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Decision trees are one of the most popular choices for learning and reasoning from feature-based

examples. They have undergone a number of alterations to deal with language and measurement

uncertainties. In this paper, we present another modification, aimed at combining symbolic deci-

sion trees with approximate reasoning offered by fuzzy representation. The intent is to exploit com-

plementary advantages of both: popularity in applications to learning from examples and high

knowledge comprehensibility of decision trees, ability to deal with inexact and uncertain informa-

tion of fuzzy representation. The merger utilizes existing methodologies in both areas to full advan-

tage, but is by no means trivial. In particular, knowledge inferences must be newly defined for the

fuzzy tree. We propose a number of alternatives, based on rule-based systems and fuzzy control.

We also explore capabilities that the new framework provides. The resulting learning method is

most suitable for stationary problems, with both numerical and symbolic features, when the goal is

both high knowledge comprehensibility and gradually changing output. In this paper, we describe

the methodology and provide simple illustrations.

1 Introduction
Today, in the mass storage era, knowledge acquisition represents a major knowledge engineering

bottleneck [23]. Computer programs extracting knowledge from data successfully attempt to alle-

viate this problem. Among such, systems inducing symbolic decision trees for decision making, or

classification, are very popular. The resulting knowledge, in the form of decision trees and infer-

ence procedures, has been praised for comprehensibility. This appeals to a wide range of users who

are interested in domain understanding, classification capabilities, or the symbolic rules that may

be extracted from the tree [32] and subsequently used in a rule-based decision system. This interest,

in turn, has generated extensive research efforts resulting in a number of methodological and

empirical advancements [6][11][20][30][31][32].

Decision trees were popularized by Quinlan (e.g., [29]) with the ID3 program. Systems based

on this approach work well in symbolic domains. Decision trees assign symbolic decisions to new

samples. This makes them inapplicable in cases where a numerical decision is needed, or when the

numerical decision improves subsequent processing [3].

1. This research has been partially supported by grant NSF IRI-9504334.
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In recent years, neural networks have become equally popular due to relative ease of applica-

tion and abilities to provide gradual responses. However, they generally lack similar levels of com-

prehensibility [34]. This might be a problem when users want to understand or justify the decisions.

For such cases, researchers have attempted to combine some elements of symbolic and subsym-

bolic approaches [22][30][34]. A fuzzy approach is one of such extensions. Fuzzy sets provide

bases for fuzzy representation [37]. Fuzzy sets and fuzzy logic allow the modelling of language-

related uncertainties, while providing a symbolic framework for knowledge comprehensibility

[38][39][40]. In fuzzy rule-based systems, the symbolic rules provide for ease of understanding

and/or transfer of high-level knowledge, while the fuzzy sets, along with fuzzy logic and approxi-

mate reasoning methods, provide the ability to model fine knowledge details [40]. Accordingly,

fuzzy representation is becoming increasingly popular in dealing with problems of uncertainty,

noise, and inexact data [20]. It has been successfully applied to problems in many industrial areas

([15] details a number of such applications). Most research in applying this new representative

framework to existing methodologies has concentrated only on emerging areas such as neural net-

works and genetic algorithms (e.g., [7][15][17][20][34][36]). Our objective is to merge fuzzy rep-

resentation, with its approximate reasoning capabilities, and symbolic decision trees while

preserving advantages of both: uncertainty handling and gradual processing of the former with the

comprehensibility, popularity, and ease of application of the latter. This will increase the represen-

tative power, and therefore applicability, of decision trees by amending them with an additional

knowledge component based on fuzzy representation. These modifications, in addition to demon-

strating that the ideas of symbolic AI and fuzzy systems can be merged, are hoped to provide the

resulting fuzzy decision trees with better noise immunity and increasing applicability in uncertain/

inexact contexts. At the same time, they should proliferate the much praised comprehensibility by

retaining the same symbolic tree structure as the main component of the resulting knowledge.

Decision trees are made of two major components: a procedure to build the symbolic tree, and

an inference procedure for decision making. This paper describes the tree-building procedure for

fuzzy trees. It also proposes a number of inferences.

In decision trees, the resulting tree can be pruned/restructured - which often leads to improved

generalization [24][32] by incorporating additional bias [33]. We are currently investigating such

techniques. Results, along comparative studies with systems such as C4.5 [32], will also be

reported separately. In fuzzy representation, knowledge can be optimized at various levels: fuzzy

set definitions, norms used, etc. Similar optimization for fuzzy decision trees is being investigated,

and some initial results have been presented [12][13].

This paper concentrates on presenting the two major components for fuzzy decision trees. This

is done is section 5, after briefly introducing domains (section 2), elements of fuzzy representation
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(section 3), and decision trees (section 4). Even though a few illustrations are used to augment that

presentation, additional illustrative experiments are presented section 6.

2 Domain Types
Domain types usually encountered and processed in traditional machine learning and in fuzzy sys-

tems tend to be different. Because our objective is to merge both approaches, we need to explicitly

address this issue.

In general, there exist two different kinds of domains for attributes: discrete and continuous

(here real-valued, not continuous in time). Many algorithms require that data be described with dis-

crete values. Replacing a continuous domain with a discrete one is not generally sufficient because

most learning algorithms are only capable of processing small-cardinality domains. This requires

some partitioning, or covering in general. For nominal domains, this requires a form of clustering.

While many algorithms assume this is done apriori (e.g., ID3 [29] and AQ [22])), some can do that

while processing the data (e.g., CART [1], and to a limited degree Dynamic-ID3 [6] and Assistant

[16], and more recently C4.5 [32]). In this case, usually only values appearing in data are used to

define the boundaries (such as those used in equality tests of Figure 3b).

The covering should be complete, that is, each domain element should belong to at least one of

the covers (subsets). This covering should be consistent (i.e., partitioning, as in traditional sym-

bolic AI systems), or it can be inconsistent when a domain value can be found in more than one

subset (as in fuzzy sets). Each of these derived subsets is labeled, and such labels become abstract

features for the original domain.

In general, a discrete domain can be unordered, ordered partially, or ordered completely (as will

every discretized domain). Any ordering can be advantageous as it can be used to define the notion

of similarity. For example, consider the attribute SkinColor, with discrete values: White, Tan,

Black. In this case one may say that White is “more similar” to Tan than to Black. Such orderings,

along with similarity measures, are being used to advantage in many algorithms (e.g., AQ [22]).

