6 Operator Overloading:: Unary operator

-
6 OPERATOR OVERLOADING

[Most operators can be overloaded for user defined classes
U can use standard operators to write expressions
[J cannot change precedence nor associativity
[J cannot change meaning for intristic types
O

the leftmost argument in an expression is implicit in the overloaded operator
e must declare only the remaining arguments, if any
e cxpressions with different leftmost arguments must be handled with
e non-member methods, fri end if needed to access private data
U side effects are up to programmer
e use common sense to avoid confusion

U reversing arguments if applicable

U The following can be overloaded

+ - * / % N &
~ | = < > += -= * =
/= % N= & = << >> o=
<<= — | = <= >= &% | | ++
-- , - >* -> O [] new del ete
new | del et e[]

0 cannotoverload :: ?. . and *.

6.1 Unary operator

t ype operatorQ(void); // Orepresents the operat or
e only the implicit argument

Example 6.1 Overload unary - for Stock so that - st ock would mean sell half shares.
voi d S ock: : operat or - (voi d){

thi s->sel | (thi s->shares/ 2);

this->set tot();

}

// later in a function
S ock i bm
-i bm

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 71

6 Operator Overloading:: Binary operator

-

6.2 Binary operator

t ype operatorQ(ar gunment); // Orepresents an oper at or
e left argument of an expression is the implicit (*t hi S)

e right argument of an expression corresponds to the interface argument

Example 6.2 Overload + for S ock to add number of shares creating a new S ock
S ock Sock:: operator+(const Sock &econd) const
/1 return *this + second
{ int x=this->shares+second. shar es;
S ock s(*CGonbi ned”, x);

return s;
}
/] later
Sock ibm att;

S ock ss=i bmatt;
ibmatt; // does it nmake sense? what about 3+57?

Example 6.3 Same as Example 6.2 but with potential memory leaks and misuse - why?.
Sock & Sock:: operator+(const Sock &econd) const{
i nt x=thi s->shar es+second. shar es;
S ock *s=new S ock(* Gonbi ned”, X) ;
return *s;
}
Il later
Sock ibm att, knart, wal nart;
i brratt=knart+wal nart; // what is this, and howdo we read it?
[l what if Sock s(“Conbi ned”,x) is used?

Example 6.4 Same as Example 6.2 but with potential memory leaks - why?. It can be used
most efficiently on the other hand - why?
Sock *Sock: : operator+const S ock &econd) const{
int x=t hi s->shar es+second. shar es;
S ock *s=new S ock(“ Gonbi ned”, x) ;

return s;
}
Il later
Sock ibm att, walnart, knart, *sp;
sp=i bmat t;
sp=val nart +knart ; /1 nenory | eak

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 72

6 Operator Overloading:: Binary operator

-

o

Example 6.5 Overload + for & ock so that i br#+10 would mean by 10 more shares.
voi d Sock:: operator+(int toBuy){

t hi s- >shar es+=t oBuy;

this->set tot();
} /1 could inplenment wth this->buy(toBuy,this->share val);

/] later
S ock i bm
i bnm¥10;

Example 6.6 adam*10 means add 10 years.
voi d Person::operator+(int inc) {
if (inc>0)
age+=i nc;

}

/1 later in an application
Per son adan{“Adani, "M ce”, 20);
adam+10; /1 adamis 30 now
10+adam /1 ???bunp

O Postfix ++/-- differentiated by having dummy (i nt) argument in postfix

Exercise 6.1 Stock with overloaded +.

Exercise 6.2 Extend Exercise 6.1 changing ‘+’ so that names are combined, shares added,
price averaged. Overload ‘-’ with an integer to mean ‘sell up to that many’ (as many
available). For example, ‘ibm-100" would be sell 100 from the ibm shares object. Then,
overload that overloaded ‘-’ to work with doubl e argument, meaning change price to that
value. Note that both -” operators will change *t hi s.

