
Fuzzy Partitioning with FID3.1

Cezary Z. Janikow
Dept. of Mathematics and Computer Science

University of Missouri – St. Louis
St. Louis, Missouri 63121

janikow@umsl.edu

Maciej Fajfer
Institute of Computing SCience
Poznan Institute of Technology

kme@man.poznan.pl

Abstract
FID3.1 builds fuzzy decision trees, with a range of choices
for fuzzy operators and inferences. Various FID algorithms
are being widely used for dealing with numeric and/or
imprecise data, for fuzzy classification or for generating
fuzzy rules. FID 3.0 adds a number of new features, the
most important being a fuzzy partitioning mechanism -
construction of fuzzy sets for continuous variables w/o
predefined fuzzy terms. FID3.1 improves the mechanism in
a number of ways. This paper describes the partitioning
method and presents a few comparative experiments.

1. Introduction

Decision trees are one of the most popular methods for
learning and reasoning from feature-based examples [6].
However, they often have been criticized for their persistent
over-reliance on near-perfect data, and for the resulting deg-
radation in the presence of imperfect data. Data imperfec-
tion might have been the result of noise, imprecise
measurements, subjective evaluations, inadequate descrip-
tive language, or simply missing data. Additional problems
arise from continuous or simply large nominal attributes -
all such domains have to be partitioned. Some of these
potential problems have been successfully addressed in the
past. For example, Quinlan has proposed some methods for
dealing missing features both in training data and in the
examples to be classified [7]. Continuous domains have
been addressed by CART [1] and subsequently by C4.5 [8]
algorithms, with the usual approach being to use threshold
values to split a domain. However, the resulting knowledge
generally exhibits lower comprehensibility and overspecial-
ization. These problems were in turn addressed by tree
pruning techniques [8].

A more recent method is to combine fuzzy representa-
tion, and in particular its ability to provide comprehensible
descriptive language, and its approximate reasoning tech-
niques, with decision trees. One of such combinations is
implemented in FID [2]. That system is capable of process-

ing a mixture of symbolic, numeric, and fuzzy-termed data.
However, all domains must be partitioned into fuzzy sets -
by the user. While, in many applications, domain partition-
ing is determined by external considerations, in some appli-
cations this requirement placed an undue burden on the
user. Thus, FID3.0 proposed, among other improvements, a
capability to automatically construct fuzzy partitions. This
paper describes this mechanism, and it provides a compar-
ative experiment.

2. Decision Trees in Supervised Learning

In supervised learning, a sample is represented by a set
of conjunctive features expressed in some descriptive lan-
guage. The objective is to induce decision procedures with
discriminative bias - for classification of other samples. Fol-
lowing the comprehensibility principle, which calls upon
the decision procedures to use language and mechanisms
suitable for human interpretation and understanding [5],
symbolic systems remain extremely important in many
applications and environments. Among such, decision trees
are one of the most popular.

Decision tree methods use recursive partitioning proce-
dures to build decision trees. Subsequently, they use match-
ing inference procedures for classification of new samples.

ID3 [6], and its successor C4.5 [8], along with CART
[1], are the two most widely used decision trees. Their basic
ideas are the same: partition the sample space in a data-
driven manner, and represent the partition as a tree. Exam-
ples of the resulting trees are presented in Figure 1, built
from examples of two classes, illustrated as black and
white. An important property of these algorithms is that
they implicitly attempt to minimize the size of the tree while
optimizing some local quality measure - such as entropy or
information contents [1][6][8].

The tree is built in a data-driven algorithm. This algo-
rithm is usually depth-first, meaning that the direction of
building (the choice of node to be expanded) has no impact
on the final tree. If any changes are to be made (such as
pruning), they are performed on the final tree. Tests to be

performed on data (corresponding to selecting attributes to
be tested in tree nodes) are decided based on some criteria.
The most commonly used is information gain, which is
computationally simple and shown effective: select an
attribute for testing (or a new threshold on a continuous
domain) such that the information difference between that
contained in a given node and in its children nodes (result-
ing from splitting according to those tests) is maximized.
The information contents is measured according to [6]:

, where C is the set of decisions,
and pi is the probability that a training sample in the node
represents class i.