They will also be used to advantage in fuzzy trees.

3 Fuzzy Sets, Fuzzy Logic, and Approximate Reasoning
Set and element are two primitive notions of set theory. In classical set theory, an element either

belongs to a certain set or it does not. Therefore, a set can be defined by a two-valued characteristic

function , where  is the universe of discourse. However, in the real world, this is

often unrealistic because of imprecise measurements, noise, vagueness, subjectivity, etc. Concepts

such as Tall are inherently fuzzy. Any set of tall people would be subjective. Moreover, some peo-

ple might be obviously tall, while others only slightly (in the view of the subjective observer). To

U 0 1,{ }→ U
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deal with such ambiguities, symbolic systems have attempted to include additional numerical com-

ponents [2][22]. For example, decision trees have been extended to accommodate probabilistic

measures [30], and decision rules have been extended by flexible matching mechanisms [22].

Fuzzy sets provide another alternative.

In fuzzy set theory, a fuzzy subset of the universe of discourse U is described by a membership

function , which represents the degree to which  belongs to the set . A

fuzzy linguistic variable (such as ) is an attribute whose domain contains linguistic values (also

called fuzzy terms), which are labels for the fuzzy subsets [39][40]. Stated differently, the meaning

of a fuzzy term is defined by a fuzzy set, which itself is defined by its membership function. For

example, consider the continuous (or high-cardinality discrete) attribute Income. It becomes a

fuzzy variable when three linguistic terms, such as Low, Medium, and High, are used as domain

values. The defining fuzzy sets usually overlap (to reflect “fuzziness” of the concepts) and should

cover the whole universe of discourse (for completeness). This is illustrated in Figure 1, where

some actual income  belongs to both the Low and the Medium subsets, with different degrees.

Fuzzy sets are generally described with convex functions peaking at 1 (normal fuzzy sets). Trape-

zoidal (or triangular) sets are most widely used, in which case a normal set can be uniquely

described by the four (three) corners - values of U. For example, Low in Figure 1 could be repre-

sented as <0,0,10,000,25,000>. Trapezoidal sets tend to be the most popular due to computational/

storage efficiency [4][8][35].

Similar to the basic operations of union, intersection, and complement defined in classical set

theory (which can all be defined with the characteristic function only), such operations are defined

for fuzzy sets. However, due to the infinite number of membership values, infinitely many inter-

pretations can be assigned to those operations. Functions used to interpret intersection are denoted

as T-norms, and functions for union are denoted as T-conorms, or S-norms. Originally proposed by

Zadeh min and max operators for intersection and union, respectively, define the most optimistic

and the most pessimistic norms for the two cases. Among other norms, product for intersection and

bounded sum (by 1) for union are the two most commonly used [4]. Even though norms are binary

operations, they are commutative and associative.

Figure 1 Fuzzy subsets of the domain of Income, and memberships for an actual income x.

µv V( ): U 0 1,[ ]→ u U∈ v
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Similarly to proposition being the primitive notion of classical logic, fuzzy proposition is the

basic primitive in fuzzy logic. Fuzzy representation refers to knowledge representation based on

fuzzy sets and fuzzy logic. Approximate reasoning deals with reasoning in fuzzy logic.

An atomic fuzzy proposition (often called a fuzzy restriction) is of the form , where

is a fuzzy variable and  is a fuzzy term from its linguistic domain. The interpretation of the prop-

osition is defined by the fuzzy set defining , thus by . As classical propositions, fuzzy proposi-

tions can be combined by logical connectives into fuzzy statements, such as

“ ”. If both of the fuzzy variables share the same universe of discourse, the

combination can be interpreted by intersecting the two fuzzy sets associated with the two linguistic

values. Otherwise, the relationship expressed in the statement can be represented with a fuzzy rela-

tion (i.e., a multi-dimensional fuzzy set). In this case, the same T-norms and S-norms can be used

for ∧ and ∨, respectively. For example, for the above conjunctive proposition, the relation would

be defined by: . The nice thing about fuzzy relations is that once

the relation is defined, fuzzy sets satisfying the relation can be induced from fuzzy sets on other

elements of the relation by mean of composition [4][8].

A piece of knowledge is often expressed as a rule, which is an implication from the (often con-

junctive) antecedent to the (often atomic proposition) consequent. Knowledge can be expressed

with a set of such rules. Similarly, a fuzzy rule of the form “if ∧ … then

” expresses a piece of knowledge. The implication can be interpreted using the basic

connectives and then represented by a fuzzy relation, or it may have its own direct interpretation.

In fact, in approximate reasoning implication is usually interpreted with a T-norm. When the min

norm is used, this corresponds to “clipping” the fuzzy set of the consequent. When product is used,

this corresponds to “scaling” that fuzzy set, in both cases by the combined thruthness of the ante-

cedent. These concepts are later illustrated in Figure 2.

A fuzzy rule-based system is a set of such fuzzy rules along with special inference procedures.

As was the case with a single rule, knowledge of the rules can be expressed by a fuzzy relation,

with composition used for the inference. This global-inference approach is computationally expen-

sive, and it is usually replaced with local-inference, where rules fire individually, and then the

results are combined. In fact, under many common conditions, such as crisp inputs and T-norm

implications, the two approaches yield equivalent results. Because we do not deal directly with

fuzzy rules, we are not explicitly concerned with this equivalence in our subsequently defined local

inferences. Interested readers are referred to [4] and [8] for an extensive discussion.

In the local-inference stage of a fuzzy rule-based system, current data (facts, measurements, or

other observations) are used analogously to other rule-based systems. That is, the satisfaction level

of each rule must be determined and a conflict resolution used. This is accomplished with the fol-

V is v[ ] V

v

v µv

V1 is v1[ ] V2 is v2[ ]∧

µR V1 V2,( ) T µv1
V1( ) µv2

V2( ),( )=

V1 is v1[ ] V2 is v2[ ]
Vc is vc[ ]
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lowing mechanisms:

1.  to determine how a data input for a fuzzy variable Vi, satisfies the fuzzy restriction

.

