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Abstract

Fuzzy rules and inferences provide a powerful framework for controlling complex processes.
Like symbolic AI systems, they offer a comprehensible representation, which facilitates transfer
of knowledge between the system and human experts and users. Moreover, unlike most sym-
bolic systems, the responses are more gradual. In this fuzzy representation, knowledge is dis-
tributed among three different levels: symbolic rules, numerical weights, and fuzzy linguistic
definitions. When human expertise is used to build a fuzzy controller, it must often be tuned to
fit particular objectives or simply be corrected when it is incomplete or otherwise incorrect.
When such expertise does not exist or is difficult to acquire and model in the controller, the
knowledge must be generated. In either case, it is desired to perform these tasks automatically.
This can be accomplished by searching the space of all controllers, while sampling their perfor-
mance to provide heuristic quality measures. This requires a robust search mechanism. More-
over, the search should be conducted simultaneously at all representation levels to avoid any
assumptions about the knowledge. Genetic algorithms provide the necessary robustness. Their
previous applications concentrated on manipulations of a single knowledge level. In this paper,
we investigate their applications to manipulations of two different levels: the symbolic rules and
the numerical weights. This is accomplished adapting a standard numerical genetic algorithm.
A number of experiments is conducted and reported, which illustrate both tuning and learning
capabilities of the system.

1 Preliminaries
Advancing microprocessor technologies have brought automation capabilities to new levels of
applications. Process control is a very important industrial application area which can greatly
benefit from such advancements. However, development and deployment of applications are
often difficult because of complex dynamics of actual processes. Conventional control theory is
based on mathematical models that describe the dynamic behavior of controlled systems. It is
based on deterministic nature of systems, but its applicability is reduced by computational com-
plexity, parametric and structural uncertainties, and presence of non-linearities.

These characteristics often make the controller design very complicated and unreliable. A
potential solution is offered by shifting the attention from modelling of the process to extracting
the control knowledge of human experts. This artificial intelligence approach brings the concept



of Intelligent Control Systems (ICSs), which utilize the fact that human operators normally do
not handle the system control problem with a detailed mathematical model but rather with a
qualitative, or symbolic, description of the controlled system. ICSs have two unique features:
ability to make decisions and learning from data or experience. Decision making capabilities
provide for the controllers to operate in real-time process-control environments, at both micro
and macro levels of system operations. Learning capabilities make it possible for the controller
to adapt its knowledge to given performance criteria, to reason about potential dynamics of the
environment, to predict advantageous features, or even to acquire the needed knowledge. ICSs
have the ability to react to a variety of environmental and durability related uncertainties.

Complex man-machine systems are characterized by a considerable amount of information.
Conventional quantitative approaches are often inferior because of the mentioned process char-
acteristics or simply for lack of comprehensibility. However, even operating on a qualitative
structure proves to be deficient since the information is often imprecise and uncertain. Fuzzy
rules provide a framework for application of linguistic constructs in a way that effectively uti-
lizes the language uncertainties. A fuzzy controller consists of a set of fuzzy control rules with
appropriate inference mechanisms [1].

The fuzzy controller is a more flexible alternative to a conventional PID controller. Techno-
logically, it can be implemented with very little silicon surface. Special fuzzy logic chips are
widely available. They can easily be interfaced to sensors and actuators. Moreover, explicit rules
provide a more natural framework for expressing human expertise. However, due to non-linear-
ities, the knowledge is difficult for tuning and adaptation. There are no standard procedures for
doing that and normally time consuming human operation is needed. However, such procedures
are necessary to provide the necessary learning and ease-of-operation capabilities that are vital
for a successful application.

The research project presented here aims at investigating the use of Genetic Algorithms
(GAs) for both extracting the necessary knowledge and tuning the existing knowledge of a fuzzy
controller. Tuning an ICS-based fuzzy controller is a directed search through the representation
space – in this case, spanned by weighted linguistic rules and fuzzy membership definitions. To
be successful in complex environments, the search must be robust and informed. GAs provide
the first property. Moreover, specialized GAs, utilizing rich task-knowledge, make the search
heuristically directed.

