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Abstract—It is well known that in applied and computational mathematics,
cardinal B-splines play an important role in geometric modeling (in computer-
aided geometric design), statistical data representation (or modeling), solution of
differential equations (in numerical analysis), and so forth. More recently, in the
development of wavelet analysis, cardinal B-splines also serve as a canonical
example of scaling functions that generate multiresolution analyse%(efoo, co).
However, although cardinal B-splines have compact support, their corresponding
orthonormal wavelets (of Battle and Lemarie) have infinite duration. To preserve
such properties as self-duality while requiring compact support, the notion of
tight frames is probably the only replacement of that of orthonormal wavelets.
In this paper, we study compactly supported tight frantes: {y1, ..., ¢} for
L2(—o00, 00) that correspond to some refinable functions with compact support,
give a precise existence criterion ¥f in terms of an inequality condition on the
Laurent polynomial symbols of the refinable functions, show that this condition
is not always satisfied (implying the nonexistence of tight frames via the matrix
extension approach), and give a constructive proof that whetoes exist, two
functions with compact support are sufficient to constitufevhile three guarantee
symmetry/anti-symmetry, when the given refinable function is symmetriczooo

Academic Press

1. INTRODUCTION AND RESULTS

This paper is concerned with the study of compactly supported tight frames as
a replacement of compactly supported orthonormal (0.n.) wavelets when the system
{¢(- — k) :k € Z} generated by the corresponding compactly supported scaling furggction
is not orthogonal and, more generally, whens simply a refinable function (meaning
that {¢ (- — k) :k € Z} may not be stable). For simplicity, we only consider the basic
univariate L2 := L2(—o0, 00) setting, with inner product and norm denoted hy),
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and || ||, respectively. This study is motivated by the recent work of Ron and Shen [12]
and the elegant characterizations of o.n. wavelets and those that correspond to some
multiresolution analysis (MRA) scaling functions presented in the monograph [9] by
Hernandez and Weiss.

1.1. The Notion of Minimum-energy Tight Frames

A functiony € L2 with ||| = 1 is called an o.n. wavelet if the family
Vi) =22y @2x k),  jkeZ, (1.1)

generated by, constitutes an o.n. basis bf. It is well known that 0.n. waveletg € L?
are completely characterized by the set of conditions

vl =1,
Yz R wP=1, ae.; (1.2)
YR @) (2 (+2kn) =0, aeke2Z+1,

in terms of their Fourier transforms (see [9, Theorem 1.1, p. 332)). It is also well known
that the characterization of 0.n. wavelets in (1.2) does not necessarily imply the existence
of an associated scaling function that generates an MREXof

When an o.n. wavelet e L? is associated with some MRA, it is called an MRA wavelet
in [9]. Again this subfamily of 0.n. wavelets can be completely characterized in terms of
their Fourier transforms. For instance, in [9, Theorem 3.2, p. 355], it is provegrthat?,
with [|[y|| = 1, is an MRA wavelet, if and only if it is an 0.n. wavelet and satisfies the

condition
o0

DY W@ (w+2n)P=1  ae (1.3)
j=lkeZ
Although this characterization is most elegant, it does not reveal the explicit relationship

between) and the scaling functiog that generates the MRA, and furthermore, orthogonal
decomposition does not immediately follow from (1.3). To motivate our generalization
of the notion of MRA wavelets to that of MRA tight frames, we consider the following
two definitions of MRA wavelets that are equivalent under certain mild conditions on the
scaling function. The first definition addresses the MRA relationship more explicitly, while
the second one is more useful in the discussion of orthogonal wavelet decomposition.

DEFINITION 1. An o.n. wavelet) € L? is called an MRA wavelet associated with a
scaling functionp € L? that generates an MRV}, if ¥ € V1.

Here, the standard notation of MRA(;} is used; namely,
Vi :=clos2(¢; ik €Z), JeZ, (1.4)

where the double-index notation in (1.1) is also usedpfor

DEFINITION 1. Let¢ € L? be an o.n. scaling function that generates an MRA .
Then a functiony € V1, with ||| = 1, is called an MRA wavelet associated withif

YL o= I f g0+ D I(fivod?  al fel?  (15)

keZ keZ keZ
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Here, a scaling functio is said to be o.n. if the family of its integer translates
{p(- — k):k € Z} is an o.n. system. We first remark that (1.5) is equivalent to the
formulation

D (o driddre =Y _(f.dorddok + D _(f Yox)Vox. (1.6)

keZ kez keZ
of orthogonal wavelet decomposition Bf = Vo & Wp, where

Wi =V.16V;, jeZ. 2.7)

Also, by replacing the indices 1 and 0 py- 1 andj, respectively, in (1.5) and telescoping
over all j € Z, we have the Parseval identity:

DT UAYOP=1£17  allfeL? (1.8)

j.keZ

(see [6, pp. 141-143] and observe that0)| = 1 by [9, Theorem 1.7, p. 46]). Hence, it
follows that Definition 1 and Definition’Jare equivalent, provided thatis an o.n. scaling
function.

The reason for introducing Definitior s to motivate the following notion of minimum-
energy frames. First recall that a family= {1, ..., vV} c L? s called a tight frame of
L? if it satisfies

N
SO KAV AP=IF12 alfel? (1.9)

i=1jkeZ

Here, for convenience, we have normalizg¢t by the same constant so that the frame
bound in (1.9) is equal to 1. The generalization of the notion of 0.n. wavelets from (1.8)
to that of tight frames in (1.9) is obvious. The important differentiation is that for o.n.
wavelets in (1.8) must have.2-norm equal to 1. To address the relation of a tight frame
associated with some refinable functipwhich generates the nested subsp&®e

j=—00
defined in (1.4) and which approximate$, namely

O«--CViCVoCViC-- — L2, (1.10)
in the sense that
clos;2 | J V=12 (1.11)
jeZ

we generalize the above two (equivalent) definitions as follows. Here, we emphasize that
{#(- — k) :k € Z} is not necessarily a Riesz basis\ef
As a generalization of Definition 1 to tight frames, we consider the following.