2.  to combine levels of satisfaction of fuzzy restrictions of the conjunctive antecedent (the

resulting value is often called degree of fulfillment or satisfaction of the rule). Since  will

use some of the T-norms, which are associative and commutative, we may write

 to imply multiple application of the

appropriate T-norm operator.

3.  to propagate satisfaction of the antecedent to the consequent (the result is often referred

to as the degree of satisfaction of the consequent).

4.  for the conflict resolution from multiple consequents.

is determined from the membership  for crisp inputs . For fuzzy inputs, the

height of the intersection of the two corresponding fuzzy sets can be used [4].  and  are defined

with T-norms,  is defined with an S-norm. These choices are illustrated in Figure 2, assuming a

two-rule system using fuzzy linguistic variables Income (of Figure 1) and Employment (with sim-

ilar fuzzy sets over its universe). As illustrated, the antecedent of the first rule is interpreted with

product, and this level of satisfaction is aggregated with the consequent using min (the conse-

quent’s fuzzy set is clipped). The second rule is evaluated with min and product, respectively (the

consequent’s fuzzy set is scaled). Combinations of the two consequents with sum and max aggre-

gations [26] are illustrated in a) and b), respectively. If some form of center of gravity is used for

calculation of the crisp response, the results would depend on the choice of the operators used.

f0

Vi is vj
i[ ]

f1

f1

f1 “conjunction of atomic fuzzy propositions“ data,( )

f2

f3

f0 v u,( ) µv u( ) u

f1 f2

f3
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Figure 2 Illustration of the inference on fuzzy rules

In many practical applications, such as fuzzy control, the resulting fuzzy set (result of f3) must

be converted to a crisp response. This is important since we will expect crisp responses from our

fuzzy tree. There is a number of possible methods in local inference. It may be as simple as taking

the center of gravity of the fuzzy set associated with the consequent of the most satisfied rule, or it

may combine information from multiple rules.

For computational reasons, this defuzzification process must also be efficient. One way to

accomplish that is to replace the continuous universe for the decision variable (of the consequent)

with a discrete one. Following this idea, the most popular defuzzification methods in local infer-

ence are Center-of-Area/Gravity and Center-of-Sum, which differ by the treatment of set overlaps,

but the necessary computations are still overwhelming [4].

When either a crisp value, or one of the existing fuzzy sets (i.e., to avoid representing new arbi-

trarily shaped functions) is desired for output, great computational savings can be accomplished by

operating on crisp representations of the fuzzy sets of the consequent variable, which can all be pre-

computed. Then, all rules with the same consequent can be processed together to determine the

combined degree of satisfaction  of the consequent’s fuzzy set . This information is subse-

quently combined, as in the Fuzzy-Mean inference [8]:

where  is the crisp representation of the fuzzy set  (e.g., the center of gravity or the center of

RULE BASE:

if Income is Low and
Employment is High then
Credit is High

if Income is Medium and
Employment is High then
Credit is Medium

Income Emp.

Low

Medium

High

High

δ

f3=sum

High

Medium

CRISP DATA:

Income=x
Employment=y

CRISP RESPONSE: δ

δ

f3’=max

x y

1

0

0

1

Credit

a)

b)

βp vp

δ
βp ζp⋅( )p 1=

n∑
βpp 1=

n∑
=

ζp vp
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maxima) and  is the number of linguistic values of the consequent’s fuzzy variable. Alternatively,

all rules can be treated independently, in which case the summation takes place over all rules in the

fuzzy database (for example, the Height method in [4]). From the interpretation point of view, this

method differs from the previous one by accumulating information from rules with the same con-

sequents. Thus, care must be taken about redundancy of the rule base, and in general theoretical

fuzzy sets are violated (See Yager in [15]). Also,  will adequately represent ’s fuzzy set only

if the set is symmetric [4].

In methods such as the two above, one may also use additional weights  to emphasize some

membership functions, as in the Weighted-Fuzzy-Mean method [8]:

where summation takes place over all  rules,  refers to the linguistic value found in the conse-

quent of the  rule, and  denotes the degree of fulfillment of the rule’s consequent.

When the weights reflect areas under the membership functions (relating to sizes of the fuzzy

sets), the method resembles the standard Center-of-Gravity, except that it is computationally sim-

pler.

For extensive discussion of both theoretical and practical defuzzification methods the reader is

referred to [4][8][26]. Our own inferences (section 5.4) will be derived from the machine learning

point of view, but many of them will in fact be equivalent to some of the existing computationally

simple local inferences in approximate reasoning, with summation over the rule base.

We must also refer to the interpolative nature of most of the inferences from a fuzzy rule base.

For example, [Income is Medium], or the crisp income value [Income=42,000], could be inferred

from two satisfied rules having consequents [Income is Low] and [Income is High]. This is appro-

priate for this variable (with continuous universe, and thus with ordered fuzzy terms, see section

2). The interpretation of this inference is that if, given some context, one arrives at the two conflict-

ing responses, it is safe to take the middle-ground approach. However, for nominal variables such

as WhoToMarry, with domain {Alex, Julia, Susan}, this approach fails. Variables of this kind fre-

quently appear in machine learning applications, and we need to accommodate them in fuzzy deci-

sion trees. Fortunately, some of the existing defuzzification methods in local inferencing are non-

interpolative (for example, Middle-of-Maxima in [4]). Accordingly, some of our own inferences

will also be non-interpolative.

AI methods must not only provide for knowledge representation and inference procedures, but

for knowledge acquisition as well – knowledge engineering by working with human experts is a

n

ζp vp

α

δ
αp βi ζp⋅⋅( )i 1=

m∑
αp βi⋅i 1=

m∑
=

m p

ith βi
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very tedious task [5][23]. Therefore, an important challenge for fuzzy systems is to generate the

fuzzy rule base automatically. In machine learning, knowledge acquisition from examples is the

most common practical approach. Similarly, fuzzy rules can be induced. To date, most research has

concentrated on using neural networks or genetic algorithms, individually or in hybrid systems

[7][9][11][17][36]. However, in machine learning, decision trees are the most popular method.

That is why our objective is to use decision trees as the basis for our learning system.