1. The root of the decision tree contains all training exam-
ples. It represents the whole description space since no
restrictions are imposed yet.

2. Work with any node N. The node becomes a leaf when
either its samples come from a unique class, when all
attributes are used on the path leading to the node, or
when possibly information in the node becomes too
unreliable (e.g., when too few examples are found). Pro-
ceed only when decided to further split the node.

3. Compute the information content at the node N. Then,
for each attribute ai not appearing on the path to N and
for each of its domain values aij, compute the informa-
tion contents in children nodes restricted by the addi-
tional condition ai=aij. Subsequently, compute a
combined weighted information contents in all the chil-
dren, and the resulting gain with respect to N. Note that
for the not-pre-partitioned domains, the algorithm tries
all applicable thresholds, selecting the best one - this
results in a binary test, as illustrated in Figure 1b. Note
that such attributes can appear more than once on a
given path (with different binary test).

4. Select the attribute maximizing the gain, and subse-
quently split node N using the applicable tests.
Many modifications and enhancements of the basic algo-

rithm have been proposed and studied. The most important
are other attribute selection criteria, gain ratio accommodat-
ing domain sizes [8] (this reduces the utility of domains
with large number of domain values to be used for tests,
which domains increase discernibility but also reduce com-
prehensibility), other stopping criteria including statistical
tests of attribute relevance, and tree pruning aimed at addi-
tional generalization [8].

Afterwards, decision trees use the same basic inference
mechanism for classifying new samples. Features of a sam-
ple are matched against the tests of the tree, starting from
the root and descanting along the matching path. The sam-
ple is classified according to the classification of the leaf
that it reaches. For example, a new sample with
Color=Green would be classified according to the classifi-
cation of L1 in Figure 1a, and a new sample with any

Weight≥5.1 would be classified according to the classifica-
tion of L3 in Figure 1b.

Figure 1 Examples of decision trees generated by
ID3(a) and CART (b). CART builds the tree by
recursively selecting thresholds. This technique
can be mixed with that of (a) when a mixture of
both kinds of domains is present.

3. Fuzzy Decision Trees

FID trees differ from traditional decision trees in two
respects: they use splitting criteria based on fuzzy restric-
tions, and their inference procedures are different. Fuzzy
sets defining the fuzzy terms used for building a tree are
imposed on the algorithm (after the preprocessing described
in the next section).

The FID algorithm can handle data described by various
attributes and domains. For example, the same data can be
described with nominal attributes, even those inherently
symbolic, attributes with continuous domains with no pre-
defined fuzzy sets, such as Income, and continuous
attributes with user-predefined symbolic terms (or fuzzy
terms), such as Weight (with potential fuzzy terms: Light,
Medium, Heavy). The same mixture can be used as classes.
Each piece of data is also augmented with a “confidence”
weight (disregarded here in subsequent presentation).

As an illustration, consider attributes Income, Sex,
Employment, and class Credit. Assume that Income does
not have a predefined linguistic domain, Sex is a symbolic
attribute, Employment has both continuous domain and a
predefined linguistic domain of fuzzy terms HomeMaker,
PT, FT, and Credit has a continuous domain on (0,1) as well

IN pi pilog⋅()
i 1=
C∑–=

Color
Red

Green
Blue

Weight Textured

Small Large Yes No

Yes No

Textured

L1

L2

Med

a)

2.4≥3.2≥ 2.4<3.2<

5.1<
Weight

Height

Weight

b)

Weight

5.1≥

3.7< 3.7≥ L3

as a predefined linguistic domain of fuzzy terms Yes and No.
Given that, the following are potential data samples:

• Income is $55k and Sex is Male and Employment is 25
hours/week -> Credit is 0.9

• Income is $20k and Sex is Female and Employment is PT
-> Credit is No.

After a preprocessing, as necessary to create fuzzy parti-
tions, FID fuzzy decision tree is constructed similarly to the
standard decision tree, with a recursive depth-first proce-
dure. However, there are a number of subtle differences:

1. Data samples may match more than one test of a node.
When aggregated over multiple levels, this leads to sam-
ples falling into many nodes, with a real-valued degree
(based on the aggregated match to the fuzzy restrictions
on the path).

