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Abstract
We give a formula for the duals of the masks associated with trivariate box spline func-
tions. We show how to construct trivariate nonseparable compactly supported biorthogonal
wavelets associated with box spline functions. The biorthogonal wavelets may have arbi-
trarily high regularities.
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1. Introduction

In [8], Cohen, Daubechies, and Feauveau constructed biorthogonal dual functions
associated with univariate B-spline functions B,, and compactly supported biorthogonal
wavelets associated with B,,. Since then, the theory of multivariate biorthogonal wavelets
has been developed rapidly (cf., e.g., [6]). Since box spline functions are a natural general-
ization of the well-known B-spline functions, several researches have been done to construct
bivariate compactly supported biorthogonal wavelets associated with box spline functions
(cf. e.g., [7], [10], [16], [25], [26], [27] and [14]). Let By, be the bivariate box spline

whose Fourier transform is

EERTATRNG _ ptwa\ _ pilwidwa) \ "
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Wi iwa (w1 + w2)
for any positive integers ¢,m,n and w = (w1,w2) € R?. (For properties of bivariate box
spline functions, see [4] and [2]. For computation of these bivariate box spline functions,
see [5] and [20].) It is known that the integer translates and their dilations of a box spline
function By, », form a multi-resolution approximation of Ly (R?) (cf. [2] or [24]). For small
integers [, m,n, several different constructions of those biorthogonal wavelets were given

in [7], [10], [26] and [27]. In a recent paper [14], He and Lai gave an explicit formula of
the dual function By, » associated with box spline function By y, , for any integers {,m,n

and compactly supported biorthogonal wavelets associated with box spline function By, »
were also constructed. Those biorthogonal wavelets may have arbitrarily high regularities.

In this paper, we are interested in generalizing the explicit formula for the dual box
spline functions and construction of biorthogonal box spline wavelets in [14] to the trivari-
ate setting. That is, we shall construct the compactly supported biorthogonal wavelets
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associated with trivariate box spline functions. Let Bj m, n p.q,» be the trivariate box spline
function whose Fourier transform is

N 1 — eiwl l 1 — eiw2 m 1 — eiW3 n 1 — ei(w1+w2—|—uJ3) p
Bimn,pqr(w) = - : . . X
Wi iwa iwa (w1 + wa + w3)
1 _ ei(WQ+W3) q 1 _ ei(W1+W3) r
( 1wy + ws) > ( 1w + ws) >

for any nonnegative integers ¢, m,n, p,q,r and w = (w1,wq,w3) € R®. (For this choice of
the direction set and other properties of trivariate box spline functions, see [2].) Without
loss of generality, we may assume that all [,m, and n are positive. Since the tensor product

case is not of interest here, we assume that at least one of p, ¢, r is not zero. It is known
that B m.npqr generates a multiresolution approximation of Lo(R?*) (cf. [2, p. 90]).

Our first step is to construct a compactly supported function Bj ., np g, generating a
multiresolution approximation of L2(R3) which is a biorthogonal dual to By m n,p.q,r in the
following sense:

/ Blmn,pq,r(X — k)ma,n,p,q,r(X —k)dx = ok 1 (1.1)
RS

for all 3 D-integers k, k' € Z*, where &k is the standard Kronecker notation defined by
05 =01if j # k and 6;x = 1 if j = k and Z is the collection of all integers. Our second

step 1s to construct compactly supported biorthogonal wavelets »; and ;/:j fory=1,---.7
and two families of FIR filters {M;,¢ =1,---,7} and {M;,j =1,---,7} with

N e G2 Lws s w .

77Z)]((“J) = M](e 2,6 2,6 2 )Bl,m,n,p,q <§> , )= 1, . ‘,7 (12)
and N R

7 — w1 w2 cws\ X w .

P (w) = M; <€ZT,€ZT,€ZT> Bimn <§> , J=1--.7 (1.3)

such that the integer translates and their dilations of the #;’s and ;/;j’s form two dual
Riesz bases for Ly(R?) (cf. [8] for the univariate setting or [6, 19] for the multivariate
setting) and the two families of masks form an exact reconstruction of synthesis/analysis
filter bank which may be possibly used in data compression for 3D seismic data files.

It should be pointed out that the study of constructing compactly supported biorthog-
onal wavelets associated with trivariate box spline functions is not a simple generalization
of the counterpart in the bivariate setting. We are only able to extend our method in [14]
to the case that either ¢ = 0 or » = 0. In this paper, we first consider trivariate box spline
B¢.monp,qr with = 0. The case associated with By m n.p.qr With ¢ = 0 and r > 0 follows
from the case r = 0 and ¢ > 0 immediately by the box spline symmetry

Bl7m7n7p7q70(x3 ? x27 xl) = Bn7m7l7p707q(x1 ? x27 x3)

However, the study of the construction of biorthogonal compactly supported wavelets
associated with By, n p,¢,» With ¢ > 0,7 > 0 has to be delayed. From now on, we shall use

B£7m7n7p7q = B£7m7n7p7q70'
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We shall give an explicit formula for Bl,m,n,p,q for any given positive integers I,m.,n, p
and ¢ in §2. The formula is a generalization of the counterpart in the bivariate setting
in [14]. The regularities of these biorthogonal dual functions are studied in §2.2 which is
based on the theory developed in [13]. General results on the regularity can be found in [9
and 17]. Although there exist some general schemes on how to find matrix extension for
constructing biorthogonal wavelets (cf. [16], [26], [27] and [3]), we will give a new matrix
extension scheme, which is easier to implement, for constructing M;’s and J\%’s that lead
to compactly supported biorthogonal wavelets with arbitrarily high regularities in §3. The
proof of the fact that these ;s and ;/;j’s generate two dual Riesz bases may be based on a
straightforward generalization of the arguments for the univariate setting in [8] or based on
the multivariate theory in [6] and [11]. Finally, we give several examples for small integers
l,m,n,p,qin §4.