DEFINITION 2. A finite family & = {y1, ..., ¥V} c L? that satisfies (1.9) is called
an MRA tight (wavelet-) frame, with frame bound equal to 1, associated with a refinable
function¢ that generates the nested subspavgpof L?in the sense of (1.10), i c V3.

As a generalization of Definition’ lwe introduce the following notion ahinimum-
energy(wavele}-framesassociated with some refinable functions.
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DEFINITION 3. Let¢ € L2, with ¢ € L, ¢ continuous at 0, ang(0) = 1, be a
refinable function that generates the nested subsdag¢sn the sense of (1.10). Then a
finite family of functionsw := {1, ..., ¥} c V1 is called a minimum-energy (wavelet-)
frame associated witt, if

N
DTUAGLP =D 1 b0 P+ DY Ao P allfel? (112

kezZ kezZ i=1keZ

Remark 1 By telescoping as in (1.5) and (1.8), it follows that a minimum-energy
frame according to Definition 3 satisfies (1.9) (see [6, pp. 141-143], using the assumption
$ € L™, ¢ continuous at 0, ang(0) = 1); and hence, a minimum-energy franteis
necessarily a tight frame fdr?, with frame bound equal to 1.

Remark 2 In contrast to the equivalence of Definitions 1 andfdr 0.n.¢, the notion
of minimum-energy frames associated with a refinablis more restrictive than that of
MRA tight frames, as can be seen from an example in Ron and Shen [12, Sect. 6].

Again, it is clear that (1.12) is equivalent to the formulation

N
DU i =Y (fdoxdork+ D D (f v )ve,.  alfel?  (113)

keZ keZ i=1keZ

The interpretation of minimum energy will be clarified in Section 4.

1.2. Why Minimum-energy Frames?

Let ¢ € L2 be an o.n. compactly supported scaling function governed by a two-scale
relation

$) =) prp(2x — k) (1.14)
k

for some finite (two-scale) sequenge }. Then the function

V) =) (-1 pragpx — k) (1.15)
k

is a compactly supported o0.n. MRA wavelet. Such functip(s andy (x), constructed by
Daubechies in [5], are also called Daubechies scaling functions and wavelets, respectively.
It was also shown in [5], however, that with the exception of the first order cardinal B-spline
and its corresponding Haar function, any compactly supported o.n. scaling function and its
corresponding MRA wavelet do not have the symmetry or anti-symmetry property. For this
and other reasons, biorthogonal scaling functions and wavelets with compact support were
introduced by Cohest al.in [4] by using two different MRAS. One of the disadvantages

of this biorthogonal approach is that since two different MRAs are used, the analysis and
synthesis operations of the biorthogonal wavelet pairj ) cannot be interchanged at any
particular scale 2, say. In other words, “change-of-bases” betwggn,  :k € Z} and

{Vjo.k -k € Z} is not possible.
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To demonstrate the importance of the feature of change-of-bases at any scale, let us
consider thenth order cardinal B-splin&/,, (x), m > 2, defined inductively by

1
Ny (x) :=/ Np_1(t — x)dt, (1.16)
0

with N1(x) denoting the characteristic function of the unit interi@l1], along with its
corresponding B-wavelet

3m—2 m
1
Y= Y (~1)F [zm_l Y (’7) Now(k —1+1)
=0

k=0
(see [1, p. 188]). Sinc&/,,, (x) and vy, (x) are very good approximations both in the time
and in the frequency domains of certain Gaussian and (cosine or sine) modulated Gaussian
(depending on even or odd), respectively (see comparisonsin [1, pp. 186-187], graphs of
Y (x) andy,, (@) in [2, pp. 103—104], and asymptotic results in [2, pp. 114—-117] and [3]),
the B-wavelets),, (x) are very desirable for both analysis and synthesis. Hence, change of
bases betweef,, (x — k)} and its dualy,, (x — k)}, SO as to use,, (x) both for analysis
and synthesis, is needed. (See [2, pp. 129-131] for a discussion of change of bases.)

The challenge is to avoid the complication of change of bases but still to use the same
wavelets, both for analysis and for synthesis. Besides o.n. wavelets, minimum-energy
frames can serve this purpose well.

Ny (2x — k) (1.17)

1.3. Characterization of Minimum-energy Frames

In this section, we give a complete characterization of minimum-energy frames
associated with some given refinable functions in terms of their two-scale symbols. For
convenience, we only consider symbols in the Wiener dlismeaning that the coefficient
sequences of the symbols arefth Let ¢ € L2, with ¢ € L>, ¢ continuous at 0, and
qS(O) =1, be a refinable function with refinement equation

$()=_ prp(2x —k) (1.18)

keZ
such that its refinement (or two-scale) symbol
P(z):= : Zpkzk (1.19)
=3 .
keZ

is in W. Let {V;} be the nested subspaces generateg mhich approximate.? in the
sense of (1.10), and consider= {y1, ..., ¥V} c V1, with

vl =) qi¢x —k) (1.20)
keZ
and two-scale symbols
1
0¢(z) == EZq,ka eW, ¢=1,...,N. (1.21)

keZ
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With P(z) andQ,(z), we formulate th& N + 1) x 2 matrix

P(z) P(=z)

01(z) 0Qi1(-2)

R(z) = , (1.22)

On(@) On(=2)

and use the standard notati®i (z) to represent the complex conjugate of the transpose
of R(z). The following characterization will be used in this paper to study the existence of
minimum-energy frames associated witland to develop an algorithm to construct these
frames when they exist.

LEMMA 1. Let P(z) and Q¢(z), £ =1,...,N, in (1.19) and (1.21) be Laurent
polynomials that govern the compactly supported refinable fungtieri.? and the family
W ={yl, ..., ¢V} c V1. Suppose thap(0) = 1 and that{V;} generated by satisfies
(1.10) Then the following statements are equivalent.

