
6   Operator Overloading:: Unary operator

cs2260@UMSL 2005 Cezary Z. Janikow Page 71

6 OPERATOR OVERLOADING

❍ Most operators can be overloaded for user defined classes

❍ can use standard operators to write expressions

❍ cannot change precedence nor associativity

❍ cannot change meaning for intristic types

❍ the leftmost argument in an expression is implicit in the overloaded operator
● must declare only the remaining arguments, if any
● expressions with different leftmost arguments must be handled with 

● non-member methods, friend if needed to access private data

❍ side effects are up to programmer
● use common sense to avoid confusion

❍ reversing arguments if applicable

❍ The following can be overloaded
+ - * / % ^ & |
~ ! = < > += -= *=
/= %= =̂ &= |= << >> >>=
<<= == != <= >= && || ++
-- , ->* -> () [] new delete
new[] delete[]

❍ cannot overload :: ?: . and *.

6.1 Unary operator
type operatorO(void); // O represents the operator

● only the implicit argument

Example 6.1  Overload unary - for Stock so that -stock would mean sell half shares.
void Stock::operator-(void){

this->sell(this->shares/2);
this->set_tot(); 

} 
// later in a function

Stock ibm;
-ibm;



6   Operator Overloading:: Binary operator

cs2260@UMSL 2005 Cezary Z. Janikow Page 72

6.2 Binary operator
type operatorO(argument); // O represents an operator

● left argument of an expression is the implicit (*this)
● right argument of an expression corresponds to the interface argument

Example 6.2  Overload + for Stock to add number of shares creating a new Stock
Stock Stock::operator+(const Stock &second) const
// return *this + second
{ int x=this->shares+second.shares;

Stock s(“Combined”,x);
return s;

}

// later
Stock ibm, att;
Stock ss=ibm+att;
ibm+att; // does it make sense? what about 3+5?

Example 6.3  Same as Example 6.2 but with potential memory leaks and misuse - why?.
Stock & Stock::operator+(const Stock &second) const{

int x=this->shares+second.shares;
Stock *s=new Stock(“Combined”,x);
return *s;

}
// later

Stock ibm, att, kmart, walmart;
ibm+att=kmart+walmart; // what is this, and how do we read it?

// what if Stock s(“Combined”,x) is used?

Example 6.4  Same as Example 6.2 but with potential memory leaks - why?. It can be used
most efficiently on the other hand - why?

Stock *Stock::operator+(const Stock &second) const{
int x=this->shares+second.shares;
Stock *s=new Stock(“Combined”,x);
return s;

}
// later

Stock ibm, att, walmart, kmart, *sp;
sp=ibm+att;
sp=walmart+kmart; // memory leak



6   Operator Overloading:: Binary operator

cs2260@UMSL 2005 Cezary Z. Janikow Page 73

Example 6.5  Overload + for Stock so that ibm+10 would mean by 10 more shares.
void Stock::operator+(int toBuy){

this->shares+=toBuy;
this->set_tot(); 

} // could implement with this->buy(toBuy,this->share_val);

// later
Stock ibm;
ibm+10;

Example 6.6  adam+10 means add 10 years.
void Person::operator+(int inc) {

if (inc>0)
age+=inc;

}

// later in an application
Person adam(“Adam”,”Vice”,20);
adam+10; // adam is 30 now
10+adam; // ???bump

❍ Postfix ++/-- differentiated by having dummy (int) argument in postfix

Exercise 6.1  Stock with overloaded +.

Exercise 6.2  Extend Exercise 6.1 changing ‘+’ so that names are combined, shares added,
price averaged. Overload ‘-’ with an integer to mean ‘sell up to that many’ (as many
available). For example, ‘ibm-100’ would be sell 100 from the ibm shares object. Then,
overload that overloaded ‘-’ to work with double argument, meaning change price to that
value. Note that both ‘-’ operators will change *this.