§2. Construction of Compactly Supported Biorthogonal Dual Functions

§2.1 Construction of Biorthogonal Dual Masks

In the following discussion, we assume that z = (21, 22, 23) € C*. We know that

1—|—Zl ¢ 1—|—22 " 1—|—Z3 " 1—|—212223 P 1—|—ZQZ3 1
Mo(z) = A
2 2 2 2 2
is the refinement mask of the box spline function By, n p 4. For any positive integer N,
we define a bivariate polynomial

N-—-1
2N —1
(2.1) La(ry) =Y ( . )ykxN_l_k,
k=0
which satisfies
(2.2) Ly (e y) +y Ly, e) = (@ +y)* T

Define

l4+2l4y 1—21—y

(2.3) Hr(“’vy)‘:'cf< > 2 2 2 )

for any positive integer 7. It follows immediately from (2.2) that

(2.4)
() (52 mi (57 () mimemn=(52)

Let




It is well known (see [12]) that
(2.5) (1—y)"Pn(y) +y" Pn(1—y) = 1.
For z = (z1, 22, 23), we define
N-—-1 2k
—1+4+k _ 1— 21292
Dn(z) = (z12223) -N 2} ( )(—l)k(212223) k (%) )

Note that since each term in the summation is nonnegative, (z12923)Y Dn(2) > 1 for
g W1 t+wo tws .

21| = |22 = |23] = 1. If we take z; = ¢ j = 1,2,3, and let y = sin — — in
(2.5), we get

1 2N 1 _ 2N
(2.6) (%) Dy(z)+ (f) Da(—2) = 1|5 = 1j = 1,23

for any positive integer N. Now we can define the refinement mask Mg(Z) for Bg7m7n7p7q

as follows
1—|—Z 1—|—z:2_1 7o 1—|—z:3_1 7o 1—|—21_122_123_1 p_px
2 2 2

+ z5 Z 7
( B ) a7 Dul )

with 271 = (27", 2, ', 237 '), where
L—o L—30+1
1+ 2 1+ 292
Ho () = < 5 1) (722 3) Hy(z2,23)Hr (21, 2223)

and the positive integers o, p, L, n are so chosen that o > max({,m,n,q),n > (p—1)/2,p =
2n+1and L > 30 — 1.

We are ready to present the main result of this subsection.

Theorem 2.1. Mg(Z), defined above, is a dual mask of My satisfying

(2.7) Z Mo My (1) 21, (=1)2z, (=1)%25) =1, |z1| = |22] = |z3] = 1.
01 ,05,05€{0,1}

Proof: First we claim that

(2.8)

— ¢ Y} Y} 1 —|—212223 2(L+m)
>, MoMo ((=1)" 21, (=1)%22,(=1)"%23) = Dy (2) | —5—— :

£1,02,£5€{0,1}
(—1)frtfatis—y



Indeed, the left-hand side of (2.8) can be written as
1 + Z1%2%3 ) r

L L—20+1
1+ 2 14+ 292
DL+7)(Z)< 5 ( 5 1) ( 22 3) HL(Zl,ZQZ;;)X
1+ 2\ /1+23\° 1—2\7 /1—23\"
L L—20+1
1-— 1-—
f(52) () i

(52 (52 o (52 (52 )]

Then (2.8) follows by using (2.4) twice for 7 = ¢ and L respectively. It is easy to see (2.7)
by (2.8) and (2.6). W

We are now able to define the dual Bg7m7n7p7q associated with box spline function
B, ,n,p,q BY

oo

(29) .§£7m7n7p7q(w17CU27w3) — H ‘Z/—\Z/O <eiw1/2k7eiw2/2k7eiW3/2k> .

We first note that Mg(l, 1,1) =1 and hence Bg7m7n7p7q is well-defined for each w € R3. We
shall show in the next subsection that By, n,p 4 can have any high regularity by choosing

integers o, p(=2n + 1) and L sufficiently large. We will show that Bg7m7n7p7q is a dual to
box spline By n,p,q i the sense of (1.1) in subsection 2.3.

§2.2 Smoothness of the dual Bam’n%q

To make Bg7m7n7p7q € CQ(R?)) for @ > 0, we need to estimate the infinite product in
(2.9). Note that
COS ~—— COS —
2

|H 151 l£2|<§ 27 =1
_k:0 k 2

T—1 k T—1—k 1/2
27 — 1
< ( g T sin? §2—1 cos? % ) X
k=0

& . &N & &

sin — sin —
2 2

The last equality can be seen in [14].



Here we need a result from [13],

I (o

) < o1+ JE),

where = 5983 < 1. Also notice that |Dyy,(2)| = Pry, (sin? @1tedes) we get

2log 2
. . wz aoa—imn . w3 og—n
H ‘Mg <e o+ e’ 5 el2k >‘ < smc—‘ sine— sine— X
2 2 2
L-20—g¢+1 p—p
. w2t ws . Wt wrtws
sinc sine——————— C(1+ w2 )7 (1 4 |ws] )" x

(14 for)#H (1 + fowa + w3 (14 or + ws + wy] )2+
SC(l + |w1|)(ﬂ—1)L+€(1 + |w2|)(u—1)a+m(1 + |w3|)(ﬂ—1)0+n><

(1 + |wg + ws|)HDEFZoHa=1] oy 4wy 4 ws])2REFD =P FP,

sin £

where sinc € := is the well-known sinc function.

For fixed ¢, m,n, p,q and for any o > 0, we choose o,n, L and p = 2n + 1, such that

max((g — D)L+ 0, (p—1)o +m,(g—1)o+n) < —(a+1)

and
(t=1L+20+¢—1<0, 2u(L+n)—p+p=<0.
That is
(2.10) o > (max(m,n) + o+ 1)/(1 — p),
(2.11) L>max({+a+1,204+¢—1)/(1—u),
. 2ul +p—1
2.12 p=2n+1 with n> ——m-—
(212) 2(1 = p)

Therefore, we have established the following

Theorem 2.2. Let o,L,p and n be integers satisfying (2.10), (2.11) and (2.12). Then
Bymon.p,q defined in (2.9) is in C*(R?)

§2.3. Biorthogonality and Riesz Basis Property
We next show that By, p defined in (2.9) is a biorthogonal dual to box spline
function By m npq in the sense of (1.1). Indeed we have
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Theorem 2.3. For o,L and p(= 2n + 1) sufficiently large, the integer translates of

Bg7m7n7p7q form a Riesz basis for spany,,(rs) {Bé,m,n,p,q(x —k)ke Z3}.

Proof: Mainly, we need to prove the following inequality (see e.g. [23, Chap. 2])
N 2
0<AC< Z ‘B&mﬂ%p,q (w+ 27Tk)‘
keZzs

< B < +4+o0o.

The second inequality follows easily from the proof of Theorem 2.2 by choosing o = 0. The
first inequality is an immediate result of Lemma 2.5, which may be proved by an extended
argument in [14].