(i) W is a minimum-energy frame associated wijth

(if)

R¥R(z) = I,  for|z]=1. (1.23)

(iii)

N . .
A=Y (pm—kae—Zk + Zq;_zwé_%) — 26m,¢ (1.24)
kez i=1

satisfies

ame=0 allm,teZ, (1.25)

whereé,, ¢ is the Kronecker delta symbol.

Our consideration of (1.23) is motivated by a result in Ron and Shen [12] which says
that (1.23) is a sulfficient condition for the fami{yp;,k i=1...,N; j,keZ}tobea
tight frame ofL2, with frame bound equal to 1, as in (1.9).

In Lemma 1, that (ii) implies (i) for the cas&¥ = 1 was first proved in Lawton [10].
Lawton’s result was then generalized to the multivariate setting with dilation matrices (cf.
[8, 12]).

1.4. What Refinable Functions Generate Minimum-energy Frames?

Since one of the main reasons for studying MRA tight frames is to achieve compact
support (for both analyzing and synthesizing wavelets), we consider, in the remaining
writing of this paper, as in the statement of Lemma 1, only compactly supported refinable
functionsp and¥ = {y/1, ..., ¥V} C V4, so that the symbolB(z) andQ1(z), ..., On(z)
are Laurent polynomials. The first main result of this paper is the following.

THEOREM 1. A compactly supported refinable functigne L2, with $(0) = 1 and
two-scale Laurent polynomial symbBkz), has an associated minimum-energy fraine
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with compact support, if and only #(z) satisfies
IP@)2+|P(—2)?<1,  all|z]=1 (1.26)

As an example, let us consider theth order cardinal B-splined,,, defined in (1.16). It
is well known that the two-scale symbol o, is

Pu(z) = (112%) , (1.27)

which clearly satisfies (1.26). Hence, associated with @gchwe have a minimum-energy
frame. We will return to elaborate on this important example in Sections 1.5 and 3.1.

Remark 3 The restriction (1.26) on the two-scale symbBlz) of a refinable
function ¢ is a necessary condition for the existence of an MRA tight frame associated
with ¢ via the rectangular unitary matrix extension approach (1.23), eveénis not
compactly supported (see the proof of Theorem 1 in Section 2). The reason is that
minimum-energy frames are those MRA tight frames constructed via this matrix extension
approach (see Lemma 1). This points out an incorrect statement in Ron and Shen [12,
Sect. 6], where the authors believe that foe- 2 in (1.22), there does not seem to be any
a priori restriction onP (z) (other than the most basic conditions, suchP&s) = 1) for ¢
to have an associated MRA tight frame by the unitary extension principle.

To demonstrate the reality of nonexistence of minimum-energy frames for certain
compactly supported refinable functions, let us consider the biorthogonal wavelets of
Cohenet al. [4], where we useN,, m > 2, to generate an MRAYV;}, and another
compactly supported scaling functigp, € L2, dual toN,,, to generate the dual MRA
{V;}. By the duality betweewV,, andg,,, we have

1= 3" R 2K)$,, 276) = K (006, (0) = 6, (0). (1.28)
keZ

On the other hand, the two-scale symi#l(z) of ¢,, is related to the two-scale symbol
Py (z) in (1.27) of N, by

Pn(@)Pp (@) + Pn(—2) Pu(—2)=1,  |z|=1 (1.29)

Hence, by the Cauchy—Schwartz inequality, we have
1< (1P2@ Pu(@)| + | Pu(=2) Pu(=2)1)°
< (I1Pw@ 1P+ 1Pu(=2)1%) (1P (D)1 + | Pu(—=2) %),

and in view of (1.26) forP,, (z), we see that
1Pu@PP+ P (-2)1? =1, |zl=1. (1.30)
That{¢,.(- —k)} is not an o0.n. system for > 2 implies that strict inequality in (1.30) must

hold on some subset ¢f| = 1 with positive measure. Hence, by Theorem 1, there does
not exist a minimum-energy frame associated with the scaling funggiofior anym > 2.
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1.5. Compactly Supported Minimum-energy Frames with Two Generators
The second main result of this paper is the following.

THEOREM 2. Letg € L2, with ¢(0) = 1, be a compactly supported refinable function
with two-scale Laurent polynomial symh®lz) that satisfies

IP@IP+|P(-2)?<1,  |zl=1 (1.31)

Then there exists a minimum-energy franle= {y1, 2} associated withy, where
bothy! andy? have compact support.

For a cardinal B-splingv,, of arbitrary ordein > 2, there exist two functions

ny
Y ()= qiNu(x—k), =12 (1.32)
k=0

wheren1 andny are nonnegative integers, such thgf = W;}w %21} is a minimum-energy

(and hence, tight) frame associated with the cardinal B-spljpén the sense of (1.12). In

Ron and Shen [12], it was shown that, associated Wijththere is a compactly supported
tight frame withm functions. In this regard, it is also stated in Ron and Shen [14, Sect. 2]
by an observation of a B-spline bi-frame example that it is possible to derive Agm

a tight compactly supported spline frame with two generators for which one is shifted
along integer translations, while the other is shifted along the half-integer translations.
This approach, which originated in the construction of Stromberg spline wavelets (see [2,
pp. 75-77]), differs from the integer-translate consideration in this paper.

1.6. Compactly Supported and Symmetric Minimum-energy Frames with Three
Generators

When the given compactly supported refinable function is symmetric and satisfies (1.26),
we show that three generating functions are sufficient to constitute a minimum-energy
frame with symmetry/anti-symmetry, as follows.

THEOREM 3. For any compactly supported symmetric scaling functioa L? with
$(0) = 1 and two-scale Laurent polynomial symh®(z) satisfying(1.26) there exists a
compactly supported minimum-energy frafe= {1, v2, 43} associated withp, with
symmetric or anti-symmetrig?, 2, andy°.