Other approaches to learning fuzzy rules were similarly limited to very simple cases when
the fuzzy search space could only be modified in a certain dimension (e.g., [11]). On the other
hand, a successful application would have to provide capabilities to modify fuzzy controllers
simultaneously at the symbolic level of the rules and at the numerical levels of the weights and
the fuzzy definitions. In this paper, we investigate genetic algorithm applications to tuning a
fuzzy controller for a second order process by simultaneously manipulating the numerical
weights and the symbolic rules structure. For the first level, we use a standard numerical genetic
algorithm (Section 4.2). We then modify the algorithm to extend its operation to the other level
(Section 4.3). Both approaches are illustrated with a number of experiments using a simulation
process and various learning objectives. The final phase of the project, currently under investi-
gation, involves modifications of the linguistic definitions as well.

2 Genetic Algorithms
Recently, we have seen an emergence of a new view of problem solving – interactions of active
agents with the environment and the surrounding world. Some of these ideas are derived from
nature, where organisms both cooperate and compete for resources of the environment in the
quest for a better adaptation. Such observations led to the design of algorithms which simulate



these natural processes. One of the most successful such algorithms is so called genetic algo-
rithm. GAs are adaptive search methods that simulate some of the natural processes: selection,
information inheritance, random mutation, and population dynamics. The principles were first
elucidated in [6], and since then the field has matured and enjoyed many successful applications.
At first, GAs were mostly applied to numerical parameter optimizations due to an easy mapping
from the problem to representation space [3]. Today, they find more and more general applica-
tions due to better understanding of the necessary properties the mapping must provide and new
methodologies to process constraints.

2.1 Genetic Algorithms at a Glance

A GA operates as a simulation in which agents, organized in a population, compete for sur-
vival and cooperate to achieve a better adaptation. The agents are called chromosomes (higher-
level organizations with multiple chromosomes are also possible). The chromosome structure
(genotype) is made up of genes. The meaning of a particular chromosome (phenotype) is defined
externally by the user. Traditional genetic algorithms operate on binary bits.

Genetic algorithms use two mechanisms to provide for the adaptive behavior: selective pres-
sure and information inheritance. Selection, or competition, is a stochastic process with survival
chances of an agent proportional to its adaptation level. The adaptation is measured by evaluat-
ing the phenotype in the problem environment. This selection imposes a pressure promoting sur-
vival of better individuals, which subsequently produce offspring. Cooperation is achieved by
merging information from usually two agents, with the hope of producing more adapted indi-
viduals (better solutions) – this is accomplished by crossover. The merged information is inher-
ited by the offspring. Additional mutation aims at introducing extra variability. Algorithms
utilizing these mechanisms exhibit great robustness due to their ability to maintain an adaptive
balance between efficiency and efficacy [3].

Figure 1 The GA algorithm.

The simulation is achieved by iterating the basic steps of evaluation, selection, and repro-
duction, after some initial population is generated (see Figure 1). The initial population is usu-
ally generated randomly, but some knowledge of the sought solution may be used to an
advantage. The iterations continue until some resources are exhausted. For example, the simu-
lation may be set for a specific time limit or a fixed number of iterations. If some information
about the sought solution is available, the simulation may continue until such criteria are met.
Otherwise, the population dynamics may be observed and the simulation may stop if conver-
gence to a solution is detected.

A single iteration is illustrated in Figure 2, where the bullets represent individual chromo-
somes and the shading levels indicate levels of adaptation – evaluation results. This evaluation
is performed by a task-specific evaluation function. Each oval group represents the population
instance at the iteration. Stochastic selection (with replacement) is applied to the beginning pop-
ulation instance, producing the intermediate state. Because of the selective pressure favoring
survival of the better fitted individuals, the average fitness (darkness) of the chromosomes
increases. However, no new individuals appear. Following the selection, reproduction operators
are applied to members of the intermediate population. In this process, some chromosomes are

Generate initial population P(0)
Evaluate P(0)
While resources not exhausted and not done iterate

Select P(t=t+1)
Reproduce P(t)
Evaluate P(t)



modified. Therefore, the final population instance will finally contain some new chromosomes.
This iterative model is called the generational GA. Variations of this model are often used
instead.

