Cezary Z. Janikow

Dept. of Mathematics and Computer Science
University of Missouri — St. Louis

Evolutionary Learning with
Constrained Genetic
Programming

1. Introduction

Solving a problem on the computer involves two elements: representation of the
problem, and a search mechanism to explore the space spanned by the representa-
tion. In the simplest case of computer programs, the two elements are not explicitly
separated and instead are hard-coded. However, separating them has proven advan-
tageous. This idea has been long practiced in artificial intelligence. There, one class
of algorithms borrows ideas from nature, namely population dynamics, selective
pressure, and information inheritance by offspring, to organize its search. This is
the class oévolutionary algorithms

Genetic algorithms (GAs), proposed by Holland (1975), use a population of
chromosomes coding individual potential solutions. These chromosomes undergo
simulated evolution facing Darwinian selective pressure. Chromosomes which are
better with respect to a simulated environment (the problem being solved) have
increased survival chancegproductior). Chromosomes interact with each other
via crossovetto produce new offspring solutions, and they are subjectealuia-
tion. Traditional genetic algorithms operate on fixed-length chromosomes, which
may not be suitable for some problems. To deal with that, some genetic algorithms
adopted variable-length representation, as in machine learning: Goldberg (1989),
Janikow (1993). Moreover, traditional GAs use low-level binary representation,
but many recent applications use more abstracted alphabets: Davis (1991).

Genetic programming (GP), proposed by Koza (1992, 1994), uses treesto repre-
sent individuals: also see Kinnear. At first used to generate LISP computer pro-
grams, GP is also being used to solve problems where solutions are arbitrary
structures: Koza (1994). Tree representation is richer than that of linear fixed-

length strings. This allows for representing (functional) computer programs or
other variable-size structures. However,many sought solutions have more or less
severe limitations (called hewdnstraint$ on the context in which elementscan
appear. To avoid these constraints, GP operates eiaarre:Koza (1992), which

is accomplished through extended interpretation as needed. Because of the short-
comings of closure, Koza has proposgdicture-preserving crossovevhose pri-

mary intention is to preserve structural constraints imposed by automatic modules
(ADFs): Koza (1994).

For applicationswith rich domain constraints, two similar GP extensions have
been proposed: Strongly Typed GP (STGP) and Constrained GP (CGP). Both fol-
low the idea oftlosingthe search in the feasible (or desired) space, originally pro-
posed by Michalewicz and Janikow (1996) for GAs. In that approach, the initial
population is generated so that each chromosome satisfies all constraints. Every
operator (mutation and crossover) is guaranteed to produce constraint-valid off-
spring if constraint-valid parents are used.

STGP, proposed by Montana (1995), assigns types to functions, arguments, and
terminals. The initial population is filled with valid structures, and every mutation
and crossover preserves this validity. STGP has been used by many others to
develop practical applications.

CGP has been at the same time developed at NASA/JSC, by Janikow, as a means
to control the search space for GP applications in robotics: Janikow (1996). On the
surface, it offers similar capabilities, with the major difference in its implementa-
tion - CGP is implemented intid-gp (Zongker and Punch, on-line) and thus offers
all capabilities available there (except for ADFs for the moment). However, deeper
analysis reveals that CGP offers more by providing formal closure and complexity
analysis, stronger crossover: Janikow (1996), as well as means to specify non-type-
related constraints, heuristic constraints (Janikow, on-line), and evolution of repre-
sentation (work in progress).

2. State-Space Searches and GP Search Space

In artificial intelligence, solving a problem on the computer involves searching
the collection of possible solutions. For example, solving a two-dimensional inte-
ger optimization problem with domains [1,100] would involve searching through
the space of 10,000 solutions. This search may be random, enumerated exhaustive,
or heuristic. However, in most practical problems of interest, the space of potential
solutions is too large to be explicitly retained and/or effectively randomly or
exhaustively searched by an algorithms. Instead, the space is defined by implicit
means, often by transition operators generating new states from existing ones.
Given a complete set of operators, some control strategy is then used to manage the

search. Such approaches are cafitate-space search@s artificial intelligence:
Bolc and Cytowski (1992).

