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Linear spline examples are given for M = 3, 4 to demonstrate our constructive approach.
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1. Introduction

While it is well-known that spline functions provide very powerful tools for data represen-
tation/manipulation and curve/surface design that are flexible, robust, and computational
efficient, there has been a lack of analysis methods in the spline tool-box for quality as-
sessment of the spline representations. In particular, for spline curve/surface editing, only
ad hoc procedures that depend on control point manipulation, knot insertion/removal, etc.
have been available before the recent introduction of the wavelet approach, particularly in
the exciting development of multiresolution or multi-level (MRA) techniques (see [13, 23,
26, 27]).

Spline functions are linear combinations of certain building blocks, called normalized
B-splines. For equally-spaced knots, say at the set Z of all integers, the normalized B-
splines with specific smoothness order, say CL−2 where L ≥ 1, are simply integer translates
of a single compactly supported non-negative function φL, called the L-th order Cardinal
B-spline, defined by L-fold convolution of the characteristic function of the unit interval. An
amazing property of the L-th order Cardinal B-spline φL is that it provides the multi-level
structure for dilation (or scaling) by any integer factor, say M ≥ 2, via a simple “scaling
relation”

φL(x) =
(M−1)L

∑

k=0

pkφL(Mx− k) (1.1)

or equivalently, in the Fourier domain,

φ̂L(ω) = PL(z)φ̂L(
ω
M

), z = e−iω/M , (1.2)

where

PL(z) :=
1
M

(M−1)L
∑

k=0

pkzk (1.3)

is called the (M -dilation) polynomial symbol of the (M -dilation) scaling sequence {pk},
given explicitly by

PL(z) =
(

1 + z + . . . + zM−1

M

)L

. (1.4)

As in the special case M = 2 (see e.g. [4]), it is easy to construct M − 1 semi-orthogonal
wavelets that have compact support and are expressed as linear combinations of φL(Mx−
k), k ∈ Z. However, for L ≥ 2, the support of the corresponding duals of these wavelets
is necessarily all of (−∞,∞) (see e.g. [28, 29]). This undesirable property of the “analysis
wavelets” makes it difficult to develop very efficient spline tools for spline curve/surface
quality assessment.
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For L ≥ 2, when the (total) positivity of φL does not allow orthogonal (integer)
translates, compactly supported tight frames, again expressed as linear combinations of
φL(Mx− k), k ∈ Z, are probably the best alternatives (to replace orthonormal wavelets).
However, in place of orthogonality, the important feature of vanishing moments must be
retained. (Recall that both orthonormal wavelets and semi-orthogonal wavelets, together
with their duals, have the L-th order vanishing moments, meaning that they annihilate all
polynomials of order L (or degree of L−1), when the MRA generated by φL is considered.)
When the (orthogonal) “matrix extension” approach (see [20, 25, 5]) is used to construct
Laurent polynomial symbols Q1(z), . . . , QN (z) of the tight frame (generators) ψ1, . . . , ψN in
terms of the M -dilation symbol PL(z); more precisely, when the M (orthogonal) equations:

PL(z)PL(ωm
Mz) +

N
∑

n=1

Qn(z)Qn(ωm
Mz) = δm,0, (1.5)

m = 0, . . . , M−1 with ωM := e−i2π/M , are solved for Q1(z), . . . , QN (z), to yield ψ1, . . . , ψN

via
ψ̂n(ω) = Qn(z)φ̂L(

ω
M

), z = e−iω/M , (1.6)

n = 1, . . . , N , it is noted that independent of the choice of N , at least one of the wavelets
ψ1, . . . , ψN has only one vanishing moment. The reason for this is that in (1.5) for m = 0,
the polynomial

N
∑

n=1

|Qn(z)|2 = 1− |PL(z)|2 = 1−
∣

∣

∣

∣

1 + z + . . . + zM−1

M

∣

∣

∣

∣

2L

is divisible by |1−z|2, but not by |1−z|2` for ` > 1 on |z| = 1. Hence, for M = 2, the notion
of vanishing moment recovery (VMR) functions was introduced in our earlier work [6] (and
independently by Daubechies, Han, Ron, and Shen [12], where VMR functions are called
fundamental functions), to increase the order of vanishing moments for each of ψ1, . . . , ψN .

In the following discussion, since we are interested in a more general setting (rather
than the particular case of Cardinal B-spline φL), we will replace PL(z) by a more general
Laurent polynomial

P (z) =
(

1 + z + . . . + zM−1

M

)L

P0(z)

=
1
M

N2
∑

k=N1

pkzk, L ≥ 1, and pN1pN2 6= 0,

(1.7)

where P0(z) is some Laurent polynomial not divisible by (1+z+. . .+zM−1), and φL replaced
by an M -dilation “scaling” function φ governed by the (M -dilation) scaling relation

φ(x) =
N2
∑

k=N1

pkφ(Mx− k), (1.8a)
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or equivalently,
φ̂(ω) = P (z)φ̂(

ω
M

), z = e−iω/M . (1.8b)

Here and throughout, the degree of the Laurent polynomial P (z) in (1.7) is defined to be
N2−N1. As a scaling function, φ is assumed to satisfy the Riesz (or stability) condition as
well as the low-pass filter condition

φ̂(0) = 1. (1.8c)

It is clear that φ is compactly supported and that the spaces

Vj = closL2〈φ(M j · −k) : k ∈ Z〉, j ∈ Z, (1.8d)

possess the density and nested properties:

{0} ← · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2, (1.8e)

commonly called a multiresolution approximation (MRA) of L2 = L2(IR). Throughout
this paper, φ will denote a real-valued compactly supported scaling function that satisfies
(1.8a)–(1.8e) as well as the Riesz (or stability) condition. The M (orthogonal) equations,
such as (1.5) for PL(z), are now extended to the M equations

S(zM )P (z)P (ωm
Mz) +

N
∑

n=1

Qn(z)Qn(ωm
Mz) = δm,0S(z), |z| = 1, (1.9)

m = 0, . . . , M − 1, where ωM := e−i2π/M and S(z) is a Laurent polynomial that satisfies

S(1) = 1. (1.10)

The polynomial S(z) in (1.9) will be called a VMR function as coined in [6] for M = 2.
Clearly, (1.9) is an extension of the “matrix extension” approach, namely (1.5) (where Car-
dinal B-spline was considered), by extending S ≡ 1 to a more general Laurent polynomial
that satisfies (1.10), to increase the power ` of the factor (1−z)` of each Qn(z), n = 1, . . . , N ;
or equivalently, to increase the order of vanishing moments of ψ1, . . . , ψN .

For convenience, the standard notation

fj,k(x) := M j/2f(M jx− k), j, k ∈ Z, (1.11)

for dilation, translations, and L2-normalization, will be used. With this notation, a family

Ψ = {ψ1, . . . , ψN} ⊂ L2 (1.12)
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is said to generate a tight (affine) frame

F := {ψn;j,k : 1 ≤ n ≤ N, j, k ∈ Z} (1.13)

of L2, or for simplicity, we also say that Ψ is a tight (affine) frame, if there exists some
constant A > 0 (called frame bound constant), such that

N
∑

n=1

∑

j,k∈Z

|〈f, ψn;j,k〉|2 = A‖f‖2, f ∈ L2. (1.14)

The tight frame F (or tight frame generators Ψ) is said to be normalized, if ψn is replaced
by A−1/2ψn, so that the frame bound constant A in (1.14) is replaced by 1.