Figure 2 A single iteration of the generational GA model.

The two reproductive operators are visualized in Figure 3, which assumes binary coding for
a chromosome (white and black genes). Mutation is performed here on the third bit of a the chro-
mosome by flopping the allele (the particular instance of a gene). Crossover exchanges some
genes between two chromosomes – here the exchange starts at the third bit.

Figure 3 Illustration of crossover and mutation.

Another mechanism is needed to apply the reproductive operators. A simple approach is to
use a stochastic firing mechanism with some prior probabilities for mutation and crossover. A
more sophisticated approach is to update these probabilities based on history, information con-
tained in the population, or individual chromosomes. If the traditional crossover and mutation
operators are used, the only relation to the process at hand is the evaluation function implement-
ing the selection step. This is a great advantage, leading to domain-independent characteristics
of the algorithm. This is also a great limitation, prohibiting the utilization of any available infor-
mation about the problem [7].

2.2 Theoretical and Intuitive Look at Genetic Algorithms

Genetic algorithms are not random searches. GAs explore regularities in the information the
chromosomes represent. In a sense, the chromosomes are not really individuals but representa-
tives of different species – two different chromosomes may really have similar adaptation levels
if they represent similar species. However, the same two chromosomes may have different eval-
uations if the difference between them is significant. To explore such chromosome similarities,
schemata are used. Schemata are similarity templates that contain fixed alleles for some genes
but arbitrary alleles for others. For example, Figure 4 illustrates two different schemata – the
shaded alleles represent don’t care positions. The left schema represents species that can only
have two different chromosome instances, as shown below it. The right schema is more general
(actually, the left schema is a specialization of this one). A few of its representative chromo-
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Mutation Crossover

Offspringr Offspring



somes are shown below.

Unfortunately, the schema cannot be processed explicitly because they do not provide com-
plete phenotype information needed for evaluations. Instead, a GA processes complete chromo-
somes. However, for practical problems, all possible chromosomes can not be processed.
Therefore, the information about individual chromosomes is generalized to draw conclusions
about above-average schemata.

Figure 4 Schemata illustrations.

The selective pressure causes the search to proceed by working with increasing representa-
tives for the above-average schemata. The process continues by having more and more specific
schemata represented in the population as the target templates. For example, if all the chromo-
somes on the right of Figure 4 evaluate high, a likely conclusion is that the third allele of the
solution must be white and the fifth black. The schemata can also be seen as hyperplanes of the
search space. A schema with no fixed positions is a hyperplane that spans the complete search
space. A schema with only one fixed position is a hyperplane that halves the search space, etc.
For example, the right schema of Figure 4, which has two fixed positions, represents exactly
one-fourth of the possible number of chromosomes.

The iterative selection terminates when the represented schemata converge to a single most-
specific schema – a fixed chromosome. However, no schema can be reached that was not repre-
sented in the initial population. To extend the search to other schemata, the reproductive opera-
tors are used. Therefore, reproduction causes exploration of new schemata as well as generation
of new instances of the present schemata.

Unfortunately, both mutations and crossovers can disrupt the present schemata in addition
to generating new ones. Given a proper balance between disruption and usefulness of the repro-
ductive operators, the algorithm will continue exploration of better and better hyperplanes.
Because of the trade-off and the limited resources normally available for the search, there is no
guarantee that the globally optimal chromosome will be found.

The hyperplanes identified during the search as those above-average provide building blocks
(the fixed positions) for the algorithm. Then, the same iterative search can be seen as a process
in which very short building blocks (from very general schemata) are put together to form longer
and longer blocks until a particular chromosome is generated. This hypothesis is called the
Building Block Hypothesis [3].

Using building blocks, the reproductive crossover can be explained as a mechanism that
assembles the building blocks identified by different chromosomes (and promoted by selection).
Because the formation of such building blocks and the crossover’s ability to propagate them
depend on location of genes in the chromosome, the crossover will minimize disruption of sche-
mata with short building blocks (short substructures). Mutation introduces much smaller disrup-
tions, especially for the more-general schemata. These properties, along with the increasing
representations for the above-average schemata, explain why genetic algorithms work and is
called the Schemata Theorem [3].