6   Operator Overloading:: Overloading with Non-member Methods

cs2260@UMSL 2005 Cezary Z. Janikow Page 74

6.3 Overloading with Non-member Methods
❍ Needed when

❍ in binary operators, the left argument is not of the class of interest
adam+10; // done by overloading + for Person
10+adam; // would have to overload + for int ???

❍ if desired to perform automatic argument conversions

❍ Implementation

❍ must implement non-member operator of two arguments
void operator+(int x, Person &p); 

● cannot access private stuff
● prototyped outside class in the header file
● implemented along with class methods
● as a global method, calls with different argument will have arguments converted

❍ if private access needed, it can be accomplised by friend
friend void operator+(int, Person &);// inside class declaration
void operator+(int inc, Person &p){// Note no Person::

if (inc>0)
p.age+=inc;

}

❍ private access can also sometime be implemented by reversing the arguments
● works only if the reversed operator exists and does the same

void operator+(int, Person &);
void operator+(int inc, Person &p) {

if (inc>0)
p+inc;

}

❍ global function for class C should be declared and implemented with the class

❍ you may not implement the following operators except as methods:
subscript [], function call (), assignment =, indirection ->

Exercise 6.3  Design a Vector class, for a 2D space. Each vector is represented by cartesian
or polar coordinates. Use operator overloading for operations.



6   Operator Overloading:: More on friend

cs2260@UMSL 2005 Cezary Z. Janikow Page 75

6.4 More on friend
❍ Global methods, such as operators, can be friends

❍ Any method or any class (and thus all its methods) can be friends

Example 6.7  friends.
class A {

// ...
int f();
// ...

};

class B {
// ...
friend int A::f(); // makes f method a friend to class B
friend A; // makes all methods of A friends of B
// ...

};

❍ Avoid making too many friends...

6.5 Overloading IO operators
❍ What about writing

cout << adam;
cin >> baby;

● must overload with non-member friend function

❍ can be done for a single application

❍ can be done for chaining

❍ do not handle by reversing arguments

❍ declare friend if needed to access private elements

Example 6.8  << overloaded for a single application on Person.
friend void operator<<(ostream &, const Person &); // in class decl.
void operator<<(ostream &os, const Person &p) {

os << “My name is “ << p.name << endl;
}



6   Operator Overloading:: Overloading Assignment

cs2260@UMSL 2005 Cezary Z. Janikow Page 76

// in a function
Person adam(“adam”), susan(“susan”);
cout << adam; // ok
cout << adam << “ and “ << susan << endl; // bump

Example 6.9  << overloaded for Person - with chaining.
friend ostream & operator<<(ostream &,const Person &); //in class decl.
ostream &operator<<(ostream &os, const Person &p) {

os << “My name is “ << p.name << endl;
return os;

}

// in a function
Person adam(“adam”), susan(“susan”);
cout << adam;// ok
cout << adam << “ and “ << susan << endl;// ok

❍ general form
● in the same files as member methods
● inside class declaration if friend, outside otherwise

friend ostream & operator<<(ostream &,const Person &); 

Exercise 6.4  Redo Exercise 6.3 replacing show() method with overloaded <<.

6.6 Overloading Assignment
❍ Must overload if overloading copy constructor

❍ It is not inherited (the only exception)
ClassName& ClassName::operator=(const ClassName &sourceObject){

// assign sourceObject to *this and return *this
}

❍ Needed on

❍ explicit object assignments

❍ potentially on objects created and initialized with =



6   Operator Overloading:: Overloading Assignment

cs2260@UMSL 2005 Cezary Z. Janikow Page 77

❍ Default assignment

❍ copy bytes

❍ should be the same as copy except that
● not a constructor so no need to allocate storage but may need to deallocate and allo-

cate
● prevent not to assign to itself

Example 6.10  The first two are potentially handled by copy constructor only.
Person adam, susan.
Person john=susan; // assignment or copy constructor
Person john=Person(susan); // assignment or copy constructor
adam=susan; // assignment

Example 6.11  Assume class String with dynamic allocation as in Example 3.21 Then, we
may implement assignment by allocating space (deep copy), copying:

String& String::operator=(const String& st) {
if (this==&st)

return *this; // no copying to itself
int x=strlen(st.str);
if (len>x)

strcpy(str,st.str); // enough space here, avoiding delete/new
else {

delete [] str; // return storage as might need more or less
len=x+1;
str=new char[len];
strcpy(str,st.str);

}
return *this;

}

Exercise 6.5  Strings again, dynamic memory, with overridden copy and assignment.



