A New Sufficient Condition for
the Orthonormality of Refinable Functions

Wenjie He and Ming-Jun Lai

Abstract. A sufficient condition for the orthonormality of refinable
vector valued functions is given. We shall use this sufficient condition to
check the orthonormality of several well-known examples of multiscaling
functions.

§1. Introduction

In recent years, multiscaling functions and multiwavelets have been studied
extensively. In [6], a characterization of multiscaling functions and multi-
wavelets with semi-orthogonality was established. In particular, some exam-
ples of spline-wavelets with multiple knots were given. Examples of cubic and
quintic finite elements and their corresponding multiwavelets were also stud-
ied in [7]. In [2], Chui and Lian introduced a general scheme for constructing
symmetric and antisymmetric compactly supported refinable functions and
multiwavelets. Geronimo, Hardin and Massopust in [5] used fractal interpola-
tion to construct orthonormal multiscaling functions, and their corresponding
multiwavelets were also given in [8].

One of the main difficulties in the construction of compactly supported
multiscaling function and the corresponding multi-wavelets with arbitrarily
high regularity is the orthonormal conditions. Even we know that the multi-
variate and multi-scale generalization of the Lawton condition is a sufficient
condition for the orthogonality of multi-scaling functions, it is very difficult to
be applied. It is interesting to find a feasible necessary and sufficient condi-
tion for the orthonormality of the multi-scaling functions. In [9], Wang gave
a necessary and sufficient condition which is based on the infinite product
of the matrix mask. In this paper, we shall give a new sufficient condition
for the orthonormality which is sometimes easier to use, especially when the
multiplicity » = 2. The sufficient condition is similar to the Cohen condition
in [3] and is based on the structure of the zeros of the determinant of the ma-
trix symbol. We shall use our sufficient condition to check the orthonormality
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of the well-known example of compactly supported Chui and Lian’s refinable
functions with support on [0, 2] and [0, 3] (c¢f. [2]) and Geronimo, Hardin
and Massopust’s multiscaling function (cf. [5]). We should point out that the
integer translates of Geronimo, Hardin and Massopust’s multiscaling function
are indeed orthonormal by their construction.

§2. A New Orthonomality Condition

Let Py be a real valued matrix of size r x r and let ¢ := (¢y,..., ¢,)T with
B1, ..., ¢r € Ly(R) satisfy a refinable equation:

o(x) =Y Pré(2x — k), € R.

k=0
Such a ¢ 1s called a refinable vector valued function. Its Fourier transform is
$(w) = P(w/2)6(w/2) (1)
with P(w) = % Sor_o Pre™ . We can easily see that symbol P(w) is an r x r

matrix with trigonometric polynomial entries. By repeated applications of
(1), we formly have

d(w) = Hp(w/zf) $(0).

If the infinite product above converges, the qg is well-defined and we will say ¢
is generated by P. The following lemma ensures the convergence of the above
infinite product. (See [1] for a proof).

Lemma 1. The infinite matrix product
I[P/
j=1

converges uniformly on compact sets to a continuous matrix-valued function
if and only if P(0) has eigenvalues A\ = ... = Ay = 1 and [Asx1], ..., | A < 1,
with the eigenvalue 1 non-degenerate for s > 1.

For the continuous orthonormal refinable function ¢(x), the eigenvalue 1
must be simple (see [9]). That is, we have

Lemma 2. Suppose that ¢ generated by P is continuous. Suppose that the
integer translates of the refinable function ¢ form an orthogonal set, i.e.,

// ol —a)o™(x — B)de = 4,31, Va,p€Z,

R

where 1, is the identity matrix of size r xr. Then 1 must be a simple eigenvalue

of the matrix P(0), and all other eigenvalues A of P(0) must have |A| < 1.
To study the orthonormality, we define the Gramian matrix

Aw) =) dilw + 2mn)dm(w + 2m0)1 <1<
ncz

The following lemmas are well-known.
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Lemma 3. {¢1(),...,¢,(x)} is an orthonormal refinable function if and only
if A(w) is an identity matrix I,.