Given this information, it is obvious now that the search properties will largely depend on
reducing the disruptive properties and promoting formation of building blocks. These are largely

Two schemata examples

Examples of member
chromosomes represented
by the two schemata



dependent on the mapping from the chromosome representation as a sequence of alleles to its
problem-specific meaning. In particular, the location of a gene in the sequence proves to be very
important. This led to theoretical analysis of different problems, with those not exhibiting “nice”
building block properties classified as GA-hard [5]. For problems other than function optimiza-
tion, the analysis is difficult.

Because GAs work by processing implicit schemata by means of explicit chromosomes, and
the number of schemata having representatives in a population of some fixed size is exponential,
genetic algorithms are said to exhibit implicit parallelism [3]. GAs also exhibit explicit paral-
lelism, that is the processing can be parallelized. This property allows GA algorithms to utilize
the fast-advancing parallel processing technologies [4].

2.3 GA Applications
GAs have been quite successfully applied to a number of problems, but by far they are famous
as numerical optimization algorithms. The reason for this success is that numerical solutions can
be easily represented as linear chromosomes, and both crossover and mutation are defined on
such linear structures. Also, the quality assessment of such chromosomes is reduced to evaluat-
ing the original function. Moreover, most numerical problems exhibit nice building blocks –
sequences of genes represent individual variables, and the sought solution is a vector of such
variables.

Unfortunately, non-trivial GA applications require specialized representations. Moreover,
the traditional mutation and crossover operators, even though suitable for any linearized repre-
sentation, prove too blind for most practical problems. Instead, specialized operators are intro-
duced for each specific representation, which implement some knowledge about the problem at
hand [2].

3 Fuzzy Control
In classical set theory, an element either belongs to a certain set or does not. In this case, boolean
processing can be employed resulting in crisp systems. However, in the real world, such scenario
is often unrealistic because of insufficient language, imprecise measurements, etc. It is widely
believed that some numerical component must be employed to accommodate such problems.
However, purely quantitative approaches lack other characteristics desired of a successful
approach. In particular, the most often cited disadvantage is lack of human-level comprehensi-
bility and, what follows, difficulties with transfer and other usage of knowledge. Therefore, a
successful learning system must combine quantitative and qualitative representation and reason-
ing. Fuzzy sets provide an interesting alternative.

In fuzzy sets, a fuzzy subset A of the U universe of discourse is described by a membership
function μA(x): x ∈ U → [0,1], which represents the degree of x’s belonging to set A. A fuzzy
linguistic variable is an attribute whose domain contains linguistic terms – labels for fuzzy sub-
sets. Fuzzy rules provide comprehensible knowledge representation that use fuzzy sets to deal
with imprecision and can easily accommodate other linguistic terms. Along with some inference
methods, they provide the interface between the rule-based knowledge and non-crisp decision-
making [12].

In fuzzy rules for control, symbolic rules have conjunctive conditions and single conclu-
sions. Different rules with the same conclusion represent implicit disjunctions. In addition, the
rules may be weighted. The knowledge of a fuzzy controller utilizing this representation is dis-
tributed among three representation levels: symbolic level of rules, numeric level of rule
weights, and numeric level of fuzzy linguistic definitions. Among these levels, there are com-
plex interactions. For example, a rule with weight w=0 is effectively equivalent to no rule at all



if the inference mechanism takes the weights into account. To deal with this complexity, some
obvious preference criteria can be introduced. The symbolic level should be as simple as possi-
ble since its complexity reflects on knowledge comprehensibility. The previous also implies that
the numerical weight structure should be simple since such simplifies the symbolic structure.
Finally, the numeric level of fuzzy definitions should be simple for both computational and com-
prehensibility reasons.

4 GA Applications to Learning Fuzzy Controllers
For experimentation, we selected a second order simulation process simple enough so that
knowledge represented in a controller could be expressed graphically. This process was con-
trolled by the fuzzy controller. We developed a genetic algorithm to first tune the controller to
specific objectives by modifying the numerical weights, and then to learn the knowledge struc-
ture by also modifying and selecting the rules. The algorithm used a problem-specific represen-
tation – set of linguistic rules – and operators designed to manipulate at the representation.