6   Operator Overloading:: Type Conversion from Class

cs2260@UMSL 2005 Cezary Z. Janikow Page 78

6.7 Type Conversion from Class
❍ Conversions from a class to intristic types can also be defined

❍ not for converting to another class

❍ use conversion operators (not constructors)
● must be methods
● no return type
● no arguments

operator typeToConvertTo(void);

Example 6.12  Suppose Person has a member method
operator int(void); // maybe evaluates to the Person’s age

// in a function
Person adam(23); // create adam with age=23
int x;
x=(int)adam; // old syntax
x=int(adam); // alternative syntax

Exercise 6.6  Observe automatic conversions and casts. 
Explain what happens with bigger=325 (there is default assignment so 325 must be
converted to StoneBag, and this will work after 325 is promoted to double 325.0).

❍ Be careful not to overuse conversions and casting, ambiguity may easily result

6.8 Memory Management Operators
❍ Memory management (new, new[], delete, delete[]) can be overloaded 

❍ to control memory manegemnt for all or some classes

❍ If overloading new (delete), should also overload the [] versions and delete(new)

❍ They can be overloaded as either/both 

❍ top-level
● will apply to all memory calls except when overloaded as methods
● prototype is different from other to-level operators



6   Operator Overloading:: Subscript

cs2260@UMSL 2005 Cezary Z. Janikow Page 79

❍ methods
● will apply to all objects of the class

❍ Prototypes are the same for top-level and members 

❍ both can take other optional parameters

❍ new (method will be implemented with resolution operator and declared inside class)
void* operator new(size_t); 
void* operator new[](size_t);

● new Person; will initialize 1st argument to sizeof(Person)
● new Person[2]; will initialize 1st argument to sizeof(Person)*2

❍ delete (method will be implemented with resolution operator and declared inside class)
void operator delete(void*);
void operator delete[](void*);

❍ You will have to implement class MemoryManager which will alocate a chunk and give it
away piece by piece

6.9 Subscript
❍ [] must be overloaded asa method

❍ will apply only to this class

❍ useful for creating user-defined array-like containers

❍ second parameter may be integer, as in index, but can be anything

Example 6.13  If class A has [] overloaded with an integer paramater, then this will refer
to the overloaded operator:

A a;
a[i]=x;

❍ [] generally requires two forms

❍ to handle const objects, const version must be provided
const retType& operator[](parameter) const;

❍ to handle using [] in modifying expressions, non-const version is needed
retType& operator[](parameter);



6   Operator Overloading:: Function Call

cs2260@UMSL 2005 Cezary Z. Janikow Page 80

Exercise 6.7  Class IntArray handles 1-d arrays, does boundary checking. It uses the same
[] access operator by overloadidng.

● Templates will allow a class such as IntArray to be created for all types not just integer
and to work as multi-dimensional array

6.10 Function Call
❍ () must be overloaded as a member

❍ will apply only to this class

❍ It is used to handle expressions like this
object(parameters)

● the object will be the implict argument
● the parameters must be declared in the operator

❍ Same as with [], we usually need const and non-const versions

Example 6.14  Suppose we need Int2DArray. Double indexing can be handled via ()
operator so that some Int2DArray called a2 can be accessed as

a2(2,3)=5;
to write 5 into its 2nd row 3rd column element.

int& Int2DArray::operator()(int x, int y) {
if (x<0 || y<0 || x>=size1 || y>=size2)

throw “Bad indexes”;
return p[x*size2+j]; // assuming internal array is 1D of 

} // size size1*size2