Lemma 4. If ¢(x) is an orthonormal refinable function, then P(w) satisfies
the following identity:

PP (w)4+ PP (w+7) =1,. (2)
We thus define an operator on r x r matrix L(w) as
(PoL)(w) := PLP*(w/2) + PLP* (w/2 + ) (3)

It is easy to see that A(w) is a fixed point of the operator Py. The main result
in this paper is as follows. We refer to [4] for a proof.

Theorem 5. Let P(w) be a matrix symbol of a vector valued function ¢ and
satisfy the condition in Lemma 2. Suppose that P satisfies (2). Then ¢ is a
multiscaling function if the refinable matrix symbol P satisfies the following
conditions.
1° The trigonometric polynomial det(P(w+n)) does not have zeros which are
in a nontrivial finite cycle invariant under the operator 7, where Tw = 2w
mod 27;
2° Any nonzero invariant subspace of P*(0) is not contained in Null( P*(~))
or the dimension of Null(P*(x)) is at most one;
3° For the multiplicity r = 2, the two operators V;,1 = 1,2 defined by

Vo |1 er=g (@ [ B e+ o [ 2]z )

iw/2
e
Vi | D= Smp [ B s - [ B wrz )
f2 2 f2 fo
have no common eigenvectors; For r > 2, for any nonzero Hermitian
nonnegative definite matrix © which is a fixed point of Py, det(O(w)) is

not identically zero.

Remark 6. When r = 2, the dimension of Null(P*(x)) is at most one. Oth-
erwise, we have P*(w) = 0. Thus, (2) implies P*(0)P(0) = I,. That is, P(0)
is a unitary matrix which contradicts to the condition in Lemma 2 on P(0).
O

§3. Verifications of the Orthonormality of Some Refinable Functions

We shall verify that the integer translates of Chui and Lian’s refinable func-
tions and that of Geronimo, Hardin and Massopust’s refinable function are
orthonormal.
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Example 7. Chui and Lian’s refinable function with support [0,2] (cf. [2]).

The matrix symbol P(w) is given by

1 1.2 1
s+tz+ 352 3
’l) ) — 2 2 2
() _2[—_\5 \4[—722 SRVARNE

37" 1 2
Z §22:|:§(P0—|—P12—|—P22)

10 3 3
2 2

4 4

1
1
where z = ¢7™, Py = [ 2\/;

=
|S
=5

4

Note that P(0) = {(1) 1_0\/7} satisfies the condition in Lemmas 1 and 2. And

1
det(P(w)) = 1= \/_ 2(1+ z)%. The only zero of det(P(w + 7)) is w = 0, thus, it
satisfies 1° of Theorem 5.

Now we look at the operators Vy and V; in Theorem 5. They act on
trlgonometrlc polynomial vectors [fl, f2]T(w) = xg+x124+%x222 with z = ™
and x; = [a;,0;]7 € R? for i = 0,1,2. The coefficients of the following
polynomials with C(w) = ¢1 + ca2z + ¢32? and D(w) = dy + daz + d3 2>

vellB]) ewli] (2] mel]

are given by

Xo 0 0

Po 0 0 X X1 X 0
P, P P X1 |, ¢ |Xo| +e2 X1 | +es|%Xo|,

0 0 P2 X2 0 X2 X1

0 0 X9

Xo 0 0

P P 0 X0 X1 Xo 0

0 P2 0 X1 |, di|xXe| +da|x1 | +ds|x0

0 0 0 X9 0 X9 X1

0 0 X9

For simplicity, let us denote the two matrices with entries P;’s by V5 and Vj.
I : Suppose that x5 # 0. We have to have ¢; = ¢3 = dy = d3 = 0. Then