4.1 Simulation Problem and Knowledge Representation
We used the following second order simulation for the plant

In the equation, y is the process output and u is process control. The momentum achieved by
including past history ensures a modest complexity of the problem. The objective was to keep
the output at a specific reference value which may unpredictably change at any time. The process
can be manipulated by means of the control only. Since it takes time to match the output with
the reference, some temporal error is inevitable. Therefore, a number of additional criteria must
be considered, such as reduce overall error in a time frame, reduce the error fast, reduce over-
shoot, reduce oscillations, etc.

Figure 5 The simulation environment.

In our case, the single control value is computed by the fuzzy controller based on its knowl-
edge of the process; see Figure 5, where r is the desired reference output, y is the current output,
u is the action of the controller in response to the current error e and error change ec. The sought
knowledge is a response surface: u=f(e,ec). Because we did not assume any knowledge of the
process itself, we could not assume any parametric form for it. Instead, this knowledge was rep-
resented in the fuzzy rules, weights, definitions, and response computation method. The fuzzy
rules were of the form

if error is LVe and error change is LVec then change in control is LVa : weight w,

which means that if the error has the linguistic value LVe and error change has the linguistic value
LVec then the control should be modified by the specified linguistic value LVa – however, the rel-
ative importance of the rule is additionally modified by the weight w. For the linguistic values,
we used the same fuzzy sets for all the error, error change, and control specified in a predeter-
mined range and scaled to fit a particular problem– they are presented in Figure 6.

The knowledge is represented at three different levels: symbolic rules, weights, and fuzzy
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definitions. Therefore, modification of a controller’s knowledge should modify all three levels.
Moreover, because of the complex relations among these levels, the modifications should apply
simultaneously. In this paper, we investigate GA applications to modifying the first two. This
combination is actually very challenging since these two levels are completely incompatible:
one is symbolic, the other numerical. However, the problem may be greatly simplified if we uti-
lize the interdependencies between these two levels and simply extend the numerical operators
to modify the symbolic structure. The algorithm based on such ideas can easily be extended to
the third level, that of the fuzzy definitions. Modifications of these can be seen as numerical
modifications with some strong constraints (for example, for the trapezoidal definitions, the left
corner of a trapezoid cannot be moved past the right one) and weak constraints (for example,
keep the overlap “reasonable”) – we plan to adapt the constrained operators introduced in the
GENOCOP system [9].

Figure 6 The linguistic values and their fuzzy sets.

For the inference, we used the center of gravity method, which, for the trapezoidal linguistic

values, is defined as: , where wi and θi represent the weight and acti-

vation degree of rule i, αi and ζi are the area and centroid of the linguistic consequence, and δ
is the resulting decision. The numerical decision can be converted to a single symbolic decision,
or to a numerical vector, if desired. Other fuzzy reasoning and inference methods [10] are
planned for the future.

4.2 Weights Tuning
The easiest knowledge modification level is that of the numerical weights. Since the weights
represent a set of parameters, any parameter optimization genetic algorithm should be applica-
ble. For the experiment, we started with a set of nine rules presented by a human expert and
implemented in a fuzzy controller, which used the definitions of Figure 6 and max with center
of gravity for the inference. The rules are shown in Table 1 – all were initialized with weight 1.
It can be noted that this set does not include LN and LP linguistic values. This, however, does
not reduce the applicability since the other three domain values cover the whole numerical
domain space. In this experiment, our objective was to tune this knowledge by only modifying
the weights. In other words, we assumed that the symbolic knowledge (the rules) and the fuzzy
definitions were correct or at least not subject to modifications. Since the objective was to mod-
ify numerical values in order to optimize an objective function, we used a genetic algorithm
designed for numerical optimization. The algorithm used a fixed population of solutions (vec-
tors of weights), with values represented as constrained (in domain) floating point values. It also
used the generational model in which first fitness-based selection generates a new population
and then genetic operators stochastically modify some population members. The operators used
included random mutation (in the domain), non-uniform mutation – designed so that the proba-
bility distribution for the mutated floating point value denses near the value to be mutated as the
population ages, single crossover – with crossover points between individual weights, and arith-
metical crossover – averaging selected weights (see [8]). For the evaluation function, we used
different objective functions reflecting various criteria:

0

LN SN ZE SP LP

Universe of discourse

δ wiθiαiζi∑ wiθiαi∑⁄=



1.  – designed to reduce overall error between desired and actual
outputs.