Representation space b) Instances

eeccccccee gearchame
pace

°
eeeoccoooe

XXX NN XY -

o000 ution Spacs Structure
ecooe |>templates

size limit

Figure 1 a) Search (representation) space and solution space of a state-space search. b) GP search space.

In such searches, an algorithm’s representation spans the search (representation)
space. Usually the space is larger than the space of sought solutions. For example,
in the above 2-dim integer problem, a binary GA would likely span 128x128 search
space. In more complex problem, the size mismatch might be more severe. Then,
a subspace of the space is sufficient to accomplish one-to-one mapping to the solu-
tion space (and thus to provide feasible search). Because exhaustive mapping is
needed, redundancy (or sometimes invalidity) is introduced. This is illustrated in
Figure 1a, where mappings from two redundant subspaces are shown. Recent find-
ings suggest that the human DNA does indeed include redundant and/or unused
genes, which may become activated through mutation. This has led some research-
ers to introduce such redundancies explicitly in a controllable fashion. Others claim
such redundancies to be useful carriers of genetic informagign ihtrons Koza
1992). However, heavily constrained applications, with many redundancies,
researchers have proposed penalties, repair algorithms, and, if possible, operations
closed in the feasible/desired space: Michalewicz and Janikow (1996).

GP’s search space is two-dimensional. The first dimension is that of unlabeled
(uninstantiated) structures, which may be cafizdcture templatesrhe second is
that ofinstance®f those templates. Assuming that structure templates are ordered
by size, and that there is limit on that size, the resulting GP search space is illus-
trated as the shaded area of Figure 1b. CGP relies on identifying (implicitly, by
constraints) both templates and instances wkighnot ever be explored due to
closing the search in the remaining space. This corresponds to searching only a
portion (yet sufficient) of the shaded area of Figure 1b.

3. CGP

CGP offers means to provide problem constraints similar to those of STGP (sec-

tion 3.1), closed search with negligible implementational overhead (section 3.2),
overloaded functions (section 3.3), and heuristic (weighted) constraints.

3.1 T- and F- constraint Specifications

CGP does not rely on explicit type specifications (unlike STGP). Instead, con-
straints are explicitly presented as sets of functions/terminals which are allowed
(Tspeck and disallowedEspec$ in a given context (function-argumenijspecs
are indented to provide type-based constraints, given explicitly for each function-
argument. CGP uses the followiligpecs

1. TR°°' - the set of functions which return data type compatible with the problem speci-

fication. Therefore, this is the set of function/terminals which produce the correct type
to be computed by a program.

2. Tij - the set of functions compatible with jﬂbargument off; .

Examplel Assume three functions, = {f,, f,, f3} with arities 3, 2, and 1,
respectively. Assume the termindgf, = {f,} and ephemeral constants
Fii = {fs fe 7} . Assume that the three type Il functions generate random
boolean, integer, and real, respectively. Assuipe reads an integer. Adgume
takes boolean and two integers, respectively, and returns a real. Afsume takes
two reals and returns a real. Assurhg takes a real and returns an integer. Also
assume that the problem specifications state that a solution program should
compute a real number. The example assumes that integers are compatible with
reals, while booleans are not compatible with either. Then

TR = {f1 o fo fu fg f7},

Ty ={fs},

Ti ={fs fs fe},

Ti = {fa f4 fe}

T; ={fy, f f5 fy fe fi},

T = {fy, fp fa fafe 73,

Té ={fy fo fg fy fo 2}

However, syntactic fit does not necessarily mean that a funstimuld call

another function. One needs additional specifications based (for instance) on

domain semantics or heuristics. These are provided by me&spetswhich fur-
ther restrict the space of trees.

3. FX°°" _the set of functions disallowed at the Root.
4. F, -the set of functions disallowed as direct caller§; to
5. Fij - the set of functions disallowed as flergument off; .