The objective of this paper is to extend our work [6] from dilation M = 2 to arbi-
trary M ≥ 2 on compactly supported affine frames associated with a compactly supported
(M -dilation) scaling function and possessing the maximum order of vanishing moments.
Although it should not be difficult to generalize the results in this present paper to sibling
frames, or more generally to bi-frames, we will not do so. More precisely, we will study the
VMR functions in some detail, give a constructive proof of the existence of N = M com-
pactly supported tight affine frames (or frame generators) with maximum order of vanishing
moments via VMR Laurent polynomials, characterize the existence of N = M − 1 com-
pactly supported tight affine frame generators in terms of certain algebraic structure of the
M -dilation Laurent symbol, and demonstrate our theory by considering the construction of
compactly supported L-th order Cardinal spline tight frames with L vanishing moments.

This paper is organized as follows. Preliminary results on scaling functions, tight
affine frames, transfer operators, and shift-invariant spaces are compiled in Section 2. In
Section 3, we derive a characterization of a function S(z) in (1.9)–(1.10) so that Ψ, as
defined by ψ̂n(ω) = Qn(z)φ̂(ω/M), z = e−iω/M , generates a tight frame F of L2. The
characterization, as stated in Theorem 3.1, is simply S(z) ≥ 0 for |z| = 1. This function
S(z) is used to generate additional vanishing moments for the tight frames, and hence is
called a vanishing moments recovery (VMR) function. Its intrinsic property with the scaling
symbols is formulated and studied in Section 4. In particular, a necessary and sufficient
condition for S(z) to be a VMR function in the construction of a tight frame associated
with the scaling function of an MRA is established (see Theorem 4.1). As an application
of Theorem 4.1, we show, in Section 5, that a tight affine frame F with M generators
associated with an M -dilation scaling function φ of an MRA, having maximum vanishing
moments as governed by φ, can always be constructed ( see Theorem 5.1). Of course, if
the MRA is generated by a compactly supported orthonormal M -dilation scaling function,
then there exist M −1 compactly supported orthonormal wavelets (and hence a tight affine
frame), that have maximum vanishing moments. In Section 6, we give a necessary and
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sufficient condition for the existence of tight affine frames with M − 1 compactly supported
generators in V1 (see Theorem 6.1), when the compactly supported scaling function is not
orthonormal. Examples of linear-spline compactly supported tight frames with dilation 3
and 4, and having maximum (that is, second order) vanishing moments, are presented in
the last section.

2. Preliminaries

In this section, we introduce the necessary notations and compile certain preliminary re-
sults on tight frames, transfer operators, and shift-invariant spaces to facilitate our later
development.

2.1. Scaling Functions and Tight Frames

Throughout this paper we only consider compactly supported scaling functions φ with finite
and real-valued M -dilation scaling sequences {pk}, so that (1.7) and (1.8a)–(1.8e) are valid.
The Fourier transform, defined by

f̂(ω) =
∫

IR
f(x)e−ixωdx

for integrable functions f , is extended to tempered distributions. Hence, the Fourier trans-
form of a compactly supported distribution is an entire (or analytic) function on the complex
plane.

The objective of this paper is to study tight frames of L2 generated by a family Ψ =
{ψ1, . . . , ψN} ⊂ L2, that are defined by scaling relations

ψ̂n(ω) = Qn(z)φ̂(ω/M), z = e−iω/M , n = 1, . . . , N, (2.1)

where Q1, . . . , QN are Laurent polynomials that have real coefficients and vanish at z = 1.
In particular, we are interested in the formulation

Qn(z) = (1− z)Lnqn(z), qn(1) 6= 0, (2.2)

where Ln ≥ 1. In other words, Ln is the order of vanishing moments of ψn. The largest
possible Ln is L. We remark that under the assumption Ln ≥ 1, ψn already satisfy the
Bessel (i.e. the upper frame bound) condition, as shown in [7].

The following result, which is a direct generalization of a result in [9, 18] for the case
M = 2, will be used in our later development.
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Lemma 2.1. Let φ be a compactly supported L2 function that satisfies (1.8a), (1.8c), and
the Riesz condition. Then there do not exist Laurent polynomials R1(z) and R2(z) such
that R1 is not a monomial, all the non-zero roots of R1(z) are on |z| = 1, R1(1) 6= 0 and

P (z) = R1(zM )R2(z)/R1(z). (2.3)

Proof. Suppose that the Laurent polynomial symbol P (z) of φ has the form of (2.3) for
some Laurent polynomials R1(z) and R2(z) such that R1 is not a monomial, all the non-zero
roots of R1(z) are on |z| = 1, and R1(1) 6= 0. It follows from (1.8c) and (2.3) that

φ̂(ω) =
∞
∏

j=1

P (e−iM−jω) =
∞
∏

j=1

R2(e−iM−jω)× R1(e−iω)
R1(1)

. (2.4)

By hypothesis, R1(z) has at least one root on |z| = 1, say e−iω0 , ω0 ∈ IR. Then it follows
from (2.4) that φ̂(ω0 + 2kπ) = 0 for all k ∈ Z, so that the continuous function (actually
trigonometric polynomial)

∑

k |φ̂(ω + 2πk)|2 has a zero at ω = ω0, or φ cannot satisfy the
Riesz condition (see [4]).

The following result gives a precise characterization of tight affine frames of L2. Note
that no reference is made to an underlying scaling function.

Proposition 2.2. The affine family F in (1.13) is a tight frame of L2 if and only if Ψ =
{ψ1, . . . , ψN} satisfies

∑

j∈Z

N
∑

n=1

|ψ̂n(M jω)|2 = A, (2.5)

and
∞
∑

j=0

N
∑

n=1

ψ̂n(M jω)̂ψn(M j(ω + 2kπ)) = 0, k 6∈ MZ, (2.6)

a.e. in IR, where A is a positive constant. Furthermore, if Ψ satisfies (2.5) and (2.6), then
the constant A is the (tight) frame bound of F .

The above result is well documented in the book [17] for orthonormal wavelets with
M = 2. It was later generalized to tight frames with integer dilation (see [14, 25]). A
complete extension to tight affine frames with arbitrary real dilation was recently established
in [8].
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2.2. Transfer Operators

The notion of transfer operator has appeared in many investigations. In this paper, we use
the eigenfunctions of a transfer operator to establish the existence of a compactly supported
tight affine frame with M generators associated with an MRA. As usual, the space of
2π-periodic functions with absolutely convergent Fourier series is called the Wiener class
and denoted by W. Given a Laurent polynomial H, we define the corresponding transfer
operator T|H|2 on W by

T|H|2f(zM ) =
M−1
∑

m=0

|H(e−i2mπ/Mz)|2f(e−i2mπ/Mz). (2.7)

The following result was given in [19, Theorem 2.3].

Lemma 2.3. Let φ be a compactly supported scaling function with dilation factor M , and
Laurent polynomial P (z). Then 1 is a simple eigenvalue of the transfer operator T|P |2 on
W, and all of the other eigenvalues of T|P |2 lie inside the unit circle. Moreover, the Laurent
polynomial

Φ(z) :=
∑

k∈Z

Aφ(k)zk =
∑

k∈Z

|φ̂(ω + 2kπ)|2, z = e−iω, (2.8)

is an eigenfunction of the transfer operator T|P |2 with eigenvalue 1, where Aφ is the auto-
correlation of φ defined by

Aφ(x) :=
∫

IR
φ(t)φ(t + x)dt. (2.9)

The formulation in (2.8) follows from Poisson Summation formula. In the following,
we use the notation

ΠN :=
{ N

∑

j=−N
fjzj : fj ∈ IR

}

.

Note that each Laurent polynomial in ΠN has degree at most 2N . It is clear that for
sufficiently largeN , ΠN is an invariant subspace of the transfer operator T|H|2 . In particular,
if |H|2 ∈ ΠN0 , then we can choose any integer N ≥ N0/(M − 1) to define an invariant
subspace ΠN . For L ≥ 0, we set

EN ,L = {0 ≤ p ∈ ΠN : p(z) = O((1− z)L) near z = 1}.