2. The information contents formula is modified to reflect
partial memberships (in addition to allowing absent fea-
tures). For details, see [2].

3. Fuzzy match is determined based on preselected norms,
or by selecting best norms from a predefined set.
However, the most profound differences are in the pro-

cess of classifying a new sample. These differences arise
from the fact that

• FID trees have leaves that are more likely to contain
samples of different classes (with different degrees of
match),

• the inference procedure is likely to match the new sam-
ple against multiple leaves, with varying degrees of
match.

Figure 2 Illustrations of the knowledge of two FID
trees trained for the mexican sombrero function.

To account for these potential problems, a number of
inferences routines have been proposed. Some inferences
follow the ideas of approximate reasoning [2], other follow
machine learning principles of exemplar learning [3]. Some
of these inferences have more global character, some are
more local and behave like noise filters [2]. Whatever spe-
cific inference is used, the outcome is a value from the
domain of the class variable.

FID trees have been shown to be capable of producing
knowledge which is both comprehensible yet capable of
generating finer levels of detail - depending of the actually
used inferences. For more information, see [2].

As an illustration of the descriptive power of FID trees,
consider the well known mexican sombrero function [9].
When the FID tree is trained with data samples from a
13x13 grid, suing domains with predefined 13 fuzzy terms,
two of its interpretations, following two different infer-
ences, are illustrated in Figure 2.

4. Fuzzy Partitioning

If at least one attribute does not have a predefined fuzzy
partitioning (does not have the linguistic domain), data-
driven preprocessing is invoked in order to attempt to parti-
tion such domains for the relevant attributes (and not neces-
sarily all such attributes).

All attributes with predefined partitions retain their par-
titions (there is no optimization here - the assumption is that
if the user predefines a partition, there are some external
factors determining that). The remaining attributes are par-
titioned with fuzzy sets. However, there is no guarantee that
a specific attribute will have its domain partitioned, or to
what degree of detail a domain will be partitioned (how
many fuzzy sets will be generated). Only attributes deter-
mined relevant to the classification task (determined locally
in the context of partitioning the descriptive space) will
have their domains partitioned. Of course, the class variable
must have a linguistic set (either fuzzy or symbolic).

The partitioning process builds a fuzzy tree, while creat-
ing new partitions on those attributes which lack predefined
partitioning. Following the same techniques to reduce gains
for attributes with too many values, as that currently used in
FID [2] and C4.5 [8], pressure is applied against creating
too many partitions over a single domain (to keep compre-
hensibility under control). Except for this pressure, and for
its queue-based procedure, this process is similar to that of
finding thresholds, as currently implemented in C4.5 -
except that the actual thresholds here are not explicit but
they result from intersections of the constructed fuzzy sets.
Once the tree is built, it is abandoned - only the resulting
partitions are carried on to the regular building process (the
regular tree-building process follows different procedures,

0.00

0.50

1.00

0.00

0.50

1.00

and thus it can result in different trees). The partitioning
procedure can be detailed as follow:

1. Start with existing partitions on the pre-partitioned
attributes. On the remaining attributes (call them poten-
tial), create a single fuzzy set - rectangular normal set
spanning the whole domain. This will ensure consistent
treatment of all attributes in the attribute-selection pro-
cess, yet it does not introduce any bias for such
attributes since all potential samples will have the same
membership in such sets - and thus such sets will never
be selected for testing in a node - until they are split into
more fuzzy sets.

2. Start in the root node, put it on a priority queue.
A node contains the training samples matching the
fuzzy restrictions leading to the node (with membership
values according to those aggregated matches).
The queue is a priority queue, ordered by the amount of
data contained in the nodes (more data first) - to ensure
that domain partitioning is carried out with the most rel-
evant information.

3. Select the next node from the queue, or stop when no
more available.

4. Perform the usual process of attribute selection for split-
ting the node, except that in addition to evaluating all
current attributes (including pre-defined and potential
attributes), with their current linguistic domains, the
procedure also attempts to split any fuzzy set over the
domain of a potential attribute, in the context deter-
mined by the path to the node.
The context (path) determines the subdomain - by
means of the fuzzy restrictions leading to the node. For
example, if the fuzzy restriction Weight is v1 (v1 is new
fuzzy term for the potential attribute Weight) is leading
to the current node, then only the subdomain for the base
of the fuzzy set v1 is the potential place where the fuzzy
set for v1 can be split.
Attributes with predefined partitions may only appear
once on a path (thus some such attributes can be
excluded from consideration in the given node). Poten-
tial attributes are always tried.
Potential attributes with a new fuzzy set have their gains
reduced to account for the increase in their linguistic
domain size.