Example2 Continue Examplel. Assume that we know that the sensor reading
function f, does not provide the solution to our problem. We also know that
boolean (generated by) cannot be the answer (this information is actually
redundant as it can be inferred frorspeck Also assume that for some reasons
we wish to excludef,; from calling itseli(g, this is thefloor function, which
yields identity when applled to itself). These constraints are expressed with the
following Fspecgthe other sets are empt~°®' = {f,, f.} Fy = {f}

3.2 Normal Form, Mutations sets, and Closed Evolution

In Janikow (1996) we have shown (constructively) that constraints expressed
with the above language can be uniquely represented in a mimionadal form
Such constraints can then be representeshatmtion sets to be used by closed
evolution. Moreover, we have shown that given proper data structures (mutation
sets), closed operators (which guarantee to produce constraint-valid offspring from
constraint-valid parents) can be implemented with the same complexity (and neg-
ligible constant overhead) as the unconstrained operatdilsgpf. Except for the
different means to specify constraints, and the resulting implications as mentioned
above, this part of CGP is similar to STGP except for crossover - CGP’s crossover
is able to produce more constraint-valid trees than does STGP: Janikow (1996).

Example3 Here are selected examples of mutation sets generated for Examplel
and Example2F 3 = {f,, f,} is the set of functions which can label the first
ch|Id of a node labeled afs; without constraint-invalidating a structure.

= {f, fg f;} isthe set of such terminals.

subtree tob
laced
cr ssover

Figure 2 lllustration of mutation and crossover.

Example4 Assume mutation sets of Example3. Assuymaeentlandparent2as

in Figure 2. Assume the nodiis selected for replacing W|th a subtreepafrent2

Itis the 1st child of a node labeled with, . Thehy = T 3 ={f, fg 7} and
Fn = F3 ={f,, f,}, and the shaded nodes identify subtrees that crossover
could use to replads.

3.3 Overloaded Types
In CGP21 type information has been integrated, but in a different capacity than

in STGP. First, types could be used to automatically generate type-based con-
straints (in place of/in addition tdspeck However, types can also be used to
define overloaded functions - those generating different types (and thus spanning
different constraints) based on types of their actual arguments. This is similar to
having context-based constraints. For additional information and examples refer to
CGP2.1 User's Manualanikow, on-line).

Example5 Assume domain types atength number . Thenultiply(a b)
could be overloaded to generatambes when applied tmumbes, andlength
when arguments are mixed. Tuengtharguments may not be allowed - unless
Iengtk? is also defined as a possible type.

3.4 Heuristic (weighted) Constraints

CGP21 also allows heuristic constraints, which are similameakconstraints
of many optimization problems. This capability allows for preferences rather than
absolute constraints to be processed. For example, in the domain of boolean func-
tions, one may desire that boolean tiMceas likely to apply toand as to itself.
Constraints of this form could be used to identify, for example, DNF (disjunctive
normal) forms as those preferable for evolution, while still allowing other forms to
coexist without penalizing them. For more information and examples refer to
CGP2.1 User's ManualJanikow, on-line).
3.5 Language for File Constraints

CGP21 allows the constraints to be listed in a file, using specially crafted lan-
guage. Syntax and details can be found in (Janikow, on-line). Here we present two
examples.

Example6 The following file section define3- and Fspecsfor the inverse
kinematics problem:

FTSPEC
F_(")= #not required since it's empty
F_ (M= #not required since it's empty

F_(sin)[0]=add #prevent sin(_+)

F ROOT=asin #prevent asin() from Root
#must specify some TSpecs

T _(M[=* #allow all TSpecs

T _ROOT=* #allow all func/term for Root
ENDSECTION

Example7 The following file section defines types and overloads some
functions for the same problem.

TYPE
TYPELIST = float integer angle #list valid types
(add)(float float)=float #float + float = float

(add)(integer float)=float #integer + float = float
(add)(float integer)=float #float + integer = float
(add)(integer integer)=integer
#integer + integer = integer
(add)(angle angle)=angle #angle + angle = float
(asin)(float)=angle
#asin can take float and integer only
(asin)(integer)=angle
(sin)(angle)=float
#sin can take anything producing angle

(1)=integer #terminal types
(Ph=angle #Pl is an angle, not a float
(x y)=float

ROOT=angle #Root’s return type
ENDSECTION

4. lllustrative Experiment with Multiplexer

In this section, we follow a practical example intended to illustrate foand
Fspecscan be used to control CGP’s search space even though there are no type
constraints - boolean is the unique type and thus closure is trivially satisfied. This
will also illustrate how the search space affects GP evolution.