It is easy to see that if H is a Laurent polynomial of degree N0 and has the form

H(z) =
(

1 + z + . . . + zM−1

M

)L

H0(z), (2.10)
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where L is a nonnegative integer for some Laurent polynomial H0, then EN ,2L is invariant
under the transfer operator T|H|2 for any integer N ≥ 2N0/(M − 1). Moreover, for any
Laurent polynomial f ∈ ΠN , we have

T|H|2fL(zM ) = M−2L
∣

∣

∣

∣

1− zM

2

∣

∣

∣

∣

2L

(T|H0|2f)(zM ), (2.11)

where fL(z) =
∣

∣
1−z
2

∣

∣

2L
f(z). Therefore, as a consequence of (2.11) and Lemma 2.3, we

have the following estimate for the spectral radius of the transfer operator associated with
a scaling function.

Lemma 2.4. Let φ ∈ L2 be a compactly supported scaling function with dilation factor
M , and M -dilation symbol P (z) satisfying (1.7) for some Laurent polynomial P0 of degree
N0, where N0 ≥ 0. Then the spectral radius of T|P0|2 on ΠN for N ≥ 2N0/(M − 1) is
strictly less than M2L.

Next we analyze the irreducibility of the transfer operator T|H|2 . According to [24],
irreducibility of the transfer operator T is defined by the following property: if Tf ≤ αf
for some positive constant α and f ≥ 0, then f > 0 unless f ≡ 0.

Lemma 2.5. Let H be a Laurent polynomial of degree N0. Assume that there does not
exist a nonzero Laurent polynomial H1 which is not a monomial and with all roots on
|z| = 1 such that H(z)H1(z)/H1(zM ) remains to be a Laurent polynomial. Then T|H|2 is
irreducible on ΠN for N ≥ 2N0/(M − 1).

The argument for the proof of the above result is similar to the derivation of the result
for using the symbol to characterize the stability of a scaling function ([9, 18]). We remark
that a factor of the form 1

M (1 + z + . . . + zM−1) in (2.10) cannot be present in H, if the
assumption in the lemma is satisfied. For completeness, we include a proof of the lemma
here.

Proof. We will use the trigonometric polynomial expression for the Laurent polynomials,
and abuse the notation by using H(ω) for H(e−iω), etc. Let 0 ≤ f ∈ ΠN and Tf ≤ αf .
If f > 0, there is nothing to be shown. Let us assume that there exists ω0 ∈ (−π, π] such
that f(ω0) = 0. Then it follows from Tf ≤ αf and f ≥ 0 that

∣

∣

∣H
(ω0 + 2mπ

M

)∣

∣

∣

2
f
(ω0 + 2mπ

M

)

= 0, m = 0, . . . ,M − 1.

By the assumption on H, there exists an integer 0 ≤ m(ω0) ≤ M − 1 such that H((ω0 +
2m(ω0)π)/M) 6= 0; otherwise, H, by itself, would be divisible by H1(Mω), where H1(ω) =
eiω − eiω0 . This leads to f((ω0 + 2m(ω0)π)/M) = 0. Hence, there exists ω1 ∈ (−π, π] such
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that f(ω1) = 0 and Mω1 ≡ ω0 (mod 2π). By following this procedure iteratively, we derive
a sequence {ωk : k ≥ 0} ⊂ (−π, π], such that f(ωk) = 0 and

Mωk+1 ≡ ωk (mod 2π) for all k ≥ 0. (2.12)

Recall that f has finitely many roots on (−π, π]. Hence, ωk1 = ω0 for some k1 ≥ 1. For
simplicity, we denote the smallest positive integer k such that ωk = ω0 by k1. We have

H
(

ωk +
2mπ
M

)

= 0 (2.13)

for all 1 ≤ m ≤ M − 1 and 0 ≤ k ≤ k1− 1. (The proof of (2.13) is similar to the one in [10,
pp. 192] where M = 2.)

On one hand, it follows from (2.12) and the identity (e−iMω − e−iα) =
∏M−1

m=0 (e−iω −
e−i((α+2mπ)/M)) that

k1−1
∏

k=0

M−1
∏

m=0

(e−iω − e−i(ωk+2mπ/M)) =
k1−1
∏

k=0

(e−iMω − e−iωk). (2.14)

Hence, by (2.13), H(ω)
∏k1−1

k=0 (e−iω − e−iωk) is divisible by the trigonometric polynomial
on the left-hand side of (2.14). We thus obtain H(ω) = H1(Mω)H2(ω)/H1(ω), where
H1(ω) =

∏k1−1
k=0 (e−iω − e−iωk) and H2(ω) is a trigonometric polynomial. This contradicts

with the assumptions on H.

Based on the Perron-Frobenius theory (see [24]) and the irreducibility of the transfer
operator given in Lemma 2.5, we have the following result concerning T|H|2 .

Lemma 2.6. Let H be a Laurent polynomial of degree N0, and ρ be the spectral ra-
dius of the transfer operator T|H|2 on ΠN , where N ≥ 2N0/(M − 1). Assume that there
does not exist a nonzero Laurent polynomial H1, which is not a monomial, such that
H(z)H1(z)/H1(zM ) remains to be a Laurent polynomial. Then there exists F ∈ ΠN such
that T|H|2F = ρF and F (z) > 0 on |z| = 1.

2.3. Frames in Shift-Invariant Spaces

To study tight affine frames with M − 1 generators associated with an M -dilation scaling
function φ, the topic to be discussed in Section 6, it is convenient to investigate certain
frame property for shift-invariant spaces. For a finite collection Ψ = {ψ1, . . . , ψN} of L2

functions, we define the corresponding shift-invariant space W (Ψ) = W (ψ1, . . . , ψN ) as
(infinite) linear combinations of integer shifts in terms of `2 sequences, namely:

W (Ψ) =

{

N
∑

n=1

∑

k∈Z

dnkψn(· − k) : {dnk}k∈Z ∈ `2, 1 ≤ n ≤ N

}

.
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We will say that Ψ is a frame for the shift-invariant space W (Ψ) if there exist positive
constants A ≤ B, called frame bounds, such that

A‖f‖22 ≤
N

∑

n=1

∑

k∈Z

|〈f, ψn(· − k)〉|2 ≤ B‖f‖22, f ∈ W (Ψ).

Using the characterization of frames for shift-invariant spaces in [1, 2, 3], we have the
following result for the functions chosen from a multiresolution approximation.

Proposition 2.7. Let {Vj}j∈Z be an MRA generated by a compactly supported M -dilation
scaling function φ. Let ψ1, . . . , ψN ∈ V1 be compactly supported L2 functions defined by
ψ̂n(ω) = Qn(z)φ̂(ω/M) for some Laurent polynomials Qn(z), 1 ≤ n ≤ N, z = e−iω/M . Then
{ψ1, . . . , ψN} is a frame of the shift-invariant space W (ψ1, . . . , ψN ) if and only if the rank
of the N ×M matrix

[

Qn(e−i2mπ/Mz)
]

1≤n≤N,0≤m≤M−1 is independent of z on |z| = 1.

3. M-Dilation Tight Affine Frames Associated with MRA

In this section, we give another characterization of tight affine frames associated with some
M -dilation scaling function. This formulation will be more convenient for explicit construc-
tion of tight affine frames associated with some MRA. We will employ the notation `0 for
the space of all finite sequences.

