address combination d
mines which of the data inputs propagates to the output. Thus, fora address bits,
there are data bits. 11-multiplexer has 3 address and 8 data bits,

, respectively. For example, 110 address (the boolean formula
causes (1102=610) be passed to the output. 11-multiplexer implements a bo
ean function, which can be expressed in DNF (disjunctive normal form) as:

Koza (1992) has proposed to use functions and term
nals . In this case, GP evolves trees which are labeled w
the above primitive elements, each element having the standard interpreta
Evaluation assigns raw fitness value based on the number of the possible
input combinations which produce the correct classification (True or False).

The function set is obviously complete, thus satisfyingsufficiency. However, the
set is also redundant – a number of subsets, such as , are known
sufficient to represent any boolean formula. Thus, by placing restrictions on fu
tion use, we may reduce the amount of redundancy in the representation s

2a a0…a2

d0…d7 a2a1a0

d6

a2a1a0d7 a2a1a0d6 a2a1a0d5 a2a1a0d4

a2a1a0d3 a2a1a0d2 a2a1a0d1 a2a1a0d0

∨ ∨ ∨ ∨
∨ ∨ ∨

FI if or and not, , ,{ }=
FII a0..a2 d0..d7,{ }=

and not,{ }

rm a

000,
the

100

e

ame.

ns.

be
over
pos-

ny
hose
junc-
is
However, as the results indicate, some combinations of subspaces will perfo
much better search than others. This will be further elaborated.

For each experiment, we repeat 10 independent runs, with a population of 2
0.85/0.1/0.05 probabilities for crossover/selection/mutation, and otherwise
defaultlil-gp parameters. We report the same learning curves while running for
iterations.

To make the presentation more systematic, we assume thatTspecsstay constant,
and all constraints are expressed withFspecs. Because there is a single type, th
genericTspecs do not impose any constraints:

where ‘*’ indicates any possible value, here meaning that all sets are the s

1. ExperimentE0: Unconstrained 11-multiplexer withCGP lil-gp.There are no constraints
(all Fspecs are empty), thus the runs are the same as in standard GP.

2. ExperimentE1: using a sufficient set{and,not}.We observe that is a suf-
ficient type I function set. Thus, we run an experiment with only these two functio
This is be accomplished with the followingFspecs:

We should note that even though is a sufficient set, the solution
expressed with these two functions is necessarily more complex. Thus, we should
not expect any payoff from this constraint (this is another example of problem-spe-
cific knowledge). In other words, we suspect that this is not “the right” sufficient
set. Results support this claim.

3. ExperimentE2: DNF. We attempt to generate DNF solutions. Obviously, must
excluded. However, this is not sufficient. We must also ensure that is distributed

, and that applies to type II functions only. This can be expressed (one of
sible options) with the followingFspecs:

, , ,

, ,

4. ExperimentE3: Structure-restricted DNF. The above DNF specification leaves ma
interpretation-isomorphic trees. In this experiment, we intend to remove some of t
redundancies (though not all). We constrain the trees to grow conjunctions and dis
tions to the left only (thus, we prohibit right-recursive calls on and). This
accomplished with the following modifications toFspecs of E2:

, , ,

,

TRoot T*
* if or and not a0…a2 d0…d7,, , , ,{ }= =

and not,{ }

FRoot F*
* if or,{ }= = F* ∅=

and not,{ }

if
or

and not

FRoot if{ }= F* ∅= Fif
* ∅=

Fnot
* if or and not, , ,{ }= Fand

* if or,{ }=

For
* if{ }=

or and

FRoot if{ }= F* ∅= Fif
* ∅=

Fnot
* if or and not, , ,{ }=

s
and
es to

to
lem-
esses
we

test
is con-
void
only

nger
r than

ent
ile

ith
at-
, ,

,
Previous experience with other evolutionary algorithms using DNF representation
suggest that DNF is “the right” representation: Janikow (1993). Thus, we would
expect bothE2 andE3 to do relatively well. We will shortly observe that (and spec-
ulate why) this is not the case.