4 Decision Trees
In supervised learning, a sample is represented by a set of features expressed with some descriptive

language. We assume a conjunctive interpretations of the features representing a given sample.

Samples with known classifications, which are used for training, are called examples. The objective

is to induce decision procedures with discriminative (most cases), descriptive, or taxonomic bias

[21] for classification of other samples. Following the comprehensibility principle, which calls

upon the decision procedures to use language and mechanisms suitable for human interpretation

and understanding [23], symbolic systems remain extremely important in many applications and

environments. Among such, decision trees are one of the most popular.

Figure 3 Examples of a decision tree generated by ID3 (a) and CART (b).

ID3 (e.g, [29]) and CART [1] are the two most important discriminative learning algorithms

working by recursive partitioning. Their basic ideas are the same: partition the sample space in a

data-driven manner, and represent the partition as a tree. Examples of the resulting trees are pre-

sented in Figure 3, built from examples of two classes, illustrated as black and white. An important

property of these algorithms is that they attempt to minimize the size of the tree at the same time

as they optimize some quality measure [1][24][25]. Afterwards, they use the same inference mech-

anism. Features of a new sample are matched against the conditions of the tree. Hopefully, there

will be exactly one leaf node whose conditions (on the path) will be satisfied. For example, a new

sample with the following features:

matches the conditions leading to L1 in Figure 3a. Therefore, this sample would be assigned the

same classification as that of the training examples also satisfying the conditions (i.e., those in the

2.4≥3.2≥ 2.4<3.2<

5.1<
Color

Red
Green

Blue

Weight Textured

Small Large Yes No

Yes No

Textured

L1

L2

Med

Weight

Height

Weight

a) b)

Weight

5.1≥

3.7< 3.7≥

Weight Small=[ ] Color Green=[ ] Textured Yes=[ ]
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same node). For instance, it would be assigned the white classification here.

Nevertheless, the two trees are different. ID3 assumes discrete domains with small cardinali-

ties. This is a great advantage as it increases comprehensibility of the induced knowledge (and

results in the wide popularity of the algorithm), but may require an apriori partitioning. Fortunately,

machine learning applications often employ hybrid techniques, which require a common symbolic

language. Moreover, machine learning often works in naturally discrete domains, but even in other

cases some background knowledge or other factors may suggest a particular covering. Some

research has been done in the area of domain partitioning while constructing a symbolic decision

tree. For example, Dynamic-ID3 [6] clusters multi-valued ordered domains, and Assistant [16] pro-

duces binary trees by clustering domain values (limited to domains of small cardinality). However,

most research has concentrated on apriori partitioning techniques [18], and on modifying the infer-

ence procedures to deal with incomplete (missing nodes) and inconsistent (multiple matches, or a

match to a leaf node containing training examples of non-unique classes) trees

[2][20][24][25][30][31][32]. These problems might result from noise, missing features in descrip-

tions of examples, insufficient set of training examples, improper partitioning, language with insuf-

ficient descriptive power or simply with an insufficient set of features. The latter problem has been

addressed in some learning systems (constructive induction). However, decision tree algorithms

can select the best features from a given set, they generally cannot build new features needed for a

particular task [32] (even though some attempts have been made, such as [27]). Another important

feature of ID3 trees is that each attribute can provide at most one condition on a given path. This

also contributes to comprehensibility of the resulting knowledge.

The CART algorithm does not require prior partitioning. The conditions in the tree are based

on thresholds (for continuous domains), which are dynamically computed (a feature also incorpo-

rated with C4.5 [32]). Because of that, the conditions on a path can use a given attribute a number

of times (with different thresholds), and the thresholds used on different paths are very likely to

differ. This is illustrated in Figure 3b. Moreover, the number of possible thresholds equals the num-

ber of training examples. These ideas often increase the quality of the tree (the induced partition of

the sample space is not as restricted as it is in ID3), but they reduce its comprehensibility. Also,

CART is capable of inducing new features, restricted to linear combinations of the existing features

[1].

Among important recent developments one should mention Fuzzy-CART [9] and UR-ID3, for

uncertain reasoning in ID3 [19]. The first is a method which uses the CART algorithm to build a

tree. However, the tree is not the end result. Instead, it is only used to propose fuzzy sets (i.e., a

covering scheme) of the continuous domains (using the generated thresholds). Afterwards, another

algorithm, a layered network, is used to learn fuzzy rules. This improves the initially CART-gen-
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erated knowledge, and produces more comprehensible fuzzy rules. UR-ID3, on the other hand,

starts by building a strict decision tree, and subsequently fuzzifies the conditions of the tree.

Our objective is high comprehensibility as well, accomplished with the help of the ID3 algo-

rithm. We base our methodology on that algorithm, and modify it to be better suited to process var-

ious domains. Therefore, we make the same assumption of having a predefined partitioning/

covering. This partitioning can eventually be optimized. This work has been initiated [13]. To deal

with cases where no such partitioning is available, we plan to ultimately follow Fuzzy-CART[9].

That is, we plan to have the CART algorithm provide the initial covering, which will be further

optimized.

We now outline the ID3 partitioning algorithm, which will be modified in section 5.3. For more

details, see [29][32]. The root of the decision tree contains all training examples. It represents the

whole description space since no restrictions are imposed yet. Each node is recursively split by par-

titioning its examples. A node becomes a leaf when either its samples come from a unique class or

when all attributes are used on the path. When it is decided to further split the node, one of the

remaining attributes (i.e., not appearing on the current path) is selected. Domain values of that

attribute are used to generate conditions leading to child nodes. The examples present in the node

being split are partitioned into child nodes according to their matches to those conditions. One of

the most popular attribute selection mechanisms is one that maximizes information gain [25]. This

mechanism, outlined below, is computationally simple as it assumes independence of attributes.

1. Compute the information content at node N, given by , where C

is the set of decisions, and pi is the probability that a training example in the node repre-

sents class i.

2. For each attribute ai not appearing on the path to N and for each of its domain values aij,

compute the information content  in a child node restricted by the additional condi-

tion ai= aij.

3. Select the attribute ai maximizing the information gain , where wj

is the relative weight of examples at the child node following the aij condition to all exam-

ples in N, and Di is the symbolic domain of the attribute.