1.7. Organization of the Paper

The results stated in this section will be proved in the next section. Examples are given
in Section 3, where both cardinal B-splines and interpolating scaling functions will be
considered. It will be shown that when the interpolating scaling functions, with two-scale
symbols P! (z), are autocorrelations of theth order Daubechies o.n. scaling functions
with two-scale symbols?? (z), then the two-scale symbols of the corresponding tight-
frame generators have explicit formulations:

0l =1-Pl(z) and Qrzn(z):\/éZPlf(j')Pm<_}>'

< <
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In Section 4, we will discuss the notion of minimum-energy and, for completeness, write
down the frame decomposition and reconstruction algorithms.

2. PROOF OF RESULTS

In this section, we give the proofs of Lemma 1 and Theorems 1-3.
Proof of Lemma 1. First, we observe, by using the two-scale relations (1.18) and (1.20)
and the notation in (1.24), that (1.13) can be written as
Yo amelfi¢Q2-—m)p(2x—0) =0,  all fel? (2.1)

teZ meZ

where{a,, ¢} is defined in (1.24). On the other hand, (1.23) can be reformulated as

P12+ YN 110i()P=1;
v (2.2)
P@QP(—)+ YN, 0i(2)0i(—2)=0, |z]=1,
which is equivalent to
{ PP + P+ XM, 0i)(0:iG) + 0i(—2) = 1; 23
PP - P +YN,0i(0i@) - 0i(—2) =1 |z1=1,
or
{ PR Y p-2a®+ YN 10 Y1 ¢ 2% =1 -
P@) Y, p1-akz® 4+ YN 1 0i) Y gl 4% =1 zl=1. '

Following [1, pp. 142-143], we multiply the two identities in (2.4) fw/2) and
zh(w/2), respectively, where = ¢~//2, to get

{ (@/2) =34 (P—2z* P()p(0/2) + Y11 ¢ 2% 01 (2)d(w/2));
P(w/2)e 2 =3 (p1-2az® P()d(@/2) + XN 145 5,720 ()p(w/2)).

Hence, (2.4) is equivalent to

{ (@/2) =Yy (P—2xz%P(@) + XN 1 4" 322V (@)); 25)
d(@/2)e 2 =Y (pr-uzZ@) + XN 1 ¢t 220 (), '
or equivalently,
{ 20(20) =Y (P-2p(x — k) + XN 1 g 0¥ (x — K)); 26
20(2x — 1) =Y (pr-zxdp(x — k) + XN 1 gl L' (x — k), '

which can be reformulated as

1 N
(b(Zx—Z):EZ{pg_quﬁ(x—k)—i—Zqé_Zklﬂl(x—k)}, tez. 2.7)

k i=1
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By using the two-scale relations (1.18) and (1.20), we can rewrite (2.7) as

D dmep2x—m)=0,  alltez (2.8)

meZ

In other words, (1.23) is equivalent to (2.8). Hence, the proof of Lemma 1 reduces to the
proof of the equivalence of (2.1), (2.8), and (1.25).

It is obvious that (1.25)= (2.8) = (2.1). To show that (2.1} (1.25), letf € L? be
any compactly supported function. Then by using the properties that for everyriixed
am.¢ = 0 except for finitely many, and that bothp and f have compact support, it is
clear that only finitely many of the values

Bi(f) =Y amelf.(2-—m)),  LeZ,

are nonzero. Now, sincé(w) is a nontrivial entire function, it follows, by taking
the Fourier transform of (2.1), that the trigonometric polynon§ia) B.(f)e~"*/2 is
identically zero, so thas,(f) =0, £ € Z, or equivalently,

<f,Zam,e¢(2- —m)>=0, tez. (2.9)

Fix an arbitrary¢ € Z. Then the series in (2.9) is a finite sum and hence represents a
compactly supported function ib?. By choosingf to be this function, it follows that

> dmeh(2-—m) =0,

which implies that the trigonometric polynomigl . «,, (¢ ~'“/? is identically equal to 0,
so thatw,, ¢ =0. B

Proof of Theorem 1. To prove that (1.26) is a necessary condition, we set

01(z)  Qi(—=2)

Q(z) == : : .
On() On(=2)
and reformulate (1.23) as
P(2)
[ ] [P(z) P(=2)]+Q"(2)Q() =12,
P(=2)
or equivalently,
I - | P@ | [P(z) P(—2)]=Q"(2)Q(2)
2 _m_ = )

which, for|z| = 1, is a nonnegative definite Hermitian matrix, so that

det 1—-m-[P() P(-2)]1] =0 [z =1;
2 -m- Z Z = U, Zl =4
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and this gives

IP@P+IP(-)P <1, |zl=1
The proof of the sufficiency of (1.26) is delayed to that of Theorem 2 bellbw.

Before giving the proof of Theorem 2, we need to discuss the procetecofrelation
of the rectangular matriR (z), N > 2. For completeness, we include a brief description of
the so-called polyphase decomposition technique ([6, p. 318], i.e., odd—even polynomial
decomposition), as follows.

Write P(z) andQ;(z), j =1, ..., N, in their polyphase forms:

x/EP(z) = P1(z2) + sz(zz);

(2.10)
\/EQJ(Z) =Qj1(22)+ZQj2(ZZ), j=1,...,N,

whereP;(z) andQ;;(z),i =1,2; j=1,..., N, are Laurent polynomials. Observe that

Pi(zd) Pazd)
011(z%)  Q12(z9

R(z)—
© 2 |1 -1

7l 2]
On1(zD)  On2(z)
Thus, we see that
Pz Pd) ][ PidD PaED
011(z%)  012(z% 011(z%)  012(z%

On1(zD)  On2(z) On1(zD)  On2(z)

1 1 1 1
_V2 [ ] R R@ V2 [ ¢ ] , 2.11)
z -z 2 |1

2 —Z_l

and it follows from (1.23), that

P®  PaAD ][ PED PP

011(z%)  Q12(z%) 011(z%)  Q12(z%)
. . , ' =1, lz]=1. (2.12)

ON1(z®) On2(D) ] [ ON1GD) Qwa(2D)
It is clear that (2.12) also implies (1.23). To simplify notations, we set z° and

observe that the condition (2.12) for the polynomial symbols is satisfied, provided that
(N + (N — 1) Laurent polynomialsP;(z), Q;i(z), wherei =3,..., N+ 1 andj =
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1,..., N, can be found such that the Laurent polynomial matrix