Remark 2.4. We note that the choice of @ = 0 in the proof of Theorem 2.3 is a little
stronger than necessary to make By, n,p ¢ to generate a Riesz basis. For specific {,m,n,p
and ¢, one may use the methods like spectual radius (cf. [11] and [17]) to get better

estimate of decay of Bg7m7n7p7q(w).

Lemma 2.5. For o, L and p(= 2n + 1) sufficiently large,

~ X 2
(2.13) Z ‘Bé,m,nm,qB&m,nm,q (w+27k) > A>0.
kez3

By noting that Bg7m7n7p7q(0, 0,0) =1 and Bg7m7n7p7q is continuous, we can use a result
in [6, Theorem 3.3] to get the following Theorem 2.6.

Theorem 2.6. For o,L and p(= 2n + 1) sufficiently large, Bg7m7n7p7q generates a mul-
tiresolution approximation of Lo(R?*), and By m npq 15 @ biorthogonal dual to box spline

B£7m7n7p7q'

Proof of Lemma 2.5.

By the periodicity and symmetry, we only need to show (2.13) for w € [0, 7] x [—m, 7%

Furthermore, it is sufficient to show that for each w € [0,7] x [—m, 7|%, there exists a
multi-integer k € Z*, such that
|Bl,m,n7p7qél7m7n7p7q(w +27k)[ = A > 0.

For simplicity, we use B and B to denote Bl,m,n,p,q and Bl,m,n,p,q respectively in the
remaining of the proof. Since

BB(w) = [ Mo Myl /¥ einl? cioanl?),
j=1

we consider MyMy(e*t, e™2, '), For convenience, we denote

[ Mo Mo(e™r, e2, e )| =|H ()| [ H (W) H ()| Dpgy(e't, e, ')

(2.14)
>|H ()| |H (w)||[H ()],
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since |Dp4qn(et, e, e'3)| > 1 for wy,ws, w3 € R as pointed out earlier, where

wi\ L wa\ w3\ w1 + wa L=2o+1 I\
(2.15) H%w):= <cos —> <cos —> <cos —> cos cos —
2 2 2 2 2

with |w| == wi +we +ws, HY(w) := Hy(e™?,e'?) and H(w) := HL(eiwl,ei(“’2+w3)). That

1S
= (20 — 1) . w2 . wa\F w2 wg\ 71—k
= E <— sin — sin —> <cos — coSs —>
— k 2 2 2 2

lrer 1 wi . wrtws\” w1 wy +ws\ T
— SlIl — S111 COS — COSs .
P k 2 2 2 2

Y

(2.16)

and

(217) |H*(w)| =

It follows from (2.15) that

L—20+1 p

[ [

1wl
sinc—

2

wy + wa

2

. W2
sinc—

2

. w3
sinc—

2

sinc

(2.18) H|H“ w/20)| =

LW
sinc—
2

For H |H®(w/27)| and H |H(w/27)|, we need to use the following two different kinds of

estimates for each of them.

Proposition 2.7. There exiss a real number 6y > 0 such that

(2.19) H Y < ) > e

for wy € [—bg,60],w3 € [—37/2,37/2],w1 € R.
Proof: From (2.16) we have

b (W) _ w2
4 <2]‘> = ‘Cos 251 21+1

w2 w3
541 % 55

wy . walol
sinc 7 sinc— ,

2

—! 20 -1 ; wa ¢ wg \k
< TR 2]‘+1>
o—1 9

w
(1 —b|tan 57T )

(2.20)

> |cos

for some constant b > 0. Indeed, we write

Uz_:l 20— 1 < ; w2 ¢ w3 >k
2 k —tan oy tan oy
=0

o—1

. w3 w3 p [ 20—1 o) ws \ k-1
=1+ tan IS tan IS Z(—l) ( ' ) <tan2jTtan 2]‘—1—1) )




37 3
Note that w; € R,wp € [—7,7])? and w; € [—%,g] imply that ‘ d

w3
27+1

3 . .
g. Consequently, the continuous function

has an upper bound b. Thus we have (2.20).
For |wa| < &¢ := min{m,4tan"*(1/(2b)),1/(2b)}, we have

b| tan

2+1| <b|tan—| <1/2.

Thus,
1 —b|tan

2+1|>0 for wy € [—b0,00],7 > 1.

Since |tanz| < 2|z| for |z| < 7/4 and 1 — |z| > e72I*] for |z| < 1/2, (2.19) follows from
(2.20). W

Similarly, by (2.17), we have

Proposition 2.8. There exists a real number 6y > 0 such that

0 L-1
(2.21) H |H(w/27)| > ™! simc%simcw2 ;w?) )

7=1
for wy € [—bg,0¢], w2 +ws € [—37/2,37/2].
Proposition 2.9.

—1
(2.22) H|H (w/2)| > smc?zsmc% )
for wy € [—2m,0],ws € [0,27] or for ws € [—2m,0],wy € [0,27].
w2 ™ w3 ™ .

Proof: For wy € [—27,0],w3 € [0, 27], we have 541 € [—5,0] and 541 € [0, 5] forj > 1.

Thus, each term in the summation of H®(w/27) (cf. (2.16)) is nonnegative and hence,

wWo w3 o—1
- COS -
21+1 21+1

| H(w/27)] >

COS

(2.22) follows immediately. W

Similarly, we have the following



Proposition 2.10.

.owr . w2 tws
SINC——S11nc 2 5

(2.23) [ 1 w/2)] >

i=1

for wy € [—2m,0],ws + w3 € [0,27] or for we + w3 € [—27,0],w; € [0, 27].

We are now ready to prove (2.13). In the following discussion, we let ¢ = min{=/3, 6o}
where 6y denotes the smaller number 6y in Propositions 2.7 and 2.8. To show (2.13) for w €
[0, 7] x [—7, 7]?, we divide the domain into following 4 subdomains: [0, 73, [0, 7] x [—7,0]?,
[0, 7] x [, 0] x [0, 7] and [0, 7]? x [—,0]. For w € [0, 7]?, we consider the following three
subcases.
1°a). For w € [0,6]? x [0, 7], using (2.18) and Propositions 2.7 and 2.8, we have

~

BB(w)| > H [ (55) II H ()l II (5|

2L—1 20—1 20—1 Wi oo | ET20H
(224) 26_2 SlIlC? Sll’lC7 SlIlC? sinc ! * 2 X
L—1
. wo + ws |l |”
sinc sinc—
2 2
w w
Since 0 < wy <6,0<wy <6,0< w3 <7, and 0 < % <6 < /3, all sincé,sinc%,
w wy +w
sinc— and sinc— s are greater or equal to 2. we have
2 T
oy 201 g 201 wa 1201 |y 4wy |LT2OH 9\ 3L+20-2
sinc— sinc— sinc— sinc > | = :
2 2 2 2 e
wy + w o+
Also, since 0 < 2; < —2|_ < 6+ 7/2, and |w|/2 < 6 + ©/2, by the decreasing
property of sinc(x), we get
L-1 P Ldp—1
wy +w w e P
sinc 2; 3 sinc|2—| > sinc(§+(5)‘

Thus,

™

. 9\ 3L+20-2 Idp—1
IBB(w)| > ¢ (-) <sinc(g +o)

1°b). Forw € [6, 7] x[0,6] x [0, 7], we choose k = (—1,0,0) and consider|B§(w—(27r,0,0))|.