4. Split the node N using the selected attribute.

Many modifications and upgrades of the basic algorithm have been proposed and studied. The

most important are other attribute selection criteria [25], gain ratio accommodating domain sizes

[32], other stopping criteria including statistical tests of attribute relevance [32], and tree-general-

ization postprocessing [24][32].

IN pi pilog⋅( )i 1=
C∑−=

I
N aij

IN wj I
N aij⋅( )j

Di∑−
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5 Fuzzy Decision Trees

5.1 Fuzzy Sample Representation

Our fuzzy decision tree differs from traditional decision trees in two respects: it uses splitting cri-

teria based on fuzzy restrictions, and its inference procedures are different. Fuzzy sets defining the

fuzzy terms used for building the tree are imposed on the algorithm. However, we are currently

investigating extensions of the algorithm for generating such fuzzy terms, along with the defining

fuzzy sets, either off-line (such as [9]) or on-line (such as [1][6]).

For the sake of presentation clarity, we assume crisp data form2. For instance, for attributes

such as Income, features describing an example might be such as Income=$23,500. Examples are

also augmented with “confidence” weights.

As an illustration, consider the same previously illustrated fuzzy variables Income and Employ-

ment, and the fuzzy decision Credit. That is, assume that applicants applying for credit indicated

only last year’s income and current employment (a very simplistic scenario). Assume that each

applicant indicated the exact income amount (more informative than just income brackets) and the

number of hours worked (which is again more informative than the information whether they

worked at all). Each application was either rejected or accepted (a binary decision). Or, alterna-

tively, each application could have been given a score. For example, an applicant whose reported

income was $52,000, who was working 30 hours a week, and who was given credit with some hes-

itation, could become the following training example [Inc=52,000][Emp=30] ⇒ [Credit=0.7]:-

weight=1. Our fuzzy decision tree can also handle fuzzy examples such as

[Inc=52,000][Employment=High] ⇒ [Credit=High], but for clarity we will not discuss such natural

extensions here.

5.2 Other Assumptions and Notation

For illustration, we use only trapezoidal fuzzy sets. Currently, the tree is not pruned. Each internal

node has a branch for each linguistic value of the split variable, except when no training examples

satisfy the fuzzy restriction. To deal with the latter, we assume that during the inference, an

unknown value in a node occurs either when the needed feature is missing from a sample’s descrip-

tion, or the node has no branch for it. Before we define the fuzzy-build and fuzzy-inference proce-

dures, let us introduce subsequently used notation.

1. The set of fuzzy variables is denoted by .

2. For each variable

2. To be consistent with many machine learning problems, we allow nominal attributes as well. Extensions to linguis-
tic data are straightforward.

V V1 V2…Vn,{ }=

Vi V∈
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■ crisp example data is

■ Di denotes the set of fuzzy terms

■  denotes the fuzzy term p for the variable (e.g., , as necessary to stress the

variable or with anonymous values – otherwise p alone may be used)

3. The set of fuzzy terms for the decision variable is denoted by Dc.

4. The set of training examples is , where  is the crisp clas-

sification (see the example at the end of section 5.1). Confidence weights of the training

examples are denoted by , where wj is the weight for .

5. For each node N of the fuzzy decision tree

■ FN denotes the set of fuzzy restrictions on the path leading to N, e.g.,

 in Figure 3

■  is the set of attributes appearing on the path leading to N:

■  is the set of memberships in  for all the training examples3

■  denotes the particular child of node N created by using  to split N and following

the edge . For example, the node L1 in Figure 3 is denoted by

■  denotes the set of N’s children when  is used for the split. Note that

, ; in

other words, there are no nodes containing no training examples, and thus some linguis-

tic terms may not be used to create subtrees

■  denotes the example count for decision  in node N. It is important to note

that unless the sets are such that the sum of all memberships for any  is 1,

; t hat is, the membership sum from all children of N can differ from

that of N; this is due to fuzzy sets; the total membership can either increase or decrease

while building the tree

■ PN and IN denote the total example count and information measure for node N

■  denotes the information gain when using in N (  is the weighted

information content – see Section 4)

6. α denotes the area, ς denotes the centroid of a fuzzy set.

3. Retaining one-to-one correspondence to examples of E, this set implicitly defines training examples falling into N.
This time-space trade-off is used in the implementation [10].
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7. To deal with missing attribute values, we borrow the existing decision tree methodology.

It has been proposed [31] that the best approach is to evenly split an example into all chil-

dren if the needed feature value is not available, and then to reduce the attribute’s utiliza-

tion by the percentage of examples with unknown value:

■ denote  as the total count of examples in the node N with

unknown values for

■ define

5.3 Procedure to Build A Fuzzy Decision Tree

In ID3, a training example’s membership in a partitioned set (and thus in a node) is binary. How-

ever, in our case, the sets are fuzzy and, therefore, ideas of fuzzy sets and fuzzy logic must be

employed. Except for that, we follow some of the best strategies available for symbolic decision

trees.

To modify the way in which the number of examples falling to a node is calculated, we adapt

norms used in fuzzy logic to deal with conjunctions of fuzzy propositions. Consider the case of vis-

iting node N during tree expansion. Example  has its membership  in the node calculated on

the basis of the restrictions  along the path from the root to N. Matches to individual restrictions

in  are evaluated with  above and then combined via . For efficiency, this evaluation can be

implemented incrementally due to properties of T-norms.

1. Start with all the examples E, having the original weights W, in the root node. There-

fore,  (in other words, all training examples are used with their initial weights).

2. At any node N still to be expanded, compute the example counts (  is the membership of

example  in N, that is, the membership in the multi-dimensional fuzzy set defined by the

fuzzy sets of the restrictions found in , computed incrementally with  and )

,

3. Compute the standard information content: .

4. At each node, we search the set of remaining attributes from  to split the node (as

in ID3, we allow only one restriction per attribute on any path):

■ calculate , the weighted information content for , adjusted for missing fea-

tures. This is accomplished by weighting the information content by the percent-
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age of examples with known values for . The reciprocal of the total

memberships in all children of N is a factored out term from the last sum

■ select attribute  such that the information gain  is maximal (might be

adjusted for domain size [29]); the expansion stops if the remaining examples

with  have a unique classification or when ; other criteria may be

added

5. Split N into |Di| subnodes. Child  gets examples defined by . The new member-

ships are computed using the fuzzy restrictions leading to  in the following way:

.