5. ExperimentE4: using {if} only. Here we observe that the function set i
completely sufficient for the task of learning the 11-multiplexer. This experiment,
its further enhancements, will have the best learning characteristics. Restricting tre
use this function only can be accomplished with the followingFspecs:

, ,

6. ExperimentE5: E4 with problem-specific knowledge. Now, suppose that, in addition
observing that is a sufficient function set, we also use some additional prob
specific knowledge. For example, suppose we know that the first three bits are addr
and the others are data bits. Knowing the interpretation of (which we do since
implement it), we may further conclude that the conditional argument (#1) should
addresses, and the other arguments should compute and thus return data bits. Th
straint could be completely expressed with a slightly enlarged function set. To a
extra complexity, we express a somehow lesser constraint, one which restricts
immediate arguments (in the original CGP theory it was possible to specify the stro
constraint for this function set, because that theory was based on domain sets rathe
functions). This can be expressed with the followingFspecs:

, ,

,

,

7. ExperimentE6: E5 with further heuristic knowledge. Further suppose that we prev
trees ofE5 from using on its first argument. This further reduces redundancy, wh
still allowing solutions to evolve. This can be accomplished with:

, ,

,

,

The results are very interesting, some even striking. Forcing evolution w
functions (E1) has a disastrous effect, even though in theory it dram

Fand
1 if or,{ }= Fand

2 if or and, ,{ }=

For
1 if{ }= For

2 if or,{ }=

FI if{ }=

FRoot Fif
* or and not, ,{ }= = F* ∅=

For
* Fand

* Fnot
* irrelevant= = =

if{ }

if

FRoot or and not a0 a1 a2, , , , ,{ }= F* ∅=

Fif
1 or and not d0 d1 d2 d3 d4 d5 d6 d7, , , , , , , , , ,{ }=

Fif
2 Fif

3 or and not a0 a1 a2, , , , ,{ }= =

For
* Fand

* Fnot
* irrelevant= = =

if

FRoot or and not a0 a1 a2, , , , ,{ }= F* ∅=

Fif
1 if or and not d0 d1 d2 d3 d4 d5 d6 d7, , , , , , , , , , ,{ }=

Fif
2 Fif

3 or and not a0 a1 a2, , , , ,{ }= =

For
* Fand

* Fnot
* irrelevant= = =

and not,{ }

ates
ulti-

o-

e –
GP
vo-
etic
tors,
orted
ng-

lua-
ses
less
all
ctive
g the
oss-
el-

his
olu-

is
with
tics,
rpre-
P.
is
ically reduces the number of redundant solutions being explored. This indic
that simply reducing search spaces may not be beneficial. Moreover, 11-m
plexer expressions using only are generally more complex.

Forcing DNF functions to evolve (E2) has equally disastrous effects on the pr
gram. In this case, even further restrictions on tree structures (E3) failed to compen-
sate for the disadvantage. It seems that the reasons are similar to those abov
will prove to be the most effective and thus extremely important. The fact that
fails to efficiently evolve DNF solutions is striking when compared to another e
lutionary program designed for machine learning. GIL: Janikow (1993) is a gen
algorithm with specialized DNF representation, specialized inductive opera
and evolutionary state-space search controlled by inductive heuristics. In rep
experiments, while evolving solutions to the same function, but in a more challe
ing environment in which only 20% of the 2048 cases were available for eva
tion, GIL was evolving 99% correct solutions with respect to all the 2048 ca
after exploring about 50,000 individuals. Our DNF-constrained CGP evolved
than 90%-perfect solutions after exploring 200,000 individuals, while seeing
100% of the possible cases. Even though a direct comparison was not an obje
here, one may draw some conclusions. In this case, both programs were usin
same representation (DNF). The only difference is that CGP used only blind cr
over/mutation, controlled by static probabilities, while GIL used operators mod
ing the inductive methodology, whose firing was controlled by heuristics. T
suggests that such problem-specific knowledge is extremely important to ev
tionary problem solving.

Figure 3 Comparison of the quality of the best-of-population tree. Because of similar results, E1, E2, and
E3 are averaged.