2.  – designed to also reduce the overshoot.

3.  – designed to also reduce the control energy by reducing
needed control changes.

4.  – designed to reduce both error and oscillations, by addi-
tionally penalizing persistent errors in the time frame.

Each chromosome (a complete fuzzy-rule controller), in a given GA iteration, was evaluated by
running an experiment (see Figure 5) for 200 time frames for the same initial state: y=0 and r=5.
Because the state was being constantly changing after each control application in the time frame,
rules to handle different states were needed. Nevertheless, this evaluation tended to learn better
for positive errors r-y. For the future, we plan to extend this scenario to selecting a random situ-
ation for each population and accumulating the simulation results. THis non-stationary
approach would also require departing from simple the generational model.

Table 1 Human expert generated rules – entries are linguistic changes in control u.

First, we attempted to optimize the expert-provided fuzzy controller so that the accumulative
quadratic error is minimized (J1). Despite only few hundred GA iterations (200 in all of the
reported experiments), a significant improvement was observed: J1(y=0,r=1) index was reduced
from 254 to 151. The response surfaces for the expert and -optimized nine-rule controllers are
illustrated in Figure 7 (all responses are shown for e’s universe and ec’s central quarter only
since error changes rarely fell outside this region). It can be observed that the improvement was
due to more rapid changes in response for low errors and to stronger differentiating between neg-
ative and positive error changes.

Figure 7 Response surfaces for expert and -optimized nine-rule controllers.

How do the modifications actually translate into controlling the output of the process? In
Figure 8 we trace their controlled outputs for the initial situation y=0, r=1. It can be observed
that the output of the optimized controller reaches the desired reference faster and that the over-
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shoot is actually smaller. However, a potential (depending on desired criteria) disadvantage of
the controller is the output oscillation. Such oscillations would inevitably require continuous
control adjustments even after the output is brought to the desired level. This may be prohibitive
when, for example, control adjustments require high energy or cause undesired disruptions. The
first trace of Figure 9 illustrates this problem. A number of potential solutions can be imple-
mented. A simple one is to modify the fitness value to include changes in control u as well. This
idea was implemented in the index – so optimized controller requires much reduced control
energy as illustrated in the second part of Figure 9.

Figure 8 Output y traces for expert and -optimized nine-rule controllers.

Figure 9 Change in control u traces for and -optimized nine-rule controllers.

The same problem may be approached differently. For example, observing that the rule
“if e=ZE and ec=ZE then u=ZE” is very important for stability at saturation, we might exclude
its weight from modifications. Yet another approach might be to include a measure of oscilla-
tions directly in the fitness function –  implemented that. Both approaches proved to provide
the sought characteristics, as illustrated by lack of oscillations in Figure 10.

Figure 10 Output y traces for -optimized with wZE,ZE,ZE=const and -optimized
controllers.

4.3 Weights Tuning and Rules Selection
In the previous section, we used a simple genetic algorithm to tune the knowledge of a controller,
designed by a human expert, by manipulating only the numerical weights. The initial knowl-
edge, even though not optimal, was complete (because of overlapping, the nine rules covered all
possible error and change in error measures – with the applied scaling) and nonredundant (each
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condition combination had only one possible action in the rule set). However, in general, one
may not expect such friendly conditions since the expert’s knowledge might be partial, errone-
ous, or even simply not available. Therefore, in this section we study genetic algorithm applica-
tions to such more general cases.

In the first experiment here, we assumed that the expert’s knowledge existed but was noisy.
This case happened to be nicely handled by the algorithm of Section 4.2. To obtain the initial
controller, we took the same nine rules and corrupted them by adding ten additional random
rules (still excluding LN and LP error and error change values) with default weighs w=1. The
additional rules were such that some of the same conditions would have different actions. Then,
we optimized the controller using 200 iterations and performance index . Again, we obtained
a sizable reduction in the value of the index, which is illustrated in output traces for y=0, r=1 in
Figure 11. The corresponding response surfaces are plotted in Figure 12.