However, if a child node contains no training examples, it cannot contribute to the infer-

ence (this is a property of the inferences). Therefore, all such children are removed (nodes

are folded). Moreover, when some form of tree generalization is implemented in the future

[32], additional nodes may have to be removed. This is why some internal nodes may end

up with missing children.

Table 1 Numeric data for the illustration.

The above tree-building procedure is the same as that of ID3. The only difference is based on

the fact that a training example can be found in a node to any degree. Given that the node member-

ships can be computed incrementally [10], computational complexities of the two algorithms are

the same (up to constants).

E Inc Emp Credit W

e1 0.20 0.15 0.0 1.0

e2 0.35 0.25 0.0 1.0

e3 0.90 0.20 0.0 1.0

e4 0.60 0.50 0.0 1.0

e5 0.90 0.50 1.0 1.0

e6 0.10 0.85 1.0 1.0

e7 0.40 0.90 1.0 1.0

e8 0.85 0.85 1.0 1.0
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Let us illustrate the tree building mechanism. Consider the two fuzzy variables Income

(denoted Inc for abbreviation) and Employment (Emp), both with fuzzy sets such as those of Figure

1, the binary decision Credit, and the eight examples as in Table 1. As given, the first four examples

belong to the No class (thus 0.04, illustrated in white). The other examples belong to the Yes class

(1.0), illustrated in black. All confidence weights are equal. At the root (denoted R)

We continue expansion since  and no complete class separation between black

and white has been accomplished (we disregard other stopping criteria). We must select from

 the attribute which maximizes the information gain. Following section

5.3, we get

This means that Emp is a better attribute to split the root node. This can be easily confirmed by

inspecting the data visualization on the right of Table 1, where horizontal splits provide better sep-

arations. Accordingly, the root R gets expanded with the following three children

. This expansion is illustrated in Figure 4, along with the interme-

diate computations. Some indices are omitted, f1=min is used, and shade levels indicate the classi-

fication of the node’s examples on the  scale.

The computations indicate that no further expansions of the left and the right nodes are needed:

in both cases . This means that no further improvements can be accomplished since each of

these leaves contains examples of a unique class (different ones here). An important aspect of fuzzy

decision trees can be observed here. The example , present with the initial memberships 1.0 in

, appears in two child nodes: in  with 0.5 and in  with 0.33. This is obviously

due to overlapping fuzzy sets for Emp.

The middle child must be split. Since , there is no need to select the

split attribute. Using Inc, we get the expansion illustrated in Figure 5.

At this moment, we have exhausted all the available attributes of , so nothing more can be

done (in practice, decision tree expansion usually stops before this condition triggers in order to

4. This can be any value from UC, as illustrated in Section 5.1 and 6.2.
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prevent over-specialization [32]). In the resulting tree only one of the five leaves does not contain

examples of a unique class.

Figure 4 Partial fuzzy tree after expanding the root R (set elements with zero membership are
omitted, and so are indexes which are obvious from the context).

Figure 5 Complete fuzzy tree after expanding the  child.

This tree (its structure, along with data in the leaves) and the fuzzy sets used for its creation

combine to represent the acquired knowledge. Even though we need an inference procedure to

interpret the knowledge, it is easy to see that unemployed people are denied credit, while fully

employed people are given credit. For part-timers, only some of those with high income get credit.

This natural interpretation illustrates knowledge comprehensibility of the tree. In the next section,
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we describe a number of inferences, that is methods for using this knowledge to assign such clas-

sifications to new samples.

5.4 Inference for Decision Assignment

Our fuzzy decision tree can be used with the same inference as that of ID3 (section 4). However,

by doing so we would lose two pieces of information: the fuzzy sets are an important part of the

knowledge the fuzzy tree represents, and the numerical features, which can be used to describe a

sample, also carry more information than the abstract linguistic features. Therefore, we must define

new inference procedures to utilize this information.

A strict decision tree can be converted to a set of rules [32]. One may think of each leaf as gen-

erating one rule – the conditions leading to the leaf generate the conjunctive antecedent, and the

classification of the examples of the leaf generates the consequent. In this case, we get a consistent

set of rules only when examples of every leaf have a unique classification, which may happen only

when a sufficient set of features is used and the training set is consistent. Otherwise, we get a rule

with a disjunctive consequent (which rule may be interpreted as a set of inconsistent rules with sim-

ple consequents). We get a complete set of rules only if no children are missing. Incompleteness

can be treated in a number of ways – in general, an approximate match is sought. Inconsistencies

can be treated similarly (see section 4). Because in fuzzy representation a value can have a nonzero

membership in more than one fuzzy set, the incompleteness problem diminishes in fuzzy trees, but

the inconsistency problem dramatically increases. To deal with this, we will define inferences fol-

lowing some of the approximate reasoning methods used in fuzzy control. We will also provide

additional mechanisms to guarantee decisions in those cases where the classification fails other-

wise.

To define the decision procedure, we must define  for dealing with samples pre-

sented for classification. These operators may differ from those used for tree-building – let us

denote them . First, we define . It does not operate independently on the fuzzy

restrictions associated with outgoing branches. Instead, it requires simultaneous information about

the fuzzy restrictions. As previously stated, we also assume that all sample features are crisp val-

ues. There are three cases:

1. If the sample has a nonzero membership in at least one of the fuzzy sets associated with

the restrictions out of a node, then the membership values are explicitly used:

.

2. If the sample has an unknown value for the attribute used in the node, or when the value is

known but memberships in all sets associated with the existing branches are zero (possibly

related to ), and the variable in question has a nominal domain, then the sample

is evenly split into all children: .
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3. If the sample has the necessary value , but all memberships are zero, and the variable

tested in the node has a completely ordered set of terms, then following the idea of simi-

larity [22] fuzzify the crisp value and compute matches between the resulting fuzzy set and

the existing sets:

where  is defined with the triangular fuzzy set spanning over Ui and centering at . This

is illustrated in Figure 6.