In the other experiments, we investigate the utility of the function for th
specific problem. The reason for this experiment is that our previous results
restricted but still sufficient function sets failed to improve search characteris
instead degrading the performance and leading to our suspicion that this inte
tation-rich function is extremely important for solving this problem with G
Results forE4 are strikingly obvious: perfect solutions finally emerge from th

and not,{ }

if

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

1248.00

1408.00

1568.00

1728.00

1888.00

2048.00 E0

E1/E2/E3

E4

E5

E6

if

xity

nd

se the
s off
.
hus

tion
istics
only
n set

t-
peci-
ased

lly
run-
ati-
tate-

ion
This
eria.
ilarly
ons,
onal
capa-
with
that
r in

ame
ons
evolution, on the average after about 70 iterations. However, time comple
increases due to the increase in tree sizes: Janikow (1996).

This result indicates that it is indeed important to provide both the “right” a
“minimal” set of functions for GP. For example, comparing results fromE0 andE4
one may see a dramatic improvement despite the fact that both experiments u
identified function. This indicates that reducing the redundant subspace pay
in this case, but only because the “unnecessary” subspace was pruned away

Finally, providing additional heuristics about the desired solutions, and t
pruning away other undesired solutions, leads to even better speed ups (E5 andE6
in Figure 3). This further supports our observation that providing such informa
is advantageous not only to generating solutions with some specific character
but to speeding up evolution as well. Unfortunately, this can usually be done
by a careful redesign of the algorithm/representation/operators, or the functio
in GP. In CGP, no changes are needed.

5. Summary

This paper describesCGP2.1, which provides a means for pruning constrain
identified subspaces from being explored in GP search. The constraints are s
fied in a user-friendly language aimed at expressing syntax and semantics-b
restrictions toclosure. Specific constraints lead to the exclusion of syntactica
invalid, redundant, or simply undesired trees from ever being explored. Such p
ing may not only lead to more efficient problem solving; when studied system
cally, it may also give insights about pruning redundant subspaces from any s
space search.

CGP2.1 implements constraints based on explicit function/terminal inclus
and exclusion, mostly applicable to single-type problems (as in section 5).
capability allows for specifying constraints not based on types but on other crit
CGP2.1 also supports explicit types and constraints based on those types (sim
to STGP). The same explicit types can also be used for overloading functi
which capability corresponds to context-specific constraints. Moreover, additi
heuristics can be expressed with weighted constraints (preferences). This last
bility is currently being extended to evolve such preferences simultaneously
evolving problem solutions. Hard-coded experiments (not reported) indicate
representation heavily favoring , experimentally determined to be superio
section 5, automatically evolves even if no initial constraints are given to the s
problem. This extension, if indeed successful, will have far-reaching implicati
for GP.

if

if{ }

-

Bibliography

 [1] Leonard Bolc and Jerzy Cytowski.Search Methods for Artificial Intelligence. Academic Press, 1992.

 [2] Lawrence Davis (ed.).Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

 [3] David E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wes-
ley, 1989.

 [4] John Holland.Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

 [5] Cezary Z. Janikow.“A Knowledge-Intensive GA for Supervised Learning”, in Machine Learning 13
(1993), pp. 189-228.

 [6] Cezary Z. Janikow.“A Methodology for Processing Problem Constraints in Genetic Program
ming” . Computers and Mathematics with Applications, Vol. 32, No. 8, pp. 97-113, 1996.

 [7] Cezary Z. Janikow.CGP2.1. http://www.cs.umsl.edu/~janikow/cgp-lilgp .

 [8] Kenneth E. Kinnear, Jr. (ed.).Advances in Genetic Programming. The MIT Press, 1994.

 [9] John R. Koza.Genetic Programming. The MIT Press, 1992.

 [10] John R. Koza.Genetic Programming II. The MIT Press, 1994.

 [11] Zbigniew Michalewicz & Cezary Z. Janikow.“GENOCOP: A Genetic Algorithm for Numerical
Optimization Problems with Constraints”, Communications of the ACM. Vol 39, No. 12, VE (on-line,
http://www.acm.org/cacm/extension/michalew.pdf), 1996.

 [12] David Montana.“Strongly Typed Genetic Programming”. Evolutionary Computation, Vol. 3, No. 2,
1995.