We use the widely studied 11-multiplexer problem: Koza (1992). Multiplexer
has two kinds of binary inputs: address and data. The address combination deter-
mines which of the data inputs propagates to the output. Thug,dddress bits,
there are2® data bits. 11-multiplexer has 3 address and 8 datapits, and
dy...d,, respectively. For example, 110 address (the boolean formyaz,),
causesly (1146,¢) be passed to the output. 11-multiplexer implements a bool-
ean function, which can be expressed in DNF (disjunctive normal form) as:

a,8,800; [aya,a,ds 0 a,a;8005 [a,8,8,d,
aza,ay0; Haya;ayd; Haza;a5d; Haza aqd,

Koza (1992) has proposed to use functidns= {if,or,and, not and termi-
nalsF, = {ay..a, dy..d;} . In this case, GP evolves trees which are labeled with
the above primitive elements, each element having the standard interpretation.
Evaluation assigns raw fitness value based on the number of the possible 2048
input combinations which produce the correct classification (True or False).

The function set is obviously complete, thus satisfysnfficiencyHowever, the
set is also redundant — a number of subsets, sudlaag not , are known to be
sufficient to represent any boolean formula. Thus, by placing restrictions on func-
tion use, we may reduce the amount of redundancy in the representation space.

However, as the results indicate, some combinations of subspaces will perform a
much better search than others. This will be further elaborated.

For each experiment, we repeat 10 independent runs, with a population of 2000,
0.85/0.1/0.05 probabilities for crossover/selection/mutation, and otherwise the
defaultlil-gp parameters. We report the same learning curves while running for 100
iterations.

To make the presentation more systematic, we assumé&spatstay constant,
and all constraints are expressed wigpecs Because there is a single type, the
genericTspecglo not impose any constraints:

TRoot _ 17 _ {if,or,and, not &...a, dgy...d;}

where *" indicates any possible value, here meaning that all sets are the same.

1. Experimenig: Unconstrained 11-multiplexer wi@GP lil-gp. There are no constraints
(all Fspecsare empty), thus the runs are the same as in standard GP.

2. Experimeng;: using a sufficient s€aind,not}.We observe that{ and, no§ is asuf-
ficient type | function set. Thus, we run an experiment with only these two functions.
This is be accomplished with the followikgpecs

FRO° = F. = {if,or} F, =0

We should note that even thoudrand, not is a sufficient set, the solution
expressed with these two functions is necessarily more complex. Thus, we should
not expect any payoff from this constraint (this is another example of problem-spe-
cific knowledge). In other words, we suspect that this is not “the right” sufficient
set. Results support this claim.

3. ExperimentE,: DNF. We attempt to generate DNF solutions. Obviously, must be
excluded. However, this is not sufficient. We must also ensuresthat is distributed over
and, and thatnot applies to type Il functions only. This can be expressed (one of pos-
sible options) with the followingspecs

FRO% = (if},F. = O,F; = O,
Fro = {if,or,and, not , F,, = {if,or},
For = {if}
4. ExperimentEs: Structure-restricted DNF. The above DNF specification leaves many
interpretation-isomorphic trees. In this experiment, we intend to remove some of those
redundancies (though not all). We constrain the trees to grow conjunctions and disjunc-

tions to the left only (thus, we prohibit right-recursive calls @n amd). This is
accomplished with the following modificationsFspecsof E,:

FRO' = (if},F. = 0O,F, =0,

F;m = {if,or,and, not ,

Root

Fana = {if,0r}, F2.4 = {if,0r,and}

Fi, = {if}, F2, = {if,or}
Previous experience with other evolutionary algorithms using DNF representation
suggest that DNF is “the right” representation: Janikow (1993). Thus, we would

expect botte, andEz to do relatively well. We will shortly observe that (and spec-
ulate why) this is not the case.