Pi(u) ... Pni1(w)
O11(u) ... Q1n+1(u)
. ) (2.13)
Onv1(w) ... OnnN+1(u)

is a unitary matrix orju| = 1. We now turn to the proof of Theorem 2.
Proof of Theorem 2. Let P1(z) and P>(z) be the polyphase componentsafz), that
is,
V2P(2) = P1(z%) + 2 P2(z2).
Since
P21+ |P(—2)” = PP+ | PP,

we have, by (1.26) withy = z2,

Pl P+ PP <1, |ul=1.
By the Riesz lemma [6, Lemma 6.1.3], we can find a Laurent polyno®jéal) that
satisfies

|PL)|? + | P2() P + | P3(u)|* = 1. (2.14)

Next multiply a diagonal matrix, diag, u’2, u’3) to the left of[P1(u), P2(u), P3(u)]*,
wherers, 12, 13 € Z are so chosen that each component of

(W Prw), w'?Pau). u¥Psw)’ = aju’l (2.15)
=0

is a polynomial inz with the lowest degree, whegg e R® with ag # 0 anda, # 0. Now
we apply the unitary matrix extension technique in [11]. It follows from (2.14) that

n ' * n '
(Zaw’) (Zaju/> =1, lul =1,
j=0 j=0

and consequentl%an = 0. We next consider the 38 3 Householder matrix

2 T
Hy:=13— —vw ,
V|2

(see [7, p. 195]), where:= a, + |a,|e; with e; := (1,0, 0)” and the+ or — signs are so
chosen that # 0. Then

Hia, = Fla,ler. (2.16)
Indeed, sincev|? = 2|a,|2 £ 2|a,|el a,, andv’e, = al e; £ |a,|, we have
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2
Hia, = <13 - WVV )(V:F ES)

|an|
| | +ela,
Also, we note that the symmetric matr¥ is orthonormal, since

=V—-2VT|a,ler = Fla,ler.

4 4
Ty _ Ty —

Hence,(Hiao)T (H1a,) = a(T)a,, =0, and therefore, by (2.16), the first componeniiafy
is 0. Now

Hy[u" Pi(u), u?Pa(u), u’3P3(u) Z(Hla])u]
j=0

Therefore, diag: ™1, 1, 1) H1[u* Py (1), u'2P>(u), u'3P3(u)]" is also a polynomial vector
with unit Euclidean norm ofu| = 1 and degree n — 1. Write

diagu ™1, 1, 1) H1 [u" Pr(w), u'?Pa(u), u'SPs(w)]" Za,uJ

with ny < n, 8 #0, &,, # 0. Similarly, define

2
H2 = 13 — WVV

whereVv := &, £ |&,,/e1 (such that’ # 0). We repeat this procedure up#ce- 1 times to
get a Laurent polynomial matrix

H:= H,diagu™t, 1, 1)H,_1 - --diagu 1, 1, 1) H, s<n+1,

which is unitary onu| = 1 such thatd [u/2 Py («), u2P>(u), u’3P3(u)]’ = +e1. Then

[Pr(w), PoGn), Paw)]” = diagu™, u™"2,u="%) H* diag+1, 1, Dey,

or
[P1(u), Pa(u), P3u))” =€l diag+1, 1, 1) H diagu'®, u2, u'®).

That is,[P1(u), P2(u), P3(u)]is the first row of the unitary matrix
diag(£1, 1, 1) H diag(u'™, u', u'), lu] = 1.
Write

Pi(u)  P(w)  P3(u)
diag(+1, 1, 1) H diagu™, u™, u®) = | Q11(u) Q12(u) Q13(u)
O21(u)  Q22(u) Qo23(u)
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Then we have

Piw)  Pw) 17 PLw)  Pa(u)
O11(u) Q12(u) O11(u) Q12(u) | = Iz, lul = 1.
O21(u)  Q22(u) Q21(u) Q22(u)

By setting

V2 .
0i(2) =~ (01 +20i2(z%), =12
in (1.22) to yield (1.23), we complete the proof of Theorenii.

Remark 4 We can also choosg, 72, andrs such that the right-hand side of (2.15) is a
polynomial ofu—* with coefficients irR3. This will be done in Examples 1-3 in Section 3.

Proof of Theorem 3. Consider a Laurent polynomial matrix

P(2) P(—2)
APy 2P
R@) = Z (—2) Z (2) ’
0(2) 0(—2)

2o 200
for somek, £ € Z and Laurent polynomiaD(z). It is easy to see that
R* QR = (IP@P+ P +10@1*+10(=2) ) 2. (2.17)
By Lemma 1, we only need to find a symmetric Laurent polynor@iél), such that
IPOP+IP2P+ 0P +10(-0P =1, |z=1 (2.18)

To accomplish this goal, we consider

0(z) =A(z) + 1A (%) (2.19)
where
A(z) = Zajzzj, (2.20)
i=0

with real coefficients:; andag a, # 0. Hence Q(z) is symmetric and
0P +10(-)P=2(1A@1P+|A(-2)1?) =4AR@P. =1  (221)

Since P(z) satisfies (1.26), + |P(z)|? — | P(—z)|? is a nonnegative symmetric Laurent
polynomial of z2 for |z| = 1. By the Riesz lemmad(z) in the form of (2.20), which
satisfies

HA@DIPP=1—|P@)I?—|P(-2)I?
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exists. HenceQ(z) as given by (2.19) is a symmetric polynomial and satisfies (2.18). Con-
sequentlyyt, 2, ¥3 e vy, with two-scale symbols?t1P(—z), 0(z), andz*T1Q(—z),
respectively, are compactly supported symmetric or anti-symmetric waveletsy and
{y1, ¥2, ¥3} is a minimum-energy frame associated withl

Remark 5 It is easy to see (and will be elaborated in Section 3) that for cardinal
B-splinesN,, and interpolating scaling functions, of arbitrary ordersn, there always
exist compactly supported symmetric or anti-symmettic= {y1, ¥, ¥3} that are
minimum-energy frames associated wi}, or ¢! , respectively.