Theorem 3.1. Let {Vj}j∈Z be an MRA generated by a compactly supported M -dilation
scaling function φ. Consider

ψn =
∑

j∈Z

qnjφ(M · −j), 1 ≤ n ≤ N, (3.1)

in V1 defined by some {qnj}j∈Z ∈ `0, 1 ≤ n ≤ N . Then Ψ = {ψ1, . . . , ψN} is a normalized
(i.e. A = 1 in (1.14) or (2.5)) tight affine frame if and only if there exists a Laurent
polynomial S(z) that satisfies
(i) S(1) = 1;
(ii) S(z) ≥ 0 on |z| = 1; and
(iii) for all m = 0, . . . ,M − 1,

S(zM )P (z)P (ei2mπ/Mz−1) +
N

∑

n=1

Qn(z)Qn(ei2mπ/Mz−1) = δm0S(z), (3.2)

where Qn(z) = 1
M

∑

j∈Z qnjzj , 1 ≤ n ≤ N .

The above result is a generalization of a result in [6] from M = 2 to arbitrary integer
M ≥ 2. In view of the independent development in [6] and [12], we extend the proofs in
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these two recent papers to arbitrary integer dilations. The sufficiency direction extends and
simplifies the proof for bi-frames in [11], and the proof for the necessity direction will be a
generalization of the proof for M = 2 in [6].

Proof of Theorem 3.1.
(i) Sufficiency. Let φ̃ be defined by ̂φ̃(ω) = S(e−iω)φ̂(ω). For j ∈ Z, we consider

Λjf :=
∑

k∈Z

〈f, φj,k〉φ̃j,k, f ∈ L2,

and

Ωjf :=
N

∑

n=1

∑

k∈Z

〈f, ψn;j,k〉ψn;j,k.

Then by direct computations and using the notation z = e−iω/M , we obtain

̂Ω0f(ω) =(2π)−1
N

∑

n=1

∑

k∈Z

̂ψn(ω)e−ikω〈f̂ , ̂ψn(·)e−ik·〉

=
N

∑

n=1

∑

l∈Z

f̂(ω + 2lπ) ̂ψn(ω + 2lπ) ̂ψn(ω)

=
∑

l′∈Z

M−1
∑

m=0

f̂(ω + 2Ml′π + 2mπ)̂φ
(ω + 2mπ

M
+ 2l′π

)

̂φ
( ω

M

)

×
(

N
∑

n=1

Qn(ei2mπ/Mz−1)Qn(z)
)

=
∑

l′∈Z

M−1
∑

m=0

f̂(ω + 2Ml′π + 2mπ)̂φ
(ω + 2mπ

M
+ 2l′π

)

̂φ
( ω

M

)

×
(

− S(zM )P (ei2mπ/Mz−1)P (z) + δm0S(z)
)

=− S(zM )
∑

l∈Z

f̂(ω + 2lπ)̂φ(ω + 2lπ)̂φ(ω)

+ S(z)
∑

l∈Z

f̂(ω + 2lMπ)̂φ
( ω

M
+ 2lπ

)

̂φ
( ω

M

)

=− ̂Λ0f(ω) + ̂Λ1f(ω).

This proves that Ω0f = Λ1f −Λ0f for all f ∈ L2. Hence, it follows from dilation invariance
that

Ωjf = Λj+1f − Λjf, f ∈ L2. (3.3)
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Clearly,
∑

j∈Z

〈Ωjf, f〉 =
N

∑

n=1

∑

j,k∈Z

|〈f, ψn;j,k〉|2, f ∈ L2. (3.4)

Therefore, in view of (3.3) and (3.4), it suffices to prove that

lim
j→∞

‖Λjf − f‖2 = 0 and lim
j→−∞

‖Λjf‖2 = 0, f ∈ L2.

This can be easily verified, since S(1) 6= 0 and φ is a compactly supported L2 function with
φ̂(0) = 1 (see, for instance, [22] or [11, Lemma 2.2]).

(ii) Necessity. Suppose that Ψ generates a normalized tight affine frame F of L2. Then
consider an auxiliary function

Θ(ω) :=
1

|φ̂(ω)|2

∞
∑

j=1

N
∑

n=1

|ψ̂n(M jω)|2

=
∞
∑

j=1

N
∑

n=1

|Qn(zMj
)|2

j−1
∏

k=1

|P (zMk
)|2,

(3.5)

which already appeared in [25]. Since φ̂ is an entire function, it has only isolated zeros, if
any at all. Hence, Θ is a measurable function, which can be defined by Laurent polynomials
in the second line of (3.5). This shows that Θ is 2π-periodic. By (3.5), we can write Θ(ω)
in the z-notation, to be denoted by S(zM ), namely S(zM ) := Θ(ω), z = e−iω/M . Obviously,
S(z) ≥ 0 on |z| = 1. We need to show that S(z) is a Laurent polynomial. By (2.6), we have

0 =
∑

j≥0

N
∑

n=1

ψ̂n(M jω)̂ψn(M j(ω + 2kπ))

= φ̂(ω/M)φ̂(ω/M + 2kπ/M)

[

N
∑

n=1

Qn(z)Qn(ei2kπ/Mz−1) + P (z)P (ei2kπ/Mz−1)Θ(ω)

]

,

for almost all ω ∈ IR and k 6∈ MZ. Then, the analyticity of φ̂ leads to

0 =
N

∑

n=1

Qn(z)Qn(ei2kπ/Mz−1) + P (z)P (ei2kπ/Mz−1)S(zM ), a.e. z ∈ TT. (3.6)

Taking k = 1 in (3.6), we obtain

S(zM ) = −
(

P (z)P (ei2π/Mz−1)
)−1 N

∑

n=1

Qn(z)Qn(ei2π/Mz−1), (3.7)
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which is a rational Laurent function. Write

S(z) = a(z)/b(z), (3.8)

where a(z) and b(z) are Laurent polynomials whose only common factor is a monomial. On
one hand, (2.5) leads to

1 =
∑

j∈Z

N
∑

n=1

|ψ̂n(M jω)|2 = lim
J→−∞

∞
∑

j=J

N
∑

n=1

|ψ̂n(M jω)|2 = lim
J→−∞

[

Θ(MJω)|φ̂(MJ−1ω)|2
]

.

Hence, the continuity of φ̂ at ω = 0 implies that

lim
J→−∞

Θ(MJω) = 1

for almost all ω ∈ IR. It follows that S(1) = Θ(0) = 1, and hence,

b(1) 6= 0. (3.9)

On the other hand, (3.5) can also be written as

S(z) =
N

∑

n=1

|Qn(z)|2 + |P (z)|2S(zM ). (3.10)

So, substituting the expression (3.8) for S in (3.10) gives

a(zM )
b(zM )

× |P (z)|2 +
N

∑

n=1

|Qn(z)|2 =
a(z)
b(z)

. (3.11)

Therefore, a(z)b(zM )/b(z) must be a Laurent polynomial. Since the common factor of a(z)
and b(z) is a monomial, b(zM )/b(z) is indeed a Laurent polynomial and hence all non-zero
roots of b(z) are on the circle |z| = 1. Moving the term

∑N
n=0 |Qn(z)|2 to the right-hand

side of equation (3.11), and then multiplying by b(zM ) on both sides lead to

a(zM )|P (z)|2 = R1(z)b(zM )/b(z), (3.12)

where R1 is a Laurent polynomial. Again using the assumption that the only common
factor of a(z) and b(z) is a monomial, we conclude from (3.8) that

|P (z)|2 = R2(z)b(zM )/b(z), (3.13)

where R2 is a Laurent polynomial as well. It is easy to see that |P (z)|2 is the M -dilation
symbol of the scaling function Aφ, which is the autocorrelation function of φ in (2.9) so
that Âφ(ω) = |φ̂(ω)|2. Then since φ̂ is continuous, the stability condition of φ, that is
∑

k∈Z |φ̂(ω + 2kπ)|2 ≥ C1 > 0 for some C1, implies that
∑

k∈Z |Âφ(ω + 2kπ)|2 ≥ C2 > 0
for some C2. Thus, Aφ also satisfies the Riesz condition. Hence, (3.9) and (3.13) lead to
a contradiction of Lemma 2.1 unless b(z) is a monomial. Consequently S(z) is a Laurent
polynomial by (3.8). By using S(z) in (3.6) and (3.10), we complete the proof for the
necessity direction.
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4. VMR Functions

The function S(z) in Theorem 3.1 plays an important role in our explicit construction of
tight affine frames with additional vanishing moments. In this section, we give a necessary
and sufficient condition on the Laurent polynomials S(z) under which the conditions (i)–(iii)
hold for some Laurent polynomials Qn(z), 1 ≤ n ≤ N .