5. ExperimentE,: using {if} only. Here we observe that the function det = {if } is
completely sufficient for the task of learning the 11-multiplexer. This experiment, and
its further enhancements, will have the best learning characteristics. Restricting trees to
use this function only can be accomplished with the followisigecs

FR°°' = F* = {or,and not , F. = O,

* -
For = Fand = Frot = irrelevant

6. Experimen€s: E4 with problem-specific knowledge. Now, suppose that, in addition to
observing thaf if} is a sufficient function set, we also use some additional problem-
specific knowledge. For example, suppose we know that the first three bits are addresses
and the others are data bits. Knowing the interpretatioif of (which we do since we
implement it), we may further conclude that the conditional argument (#1) should test
addresses, and the other arguments should compute and thus return data bits. This con-
straint could be completely expressed with a slightly enlarged function set. To avoid
extra complexity, we express a somehow lesser constraint, one which restricts only
immediate arguments (in the original CGP theory it was possible to specify the stronger
constraint for this function set, because that theory was based on domain sets rather than
functions). This can be expressed with the followkisgecs

FR°°' = {or,and not g,a;,ay}, F. = O,

Fi = {or,and, not ¢, dy, d, dg, dg, ds, dg, d;} ,

Fﬁ = Fﬁ = {or,and not g, a;, a,} ,

F;r = F;nd = F;Ot = irrelevant
7. ExperimentEg: Es with further heuristic knowledge. Further suppose that we prevent
trees ofEg from usingif on its first argument. This further reduces redundancy, while
still allowing solutions to evolve. This can be accomplished with:
FR°°' = {or,and not g,a;,a,} , F. = O,
Fi = {if,or,and, not d, d;, d,, dg, d,, ds, dg, d} ,

F; = F = {or,and not g, ay, a,} ,

F:,r = F;nd = F;m = irrelevant
The results are very interesting, some even striking. Forcing evolution with
{and, not functions g,) has a disastrous effect, even though in theory it dramat-

ically reduces the number of redundant solutions being explored. This indicates
that simply reducing search spaces may not be beneficial. Moreover, 11-multi-
plexer expressions using or{ignd, nof are generally more complex.

Forcing DNF functions to evolves)) has equally disastrous effects on the pro-
gram. In this case, even further restrictions on tree structigg$giled to compen-
sate for the disadvantage. It seems that the reasons are similar to those @bove —
will prove to be the most effective and thus extremely important. The fact that GP
fails to efficiently evolve DNF solutions is striking when compared to another evo-
lutionary program designed for machine learning. GIL: Janikow (1993) is a genetic
algorithm with specialized DNF representation, specialized inductive operators,
and evolutionary state-space search controlled by inductive heuristics. In reported
experiments, while evolving solutions to the same function, but in a more challeng-
ing environment in which only 20% of the 2048 cases were available for evalua-
tion, GIL was evolving 99% correct solutions with respect to all the 2048 cases
after exploring about 50,000 individuals. Our DNF-constrained CGP evolved less
than 90%-perfect solutions after exploring 200,000 individuals, while seeing all
100% of the possible cases. Even though a direct comparison was not an objective
here, one may draw some conclusions. In this case, both programs were using the
same representation (DNF). The only difference is that CGP used only blind cross-
over/mutation, controlled by static probabilities, while GIL used operators model-
ing the inductive methodology, whose firing was controlled by heuristics. This
suggests that such problem-specific knowledge is extremely important to evolu-
tionary problem solving.

2048.00 [‘ pescs T |- o
1888.00 — =

1728.00 \ T —— EVE2/E:
1568.00 . | | cl
1408.00

1248.00 ES

Figure 3 Comparison of the quality of the best-of-population tree. Because of similar results, E1, E2, and
E3 are averaged.