As the same as above, we have, from (2.18)

o)
H Ha(w—(27r,0,0)) _
27
j=1
L L—2 1
L owp =27 Cowal%] . wal®| . wyFwy —27 ot ] |w|—27rp
sinc smc; smc; sin 5 sinc




Since —27 <w; — 27 < 0 and 0 < ws + w3 < 27, by Proposition 2.10, we have

L—-1
2 0,0 -2
H |H ik ))| > sine L T gine?? ;w?)
Using Proposition 2.7, we have
2 0,0 o—1
H |H ik ))| > ¢! |sine Zsine 22

As the same as subcase 1°a), we have

IBB(w — (27,0,0))]

1. w1 —27 PP 2ot wg 20| wy 4wy — 27| P
>e™ " |sinc sinc— sinc— sinc X
2 2 2
sinc|w| — 2P| . we +ws !
2
o <2>4a'—2 ey —2r 2L=1) Wi by — 2 L—20+1
>e — sine ——— sinc X
T 2
o lwl=27)” | wetws ]!
sinc———| X [slnc———
2 2
) g 4o—2 é 4L4+p—20—-1
>e sine(w )
T 2
by using the following facts
-2 ) ; )
w1 T <7r__,ﬂ<1,¢:2,3, wy + w3 <7r+ 7
2 - 2°121 72 2 - 2
w1 +we — 27 ) w1 + wy +ws — 27 )
1+ w2 <7—2 and 1+ w2 +ws <x-2
2 2 2 2

1°¢). Forw € [0, 7] x[6, 7] x [0, 7], we choose k = (0, —1,0) and consider |B§(w—(0, 27,0))].

Similar to the discussion in 1°b), we use Propositions 2.9 and 2.10 to get

H|H 027r 0))|Z

L—-1
. w1 . w2 + w3 — 27
smc—smc#

and
o—1
. W — 27 . ws
schsmc—

H|H 027r 0))|Z
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Recall from (2.18) that

oo

. w—(0,27,0)
1[I 7 (T)‘ =
j=1
] wl‘L Cwy =277 ws] . wl—l—w2—27rL_2U+1 ] |w|—27rp
sinc—| |sinc sinc—| [sinc——— sinc
2 2 2
By the same arguments as in 1°b), we have
S 2L—1 20—1
|BB(w — (0,27,0))| > sinc% sinc% X
. we — 27 2ol L woFwy =27 L=t L owy Fwy — 27 L=20+1 . |w| =27 P
sine——— sinec——— sine(———— sinc
2 2 2 2
2 2L+420—-2 S 2L4p—1
> (—) (sinc(ﬂ — —))
s 2
since we have the following estimates
ﬂ<_7i:1737M§7r_§7 wy +ws — 27 Sﬁ_i
2 2 2 2 2
wy Fwy — 27 <7r—§, wy +we + w3y — 27 <7r—§.
2 - 2 2 - 2

Therefore, the discussion in subcases 1°a)-1°¢) implies that (2.13) is true for w €
[0, 7]3. Similarly, we can deal with the other three subdomains. For the convenience of the
interested reader, we include the details in the Appendix. W

§3. Construction of Compactly Supported Biorthogonal Wavelets
First, we introduce a notation A(Fy, ..., P;) for any 8 Laurent polynomials P;(z),j =

0,...,7 with 2 = (21,22,23). A(Fo,...,Pr) is defined as an 8 x 8 matrix with columns

[PJ(Z)vPj(_Zlv'Z?in’))ij(Zlv _22723)7Pj(217227 _23)7
Pj(—z1, =22, 23), Pj(21, =22, —23), Pj(— 21, 22, _23)7Pj(_2)]T7 J=0,...7.

To construct biorthogonal wavelets associated with a trivariate box spline function,
we need to start from the mask My for the box spline function By p np,¢ and the mask

Mg for its dual function Bg7m7n7p7q to find masks My, ..., M7 and My, ---, M7 such that

(3.1) A(Moa---7M7)TA(M07"'7M7) =Ig, |z1| = =] =|s]=1,

12



where I3 denotes the 8 x 8 identity matrix. Then we can define biorthogonal wavelets 1;

and ;/:j for y =1,---,7 by, in terms of their Fourier transforms,
(32) hi(wr,we) = Mi(e "7 €3 ) Bim g <%’ %’ %) y J=Le T
and

(33) 772]((‘()17(‘()2):M] <eiWT17eiWT27eiWT3> Bl7m7n7p7q <%7%7%> 9 ] = 17”'77

By a result in literature (cf. [19] or [6]), these 1b;’s and 1;’s generate biorthogonal wavelets.
That is, {20;(2'x —k);( € Z,k € Z*,j = 0,...,7} and {209 (2"x —K');(' € Z,K' €
Z3,j' =0,...,7} constitute two dual Riesz bases for Ly(R?), and

/ 2£¢j(2£X — k) 2[1/;]‘/(24/X — k/)dX = (5474/(5]‘7]‘/(51{71{/.
RS

There is a matrix extension method available in the literature (cf. [26] and [27]) to find
such M;,M;,; =1,---,7. However, we would like to generalize the extension method in

[14] to deal with these Mj, ]\%’s. Our method does not rely on the Quillen-Suslin Theorem
and does not need an orthogonal procedure as the extension method given in [26] and [27].

Our method for the construction of M;, M],] = 1,---,7 satisfying (3.1) may be di-
vided into three steps:

Step I. Find Laurent polynomials J;,5 = 1,...,7, such that the determinant of the matrix
A(My, Jy,- -+, J7) is a non-trivial monomial. Since My(z), Mo(—z1, 22, 23), Mo (21, — 22, 23),
Mo(z1, 22, —23), Mo(—21, —22,23), Mo (21, —22, —23), Mo(—21, 22, —23), and My(—z) have

no common zeros on (C\{0})?, the existence of Ji,...,Jr is ensured by the well-known
Quillen-Suslin Theorem (cf. [21] or [28]). A computation of Jy,-- -, J; may be performed
based on a general algorithm given in [22]. However, by taking advantage of the special
properties of box spline functions, we shall give a concrete and elementary construction

for those Jy,..., J7.