In this section we restrict our discussion to the case where φ and ψn, 1 ≤ n ≤ N , are
real-valued as before. By the linear independence of the integer shifts of φ, it follows that
Qn, 1 ≤ n ≤ N , are Laurent polynomials with real coefficients. We will make use of the
identity Qn(z) = Qn(1/z), |z| = 1, whenever convenient.

Theorem 4.1. Let {Vj}j∈Z be an MRA generated by some compactly supported M -
dilation scaling function φ and P (z) be its M -dilation symbol. Let S be a Laurent polyno-
mial with real coefficients such that S(1) = 1, and S(z) ≥ 0 on |z| = 1. Then there exist
Laurent polynomials Qn(z), 1 ≤ n ≤ N satisfying (3.2), if and only if

M−1
∏

m=0

S(e−i2mπ/Mz)− S(zM )
M−1
∑

m=0

|P (e−i2mπ/Mz)|2
M−1
∏

j=0,j 6=m

S(e−i2jπ/Mz) ≥ 0 (4.1)

on |z| = 1.

The condition (4.1) on S(z) will be used later for the construction of tight affine frames
associated with φ. The corresponding result for M = 2 was established in [6], but the proof
given here is a little different.

Recall that an M × M matrix A is positive semi-definite if c̄T Ac ≥ 0 for any vector
c ∈ CM . To prove Theorem 4.1, we need the following matrix-valued Fejer-Riesz Lemma
with real coefficients in [16] (see also the references therein for the matrix-valued Riesz
Lemma).

Lemma 4.2. Let A be an M × M matrix whose entries are Laurent polynomials with
real coefficients, such that A(z) = A(1/z)T is positive semi-definite on |z| = 1. Then there
exists an M ×M matrix R, whose entries are Laurent polynomials with real coefficients,
such that

A(z) = R(z)R(1/z)T , |z| = 1. (4.2)

An algorithm for computing such a factorization of A is given in [16]. Another simple
algorithm for the case M = 2 was established in [6]. For the proof of Theorem 4.1, we also
need the polyphase form of equation (3.2), as follows.
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Lemma 4.3. Let S, P and Qn, 1 ≤ n ≤ N , be Laurent polynomials with real coefficients,
and let Pm, Qn,m and Sm,m′ be defined by

P (z) =
M−1
∑

m=0

zmPm(zM ), Qn(z) =
M−1
∑

m=0

zmQn,m(zM ), 1 ≤ n ≤ N, (4.3)

and

zm′
S(z) =

M−1
∑

m=0

zmSm,m′(zM ), 0 ≤ m′ ≤ M − 1. (4.4)

Moreover, set
R(z) := [Qn,m(z)]1≤n≤N,0≤m≤M−1 (4.5)

and
M̃(z) :=

[ 1
M

Sm,m′(z)− S(z)Pm(z)Pm′(1/z)
]

0≤m,m′≤M−1
. (4.6)

Then S(z), P (z) and Qn(z), 1 ≤ n ≤ N , satisfy (3.2) if and only if

R(z)T R(1/z) = M̃(z), |z| = 1. (4.7)

Proof. By using the polyphase decomposition (4.3), equation (3.2) becomes

M−1
∑

m′=0

M−1
∑

m=0

(

Pm(zM )Pm′(z−M )S(zM )

+
N

∑

n=1

Qn,m(zM )Qn,m′(z−M )
)

z(m−m′)ei2sm′π/M = S(z)δs0,

for all s = 0, . . . ,M − 1. Thus,

M−1
∑

m=0

(

Pm(zM )Pm′(z−M )S(zM )+

N
∑

n=1

Qn,m(zM )Qn,m′(z−M )
)

z(m−m′) =
1
M

S(z)

(4.8)

for all m′ = 0, . . . ,M − 1. This together with (4.4) lead to

S(z)Pm(z)Pm′(1/z) +
N

∑

n=1

Qn,m(z)Qn,m′(1/z) =
1
M

Sm,m′(z), (4.9)

where 0 ≤ m,m′ ≤ M − 1. The assertion then follows.
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Proof of Theorem 4.1.
(i) Necessity. By the assumption, there exist Laurent polynomials Qn(z), 1 ≤ n ≤ N , such
that

S(zM )P (z)P (ei2mπ/Mz−1) +
N

∑

n=1

Qn(z)Qn(ei2mπ/Mz−1) = S(z)δm0.

Therefore, for any m,m′ = 0, . . . , M − 1, we have

N
∑

n=1

Qn(e−i2mπ/Mz)Qn(ei2m′π/Mz−1 )

=δmm′S(e−i2mπ/Mz)− S(zM )P (e−i2mπ/Mz)P (ei2m′π/Mz−1).

(4.10)

This implies that the M ×M matrix

M(z) =diag
(

S(z), . . . , S(e−i2mπ/Mz)
)

− S(zM )
[

P (e−i2mπ/Mz)P (e−i2m′π/Mz−1)
]

0≤m,m′≤M−1

(4.11)

is positive semi-definite on |z| = 1, and thus,

detM(z) ≥ 0, |z| = 1. (4.12)

For a diagonal matrix A = diag(a1, . . . , aM ), and vectors u = (u1, . . . , uM )T and
w = (w1, . . . , wM )T in CM , we have, by induction on M ≥ 1, that

det(A− uT w) =
M
∏

i=1

ai −
M
∑

i=1

uiwi

∏

1≤j≤M,j 6=i

aj . (4.13)

Note that we may write the matrix M(z) as M(z) = A − uT w, where we define A =
diag(S(z), . . . , S(z e−i2(M−1)π/M )), u = S(zM )(P (z), . . . , P (e−i2(M−1)π/Mz))T ∈ CM and
w = (P (z−1), . . . , P (ei2(M−1)π/Mz−1))T ∈ CM . Therefore, by (4.13), we have

detM(z) =
M−1
∏

m=0

S(e−i2mπ/Mz)

− S(zM )
M−1
∑

m=0

∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2 M−1
∏

i=0,i 6=m

S(e−i2mπ/Mz).

(4.14)

Thus, the inequality (4.1) follows from (4.12) and (4.14).

(ii) Sufficiency. Let M(z) be defined as in (4.11). We consider the sub-matrices Mr(z),
1 ≤ r ≤ M , which consist of the upper-left square corner of M(z) of block size r× r. Note
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that Mr(z) takes on a form similar to the right-hand side of (4.11), with the exception that
certain truncation of the diagonal matrix and vectors occurs. An argument similar to the
proof of the identity (4.14) gives

detMr(z) =
r−1
∏

m=0

S(e−i2mπ/Mz)

− S(zM )
r−1
∑

m=0

∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2 r−1
∏

j=0,j 6=m

S(e−i2jπ/Mz)

=
r−1
∏

m=0

S(e−i2mπ/Mz)S(zM )

×
( 1

S(zM )
−

r−1
∑

m=0

∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2
× 1

S(e−i2mπ/Mz)

)

.

(4.15)

From (4.14), (4.15) and the assumption S(z) ≥ 0, it follows that

detMr(z) ≥
r−1
∏

m=0

S(e−i2mπ/Mz)S(zM )

×
( 1

S(zM )
−

M−1
∑

m=0

∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2
× 1

S(e−i2mπ/Mz)

)

=
(

M−1
∏

m=r

S(e−i2mπ/Mz)
)−1

detM(z) ≥ 0.