In the other experiments, we investigate the utility of ihe function for this
specific problem. The reason for this experiment is that our previous results with
restricted but still sufficient function sets failed to improve search characteristics,
instead degrading the performance and leading to our suspicion that this interpre-
tation-rich function is extremely important for solving this problem with GP.
Results fork, are strikingly obvious: perfect solutions finally emerge from this

evolution, on the average after about 70 iterations. However, time complexity
increases due to the increase in tree sizes: Janikow (1996).
This result indicates that it is indeed important to provide both the “right” and
“minimal” set of functions for GP. For example, comparing results fiEandE,
one may see a dramatic improvement despite the fact that both experiments use the
identifiedif function. This indicates that reducing the redundant subspace pays off
in this case, but only because the “unnecessary” subspace was pruned away.
Finally, providing additional heuristics about the desired solutions, and thus
pruning away other undesired solutions, leads to even better speei;lgrsiEg
in Figure 3). This further supports our observation that providing such information
is advantageous not only to generating solutions with some specific characteristics
but to speeding up evolution as well. Unfortunately, this can usually be done only
by a careful redesign of the algorithm/representation/operators, or the function set
in GP. In CGP, no changes are needed.

5. Summary

This paper describeSGP2.1, which provides a means for pruning constraint-
identified subspaces from being explored in GP search. The constraints are speci-
fied in a user-friendly language aimed at expressing syntax and semantics-based
restrictions toclosure Specific constraints lead to the exclusion of syntactically
invalid, redundant, or simply undesired trees from ever being explored. Such prun-
ing may not only lead to more efficient problem solving; when studied systemati-
cally, it may also give insights about pruning redundant subspaces from any state-
space search.

CGP21 implements constraints based on explicit function/terminal inclusion
and exclusion, mostly applicable to single-type problems (as in section 5). This
capability allows for specifying constraints not based on types but on other criteria.
CGP2.1 also supports explicit types and constraints based on those types (similarly
to STGP). The same explicit types can also be used for overloading functions,
which capability corresponds to context-specific constraints. Moreover, additional
heuristics can be expressed with weighted constraints (preferences). This last capa-
bility is currently being extended to evolve such preferences simultaneously with
evolving problem solutions. Hard-coded experiments (not reported) indicate that
representation heavily favoringf} , experimentally determined to be superior in
section 5, automatically evolves even if no initial constraints are given to the same
problem. This extension, if indeed successful, will have far-reaching implications
for GP.

Bibliography

[1] Leonard Bolc and Jerzy Cytowsksearch Methods for Atrtificial Intelligencé&cademic Press, 1992.
[2] Lawrence Davis (ed.Handbook of Genetic Algorithm¥an Nostrand Reinhold, 1991.

[3] David E. GoldbergGenetic Algorithms in Search, Optimization, and Machine Learnidgdison Wes-
ley, 1989.

[4] John Holland Adaptation in Natural and Atrtificial Systermsniversity of Michigan Press, 1975.

[5] Cezary Z. Janikow'A Knowledge-Intensive GA for Supervised Learningi Machine Learning 13
(1993), pp. 189-228.

[6] Cezary Z. Janikow:‘A Methodology for Processing Problem Constraints in Genetic Program-
ming”. Computers and Mathematics with Applicatiopivsl. 32, No. 8, pp. 97-113, 1996.

[7] Cezary Z. JanikowCGP2.1. http/Amwwv.cs.umsl.edu~anikowlcgpHiigp .

[8] Kenneth E. Kinnear, Jr. (ed Advances in Genetic Programminghe MIT Press, 1994.
[9] John R. KozaGenetic ProgrammingThe MIT Press, 1992.

[10] John R. KozaGenetic Programming IIThe MIT Press, 1994.

[11] Zbigniew Michalewicz & Cezary Z. JanikoWGENOCOP: A Genetic Algorithm for Numerical
Optimization Problems with ConstraintsCommunications of the ACM/ol 39, No. 12, VE (on-line,
http://www.acm.org/cacm/extension/michalew.pdf), 1996.

[12] David Montana.“Strongly Typed Genetic Programming”. Evolutionary Computati®ol. 3, No. 2,
1995.