Step II. Compute the inverse of A(My, Ji,...,J7)T. The inverse matrix also has the form

of A(py, Ml, e ,Mﬂ for Laurent polynomials pg, My, - - ,M7.

Step III. Replace py by M, in A(po, ﬁl, e ,ﬁ) The inverse of A(ﬁo, ﬁl, e ,M7) will
be the form of A(My, My, ---, M7). This will be clarified later.

First of all, let us give a detailed account for the first step. Let us write the mask
My (z) in the polyphase form

Mo(z) = fo(2*) + 21 f1(2%) + 22 f2(2%) + 23 f3(27)
+ 2122f4(22) + 2223f5(22) + 2123f6(22) + 212223f7(22),

13



where 22 := (2},22,22). It follows that fo, f1,..., fr have no common zeros since

[ ( ) ( 21722723)7M0(217_22723)7M0(217227_Z3)7

(3.4) Mo(—z1,—22,23), Mo(zl,—22,—Zg),Mg(—zl,ZQ,—Zg),Mg(—Z)]T
= U(2) [fo(z%), ..., f (22T

where
rl 21 29 23 2122 2923 2123 2129223
1 —zZ1 Z92 Z3 —Z129 Z2%23 —Z1%3 —Z1%2%3
1 Z1 —Z92 Z3 —Z129 —Z92%3 Z1%3 —Z1%2%3
1 Z1 Z92 —Z3 Z1%2 —Z92%3 —Z1%3 —Z1%2%3
(3.5) U(z) =
1 —zZ1 —Z92 Z3 Z1%2 —Z92%3 —Z1%3 Z1%2%3
1 Z1 —Z92 —Z3 —Z129 Z2%23 —Z1%3 Z1%2%3
1 —zZ1 Z92 —Z3 —Z129 —Z92%3 Z1%3 Z1%2%3
L1 —Z1 —Z9 —Z3 Z122 2923 Z1%3 —Z1%22%3 d

whose determinant is 40962725 z3.

We have to treat the case ¢ = 0 and ¢ > 0 separately. We first show

Lemma 3.1. Suppose that ¢ > 0. Then the first seven polynomials fy,..., f¢ have no
common zeros on (C\{0})".

Proof: Suppose that 22 € (C\{0})? is one of the common zeros of these seven polynomials.
It follows that

Mo(z) = Mo(—z1, =22, 23) = Mo(—21, 22, —23) = Mo(21, —22,—23) = 212223 f7(27),
My(—=2) = My(—21, 22, 23) = Mo(z1,—22,23) = Mo(21, 22, —23) = —z12223 f7(2%).

Thus, we have

(3.6) (14 20)5(1 4 22)™(1 + 23)™(1 + 21 2223)P(1 + 2z923)?
(3.7) = —(1—21)"(1 + 22)™(1 4 23)"(1 — 212223 )P(1 + 2923)"
(3.8) = (14 2) (14 22)™(1 — 23)"(1 — 212923)P (1 — 2223)1
(3.9) = (1 —2) (14 2)™(1 — 23)" (1 + 212025 (1 — 2323)¢
(3.10) = (1 —20)"(1 = 20)™(1 + 23)"(1 + 212223)P (1 — 2223)"
(3.11) = (14 21)"(1 — 22)™(1 + 23)™(1 — 212223)P(1 — 2223)1

14



(3.12) =(1+ 21)4(1 — 29)™(1 — z5)" (1 4 z12223)P (1 + z223)?

(3.13) =—(1- 21)4(1 — 29)™(1 = z3)"(1 — z12223)P (1 + z223)%.

It is obvious that all those terms in (3.6)—(3.13) above can not be zero simultanuously.
Otherwise all polynomials fy,- -, fr would have a common zero z? € (C\{O})3.

From (3.6) and (3.12), and (3.9) and (3.10) respectively, we have
(14 22)" (14 23)" = (1 —22)™(1 —2z5)" and (1 — z2)™ (1 + z3)" = (1 + 2z2)™(1 — z3)".

Thus, |1 + 22*™ = |1 — 2o|*™ and |1 — z3|*" = |1 + z3]*". That is, z5 and z3 have to be
purely imaginary numbers. Let us write zo = bt and z3 = ¢z with b, ¢ € R.
Again from (3.6) and (3.10), and (3.7) and (3.11) respectively, we have
(1 + Zl)é(l + Zz)m(l + 2223)q = (1 — Zl)é(l — Zz)m(l — 2223)q,
(1 — Zl)é(l —|— Zz)m(l —|— 2223)q = (1 —|— Zl)é(l — Zz)m(l — 2223)q.

It is easy to see that z; is a purely imaginary number. Let z; = a7 with a € R. By (3.8)
and (3.13), we have

(14 ai) (14 )™ (1 +be)? = (1 —ai)"(1 — bi))™(1 — be)?

Taking the absolute value both sides, we get |1 — be|? = |1 + be|? or be = 0. That is, b =0

or ¢ = 0 which contradicts the assumption that z € (C\{0})®. This completes the proof.
[

Lemma 3.2. Suppose that ¢ = 0. Then the first six polynomials fq, ..., f5 have at most
finitely many common zeros on (C\{0}).

Proof: Suppose that 2% € (C\{0})? is one of the common zeros of these six polynomials.
It follows that

MO(Z) = _MO(_Zlv'ZZvZS) = _MO(217227 —23)

= My(—21,22,—23) = 2123f6(22) + 212223f7(22)
My(—2) = My(z1,—22,23) = —Mo(—21, —22,23)

= —My(21,—22,—23) = 2123 fo(2%) — 212023 fr(2?).