5. Select the best attribute (and potentially the best new
fuzzy partitioning if the best is a potential attribute) with
respect to gain. Split the node on this attribute, remove
the node from the queue, and insert the newly generated
children nodes according to the priority criterion. How-
ever, do not insert nodes whose information contents is
such that they cannot potentially bring much gain (infor-
mation measure is close to 0). This ensures that we do
not create new fuzzy sets based on unnecessary tests.
Record the new fuzzy set for the attribute.

6. Repeat from step 3.
Afterwards, perform the usual process of building the

fuzzy tree (starting all over).

5. Illustrative Experiment

For illustration, we have selected three widely used stan-
dard data sets from the machine learning depository at Irv-
ine [4]: Iris, Bupa, and Pima. For all cases, we assumed that
continuous domains are not pre-partitioned, letting FID3.1
generate fuzzy partitioning and then build the fuzzy trees.
All experiments were performed with 10-fold cross-valida-
tion, while measuring comprehensibility (defined as the
number of nodes) and predictive accuracy on unseen data.
To compare results, we used C4.5 in exactly the same set-
tings.

The results are presented in Table 1 and Table 2. It is
easy to observe that FID3.1 produced consistently higher
results, both in terms of tree size and in terms of predictive
accuracy on unseen data.

6. Summary

We have presented a method to partition continuous or
large-valued domains into fuzzy sets. The method is data
driven and each domain is partitioned in a data-driven man-
ner, in the context of learning decision trees - only partitions
determined relevant to the task are ever attempted. The
method proves itself on a number of comparative experi-
ments against the well known C4.5 decision tree. Future
extensions should include tree pruning and rule generation
capabilities.

A public release of FID3.1 is planned very shortly at
http://www.cs.umsl.edu/~janikow/fid/.

Table 1 Resulting predictive accuracy on unseen
data.

Algorithm Iris Bupa Pima

C4.5 94.0% 67.9% 74.7%

FID3.1 96.0% 70.2% 75.9%

Table 2 Resulting comprehensibility (average
number of tree nodes).

Algorithm Iris Bupa Pima

C4.5 5.0 34.4 45.2

FID3.1 5.0 28.9 23.1

References

[1] L. Breiman, J.H. Friedman, R.A. Olsen & C.J. Stone. Clas-
sification and Regression Trees. Wadsworth, 1984.

[2] C.Z. Janikow. Fuzzy Decision Trees: Issues and Methods,
IEEE Transactions on Systems, Man, and Cybernetics, Vol.
28, Issue 1, pp. 1-14, 1998.

[3] C.Z. Janikow. Exemplar Learning in Fuzzy Decision Trees.
Proceedings of FUZZ-IEEE 1996, pp. 1500-1505. Invited
by Prof. Bouchon-Meunier.

[4] C.J. Merz, P.M. Murphy. Repository of machine learning
databases. Univ. of CA, Dept. of Information and Computer
Science, 1996.

[5] R.S. Michalski. Understanding the Nature of Learning. In
Machine Learning: An Artificial Intelligence Approach, R.
Michalski, J. Carbonell & T. Mitchell (eds.), Vol, II, pp. 3-
26. Morgan Kaufmann, 1986.

[6] J.R. Quinlan. Induction on Decision Trees. Machine Learn-
ing, Vol. 1, 1986, pp. 81-106.

[7] J.R. Quinlan. Unknown Attribute-Values in Induction. In
Proceedings of the Sixth International Workshop on
Machine Learning, 1989, pp. 164-168.

[8] J.R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA. 1993.

[9] I. Suh, Hong & T.W. Kim. Fuzzy Membership Function
Based Neural Networks with Applications to the Visual Ser-
voing of Robot Manipulators. IEEE Transactions on Fuzzy
Systems, Vol. 2, No. 3, 8/1994, pp. 203-220.