Let us observe that since we need to present the methodology for the decision tree and not for

the fuzzy rules that can be extracted from the tree, our inferences will be defined for the tree and

not for a fuzzy rule base. To decide the classification assigned to a sample, we have to find leaves

whose restrictions are satisfied by the sample, and combine their decisions into a single crisp

response. Such decisions are very likely to have conflicts, found both in a single leaf (non-unique

classifications of its examples) and across different leaves (different satisfied leaves have different

examples, possibly with conflicting classifications).

Figure 6 Fuzzification of a crisp value in a node with all zero memberships, and the resulting
matches.

Let us define  to be the set of leaves of the fuzzy tree. Let  be a leaf. Each leaf is

restricted by ; all the restrictions must be satisfied to reach the leaf. A sample  must satisfy each

restriction  (using ), and all results must be combined with  to determine to

what degree the combined restrictions are satisfied.  then propagates this satisfaction to deter-

mine the level of satisfaction of that leaf. We could use any T-norm, but in the implementation we

will use the two most often used: product and min.

A given leaf by itself may contain inconsistent information if it contains examples of different

classes. Different satisfied leaves must also have their decisions combined. Because of this two-

level disjunctive representation, the choice of g3 will be distributed into these two levels.

We first propose a general form for computationally efficient defuzzification, which is based on

the Weighted-Fuzzy-Mean method mentioned in Section 3 (also known as simplified Max-Gravity

[26]).
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In other words, when  is presented for classification, first all satisfied paths are determined,

and subsequently these levels of satisfaction are propagated to the corresponding leaves. S and s

reflect the information contained in a leaf (i.e., information expressed by ) in such a way that if

all examples with nonzero memberships in the leaf have single classifications (all have nonzero

memberships in the same fuzzy set for the decision variable, and zero memberships in all other

sets), then S/s yields the center of gravity of the fuzzy set associated with that classification. For

efficient inferences, S and s can be precomputed for all leaves. However, in other cases different

choices for S and s reflect various details taken into account. We present a number of inferences, to

be evaluated empirically in future studies, some of which have better intuitive explanations than

others – they all result from trying to combine elements of rule-based reasoning with approximate

reasoning in fuzzy control.

We now propose four inferences based on the above. The first two inferences disregard all but

the information related to the most common classification of individual leaves. The next two infer-

ences take inconsistencies inside of individual leaves into account.

1. A leaf may assume the center of gravity of the fuzzy set associated with its most common

classification (measured by the sum of memberships of the training examples in that leaf).

The corresponding fuzzy set (and term) is denoted .

In this case  even if the examples of the leaf have nonzero memberships in more

than one fuzzy set of the decision variable. When the sample has a nonzero membership

in only one of the leaves, or when only one leaf is taken into account, then . In the

same case, but when all leaves are considered, the resulting inference is equivalent to

Weighted-Fuzzy-Mean (section 3).

2. When the first case is used and the inference combines multiple leaves, no information

reflecting the number of training examples in a leaf is taken into account. Alternatively,

our inference may favor information from leaves having more representatives in the train-

ing set, hopefully helping with reducing the influence of noisy/atypical training examples

(one may argue both for and against this inference).

δn

g2 g1 Fl ej,( )( ) Sl
n⋅( )i 1=

L∑
g2 g1 Fl ej,( )( ) sl

n⋅( )i 1=
L∑

= n 1 …4,{ }∈,

ej

χl

κ

Sl
1 ακ ζκ⋅= sl

1 ακ=

S s⁄ ζκ=

δ1 ζκ=

Sl
2 Pκ

l ακ ζκ⋅⋅ Pκ
l Sl

1⋅= = sl
2 Pκ

l ακ⋅ Pκ
l sl

1⋅= =



5  Fuzzy Decision Trees 21

If the sample satisfies a single leaf only, then .

3. An individual leaf may assume the sum-center of gravity of all of its fuzzy sets weighted

by information provided in X (i.e., by its example counts).

Note that  when each leaf contains only training examples having non-zero mem-

berships in unique fuzzy sets of the decision variable.

4. The same as case 3, except that max-center of gravity (see [26] and Figure 2) is used in an

efficient computation. Here,  represents the area of a fuzzy set restricted to the sub-uni-

verse in which the set dominates the others when scaled by , and  represents the center

of gravity of the so modified set. This is illustrated in Figure 7, assuming three fuzzy sets.

Note that  is generally different from the other inferences unless all fuzzy sets of the

decision variable are disjoint.

Figure 7 Illustration of computation of max-center formulation.

The next three inferences take a more simplistic approach – they only consider leaves which

are most satisfied by  (such a dominant leaf is denoted ). They differ by the method of inferring

the decision in that single leaf.  uses only the center of gravity of the fuzzy set with the highest

membership among the training examples of that leaf,  uses the sum-gravity, and  uses the

max-gravity center [4][26] in that leaf.
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Finally,  uses sum-gravity to combine information from all leaves, when each leaf disregards

all but the its highest-membership fuzzy set.

If the sample  to be classified does not satisfy any leaves, for example when missing training

examples prevented some branches from being generated, no decision can be reached. This is

clearly not acceptable if a decision must be taken. An alternative approach would be to report some

statistical information from the tree. However, we may utilize domain type information to do better

than that, using some similarity measure (see Section 2). Therefore, when a sample does not satisfy

any leaves, we force all but nominal variables to be treated as if all memberships would always

evaluate to zero (i.e., we fuzzify the actual value of the attribute to  – see section 5.4). If this

approach still does not produce a decision, we relax all restrictions imposed on such variables:

membership is assumed to be 1 for any restriction with a non-zero membership (if such exists), and

 for all other sets labeling the restrictions out of the same node. In other words, we modify

 of section 5.4 to always use case 3, except for nominal attributes for which either case 1 or 2 is

used, as needed. This will always guarantee a decision.

As an illustration, consider the previously built tree (section 5.3) and the six samples listed in

Figure 8 (these are different from the training data). To assign a classification to a sample, we must

first determine which leaves can contribute to making the decision. This is done by computing sat-

isfactions of all leaves for each of the samples, using the fuzzy sets and the fuzzy restrictions from

the tree. Results of this computation are illustrated in Figure 8, separately for each of the six sam-

ples, using  as previously defined and =max. It can be seen that some samples are so typical

that only one leaf can deal with them (such as ), while others satisfy multiple leaves (  and ).