X0 X0 X0 X0
Wixi|=al|xi|, Vi|xx]|= dy | x4
X2 X2 X2 X2

However, we can immediately see that d; = 0 which is a contradiction.
I : Suppose that x5 = 0, but x; # 0. We have to have ¢ = d3 = 0. Then

Xp Xo 0 Xo Xo 0
Wixi|=a |xi|+e|x| . Vi|xi|=d |x1|+d2 | X0
0 0 X1 0 0 X1
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By x1 # 0, we can easily see that ¢c; = d; = 0. Also Pyxg = ¢1X9, Pox; =
dix1 and Pyxg + Pyxy; = dix(. From the third equation, we can see that
xo # 0. Since ¢; # 0, from the first equation, we get xo = [2, —/7],¢1 =
1/2 — \/7/4. Since d; # 0, from the second equation, we get x; =
[2,V7),dy = 1/2 —/T/4. One can check that the third equation is not
satisfied.

IIT : Suppose that x; = x;3 = 0, but xy # 0. Then we have

Xo C1Xo Xo d1Xg
Vo 0 = C2X 5 Vl 0 = dz X
0 C3Xp 0 d3 X

for some real numbers ¢1, ¢y, ¢3,dy, dy and d3. Similarly, we can see that

c3 = dy = d3 = 0. And x¢ 1s an common eigenvector of matrices Py, Py

and Ps, this is impossible.

Therefore, Vy and V; do not have common eigenvectors and the condition
3° of Theorem 5 holds. Since r = 2, we do not need to check condition 2°.
Hence, the integer translates of the Chui and Lian’s refinable function are
orthonormal. O

Example 8. The Chui and Lian’s refinable function with support [0,3] (cf.
[2]).

Recall the matrix symbol associated with Chui and Lian’s refinable func-

tion with support [0, 3] is P(w) = [218 gzgj” where
Piy(z) = Wu +2)(1 + (38 +12V10)2 + 2?)
Piy(z) = %(1 —2)(1 4 2)
Py (z) = W(l —2)(1 —10(3 + V10)z + 2?)
Pya(z) = %(1 +2)(13 — (10 4 6V/10)= 4 132%)
And
det(P(z)) = —%(1 +2)%(—158 + 51V10 + 2(—22 + 39v/10)=

+ 6(—106 4+ 9v10)2% + 2(—22 4 39v/10)2° + (—158 + 51v/10)z*)

Thus, det(P(w+ 7)) has only one zero at w = 0, which satisfies 1° of Theorem
5. We can also write P(w) = %(Po + Piz + Pyz? + P323) where

10—3v10 5v6—2115
— 40 40
5v6—3v15 5—3v10
40 40

3043110 5v6—2v15
10 40
564715 15—3+/10
40

40

Py ,Pr =
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304+3v10 _ 5v6—2V15
40 40

5v6+7V15 15—3+10
40

40

Py = , P =

10—3+/10 _5V6—-2/15
40 40
_ 5/6—3V15 5—3+/10
40 40

Let [fi1, fo]T(w) = xo + X127 + x222 + x32° and x; = [a;,5]T € R? for
1 =0,1,2,3. We define the operators Vo and V; as follows.

X Xo
A7) I I (A ) B
f2 X2 f2 X2
X3 X3
P 0 O 0 P F 0 0
|\ P P 0 |\ P P P By
where Vy = o P, P, P and V| = 0 0 P, P,
0 0 0 &P 0 0 0 0
I: X3 7£ 0
X X X Xp
Vo X1 = ¢ X1 : Vl X1 :dl X1
X9 X2 X2 X2
X3 X3 X3 X3

It is easy to see that d; = 0, which is a contradiction.

1T X3:0,X27£0.

X X 0 X X 0

X1 X1 X0 X1 X1 X0
Vo = ¢ + ¢ W =d; + ds

X2 X2 X1 X2 X2 X1

0 0 X9 0 0 X9

Since xp # 0, we must have ¢ = dy = 0. Also Pyxg = ¢1Xg, Psx2 =
d1X2, P3X1 + P2X2 = C1X3 and P1X0 + POX1 = d1X0. But these equations
do not hold for x; # 0 simultaneously.