Thus, we have

(3.14)
(1 + 21)4(1 + Zz)m(l + Z3)n(1 + 212223)p = —(1 — Zl)é(l + Zz)m(l + Z3)n(1 — 212223)p

= — (1 + Zl)é(l + Zz)m(l — Z3)n(1 — 212223)p = (1 — Zl)é(l + Zz)m(l — Z3)n(1 + 212223)p
and

(1 + Zl)é(l — Zz)m(l + Z3)n(1 — 212223)p = —(1 — Zl)é(l — Zz)m(l + Z3)n(1 + 212223)p =
— (1 + 21)4(1 — Zz)m(l — Z3)n(1 + 212223)p = (1 — 21)4(1 — Zz)m(l — Z3)n(1 — 212223)p.
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The above two groups of equations can not be zero simultaneously. Without loss of gen-
erality, we assume the first group of equations is not zero. Then we can get

114+ 21|14+ 23| =1 —21||1 — 23| and |1 — 2 ||1 + 23| = |1 4+ z1||1 — z3]-

It follows that zy +2z7 = 0 and z3 +z3 = 0. That is, zy = az and z3 = ¢z with a and ¢ real.
By (3.14), we have

(1+ ai)é(l —acz)? = —(1 - ai)é(l + aczy )P
—(1- ai)é(l —acz)? =(1+ ai)é(l + aczq )P

which implies that
(3.15) (1 — acze)* = (1 4 aczy)*?.

It is easy to see that z5 is a purely imaginary number. Let z, = bi for some b € R. It
follows from (3.14) that

(1+ ai)é(l —aber)? = —(1 — ai)é(l + aber)?

(3.16) Wy . WV .
—(1+ ai)" (1 4+ aber)’ = (1 — ai)* (1 — aber)”.
Look at the complex conjugate of both sides of (3.16), one can see that (14 az)’(1 — abci)?
is a purely imaginary number and so is (1 + ai)é(l + abei)P. Thus, (1 + ai)”(l + a? bzcz)p
-1
20
is a real number or (1 + ai)?* is a real number. Consequently, Z <2k N 1) a2k(—1)k =0,

k=0
which has only finitely many real solutions for a. Similarly there are only finitely many real

solutions for ¢. (3.15) becomes (1 + abci)zp =(1- abci)zf’, which implies that (1 + abci)zp
is a real number. Obviously there are finitely many b’s to make (1 + abci)?? real. Hence,
at most finitely many z’s satisfy (3.14). This completes the proof of the Lemma 3.3. W

Lemma 3.3. There exists an 8 x 8 Laurent polynomial matrix B(z) with real coefficients
such that the first column of B is [fy, fi,..., f]7 and the determinant of B is 1.

Proof: We first consider the case that ¢ = 0. By Lemma 3.2, we may assume that
fo, .-, fs have r common zeros in (C\{0})® for r > 1 (if r = 0, then it is trivial), which
are wj,j = 1,...,r. Now we consider fs + kf; for some real number k. Since fy,..., f7
have no common zero, fs(w;) and f7(w;) can not be equal to zero simultaneously for any
J = 1,...,r. Thus, there exists a kg # 0 such that f6 = fs + ko fr does not vanish on
all the w;’s. It follows that fy,..., fs, fs have no common zero in (C\{0})*. By Hilbert’s
Nullstellensatz Theorem, (cf. [15]), there exist polynomials py, ..., ps with real coefficients
such that

> Fi(@pi (=) + fol=)ps(2) = 1.
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Note that

" fo M1 71 [ foT
fi 1 fi
fa 1 f2
3] 1 f3
fa| 1 fa |’
5 1 Is
fe 1 —ko fe
L f7 L 1 1 Lfd
- fo _ 1 117
fi 1 fs
fa 1 fs
fs] _ 1 fa
fa| 1 f3
Ji5 1 fa
fs 1 fi
L f7 4 L1 pe(fr—1) ps(fr—1) -+ o oo pi(fr =1) po(fr —1)1 Lfod
and
SRR 1[0
e fe 1 0
fs f5 1 0
fa| | f4 1 0
fs1 | fs 1 0
fo fa 1 0
fi fi 1 0
L fo L fo 11 L0

The desirable matrix B is the product of the three matrices above whose determinant is
equal to 1.

For the case that ¢ > 0, we use Lemma 3.1. In this case, we take k = 0, that is,
fs = fo. The desirable matrix B is the product of the last two matrices above. This
completes the proof of Lemma 3.3. W

We now give the detail of Step II and III. By Lemma 3.3 and (3.4), we can take
A(Mo, J1,...,Jr) = U(2)B(2*), where U(z) is defined in (3.5). Since the determinant
of A(My,J1,...,J7) is 4096272325, it is invertible on the Laurent polynomial ring. Let

A(po, My, --- ,Mﬂ be the inverse of A(My,J1,...,J7)T. Using a definition of the inverse

of matrices, it is easy to see that

%1(_21722723) %1(217_22721) %1(_2)
) i - —
3.17 M, = t MZ(_21722723) M2(Zl7_22723) MQ(—Z)
( ) o) 409621 2523 ‘ L . e e
M7(—21,22,23) M7(21,—22723) M7(_Z)
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Replacing py in A(p_o,E, e ,ﬁ)ﬁ the dual mask Mg which is given in Theorem 2.1,
we notice that det(A(Mo,Ml, e ,M7)) = 409627 z3z3 by the co-factor expansion of the

first column, (3.17) and (2.7). Let A(qo, M1, ..., M7) be the inverse of A(ﬁo, Ml, e ,M}).
One can see that go in A(qo, My, ..., M7) is exactly the same as My by observing that they
both have the same expression of the right-hand side of (3.17). Therefore,

A(M07M17-"7M7)A(M/O,M/1,...7M7)T = IS-

We remark here that the method used in Step II and III can be generlized to any
multivariate settings.

64. Examples
In the following, let us give some examples associated with box spline functions for
small integers (¢, m,n,p). Based on the construction in the previous section, for case that
g # 0, we only need to find polynomials py, - - -, pg such that

(4.1) pofo+ -+ pefe =1
where fo, -, f¢ are the first 7 polyphase components of the mask for box spline function
B¢ .m.n,p,qg0- For ¢ =0, for the small integers ¢, m,n,p, we can verify that fo,---, fs have

no common zeros on (C\{0})*>. Thus, we can use the same method as ¢ # 0 to construct
the masks My,---, M7 and Jo,---, J7.

We may use the Grobner basis method as described in [1] to compute the polynomials
Do, -, pe satisfying (4.1) for polynomials fo,---, f¢ associated with box spline functions.
(The authors wish to thank Dr. Lingyun Ma for her MATHEMATICA programs for
computing po,---,ps based on Buchberger’s algorithm using the Grobner basis.) Some
outputs of those programs are given below.
Example 1. For the box spline By 11,1, we have

po=1/2,p1 =—21/2,p2 =ps =ps = 0,ps = 1/2,ps = 0.
Example 2. For the box spline By 5 1,1, we have
Po = 1/8,])1 - —1/16,])2 - 1/16,])3 - _Z§7P4 = 1/47295 = _1/16 - 25/167])6 = 0.