Remark 6 In practice, we can find (z) in a form slightly different from (2.19), such
thatw = {y1, ¥2, ¢3} has smaller supports. This can be seen from the examples in the
next section.

3. EXAMPLES OF COMPACTLY SUPPORTED MINIMUM-ENERGY FRAMES

In this section, we give examples of two classes of minimum-energy frames, one
associated with the cardinal B-splingg, in (1.16) and the other associated with
the compactly supported interpolating scaling functigifs obtained by taking the
autocorrelations of thexth order Daubechies o0.n. scaling functions.

3.1. Minimum-energy Frames with Two Generators

3.1.1. Cardinal B-splines. It is well known that thenth order cardinal B-splin&/,
has the two-scale relation

N ~ w
N (w) = P (2) Ny (E) s
where z := ¢~®/2 and P,,(z) = 27" (1 + z)". Observe thatP,,(z)| = |cosd|” and
| Py (—2)| = |sind|™, whered = w/4. Hence,
|Pn(2)|? + | Pu(—2)1? = (COL )™ + (SiP )™ < coS 0 + sirf o = 1.
By Theorem 2, there exists a compactly supported minimum-energy ffahey 2}
associated withv,,.

ExAamMPLE 1 (Linear B-splines). Forthe symb&b(z), it is easy to find

1 1 1 2
01() :=—~ + 54~ ZZZ and 05(2) == %(1 - 7).

Hence,zpz1 is symmetric andpz2 is anti-symmetric (see Fig. 1). This result was already
givenin [12].

ExamMPLE 2 (Quadratic B-splines). The symbBi(z) has polyphase components
1 1 2 1
P-(u) = §(1+3u) and P(u) := §(3+ u).

Since

[l

‘—(l—u)
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0.8 N,
0.6
0.4
0.2
0
0 05 1 15 2
1 1
1 0.5 "i
05 ¥z
0
0
\/ \/ -
-0.5 -1
o 05 1 15 2 0 05 1 1.5 2

FIG.1. An MRA tight frame associated with the linear B-spline.

we may set

3
3 o _
PPy = 2o —w. (3.1)

Following the proof of Theorem 2, we consider the vector-valued polynomial expression
in (2.14) witha, # 0, and attempt to transforay into a constant multiple of the coordinate
unit vectore; as in (2.15). Instead of using the Householder matfixas in the proof of
Theorem 2, we could have used 2-dimensional unitary matrix rotations. For example, we
can first annihilate the last (or third) componentgty rotating the 2-dimensional vector
formulated by the second and third componenta,oénd then the second entry af by
rotating the resulting 2-dimensional vector formulated by the first and second components.
In this example, we have the unitary matrix extension

V2 NE 271

20 —Z[[roo0][ £ 0¥ 0 0l ¥ o0
01 o ffloz1o|| o0 1 of|lo L —L1||_2 29
2 2
zo gllood|gozllo) £]lo o
L1430 F@+w Lld-w
= _ 6 NG _1
4 2
21-3u) PG@-uw) Ld+u)
Hence,
V3 1
010 =-(1-2,  Q2()=gl+3- 3223, (3.2)

and bothy-3 andy/2 are anti-symmetric (see Fig. 2).
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0.8
0.6 N
0.4
0.2
0
° 1 2 3
0.6 0.6
04 h{] 0.4 V:
0.2 0.2
0 0
-0.2 0.2
-0.4 -0.4
-06 -0.8
-0.8 -0.8
1 2 3 0 1 2 3

FIG. 2. An MRA tight frame associated with the quadratic B-spline.

ExamMPLE 3 (Cubic B-splines). For the symb@&h(z), the polyphase components are

Pl(u):l—l6(1+6u+u2) and Pz(u)z%l(l—i-u).

Now we solve the equation

2 2 2 2
%(1+6u+u2) - ’%(l—f—u) +|PPw) |’ =

for P3(u). By applying the Riesz lemma, one of the solutions is given by

V14 ﬁ 1 V14
Pw=3+5% 5 ()" 33)

Again, applying three 2-dimensional vector rotations as in Example 2 and one Householder
transform as in the proof of Theorem 2, we can compute the unitary matrix extension as
follows.

12 V2 —V2ru

1 0 0 s -2 0 2bu 0 —2au
Vb  1-4v%  dbru 0 %2 L||a ¢ o|/lo0o 1 o0
27 4r  (1-4Pu| |0 -4 £|[0 0 1][2a 0O 2
Y2(1 4 6u + u?) 214wy 4L Y14, (%—%‘)uz
= | 4V2ar? + 1_2"2 - %uz r— % —bu 4N/ 2br? + ﬁ%‘gu + 4u ;

ﬁ—gu—}’r—zuz V2a+b— u4\/—b2r+( +m)u+%u2
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07
0.6 N
05
0.4
0.3
0.2
0.1
0
0 1 2 3 4
0.4 0.4
0.2 v, 0.2 vi
0 0
-0.2 -0.2
-0.4 -0.4
0 1 2 3 4 0 1 2 3 4
FIG. 3. An MRA tight frame for cubic B-spline close to anti-symmetry.
where
V8—24/14 b v8+42v14
a:=——-, =—
V2 i i V164214 e
2 16+ 214
¢i= 7 r:=\/a2+02:7+8 )
Hence, we have
Vr V2 V2-2y2r? 5 J2b 5 Vb
01(z) =4dar’+ [ == - 2= |z + T2 B- s
2 32 8r 2 8
V2r V2b V2b , N2b 5 V2?2,
QZ(Z)_TJr(“JF 2 )Z_ AR R
From this, we extract a one-parameter family solution as follows:
9 .
7) =CcosY z) + sin@ 2);
01(2) 01(2) 02(2) (3.5)

05(z) = —sinfQ1(2) + €09 02(2), 0 €[0, 2x].
The choice ob = 0.5 gives an almost symmetric solution (see Fig. 3).