11T X3 = X2 :O,Xl 7£0

Xp C1Xop Xp dixg
vo | X Z | X + ¢c2Xg vi Xl = dix1 + daxg
0 = , il =
0 coX1 + c3Xg 0 d2X1 + d3X0
0 C3X1 0 d3X1

Since x; # 0, we must have ¢3 = ds = dy = 0. Also Pyxog = ¢1X¢, P3x1 =
cox1 and Poxg+ PiX1 = ¢1X1 +¢2Xg. One can check that this is impossible
for x; # 0.

IV . X3:X2:X1:0,X07£0.

Xp C1Xp Xp di1Xo

0 . C2Xo 0 . d2 Xo

VO 0 o C3Xp ’ Vl 0 o d3 X
0 C4Xo 0 d4XO

Since xg # 0, we must have ¢4 = dy = ¢3 = d3 = 0. Then we have that
Xp 1s a common eigenvector of the four matrices Py, Py, P, and P;, which
is impossible. O
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Example 9. the Geronimo, Hardin and Massopust refinable function.

The matrix symbol associated with the Geronimo, Hardin and Massopust
refinable function is

Plw) = 1 12(1 4+ 2) 16v/2
T 40 | —V2(2 +1)(22 =102 +1) —6+ 202 — 622
1
= §(P0—|—P12—|—P222—|—P3Z3)
where
3 42 20 0 0 0 0
RN PR DR P,
Note that det(P(w)) = —%(1 + 2)3. The only zero of det(P(w + 7)) is
w = 0. 1° of Theorem 5 is satisfied. Suppose the common eigenvector of
Vo and Vy is [ fi fg]T(w) = Xg + X172 + X222, As in Example 7, letting
P, 0 O P P, 0
VOZ P2 P1 PO andV1: P3 P2 P1 ,Wehave
0 P3 P2 0 0 P3
f - f -
Vo( ! ) : VO X1 5 and Vl( ! ) : Vl X1
f2 fa
X9 X2
I : Suppose that x5 # 0. We have
X0 Xop Xo Xo
Wi ixi|=a |xy Vilxi| =di|xs
X9 X2 X2 X2

It follows from P3x9 = dx9 that di must be zero which is a contradiction.
IT : Suppose that x; = 0,x; # 0. We have

Xp Xo 0 Xo Xo 0
Wixi|=a |xi|+e|x| . Vi|xi|=d |x1|+d2 | X0
0 0 X1 0 0 X1

We can see that do = 0 and ¢ = 0 from 0 = dyx; and P3x; = c2Xy.
We find that when xo = [v/2/2,-1/2]%,x; = [0,-1/2]" and ¢; = d; =
—1/5, the above two equations hold. This implies that the operators
Vo,V have a common eigenvector, which is [v/2/2,—1/2(1 + 2)]7. In
this situation, we need to consider O(2w) = POP*(w) + POP*(w + 7).
If det(O(w)) = 0, then O(w) = {—1/2(?@-1@)] [V2/2,~1/2(1 + )]
(up to a constant multiple). And

P | Lyt o) == (P ) [t Lo |
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Therefore, det(O(w)) Z 0 since
1
POP*(w)+ POP* (w+7w) = %(9(2@) # O(2w).

IIT : Suppose that x; = x;3 = 0, but xg # 0. We have

Xo C1Xo Xo d1Xg
Vo 0 = C2Xp | , Vl 0 = dz X
0 C3Xp 0 d3 X

We can see ¢3 = d3 = 0. Also we can see that x¢ 1s a common eigenvector
of Py, Py, P, and P;. But Py and P; do not have any common eigenvec-
tors. Thus, the condition 3° of Theorem 5 holds. Therefore, the integer
translates of the Geronimo, Hardin, and Massopust refinable function are
orthonormal. O
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