(4.16)

Thus, the upper-left square corner of M(z) of block size r×r has nonnegative determinants
for any 1 ≤ r ≤ M . Hence,

M(z) is positive semi-definite on |z| = 1. (4.17)

Define Sm,m′(z) and M̃(z) as in (4.4) and (4.6), respectively. Then it follows from S(z) =
S(z−1) that Sm,m′(z−1) = Sm′,m(z), which implies that M̃(z−1) = M̃(z)T . Clearly, we
have

PM (z−1)TM(z)PM (z) = M̃(zM ), (4.18)

where
PM (z) :=

1
M

[e−i2mm′π/Mzm′
]0≤m,m′≤M−1 (4.19)

is called a polyphase matrix. Hence, by (4.17) and (4.18), M̃(z) is positive semi-definite on
|z| = 1. By Lemma 4.2, there exists an M ×M matrix R(z) such that all entries of R(z)
are Laurent polynomials with real coefficients, and

R(z)T R(z−1) = M̃(z), |z| = 1. (4.20)

18



If we write R(z) = [Qn,m(z)]1≤n≤M,0≤m≤M−1, then it follows from (4.20) and Lemma 4.3
that the Laurent polynomials

Qn(z) :=
M−1
∑

m=0

zmQn,m(zM ), 1 ≤ n ≤ M, (4.21)

satisfy the equation (3.2).

5. Tight Affine Frames with M Generators

For any given MRA generated by some compactly supported M -dilation scaling function φ,
there are infinitely many Laurent functions S that satisfy the conditions (i)–(iii) in Theorem
4.1, and also infinitely many tight affine frames associate with φ. In this section, we choose
the function S via eigenfunctions of the transfer operator to construct tight affine frames
with M generators that have the maximum order of vanishing moments as governed by φ,
as follows.

Theorem 5.1. Let {Vj}j∈Z be an MRA generated by a compactly supported M -dilation
scaling function with order L ≥ 1 as defined by its scaling symbol in (1.7). Then there
exist M compactly supported functions Ψ = {ψ1, . . . , ψM} ⊂ V1 such that {ψ1, . . . , ψM} is
a tight affine frame and that each of ψn, n = 1, . . . ,M has L vanishing moments.

Proof. Let φ be an M -dilation scaling function with Laurent polynomial symbol P (z)
satisfying (1.7), where P0(z) is not divisible by 1

M (1 + z + . . . + zM−1). By Proposition
2.1, there does not exist a nonzero polynomial H(z) such that H(z) is not a monomial and
H(z)P0(z) is divisible by H(zM ). We denote by ρ the spectral radius of the transfer operator
T|P0|2 on the space ΠN , where N is chosen so large that ΠN is an invariant subspace of
T|P0|2 . Then by Lemmas 2.4 and 2.6, we have

ρ < M2L and T|P0|2F = ρF (5.1)

for some positive Laurent polynomial F (z) > 0 on |z| = 1. Set

FL(z) =
∣

∣

∣

1− z
2

∣

∣

∣

2L
F (z).

Then it follows from (2.11) and (5.1) that

T|P |2FL = M−2LρFL and FL(z) ≥ 0 on |z| = 1. (5.2)

Next, consider the Laurent polynomial Φ(z) in (2.8). By Lemma 2.3, we have

T|P |2Φ = Φ. (5.3)
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We claim that there exists a Laurent polynomial S(z) such that S(1) = 1,

S(z) = S(1/z), (5.4)

and
1

Φ(z) + FL(z)
≤ S(z) ≤ 1

Φ(z) + γFL(z)
, |z| = 1, (5.5)

where M−2Lρ < γ < 1. To construct S(z), we first expand

1
Φ(z)

=
∞
∑

j=0

σj(2− z − 1/z)j

and let

S0(z) :=
L−1
∑

j=0

σj(2− z − 1/z)j .

Then S0(z) is a symmetric Laurent polynomial that satisfies

S0(1) =
1

Φ(1)
=

1
∑

k∈Z |φ̂(2kπ)|2
=

1

|φ̂(0)|2
= 1.

Let

r(z) := 22L S0(z)Φ(z)− 1
(2− z − 1/z)L .

It is easy to see that r(z) is a symmetric Laurent polynomial. Since F (z) > 0 and Φ(z) > 0
on |z| = 1, it follows by trigonometric approximation that there exists a symmetric Laurent
polynomial S1(z), such that

γF (z)
Φ(z)(Φ(z) + γFL(z))

− r(z)
Φ(z)

≤ S1(z) ≤ F (z)
Φ(z)(Φ(z) + FL(z))

− r(z)
Φ(z)

, |z| = 1.

Let
S(z) := S0(z)−

∣

∣

∣

1− z
2

∣

∣

∣

2L
S1(z).

Then S(z) is a symmetric Laurent polynomial with S(1) = 1, and satisfies (5.5). Conse-
quently S(z) > 0 on |z| = 1, and

1
S(z)

−
(

T|P |2
1
S

)

(z) ≥ Φ(z) + γFL(z)− (T|P |2(Φ + FL))(z)

= Φ(z) + γFL(z)− Φ(z)−M−2LρFL(z)

= (γ −M−2Lρ)FL(z) ≥ 0,

(5.6)
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where we have used (5.5) to obtain the first inequality, and (5.2) and (5.3) to achieve the
first equality. It is easy to verify that

M−1
∏

m=0

S(e−i2mπ/Mz)− S(zM )
M−1
∑

m=0

(∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2 M−1
∏

i=0,i 6=m

S(e−i2mπ/Mz)
)

=
M−1
∏

m=0

S(e−i2mπ/Mz)× S(zM )×
( 1

S(zM )
−

(

T|P |2
1
S

)

(zM )
)

.

This together with (5.6) lead to the inequality (4.1). Finally, observe that (5.5) leads to

γFL(z)
Φ(z)(Φ(z) + γFL(z))

≤ 1
Φ(z)

− S(z) ≤ FL(z)
Φ(z)(Φ(z) + FL(z))

, |z| = 1,

which implies that

S(z)− 1
Φ(z)

= O((1− z)2L) as z → 1,

and hence, together with (5.3), lead to

S(z)− S(zM )|P (z)|2 =
1

Φ(z)
− |P (z)|2

Φ(zM )
+ O((1− z)2L)

=
Φ(zM )− |P (z)|2Φ(z)

Φ(z)Φ(zM )
+ O((1− z)2L)

=
∑M−1

m=1 |P (e−i2mπ/Mz)|2Φ(e−i2mπ/Mz)
Φ(z)Φ(zM )

+ O((1− z)2L)

= O((1− z)2L).

The last equality follows from the observation that P (e−i2mπ/Mz) is divisible to (1 − z)L

for m = 1, . . . , M − 1. Hence from (3.2), by putting m = 0, we have

|Qn(z)| = O((1− z)L) as z → 1,

and that the tight frame generators Ψ have L vanishing moments, namely,
∫

IR
xlψn(x)dx = 0, 0 ≤ l ≤ L− 1 and 1 ≤ n ≤ M.

This is the maximal order as governed by the scaling function φ.
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6. Tight Affine Frames with M − 1 Generators

We say that an H(z) in the Wiener class W is an M -CQF (conjugate quadrature filter with
dilation M) if H(1) = 1 and

M−1
∑

m=0

∣

∣

∣H(e−i2mπ/Mz)
∣

∣

∣

2
= 1, |z| = 1. (6.1)

In this section, we characterize those M -dilation MRA’s that allow compactly supported
tight affine frames with M − 1 generators.