[13] Janusz Wnek, J. Sarma, A. Wahab & R.S. Michal$&omparing Learning Paradigms via Diagra-
matic Visualization” In M. Emrich, Z. Ras & M. Zemankowa (edsMethodologies for Intelligent Systems
5. North Holland, 1990.

[14] Douglas Zongker & Bill PuncHlil-gp 1.0 User's Manual”. zongker@isl.cps.msu.edu

	Cezary Z. Janikow
	Dept. of Mathematics and Computer Science University of Missouri – St. Louis
	Evolutionary Learning with Constrained Genetic Programming
	1. Introduction
	2. State-Space Searches and GP Search Space
	Figure 1 a) Search (representation) space and solution space of a state-space search. b) GP searc...

	3. CGP
	3.1 T- and F- constraint Specifications
	1. - the set of functions which return data type compatible with the problem specification. There...
	2. - the set of functions compatible with the jth argument of .
	Example1 Assume three functions with arities 3, 2, and 1, respectively. Assume the terminal and e...

	3. - the set of functions disallowed at the Root.
	4. � - the set of functions disallowed as direct callers to
	5. - the set of functions disallowed as the jth argument of .
	Example2 Continue Example1. Assume that we know that the sensor reading function does not provide...

	3.2 Normal Form, Mutations sets, and Closed Evolution
	Example3 Here are selected examples of mutation sets generated for Example1 and Example2. is the ...
	Figure 2 Illustration of mutation and crossover.

	Example4 Assume mutation sets of Example3. Assume parent1 and parent2 as in Figure 2. Assume the ...

	3.3 Overloaded Types
	Example5 Assume domain types are . Then, could be overloaded to generate numbers when applied to ...

	3.4 Heuristic (weighted) Constraints
	3.5 Language for File Constraints
	Example6 The following file section defines T- and Fspecs for the inverse kinematics problem:
	Example7 The following file section defines types and overloads some functions for the same problem.

	4. Illustrative Experiment with Multiplexer
	1. Experiment E0: Unconstrained 11-multiplexer with CGP lil-gp. There are no constraints (all Fsp...
	2. Experiment E1: using a sufficient set {and,not}. We observe that is a sufficient type I functi...
	3. Experiment E2: DNF. We attempt to generate DNF solutions. Obviously, must be excluded. However...
	4. Experiment E3: Structure-restricted DNF. The above DNF specification leaves many interpretatio...
	5. Experiment E4: using {if} only. Here we observe that the function set is completely sufficient...
	6. Experiment E5: E4 with problem-specific knowledge. Now, suppose that, in addition to observing...
	7. Experiment E6: E5 with further heuristic knowledge. Further suppose that we prevent trees of E...
	Figure 3 Comparison of the quality of the best-of-population tree. Because of similar results, E1...

	5. Summary
	Bibliography
	[1] Leonard Bolc and Jerzy Cytowski. Search Methods for Artificial Intelligence. Academic Press, ...
	[2] Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
	[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison ...
	[4] John Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
	[5] Cezary Z. Janikow. “A Knowledge-Intensive GA for Supervised Learning”, in Machine Learning 13...
	[6] Cezary Z. Janikow. “A Methodology for Processing Problem Constraints in Genetic Programming”....
	[7] Cezary Z. Janikow. CGP2.1. http://www.cs.umsl.edu/~janikow/cgp-lilgp.
	[8] Kenneth E. Kinnear, Jr. (ed.). Advances in Genetic Programming. The MIT Press, 1994.
	[9] John R. Koza. Genetic Programming. The MIT Press, 1992.
	[10] John R. Koza. Genetic Programming II. The MIT Press, 1994.
	[11] Zbigniew Michalewicz & Cezary Z. Janikow. “GENOCOP: A Genetic Algorithm for Numerical Optimi...
	[12] David Montana. “Strongly Typed Genetic Programming”. Evolutionary Computation, Vol. 3, No. 2...
	[13] Janusz Wnek, J. Sarma, A. Wahab & R.S. Michalski. “Comparing Learning Paradigms via Diagrama...
	[14] Douglas Zongker & Bill Punch. “lil-gp 1.0 User’s Manual”. zongker@isl.cps.msu.edu.