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 73

6 Operator Overloading:: Overloading with Non-member Methods

-

o

6.3 Overloading with Non-member Methods

[0 Needed when

U in binary operators, the left argument is not of the class of interest

adan+10; /1 done by overl oadi ng + f or Person
10+adam /1 woul d have to overload + for int ???

U if desired to perform automatic argument conversions
[0 Implementation

U must implement non-member operator of two arguments
voi d operat or Hi nt X, Person &);
e cannot access private stuff
e prototyped outside class in the header file
e implemented along with class methods

e as a global method, calls with different argument will have arguments converted

O if private access needed, it can be accomplised by fri end

friend void operator+(int, Person & ;// inside class decl aration
voi d operat or+(int inc, Person &){// Note no Person: :
i f (inc>0)
p. age+=i nc;

}

U private access can also sometime be implemented by reversing the arguments
e works only if the reversed operator exists and does the same

voi d operator+(int, Person & ;
voi d operator+Hint inc, Person &) {
i f (inc>0)
p+H nc;

}

O global function for class C should be declared and implemented with the class

U you may not implement the following operators except as methods:
subscript [], function call (), assignment =, indirection ->

Exercise 6.3 Design a Vector class, for a 2D space. Each vector is represented by cartesian
or polar coordinates. Use operator overloading for operations.

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 74

6 Operator Overloading:: More on fri end

4 .
6.4 Moreonfriend

[Global methods, such as operators, can be friends

U Any method or any class (and thus all its methods) can be friends

Example 6.7 friends.

class A {
...
int f();
/...
1
class B {
...
friend int A:f(); // nakes f nethod a friend to class B
friend A /1 nmakes all nethods of A friends of B
...
};

0 Avoid making too many fri ends...

6.5 Overloading 10 operators

0 What about writing

cout << adam
ci n >> baby;

e must overload with non-member friend function
can be done for a single application
can be done for chaining

do not handle by reversing arguments

O O Oo O

declare f ri end if needed to access private elements

Example 6.8 <<overloaded for a single application on Per son.
friend voi d operator<<(ostreamg& const Person &; // in class decl.
voi d oper at or <<(ostream &os, const Person &) {
0S << “M nane is “ << p.nane << end ;
}

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 75

6 Operator Overloading:: Overloading Assignment

-

/1 in a function
Person adan{“adani), susan(“susan”);
cout << adam /1 ok
cout << adam<< “ and “ << susan << endl; // bunp

Example 6.9 << overloaded for Per son - with chaining.
friend ostreamé& operat or <<(ostream&, const Person &; //in class decl.
ost r eam &oper at or <<(ostream &s, const Person &p) {
0S << “M nane is “ << p.nane << end ;
return os;

}

/!l in a function
Person adan{“adani), susan(“susan”);
cout << adany/ ok
cout << adam<< “ and “ << susan << endl // ok

[J general form
e in the same files as member methods
e inside class declaration if f ri end, outside otherwise

friend ost reamé& oper at or <<(ost ream&, const Person &) ;

Exercise 6.4 Redo Exercise 6.3 replacing show() method with overloaded <<.

6.6 Overloading Assignment

[J Must overload if overloading copy constructor

[J It is not inherited (the only exception)
Cl assNane& Cl assNane:: oper at or =(const Cl assNane &our ceCbj ect){

/1 assign source(j ect to*thisandreturn*this
}
[J Needed on
U explicit object assignments

U potentially on objects created and initialized with =

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 76

6 Operator Overloading:: Overloading Assignment

o

[J Default assignment
U copy bytes

(] should be the same as copy except that

e not a constructor so no need to allocate storage but may need to deallocate and allo-
cate

e prevent not to assign to itself

Example 6.10 The first two are potentially handled by copy constructor only.
Person adam susan.