Figure 11 Output traces for initial and -optimized 19-rule controllers.

Figure 12 Response surfaces for initial and -optimized 19-rule controllers.

A much more interesting and challenging case is when the expert’s knowledge is not avail-
able at all. Then, the controller must learn both the weights and the rule structure. To avoid any
assumptions on the knowledge structure, we must provide for the algorithm to operate at the
symbolic rule level to extract appropriate rules and at the weights level to optimize the choice
of rule structure. One may accomplish the optimization objectives by still utilizing the same
basic algorithm of Section 4.2. However, this approach would inevitably generate incomprehen-
sive knowledge, especially given the limited number of iterations. Therefore, we decided to
extend the algorithm to directly manipulate the rule structure as well. Because of the complex
interdependencies between the two representation levels, one must operate on both levels simul-
taneously. There exists a number of ways for symbolic rule manipulation. However, to avoid the
complexity of combining two different classes of operators, we decided to provide new numer-
ical operators designed to simulate the needed operations at the symbolic level. This was possi-
ble due to the relatively simple rule structure (no internal disjunctions) and the fact that wi=0
evaluates equivalently with the rule i absent from the structure.
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To accomplish that, we defined a new mutation operator to0, which unconditionally modi-
fied a single weight to zero. This, given our inference, is equivalent to removing the correspond-
ing rule from the controller. We also defined two other mutations try0 and try1, which modified
a weight to zero and one, respectively, but their application was conditioned by the weight being
modified. For example, weight wi=0.05 would have a high chance of undergoing try0 – which
would bring the weight to zero – and a very small chance of undergoing try – which would bring
the weight to one. These operators were introduced to further reduce the rule structure in order
to make it more comprehensive. Note that availability of the previously mentioned random and
non-uniform mutations would allow a removed weight (by try0 or to0) to be re-introduced into
the set by modifying again the same weight. The same applies to try1 (the purpose of try1 was
to simplify the structure by having as many fully weighted rules as possible).

In the experiment, we started with all possible rules (125). The operator to0 had the highest
application probability. As the measure of fitness we used . Moreover, to facilitate simplifica-
tion of the symbolic level, we modified the measure so that fewer rules would be preferred over
more rules: , where n is the number of rules in the controller. These sim-
ple new operators and the modified performance index proved to be sufficient to optimize both
the controller’s performance (see Figure 13) and dramatically increase knowledge comprehen-
sibility – the final number of rules was dropped to 12, with half of them having weight w=1.

Figure 13 Surface response and output trace for 125 rules trained with .

5 Conclusions and Future Research
Fuzzy controller provides a powerful representation framework for controlling complex pro-
cesses when implemented in fuzzy controllers. A controller must normally be tuned to fit
dynamic objectives, their knowledge must often be corrected or even automatically generated
when not available. In this paper we investigated genetic algorithm applications for all these
tasks. This approach differs from previous, which concentrated on adapting the knowledge in
certain dimensions only (e.g., [13][14]).

Knowledge of a fuzzy controller has three distinct but strongly interdependent representa-
tion levels. Simple tuning can be accomplished by modifications of just one of these levels.
However, in general, two or three levels must be operated on while searching for an optimal con-
troller. In this paper, we first experimented with tuning a simple controller, generated using
human expertise, to fit different objectives by only manipulating the weights level. Presented
results indicate that this could be easily accomplished by an application of a simple numerical
genetic algorithm used before for other parameter optimization tasks. Then, we extended the
algorithm to simultaneously search the level of symbolic rule structures as well. This was
accomplished by defining new numerical operators with specific symbolic interpretations.
Again, presented results indicate that such modifications could lead to optimizing the controller
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both in terms of simplifying the symbolic structure (and thus increasing its comprehensibility)
and optimizing the performance. In the near future, we plan to further extend the algorithm to
allow simultaneous manipulations of the third level – that of fuzzy definitions. This can be
accomplished by utilizing some existing operators designed for constrained parameter optimi-
zation.
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