3.1.2. Compactly supported interpolating scaling functioniset ¢/ (x) be the com-
pactly supported interpolating scaling function with two-scale symbol

142\ k—1
Ply=z" (%) doo# (’" +k )(2 —z—7 b, (3.6)
k=0
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which satisfies
Plz=>=0 and Pl@o+Pl-2=1 = |z1=1 (3.7)
Then we have, fofz| =1,
IPL@I2+ IPL(=2)1? < |PL@] + | Ph(—2)| = PL() + Ph(-2) = 1.

By Theorem 2, we can find a compactly supported minimum-energy fréthe=
(v, v2) associated withp! . For this class of examples, we can even give an explicit
formulation.

Let P! ,(z) andP]  (z) be the polyphase components (as in (2.100pfz). By (3.7),
we have

V2
Pl’fl,e(z) = 7 (38)
Based on the construction procedure in the proof of Theorem 2, we can find a Laurent
polynomial P3, such that

1P P +|PL )2+ Psw) =1, — u=z2 (3.9)

Actually, P3(u) satisfies
|Psw)>=1— (P} ,a)?+|P} ,)?
=(Pl@) + PL(=2)%2 = (PL )2 +|PL(-2)])
=2P! ()Pl (~2),

and from this, we can deduce that
P3(u) =~2PP (2) PP (~2), (3.10)

wherePP(z) is the symbol of the Daubechies scaling functigi.
By (3.8) and (3.9), we get

[P, ) + | P3(u)|* = % (3.11)
It follows that

Varh ) V2P3(u)

V2P3(1/u) —v2P} (1/u)

is a unitary matrix foiu| = 1, and

1 0 0 g g
0 V2P )  V2P3) Pl | = | L2 (3.12)
0 V2Ps(l/u) —v2PL,/uy ] | PaL/u) 0
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By multiplying both sides of (3.12) by

vZ2 N2 g
2 2
0 0 1
to the right, we get
2Pl Pa(u) 2 1
2 P, —Pw Pho@w | =|0f. (313
0 ~2P3(1/u) —v2P} ,(1/u) P3(1/u) 0

Hence, we can write out the symbols fgof, andy2, namely,

0 = % - %EZP,LO(ZZ) =1-Pl(2);
G =spaasd=ary () ep(-2).

Z

(3.14)

Note thaty} with two-scale symbolQ? (z) is symmetric, buty2 is not, due to the
asymmetry ofP” (z) that governs the Daubechies scaling function.

ExXAMPLE 4. Construction oﬂ!é:

18 1 e 2@
323 3% 2132 32
19 1 9% Z
323 3% 2 32 32
Ve+2v2\ 1 /V/6+6V2)\1
2 _ [ YYT Ve & NYTEVEe) -
Q@)= ( 32 >z3+< 32 )

+<M>Z+ (M)Zs

le (2) =

03 = +
(3.15)

Z

32 32
(see Fig. 4).
ExAMPLE 5. Construction oftr}:

3 25 N 75 N 1 N 75 253 3°
5125 5123 ' 256 2 256 512 ' 512
3 25 75 1 75 253 3°
- - o= = 3.16
5125 ' 5123 256 2 256 512 512 (3.16)
@ z—1/z
8 2

P3(z) =

03z =

3
03(z) = ) (az 2+ b+ cz?),

where

/10
a=1+T+

10
v 95+ 3210, b=—-2+ g

[oci o
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0.5

-0.5

-
-

1
0.5 Y2

o

s A\/ \/f\ ° A\/ \/

-1 0.5
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIG. 4. An MRA tight frame associated with the interpolating scaling functjxén

10 1
c=1+g—§ 95+ 32/10

(see Fig. 5).

3.2. Symmetric Tight Frames with Three Generators

Based on the constructive proof of Theorem 3, we give examples of compactly supported
symmetric and/or anti-symmetric minimum-energy (tight) framies= {y1, 2, 43}
associated with the cardinal B-splin&g, Ns, andNs the interpolating scaling functions
¢} andel.

EXAMPLE 6. Symmetric tight frame associated with the cubic B-sphhe

1 4
P() = ( ;Z> , 01() = 2P(~2),
) (3.17)
020) = 7A=Y A-2VTz 425, 03() =202(-2)
(see Fig. 6).
ExXAMPLE 7. Symmetric tight frame associated with the quartic B-sphige
1 5
P<z>=( ;Z> , 01() = P(~2),
(3.18)

10
02(2) = 51— 2)1-2vV324+7%), 03(z2) =202(—2).
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1.5
N
1 3
0.5
0 A g
-0.5
-5 0 5
1.5 1
1
0.5 3
1
0.5 Ya /\
0 AN
0 L [ N/ \/
-0.5
-0.5 \j \/
-1 -1
-5 0 5 ~5 0
FIG.5. An MRA tight frame associated with the interpolating scaling funcﬁxén
0.7 0.4 -
N
0.6 4 0.3 "1
0.5 0.2
0.4 0.1
0.3 ob\ AN
0.2 0.1
0.1 -0.2
0 -0.3
0 1 2 3 4 5 ] 1 2 3
0.5 0.5
3
v: Yy
™
0 — 0
-0.5 -0.5
1 2 3 4 5 0 1 2 3

FIG. 6. Anti-symmetric tight frame associated with the cubic B-splvig
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1.5
1
} v.
1 2
0.5
Q.5
0 S o

-0.5
33 2 4 o 1 2 3 -2 [} 2 4

0.5 0.6

0.4 Y2

\EARAN A

-05

-2 o] 2 4 -2 0 2 4

FIG. 7. A symmetric tight frame associated with the interpolating scaling funqﬁ%}n

ExamMPLE 8. Symmetric tight frame associated with the quintic B-spiee

1 6
P<z>=< ;Z> 01(2) = 2P(~2).

0x= (4 g e

03(2) =202(-2).