When some features are not available (as in  and ), more of the leaves get satisfied.  is a

very special case when nothing is known about the sample. As expected, all leaves get satisfied
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equally.

The next step is to apply the selected inference. The choice of inference will determine which

of the leaves with non-zero truth value will actually contribute to the decision, and how this will

be done. For example,  will take centers of gravity of the sets (determined by classification of

the training examples in those leaves) from all satisfied leaves, and then it will compute the center

of gravity of these. Using this inference, the six samples will generate the following decisions:

 (i.e., the No decision), , , ,

, and . A very interesting observation can be made regarding the last

sample, which was completely unknown. The decision is not exactly 0.50 despite that both classes

were equally represented in the training set (see Figure 4). This is due to the fact that the actual

counts of the training examples in the leaves differ from those in the root (as pointed out in sections

5.2 and 5.3). In fact, it can be verified in Figure 5 that the total in-leaf count for examples of the No

class is 3.13, while the total count for the Yes class is 3.2. On the other hand, if we require that the

sum of all memberships for any  value is 1, the counts for the examples in the tree would equal

those counts for the original examples and  would be exactly 0.5 in this case. Which method

should be used is an open question, to be investigated in the future.

Figure 8 Memberships in the sample tree for six selected samples (-1 indicates missing data, ?
indicates the sought classification). Each node lists the values .

6 Illustrative Experiments
We have conducted a number of preliminary experiments with a pilot implementation FIDMV

[10][12][13]. Here we report selected results. These are intended to illustrate system characteristics

and capabilities. More systematic testing is being conducted and will be reported separately.
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6.1 Continuous Output

Reference [35] presents a fuzzy-neural network designed to produce interpolated continuous out-

put from fuzzy rules. The Mexican Sombrero function, illustrated in Figure 9a, was used to test the

network’s capabilities to reproduce the desired outputs. This was accomplished with thirteen nets,

combined to produce a single output. In the illustrative experiment, data from a 13x13 grid was

used. Each of the two domains was partitioned with thirteen triangular fuzzy sets. Function values

were partitioned with seven fuzzy sets. The rules were generated by hand and assigned to the thir-

teen networks, whose combined outputs would produce the overall response. In our experiment,

we attempted to reproduce the same nonlinear function, but in a much simpler setting. We used

exactly the same data points as the training set, and the same fuzzy sets. We trained the fuzzy tree,

and then we tested its acquired knowledge using a denser testing grid in order to test inferences of

the tree both on samples previously seen in training as well as on new ones. Knowledge represented

with  is shown in Figure 9b. It can be seen that the overall function has been recovered except

for details, which were not captured due to suboptimal choice for the fuzzy sets (as pointed out in

[13]). The same fuzzy tree, in conjunction with the least-information-carrying , produced the

surface of Figure 9c. It is also important to point out that the fuzzy-neural system architecture was

tailored to this particular problem, and that the rules were generated by hand, while the fuzzy deci-

sion tree did not require any particular data nor initial rules.

Figure 9 The original function (a), and responses of the same fuzzy tree with two different
inferences.

6.2 Noisy and Missing/Inconsistent Data

As another illustration, let us continue the example used to illustrate the tree-building and infer-

ence routines (sections 5.3 and 5.4). However, let us complicate it to say that the training example

 had its decision raised to 0.5 (undecided about credit), and that for some reason the employment

status for example  could not be determined.

By carefully analyzing the space as illustrated in Table 1, one could expect that the credit deci-

sion for fully employed people should not be affected (give them credit). On the other hand, the
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decision for the unemployed may be slightly affected toward giving credit (e5, for which we do not

know the employment status, was given credit). Changes in the decisions for the PT employment

status are very difficult to predict.

Using the same parameters as those in section 5.3, the new tree of Figure 10 is generated. From

this tree, it can be verified that indeed the decision for full employment was not affected, while the

other cases are much less clear – even income cannot unambiguously determine whether to give

credit. What is the actual knowledge represented in this tree? As indicated before, it depends on the

inference method applied to the tree. Response surfaces for four selected inferences are plotted in

Figure 11. These plots illustrate the fact that full employment guarantees credit, and that otherwise

the level of income helps but does not guarantee anything. Moreover, based on the inference used,

different knowledge details are represented. For example, using only best-matched leaves and only

best decisions from such leaves ( ) produces sudden discontinuities in the response surface. This

behavior is very much similar to that of symbolic systems such as ID3.

Figure 10 Graphical illustration of the generated tree.:

While the structure of the tree depends on the fuzzy sets used, Figure 11 also indicates that the

actual definitions for those sets affect the resulting response surface. Therefore, further research

into optimization and off or on-line data-driven domain partitioning is very important. Another

important observation is that some inferences behave as filters removing the effects of noisy/

incomplete data. This observation was more heavily explored in [10].
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Figure 11 Illustration of the inferences.

6.3 Summary and Future Research

We proposed to amend the application-popular decision trees with additional flexibility offered by

fuzzy representation. In doing so, we attempted to preserve the symbolic structure of the tree, main-

taining knowledge comprehensibility. On the other hand, the fuzzy component allows us to capture

concepts with graduated characteristics, or simply fuzzy. We presented a complete method for

building the fuzzy tree, and a number of inference procedures based on conflict resolution in rule-

based systems and efficient approximate reasoning methods. We also used the new framework to

combine processing capabilities independently available in symbolic and fuzzy systems.

As illustrated, the fuzzy decision tree can produce real-valued outputs with gradual shifts.

Moreover, fuzzy sets and approximate reasoning allow for processing of noisy and inconsistent/

incomplete data. The effect of such inferior data can be controlled by utilizing various inference

methods. These inferences, as well as actual behavior in naturally noisy/incomplete domains, has

to be empirically evaluated and will be subsequently reported.

In the future, more inference procedures will be proposed, and they all will be empirically eval-

uated. We are currently designing a preprocessing procedure based on CART, which will be used

to propose the initial coverings. These sets will eventually be optimized in the tree-building proce-

dure. We also plan to explore on-line domain partitioning. Finally, a number of empirical studies

are currently under way.
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