Per son j ohn=susan; /] assignnent or copy constructor
Per son j ohn=Per son(susan) ; /] assignnent or copy constructor
adanFsusan; /1 assi gnnent

Example 6.11 Assume class S ri ng with dynamic allocation as in Example 3.21 Then, we
may implement assignment by allocating space (deep copy), copying:

Sring& Sring::operator=(const Sring& st) {
if (thi s=&st)
return *this; /1 no copying to itself
int x=strlen(st.str);
if (len>x)
strcpy(str,st.str); // enough space here, avoidi ng del et e/ new
el se {
delete [] str; /1 return storage as mght need nore or |ess
| en=x+1,
str=new char[l en];
strcpy(str,st.str);
}

return *this;

Exercise 6.5 Strings again, dynamic memory, with overridden copy and assignment.

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 77

6 Operator Overloading:: Type Conversion from Class

-

6.7 Type Conversion from Class

[J Conversions from a class to intristic types can also be defined
U not for converting to another class

[use conversion operators (not constructors)
e must be methods
® no return type
® 1o arguments

operator t ypeToConvert To(void);

Example 6.12 Suppose Per son has a member method
operator int(void); /1l maybe eval uates to the Person’s age

// in a function

Per son adan{23); /] create adamw th age=23
int x;

x=(i nt) adam /1 old syntax

x=i nt (adan); /1 alternative syntax

Exercise 6.6 Observe automatic conversions and casts.
Explain what happens with bi gger =325 (there is default assignment so 325 must be
converted to & oneBag, and this will work after 325 is promoted to doubl e 325.0).

[J Be careful not to overuse conversions and casting, ambiguity may easily result

6.8 Memory Management Operators

[0 Memory management (new new |, del et e, del et e[]) can be overloaded

U to control memory manegemnt for all or some classes

O

If overloading new(del et e), should also overload the [] versions and del et e(new)
[l They can be overloaded as either/both
U top-level

e will apply to all memory calls except when overloaded as methods

e prototype is different from other to-level operators

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 78

6 Operator Overloading:: Subscript

-

J methods
e will apply to all objects of the class

O Prototypes are the same for top-level and members
U both can take other optional parameters

U new (method will be implemented with resolution operator and declared inside class)

voi d* operator new(si ze t);
voi d* operator new] (size t);

e new Person; will initialize 1st argument to Si zeof (Per son)
e new Person[2] ; will initialize 1st argument to Si zeof (Per son) *2

U delete (method will be implemented with resolution operator and declared inside class)

voi d operat or del et e(voi d*);
voi d operat or del ete[] (voi d*);

U You will have to implement class MemoryManager which will alocate a chunk and give it
away piece by piece

6.9 Subscript

O

must be overloaded asa method

O

will apply only to this class

|

useful for creating user-defined array-like containers

O

second parameter may be integer, as in index, but can be anything

Example 6.13 If class Ahas [] overloaded with an integer paramater, then this will refer
to the overloaded operator:

A g

ali]=x;

O [] generally requires two forms
U to handle const objects, const version must be provided
const ret Type& operat or[] (paraneter) const;

[0 to handle using [] in modifying expressions, non-const version is needed

ret Type& operator[] (paraneter);

o

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 79

6 Operator Overloading:: Function Call

-

o

Exercise 6.7 Class IntArray handles 1-d arrays, does boundary checking. It uses the same
[] access operator by overloadidng.

e Templates will allow a class such as IntArray to be created for all types not just integer
and to work as multi-dimensional array

6.10 Function Call

0 () must be overloaded as a member
U will apply only to this class

[TItis used to handle expressions like this

obj ect (par anet er s)
e the object will be the implict argument

e the parameters must be declared in the operator

0 Same as with [], we usually need const and non-const versions

Example 6.14 Suppose we need | nt 2DArray. Double indexing can be handled via ()
operator so that some | nt 2DAr r ay called a2 can be accessed as

az2(2, 3)=5;
to write 5 into its 2nd row 3rd column element.

int& Int2DAray: :operator()(int x, int y) {
if (x<0 || y<O || x>=sizel || y>=size2)
throw “Bad i ndexes”;
return p[x*size2H]; /] assumng internal array is 1D of
} /'l size sizel*size2

~

¢s2260@UMSL ©2005 Cezary Z. Janikow Page 80