ExAMPLE 9. Symmetric tight frame associated with the interpolating scaling func-
tion ¢4

-1 1 5
(z+z )+E(z +z )),(3.19)

4
le(z):z_2<14z_z> (2—%(z+z_1)>, Q1(z) =zP5 (—2).
V2, 3 2 -1
022) = 252 1+ 2’1~ 2) (2-A-V3/D@+zh),  03)=Q2(-2)
(3.20)
(see Fig. 7).

ExAamMPLE 10. Symmetric tight frame associated with the interpolating scaling
functiongi:

6
Pl = z-3<lgz> (1749 —~ Z(z +zhH+ g<z2+z—2>>, 01(z) =zP4(—2),
1-z2\%/13 J15 3
Qz(z)=z_3< 4Z ) <Z+T(Z+Z_1)_§(Z2+Z_2)>’ 03(z) =202(—2)

(3.21)
(see Fig. 8).
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1
1 ) 1
0.8 v
. 3
0.8 05
04 0 ja aN
0.2
0 AV 4 058
0.2
-5 0 5 -4 -2 Q0 2 4 [}
0.3 0.3
0.2 0.2
v v
0.1 0.1
, N - DA ANS
T VY
-0.2 ~0.2
-5 0 3 -4 -2 ] 2 4 8

FIG. 8. A symmetric tight frame associated with the interpolating scaling funqﬁ'ﬁ)n

4. MINIMUM-ENERGY FRAME DECOMPOSITION

Suppose that a refinable functignwith two-scale symboP (z) € YW has an associated
minimum-energy frama = {y1, ..., N} with two-scale symbol®)1(z),..., On(2) €
W. Then by Lemma 1, théV + 1) x 2 matrixR(z) in (1.22) formulated by these symbols
satisfies (1.23). In the proof of this lemma, we have the decomposition relation (2.7).
Hence, by setting

Uj:=clos2(y’,1i=1,....N: keZ), (4.1)
it follows that
Visi=V;+U;,  jeZ, (4.2)

but this is not a direct sum decomposition, because

V;NU; #{0}.
Indeed, lety(x) € Vo N Ug and write
N . .
N =) s =)= nvx k), (4.3)
keZ i=1keZ

or equivalently/i(w) = S d(w) = XN | TI (@) (w), with z = ¢/2, and

S(Z):Zskzk and Ti(z):Zt,izk, i=1...,N.

keZ keZ
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By the two-scale relations (1.18) and (1.20), we have

N
SEP@) - Y T'(z5Q'(2)=0.

i=1

Let P.(z), P»(z) be the polyphase componentsi(z), andQ’(z), Q! (z) be the polyphase
components oD’ (z). Then, we have

N
S(ZP)Pu(2?) = Y T'(2%)0L(z%) =0,

i=1

N
S P25 = Y T (2% Q) =0.
i=1
Thatis,
Po(z®)  Po(2?)
0;) 0y
[5G, TP, ... - TV (?)] , .| =0 (4.4)
0) (@ 0)E)
For N > 2, there exist (non-trivial) Laurent polynomia$§z) and7/(z), i = 1,..., N,
which satisfy (4.4) so that £ n(x) € Vo N U exists (see the proof of Theorem 2).
So, what is the significance of the decomposition formulation (1.13) which, in the first
place, is equivalent to the definition of minimum-energy frames associate@®ith
To answer this question, let us first consider the projection oper&joos L2 onto the
nested subspacés defined by

Pif:=Y (f 0jx)jk- (4.5)

keZ
The decomposition formula (1.13) can then be written as
N . .
Pisaf = Pif =) Y (LW Wi s
i=1keZ

In other words, the error term; := P;11f — P; f between consecutive projections is
given by the frame expansion

N
gi=>_ Y (ful v, (4.6)

i=1kezZ

The importance of this frame expansion as compared to any other expansion

N
gi=Y_ > cia¥ly (4.7)

i=1keZ
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of the same; is that the energy in (4.6) is minimum in the sense that
N _ N
S UAVEDPDY D el (4.8)
i=1keZ i=1kezZ

Indeed, by using both (4.6) and (4.7), we have

N N
(€ =D Y KAV DP=)"> cirlfivh )

i=1kezZ i=1kezZ

(and hence the last quantity is real), so that

N
0= ek — (f ¥ I

i=1keZ
N N N )
=D Y lairlP =2 > el v+ YD LY
i=1keZ i=1keZ i=1keZ
N N )
=Y D eirlP =Y D UL
i=1keZ i=1keZ

from which (4.8) follows.

We next discuss minimum-energy (wavelet) frame decomposition and reconstruction.
Suppose we have a minimum-energy fraine- {1, ..., ¥V} associated with a refinable
functiong. For anf € L?, consider

cik={(fdjx);  dip=(f¥i),  i=1...N. (4.9)

Then we can derive the decomposition and reconstruction formulas that are similar to those
of orthonormal wavelets.

1° Decomposition algorithm. Suppose the coefficients; 1., : ¢ € Z} are known. By
the two-scale relations (1.18) and (1.20), we have

1
Gjo(x) = 7 ijpk_zwm,k(x);

_ 1 ‘ (4.10)
Vi@ =7 ;q;,k_zwm,k(x), i=1....N.
Hence, the decomposition algorithm is given by
2D
Cig =—= —2¢Cj ;
j.t NG g Dk—2¢Cj+1.k
(4.12)

o =5 i o i=1... N jeZ
Jit k—2¢Cj+1k> s N
V24
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2° Reconstruction algorithm. From (2.7), it follows that

1 N o .
Gjs1e(x) = 7 Y peadin) +Y gl pq Vi —k g LeZ.  (4.12)
- .

i=1

Taking the inner products on both sides of (4.12) withwe have

N
1 . .
Cj+1,0= 7_ Z De—2kCjk + Zqzlz—zcd},k . (4.13)
2 k i=1

By using statement (i) in Lemma 1, we see that 1 ¢, £ € Z} in (4.13) is the same as
{cj+1k, k€ Z}in (4.11).
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