Example 3. For the box spline B 321, we have

14323 1 L 25z3  bzy 1 L 5z2
Po="g P17 5T 495 T 12872 T 2 32
17 2522 3922 7522 922 7522 6322 322
p3=—om — o2 p1 = — — =3 py = — =3 pg = =2
32 128 128 128 128 128 128 32
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Example 4. For box spline Bj 5 3 2, we have

8779 6113722 97755522 290610922 611372222 47047522 22

PO =" 1749528 T 435632 | 3485056 | 3485056 | 435632 3485056
54247 23 22 22 3104437 =3
1742528 3485056
| 6486213 67469127  611372f 62345523  926105:7 23 1772570923
PL= " 3185056 3485056 1742528 13040224 | 13040224 13040224
4845395 Z% Zg 61137 211 Zg 299335 Z% Zg 82347 Z% Z% Zg 54247 211 Z% Zg
13940224 1742528 13940224 13940224 3485056
310443724 3104437 22 24
13940224 13940224
1915821 17266722 281386322  316429:2:2 19369524 13809155 22
P2 =gr1964 T 1742528 | 13040224 | 1742328 13040224 1 13940224
611372222 28154452222 61137222222 6416152322 310443724
1742528 3485056 1742528 13940224 13940224
3104437 23 =3
13040224
16063 6382327 8398522 2343327 584512722 520635 :3 22
P3 =" 708008 T 435632 435632 | 435632 435632 1742528
3119483 22
1742528

_ —b8451z7 14565z 31912723 27739z 4278523 =3
P4 ="517816 217816 27227 871264 871264
456687 6113727 249382523 1979611725 6113727 23

Ps == 1oiom98 T 871264 T 6970112 6970112 | 871264
656727 22 22 190301252323+ 193695 2% 22 3104437 24 +_3053665z§z§
6970112 1742528 3485056 6970112 3485056

_ 364375 194155:f 19369523 | 181883573 | 6113775 | 6416155 <3
T 871264 871264 | 6970112 6970112 871264 6970112
3104437 2

6970112

Pe
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Appendix

We now take time and space to give a detailed account for the remaining proof of
Lemma 2.5 which is a key lemma in this paper. We need to treal three subdomains [0, 7]?* x
[_77-70]7 [0777-] X [_77-70] X [0777-] and [0777-] X [_77-70]2'

For [0, 7] x [—7,0], we study the following 4 subcases:
2°a) For w € [0, 7] x [0, 7 — ¢] x [-7,0] and w2 + w3 < 0, we use Propositions 2.9 and 2.10
together with (2.18) to get (2.24) with the constant e =2 replaced by 1. It is easy to see the
following inequalities

wi <17Z:172737 l—l_wz S _év

2 2 2 2

w1 + w2 + ws < §7 nd w2 + ws Sz_é‘
2 2 2 2 2

It follows from (2.24) with the constant e=2 replaced by 1 that
. 9\ 3L+to—4 5\ Lm2otpt
|BB(w)| > (—) (SiIlC(ﬂ' — 5)) :
T

2°b) For w € [0,7] X [x — 6,7] x [—7,0] and ws + w3 < 0, we choose k = (0,—1,1). For
wy — 271 € [—7 — 6,0] and w3 + 27 € [0,27], we can use Proposition 2.9. For wy € [0, 27]
and wy + w3 < 0, we can use Proposition 2.10. Together with (2.18), we have

IBB(w + (0, —27,21))|

ol e P L ws = 2w S I P R
sinc— sinc sinc
(2.25) = 2 2 2
Cowrtw—2r P ot |PTY L wl]”
sinc——— sinc sinc—
2 2 2
The following inequalities can be verified easily:
‘ wy + w3 T |wy — 27 <7r—|—(5
21— 2 2 -2’ 2 - 27
wy +we — 27 <7r—|—(57 w3 + 27 <z+§7 w1 + wy + w3 17
2 - 2 2 -2 2 2 -2

where we have used the assumption that ws + w3 < 0. Indeed, w3 < —wy < —7 + 6. Thus,
ws + 27 € [7, 7 + ¢]. It thus follows from (2.25) that

D %) 3L+p—-2 S L4+20+4p—1
IBB(w + (0, —2r,27))| > (-) <sinc(”; )) .

™
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2°¢) For w € [0,6] x [0,7] x [—7,0] and wy + ws > 0, we use Propositions 2.9 and 2.8
together with (2.18) to get (2.24) with the constant e~ replaced by e™1. It is easy to see
the following inequalities:

“l<Tiz1os|atel Tho
2 2 2

w1 + w2 +ws §7r+57 nd we + ws S:
2 2 2

It thus follows from (2.24) (with the constant e~ ! instead of 6_2) that

S 9 3L+40—4 S L—20+p+1
|BB(w)| > e (—) <sinc(7r—2|_ )) .
T

2°d) For w € [6,7] x [0,7] x [—7,0] and ws + ws > 0, we choose k = (—1,0,0). Since
w1 — 27 € [—27,0], we use Proposition 2.10 and 2.9. Together with (2.18), we have

IBB(w + (—27,0,0))]

I —om PPN wa 2o ws 2ol | wy dwy —2n P y
sinc sinc— sinc— sinc
(2.26) = 2 2 2 2
o tws [P el =2
sinc——— inc
The following inequalities
-2 O |w;
d T Sﬂ-__vw_ _zvl_273
2 2712 2
wy + w3 <z7 wy Fwy — 27 <7r—§, wy +we + w3y — 27 <7r—§
2 -2 2 - 2 2 - 2

can be verified easily. It thus follows from (2.26) that

s 9 L+4p-3 S 3L—20+4p
|BB(w + (—27,0,0))| > (—) (sinc(ﬂ — 5)) .

™

The above 4 subcases imply that (2.13) holds for w € [0, 7]? x [—7,0]. Next we consider
[0, 7] x [—m,0]%. We have 4 subcases to study again.
3°a) For w € [0, 6] x [—6,0] x [—m,0], we use Propositions 2.7 and 2.8 together with (2.18)
to get (2.24). Clearly, we have

ﬂ§z7i:172737 B _zv

2 2 2 2

we + ws <7r+57 w1 + w2 + w3 <7r+5‘
2 - 2 2 - 2
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It follows that 3L420—2
s 2 i et
IBB(w)| > 2 (_) <sinc(g + 5)) P )

™

3°b) For w € [6,7] x [—6,0] x [—7,0], We use Propositions 2.7 and 2.10. Together with
(2.18), we get (2.24). As the same as above, we have

Yl< iz |ter T
2 2
wg + ws <7r+57 w1 4 wa + w3 <T
2 - 2 2 -2

It follows that 314204 p—2
. o+p— L—1
|BB(w)| > o2 <g> <sinc(g + 5)) .