 [13] Janusz Wnek, J. Sarma, A. Wahab & R.S. Michalski.“Comparing Learning Paradigms via Diagra-
matic Visualization”. In M. Emrich, Z. Ras & M. Zemankowa (eds.)Methodologies for Intelligent Systems
5. North Holland, 1990.

 [14] Douglas Zongker & Bill Punch.“lil-gp 1.0 User’s Manual”. zongker@isl.cps.msu.edu .

	Cezary Z. Janikow
	Dept. of Mathematics and Computer Science University of Missouri – St. Louis
	Evolutionary Learning with Constrained Genetic Programming
	1. Introduction
	2. State-Space Searches and GP Search Space
	Figure 1 a) Search (representation) space and solution space of a state-space search. b) GP searc...

	3. CGP
	3.1 T- and F- constraint Specifications
	1. - the set of functions which return data type compatible with the problem specification. There...
	2. - the set of functions compatible with the jth argument of .
	Example1 Assume three functions with arities 3, 2, and 1, respectively. Assume the terminal and e...

	3. - the set of functions disallowed at the Root.
	4. � - the set of functions disallowed as direct callers to
	5. - the set of functions disallowed as the jth argument of .
	Example2 Continue Example1. Assume that we know that the sensor reading function does not provide...

	3.2 Normal Form, Mutations sets, and Closed Evolution
	Example3 Here are selected examples of mutation sets generated for Example1 and Example2. is the ...
	Figure 2 Illustration of mutation and crossover.

	Example4 Assume mutation sets of Example3. Assume parent1 and parent2 as in Figure 2. Assume the ...

	3.3 Overloaded Types
	Example5 Assume domain types are . Then, could be overloaded to generate numbers when applied to ...

	3.4 Heuristic (weighted) Constraints
	3.5 Language for File Constraints
	Example6 The following file section defines T- and Fspecs for the inverse kinematics problem:
	Example7 The following file section defines types and overloads some functions for the same problem.

	4. Illustrative Experiment with Multiplexer
	1. Experiment E0: Unconstrained 11-multiplexer with CGP lil-gp. There are no constraints (all Fsp...
	2. Experiment E1: using a sufficient set {and,not}. We observe that is a sufficient type I functi...
	3. Experiment E2: DNF. We attempt to generate DNF solutions. Obviously, must be excluded. However...
	4. Experiment E3: Structure-restricted DNF. The above DNF specification leaves many interpretatio...
	5. Experiment E4: using {if} only. Here we observe that the function set is completely sufficient...
	6. Experiment E5: E4 with problem-specific knowledge. Now, suppose that, in addition to observing...
	7. Experiment E6: E5 with further heuristic knowledge. Further suppose that we prevent trees of E...
	Figure 3 Comparison of the quality of the best-of-population tree. Because of similar results, E1...

	5. Summary
	Bibliography
	[1] Leonard Bolc and Jerzy Cytowski. Search Methods for Artificial Intelligence. Academic Press, ...
	[2] Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
	[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison ...
	[4] John Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
	[5] Cezary Z. Janikow. “A Knowledge-Intensive GA for Supervised Learning”, in Machine Learning 13...
	[6] Cezary Z. Janikow. “A Methodology for Processing Problem Constraints in Genetic Programming”....
	[7] Cezary Z. Janikow. CGP2.1. http://www.cs.umsl.edu/~janikow/cgp-lilgp.
	[8] Kenneth E. Kinnear, Jr. (ed.). Advances in Genetic Programming. The MIT Press, 1994.
	[9] John R. Koza. Genetic Programming. The MIT Press, 1992.
	[10] John R. Koza. Genetic Programming II. The MIT Press, 1994.
	[11] Zbigniew Michalewicz & Cezary Z. Janikow. “GENOCOP: A Genetic Algorithm for Numerical Optimi...
	[12] David Montana. “Strongly Typed Genetic Programming”. Evolutionary Computation, Vol. 3, No. 2...
	[13] Janusz Wnek, J. Sarma, A. Wahab & R.S. Michalski. “Comparing Learning Paradigms via Diagrama...
	[14] Douglas Zongker & Bill Punch. “lil-gp 1.0 User’s Manual”. zongker@isl.cps.msu.edu.