Theorem 6.1. Let {Vj}j∈Z be an MRA generated by an M -dilation compactly supported
scaling function φ with Laurent polynomial symbol P (z). Then there exist compactly
supported functions ψ1, . . . , ψM−1 ∈ V1 such that Ψ = {ψ1, . . . , ψM−1} is a (normalized)
tight affine frame, if and only if there exists a Laurent polynomial B such that B(1) = 1,
B(zM )/B(z) is a Laurent polynomial, and B(zM )P (z)/B(z) is an M-CQF. Furthermore,
the functions ψ1, . . . , ψM−1 can be so chosen that their integer translates constitute a frame
of the shift invariant space W (ψ1, . . . , ψM−1).

For M = 2, the above result on the existence of tight affine frames with one generator
was established in [6], and the necessity is given in [21]. The frame property of ψ1, . . . , ψM−1

in the above theorem is new even for M = 2.

Proof. First let us prove the sufficiency direction. Let a Laurent polynomial B be given
as stated in the theorem. Clearly, the Laurent polynomial

G0(z) = B(zM )P (z)/B(z)

satisfies
M−1
∑

m=0

∣

∣

∣G0(e−i2mπ/Mz)
∣

∣

∣

2
= 1.

By unitary matrix extension (cf. [20]), there exist Laurent polynomials G1, . . . , GM−1 (with
real coefficients if P and B have real coefficients), such that

M−1
∑

m=0

Gj(e−i2mπ/Mz)Gj′(ei2mπ/Mz−1) = δjj′ , 0 ≤ j, j′ ≤ M − 1.

Hence, we also have

M−1
∑

m=0

Gm(e−i2jπ/Mz)Gm(ei2j′π/Mz−1) = δjj′ , 0 ≤ j, j′ ≤ M − 1. (6.2)
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By (6.2) and the assumption on B(z), one can verify that the Laurent polynomial S(z) :=
|B(z)|2 satisfies S(1) = 1, S(z) ≥ 0, S(1/z) = S(z) on |z| = 1, and

M−1
∑

m=1

Gm(z)B(z)Gm(ei2sπ/Mz−1)B(ei2sπ/Mz−1)

=δs0S(z)− S(zM )P (z)P (ei2sπ/Mz−1) ∀ 0 ≤ s ≤ M − 1.

Therefore, the functions ψm, 1 ≤ m ≤ M − 1, defined by

̂ψm(ω) = B(z)Gm(z)φ̂(ω/M), z = e−iω/M , (6.3)

generate a tight affine frame by Theorem 3.1. Furthermore, their symbols Qm = BGm,
1 ≤ m ≤ M − 1, are Laurent polynomials with real coefficients.

Next we establish the necessity direction. Let ψ1, . . . , ψM−1 be a tight affine frame,
defined by ̂ψm(ω) = Qm(z)φ̂(ω/M), where Q1, . . . , QM−1 are Laurent polynomials. By
Theorem 3.1, there exists a Laurent polynomial S(z) that satisfies conditions (i) – (iii) in
Theorem 3.1. Let M(z) be defined by (4.11). Then it follows from (4.10), with N = M −1,
that the rank of M(z) is at most M − 1, which leads to detM(z) = 0. Therefore, we have

S(zM )
M−1
∑

m=0

(∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2 ∏

0≤m′≤M−1,m′ 6=m

S(e−i2m′π/Mz)
)

=
M−1
∏

m=0

S(e−i2mπ/Mz).

(6.4)

A comparison of the degrees of the Laurent polynomials on both sides of equation (6.4)
leads to the existence of a positive constant C such that

S(zM ) = C
M−1
∏

m=0

S(e−i2mπ/Mz) (6.5)

and
M−1
∑

m=0

(∣

∣

∣P (e−i2mπ/Mz)
∣

∣

∣

2 ∏

0≤m′≤M−1,m′ 6=m

S(e−i2m′π/Mz)
)

= C−1. (6.6)

By (6.5) and (6.6), any Laurent polynomial B(z) with |B(z)|2 = S(z) has the required
properties, where the existence of the Laurent polynomial B(z) follows from the (scalar-
valued) Riesz Lemma. This completes the proof of the necessity direction.

Finally, we show that the collection of compactly supported functions ψ1, . . . , ψM−1 in
(6.3) constitute a frame of the shift-invariant space W (ψ1, . . . , ψM−1). To this end, let

G(z) =
[

Gm(e−i2sπ/Mz)
]

0≤m≤M−1,0≤s≤M−1
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be the unitary matrix found in (6.2). Obviously, the rank of G(z) is M on |z| = 1. By
Proposition 2.7, it suffices to verify that

rank A(z) = M − 1, on |z| = 1, (6.7)

where
A(z) =

[

B(e−i2sπ/Mz)Gm(e−i2sπ/Mz)
]

1≤m≤M−1,0≤s≤M−1
.

Note that we have A = G1B, where G1 is obtained from G by leaving out its first row, and
B := diag(B(z), B(e−i2π/Mz), . . . , B(e−i2(M−1)π/Mz)).

If z0 is so chosen that all the diagonal entries of B(z0) are nonzero, then

M − 1 ≥ rank A(z) = rankG1(z) = M − 1. (6.8)

For any z, |z| = 1, with B(e−i2s0π/Mz) = 0 for some 0 ≤ s0 ≤ M − 1, we claim that

B(e−i2sπ/Mz) 6= 0, if s− s0 6∈ MZ. (6.9)

Suppose, on the contrary, that B(e−i2s1π/Mz) = 0 for some s1 ∈ Z with s1 − s0 6∈ MZ.
Then there exists a z0 with |z0| = 1 such that B(zM

0 )/B(e−i2sπ/Mz0) = 0 for all s ∈ Z
in view of (6.5) and |B(z)|2 = S(z), which violates the M -CQF condition for the filter
B(zM )P (z)/B(z). Therefore, the first row of the unitary matrix G(z) is given by

(0, . . . , 0, G0(e−i2s0π/Mz), 0, . . . , 0),

where G0(e−i2s0π/Mz) 6= 0. Hence, the adjoint factor detG1,s0 must be nonzero, where G1,s0

denotes the matrix obtained by leaving out the first row and the s0-th column of G. The
matrix

A′(z) :=
[

B(e−i2sπ/Mz)Gm(e−i2sπ/Mz)
]

1≤m≤M−1,0≤s6=s0≤M−1

is a sub matrix of A(z). Moreover, we have A′(z) = G1,s0B1, where B1 is the diagonal matrix
with entries (B(z), . . . , B(e−i2(s0−1)π/Mz), B(e−i2(s0+1)π/Mz), . . . , B(e−i2(M−1)π/Mz)) in its
diagonal. By (6.9), the matrix B1 is invertible, and we obtain

M − 1 ≥ rank A(z) ≥ rank A′(z) = rankG1,s0(z) = M − 1. (6.10)

Therefore (6.7) follows from (6.8) and (6.10).
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7. Examples

In this section, tight affine frames associated with the linear Cardinal spline multiresolution
approximation are constructed with dilation factors M = 3 and 4. The scaling function φ
is the normalized linear B-spline defined by φ(x) = 1− |x− 1| for |x− 1| ≤ 1 and φ(x) = 0
otherwise.

Example 1. We consider dilation factor M = 3 in this example and set z = e−iω/3.
The symbol of the scaling function is therefore P (z) = 1

9 (1 + z + z2)2. The function
S(z) = 1 + 1

6 (2 − z − z−1) is chosen in order to yield 2 vanishing moments for each ψn,
1 ≤ n ≤ 3. (The function S could be the same function as in the case M = 2 in [6, 12] and
M = 4 in Example 2 below.) In the case under consideration, S(z)− S(z3)P (z)P (1/z) is a
Laurent polynomial multiple of (1− z)4. Our goal is to construct Laurent polynomials

Qn(z) = (1− z)2qn(z), n = 1, 2, 3, (7.1)

where qn are again Laurent polynomials. If we set ζ := ei2π/3 = −1/2 +
√

3/2i, then (3.2)
can be put in matrix form as





Q1(z) Q1(ζz) Q1(ζ2z)
Q2(z) Q2(ζz) Q2(ζ2z)
Q3(z) Q3(ζz) Q3(ζ2z)





∗ 



Q1(z) Q1(ζz) Q1(ζ2z)
Q2(z) Q2(ζz) Q2(ζ2z)
Q3(z) Q3(ζz) Q3(ζ2z)





=





S(z)
S(ζz)

S(ζ2z))



− S(z3)





P (z)
P (ζz)
P (ζ2z)



 [P (z) P (ζz) P (ζ2z) ] .