™

3°¢) For w € [§, 7] x [—7, —6] x [—7,0] with 0 < 6 < ¢ to be determined in the next subcase,
we choose k = (—1,1,0). Then wy — 27 € [-27 + 6, —7] and wy + 27 € [7, 27 — ¢]. We use
Propositions 2.9 and 2.10. Together with (2.18), we have

IBB(w + (—27,27,0))|

o i@ —om PPN wa +2n|PTTN w 2ot wy o [P "
sinc sinc sinc— sinc
(2.27) 2 5 2
. wotws+ 27 L= - Jwl]”
sinc—————— sinc—
2 2
Clearly, we have
wy — 27 7T—§7 wy + 27 <7r—§, ﬁ‘<z
2 - 2 2 - 21217 2
T ) S
w1 + ws| < §,|w2 + w3+ 27| < 7w — §,Iw1 +wy fwg| <m— 3"

It follows from (2.27) that

LN\ 4L4p—2
|B§(w)| > e7? 2 o sine(w — é) p
- i 2 '

3°d) The remaining subcase is € [0, 6] x [, —0] x[—m,0] with 6 as in 3°¢). We shall choose
k = (0,1,0). Then (wy,ws + 27,ws) € [0,6] X [7, 27 — é] x [—7,0]. We now take time to

determine 6. Consider H(0, (ws + 27)/2,w3/2). We have
|H(0, (wy + 27)/2, w3 /2)| > (cos(m/2 — §/4)E71 = sin(6/4)0 71,
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Since H (w1 /2, (wz +27)/2,w3/2) is a continuous function in a closed domain, there exists
a 6 > 0 such that

|H(w1/2, (we +27)/2,ws/2)| > %sin(6/4)L—1

for wy € [0,6] and wy + 27 € [, 27 — §] and w3 € [—~,0]. For convenience, we let § < §/2.
Thus, we use the same proof as that for Proposition 2.8 to get

1 1 e e Fuws P
H |H(— | > — s1n(5/4) sinc—sinc
4 4
Using Proposition 2.9 and (2.18), we get
(2.28)
|BB(w + (0,2r,0))|
. 1 . Cwe2m P L ws 2ol wi w427 Lo
> smc—‘ smc—‘ sinc sinc— sine-———— X
2 2 2 2
C wotws + 27| lw|+27 |7 et /. 6 L=
sine——— sin — :
4 2 4
Clearly, we have
i , 2 §—o
i <z =1,3, and 1t om ST — =5
2 2’ 2
Similarly, we have
wy + w3 + 27 ) wy +we + w3+ 27 §—46
——— | <7 — - and ST = =0
2 2 2 2

It thus follows from (2.28) that

BB(w)| > ¢! (%)20_1 <sinc(7r — 5;—5)> o (m(%)) - .

These complete the proof of (2.13) for the subdomain [0, 7] x [—, 0]%.

Finally, we consider the subdomain [0, 7] x [—m, 0] X [0, 7]. As above, we have 4 subcases
to deal with.
4°a) For w € [0,7] x [—m,0] x [0, 7] with ws + w3 < 0, we use Propositions 2.9 and 2.10.
With (2.18), we get (2.24) without the constant e~2. Tt is easy to see that

“il <X o103, < T
2 2 2 2
wo + w3 T |witw2tws <7

2 -2’ 2 -2
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because of the assumption ws + w3 < 0. Therefore,

|B§( )|> <2>4L—|—20—|—p—2
w)| = — .

™

4°h) For w € [0,6] x [—=m,0] x [0, 7] with wy + w3 > 0, we use Propositions 2.8 and 2.9.
With (2.18), we have (2.24). Clearly, we have

ﬂ §z7@':17273, Wit w2 Szv
2 2 2
w2 + w3 z w1 + w2 + w3 m+o
2 |~ 2 2 o2
It follows that AL420—2
s 2 i A
|BB(CU)| Z 6_2 <_> (Sil’lcﬂ-;_ ) .
s

4°¢) For w € [, 7] x [=6/2,0] x [0, 7] with ws + ws > 0, we choose k = (—1,0,0). Since
wy — 27 € [-27 + 6,0] and wy + w3 > 0, we can use Proposition 2.10. Clearly, we can
use either Proposition 2.9 or 2.7. Together with (2.18), we have (2.26). The following
inequalities can be verified easily.

e A LI FER R TR e
2 2712 2 2 4
wy + w3 T |wy +wy +wsg — 27 )
i <72
2 -2 2 2

Here, we have used the fact wy + w3 > 0 in the last inequality. It follows from (2.26) that

s 9 L+40—-3 S 3L+p—20
|BB(w)| > e ? (—) (sinc(ﬂ — Z)> :

7r

4°d) For w € [6, 7] x [-m,—6/2] x [0, 7] and wg + w3 > 0, we choose k = (—1,1,—1). Since
w1 — 27 € [-27 4+ 6, —7],we + 27 € [7, 27 — §/2] and w3 — 27 € [-27, —7], we can use
Propositions 2.9 and 2.10 since wy + w3 > 0. Together with (2.18), we have

(2.28)

IBB(w + (—27, 27, —21))]

- 2L—1 gt or 20-1 1 ws — 21 20211 w1 4w L—20+1
> |sinc sinc sinc sinc X
L—-1 p
. wo tws 427 . |w| =27
sinc————————— sine———
2
Clearly, we have
wy — 27 O |we + 27 O |wo + w3 T
=T 57 > = VE S a0
2 2 2 4 2 2
w1 + wo T |wy +we + w3y — 27 O |wsg — 27 )
2 | =2 D =TT Ty (=TS
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where we have used the assumption wg + w3 > 0. Indeed, w3 > —wy > 6/2. Thus, w3 — 27 €
[6/2 — 27, —7|. Tt therefore follows that

a 2 2L.—20 S 2L+p+40—2
|BB(w)| > e ? (—) (sinc(ﬂ — Z)> :

™

All the above detailed discussions furnish the proof of Lemma 2.5 . B
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