(7.2)

The notation ∗ denotes, as usual, complex conjugate transposition. Since |z| = 1, we have
z = 1/z, ζz = ζ2/z, and ζ2z = ζ/z. We can multiply both sides of (7.2) by certain
appropriate diagonal matrices in order to eliminate the factors (1− z)2 in (7.1). This leads
to





q1(z) q1(ζz) q1(ζ2z)
q2(z) q2(ζz) q2(ζ2z)
q3(z) q3(ζz) q3(ζ2z)





∗ 



q1(z) q1(ζz) q1(ζ2z)
q2(z) q2(ζz) q2(ζ2z)
q3(z) q3(ζz) q3(ζ2z)





=















S(z)−S(z3)|P (z)|2
|1−z|4 − S(z3)P (z)P (ζz)

(1−1/z)2(1−ζz)2 − S(z3)P (z)P (ζ2z)
(1−1/z)2(1−ζ2z)2

− S(z3)P (ζz)P (z)
(1−ζ2/z)2(1−z)2

S(ζz)−S(z3)|P (ζz)|2
|1−ζz|4 − S(z3)P (ζz)P (ζ2z)

(1−ζ2/z)2(1−ζ2z)2

−S(z3)P (ζ2z)P (z)
(1−ζ/z)2(1−z)2 −S(z3)P (ζ2z)P (ζz)

(1−ζ/z)2(1−ζz)2
S(ζ2z)−S(z3)|P (ζ2z)|2

|1−ζ2z|4















.

(7.3)

Note that since P (z) = 1
9 (1 − ζz)2(1 − ζ2z)2, the matrix on the right-hand side of (7.3) is

a Laurent polynomial matrix. Let qnj(z), j = 0, 1, 2, denote the polyphase components of
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qn(z), n = 1, 2, 3; that is, qn(z) = qn0(z3) + zqn1(z3) + z2qn2(z3). The polyphase matrix

P3(z) =
1
3





1 z−1 z−2

1 ζ2z−1 ζz−2

1 ζz−1 ζ2z−2



 ,

as defined in (4.19), reveals the polyphase components by considering the product

(qn(z), qn(ζz), qn(ζ2z))P3(z) = (qn0(z3), qn1(z3), qn2(z3)), n = 1, 2, 3.

The polyphase decomposition of (7.3) is then obtained by multiplying P3(z) from the right,
P3(z)∗ from the left, and replacing z3 by z. This gives the explicit form





q10(z) q11(z) q12(z)
q20(z) q21(z) q22(z)
q30(z) q31(z) q32(z)





∗ 



q10(z) q11(z) q12(z)
q20(z) q21(z) q22(z)
q30(z) q31(z) q32(z)





=
1

243





5z + 68 + 5z−1 2z + 67/2 + 20z−1 1/2z + 14 + 50z−1

20z + 67/2 + 2z−1 8z + 44 + 8z−1 2z + 67/2 + 20z−1

50z + 14 + 1/2z−1 20z + 67/2 + 2z−1 5z + 68 + 5z−1



 ,

(7.4)

from which the Laurent polynomials qnj can be constructed as follows. We denote the
matrix on the right-hand side of (7.3) by M(z). Let E := E1E2E3, where E1, E2 and E3

are the elementary matrices

E1 :=





1 0 0
−11/4 1 0

1 −2/5 1



 , E2 :=





1 0 −50/1821
0 1 −995/3642
0 0 1



 , E3 :=





1 37/95z−1 0
0 z−1 0
0 0 1



 .

Then

E∗M(z)E =
1

243





513/4 0 0
0 16389/1900 18
0 18 50/607z + 40400/607 + 50/607z−1



 .

The last matrix can be easily written as a product R(z−1)T R(z), where

R(z) =





3
√

57/2 0 0
0 3

√
34599/190 20

√
34599/607

0 0 (5
√

107439/607 + 25
√

4249/607)(z + 176− 5
√

1239)



 .

It follows that 243M(z) can be written as R(z−1)TR(z), where R = RE−1 has the form

R(z) :=





−9
√

57/76 −12
√

57/19 −9
√

57/76
α(2023z + 152)/46132 2α(101z + 76)/11533 α(199z + 1520)/46132
β(176− γ + z)/1214 2β(176− γ + z)/607 5β(176− γ + z)/607




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and α =
√

34599, β =
√

607(
√

177 + 5
√

7), γ = 5
√

1239. Notice that 243M(z) can also be
written as RT (z−1)OTOR(z) for any orthogonal constant matrix O. We may choose an
appropriate O to reduce the support length of some ψn. Here, we consider

O :=





1 0 0
0 c −s
0 s c



 , c = 380
√

607(
√

177 + 5
√

7)/r, s = 199
√

34599/r,

and r :=
√

32223236599 + 876508000
√

1239. These are exact values that are computed
with Maple. Finally we obtain





q10(z) q11(z) q12(z)
q20(z) q21(z) q22(z)
q30(z) q31(z) q32(z)



 =
1

9
√

3
OR(z)

for the polyphase components of qn, 1 ≤ n ≤ 3, in (7.2). The symbols Qn, 1 ≤ n ≤ 3, are

Q1(z) = −(1− z)2(.0574 + .3059z + .0574z2),

Q2(z) = (1− z)2(.0389 + .1555z + .3887z2 + .5125z3 + .1863z4),

Q3(z) = (1− z)2(.0059 + .0236z + .0589z2 + .1113z3 + .1675z4 + .3492z5).
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Fig. 1. A linear B-spline tight frame with dilation factor M = 3 and 3 generators,
each having 2 vanishing moments

Example 2. For dilation by M = 4, the symbol of the scaling function is P (z) = 1
16 (1 +

z + z2 + z3)2. The VMR function S(z)we will use is still 1 + 1
6 (2− z − z−1) and it assures
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2 vanishing moments. By following the same approach as above, we can find that

Q1(z) = −(1− z)2(.0265 + .1061z + .3339z2 + .0907z3 + .0073z4)

Q2(z) = (1− z)2(.0145 + .0581z + .1508z2 + .3038z3 − .0179z4)

Q3(z) = (1− z)2(.0188 + .0751z + .1933z2 + .3556z3 + .3671z4)

Q4(z) = −(1− z)2(.0209z−4 + .0835z−3 + .2087z−2 + .4173z−1 + .5942

+ .6240z + .3120z2 + .1248z3 + .0312z4)
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Fig. 2. A linear B-spline tight frame with dilation factor M = 4 and 4 generators,
each having 2 vanishing moments

Final Remark. After this manuscript was completed, we were aware of the work [15] that also
considers a generalization of [6, 11, 12]. In [15], the generalization is to bi-frames instead of
tight frames as in our paper. A significant difficulty in the treatment of tight frames is that a
matrix-valued Riesz Lemma is required to find the “square root” of a positive semi-definite
matrix of Laurent polynomials that remains to be a matrix of Laurent polynomials. Also
restrictions on the vanishing moment functions for tight frames and bi-frames are different.
On the other hand, the generalization in [15] is to multiwavelet (i.e. vector-valued) bi-frames
with arbitrary integer dilation.
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