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Eg%cé, Ipr:;. ggg;gllgnal Signal Processingol. 1, Limassol, Cyprus, makemq to be a low-pass filter, we require that, have a factor
(14+€e*) (14 e™?). Thatis, 6: mo(m,w2) = 0 = mo(w, ) for
all (w1, ws) € [-7, 7). Forp = ¢ = 3, we are able to give a complete
solution set of allm, satisfying £, 2°, and 6. We identify many
families of solutions which further satisfy’ 3and 4. For example,
a tensor product of Daubechies’ scaling functigh is included. It
is known that:¢(z1)2¢(z2) € C*(R?) with o > 0.5 [5]. We can
expect other solutions to have certain Holder's exponents. We study
the regularity of those filters. Finally, we construet, to satisfy 5
Wenijie He and Ming-Jun Lai for any givenm, satisfying £ and 2. In Section Ill, we present some
numerical experiments using our nonseparable wavelets.

Examples of Bivariate Nonseparable Compactly Supported
Orthonormal Continuous Wavelets

Abstract—\We give many examples of bivariate nonseparable compactly 1l. CONSTRUCTION OFSCALING FUNCTIONS AND WAVELETS
supported orthonormal wavelets whose scaling functions are supported

over [0, 3] x [0, 3]. The Halder continuity properties of these wavelets are  Rewritemo(wi,wz2) asm(z,y) = So<j<po<i<q c;ptdyn, with

studied. x = ¢™1andy = ¢™“2, Also write m(x,y) in its polyphase form:
Index Terms—Compact support, continuous, nonseparable, or- m(z,y) = fo(2>,y°) + sfi(2”, ) + yf2(2°.y°) + 2y fa(2”. y?).
thonormal, wavelet. It is well-known that a polynomiat: satisfying 2 is equivalent to
[fol* + 1£1]° + |2 + | f5]” = 2. 1)
|. INTRODUCTION

From now on, we only consider= ¢ = 3. Thus, we writef,, (z,y) =

Univariate wavelets have found successful applications in signal pg; + v, 2 + ¢,y + d, zy, v =0, 1, 2, 3. We now present one of the main
cessing since wavelet expansions are more appropriate than conygsults in this paper.
tional Fourier series to represent the abrupt changes in nonstationaryheorem 2.1.: Let
signals. To apply wavelet methods to digital image processing, we have (1+2)(1+y
to construct vibariate wavelets. The most commonly used method is™(z,y) = 16 '
the tensor product of univariate wavelets. This construction leads to 2, 2 ) 2 2 2 2

. X o . + azoz” + a2y + ar2xy” + azex’y” + ao2y’)

a separable wavelet which has a disadvantage of giving a particular
importance to the horizontal and vertical directions. Much effort (cf., @)
e.g., [1]-{3]) has been spent on constructing nonseparable bivarighg,
wavelets. In this paper, we construct vibariate nonseparable compactly
supported orthonormal wavelets based on the commonly used uniform @oo =1 + V2(cos a + cos 3) + 2 cos f cos

dilation matrix [3 S] Let alg = ﬁ(sin a —cosa) —2cosfcos€ + 2cosfsin &
g1 = \/i(sin B —cosf3) —2cosbcos 4 2sinf cosn

)(aoo + aiox + aony + anzy

Mmo(w) 1= mo(wy, ws) = Z ¢k exp(i(jwr + kwy))

a11 =2(cos b cos € + sin b sinn — cos sin £ — sin 6 cos n)
0<j<p,0<k<q

as =1+ \/i(cos B —sina) —2cosfsin

be a trigonometric polynomial. We will construet, which satisfies dow =1+ \/§(cos o — sin 3) — 2sin 6 cos n

the following requirements: 1 mq(0,0) = 1; 2°: S?zo |mo(w +

)7 = Lwith m = (0,0), 7 = (7,0) 72 = (0,7), andms = az = \/i(sinﬂ —cosf3) —2sinfsinny + 2cosfsin €
(m, 7). Leto(w) = 152, mo(w/2%) be generated byo. Then T im- a12 =V2(sina — cosa) — 2sin f siny + 2sin f cos 7y
plies the convergence of this infinite product and hepéga well-de- Aoy =1 — ﬁ(sina + sin 3) + 2 sin 8 sin . A3)

fined continuous function.“2mplies¢ € L,(R?). Thus,¢ € Ly(R?) o . . .
by Plancheral’s Theorem. For a fixed ordering which maps bi-intdhen,m(z,y) satisfies 2if «, 3.6, £, 3 satisfy the following:
gers (0, 0 (j, k) < (p, ¢) into positive integerg1,2,---, N} with 9 05 .
N=(p+1)(g+1),let A be amatrix of sizeV x N with entries cosflcos & + cosfsin &+ sin f cos

+ sinésinn = 2sin (a + g) sin (ﬁ + %) . (4)

Ay kgitr e =4 E Cj1.d2C(51,d2)+ (k1 ko) —2(L1,L2)
J1.J2

Proof: Itis straightforward to verify thafo, f1, f> andfs satisfy
(2) if and only if
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and

3
d (e b+ +d) =1 (6)

v=0

It follows from (5) and (6) that

and

W=

3
D o(an=b)? + (e, —d)? =
v=0

D (ay = bu)(ey — dy) =0.

v=0

Then we have
av_bu+cV_du)2: 7T

By 1° and 6, it follows that
3

S @av+e)-1)7 =1

v=0

Now 6 implies thatag + co = a2 + ¢2 andai + ¢1 = az + cs. It
follows that

1 1
ag—l—cO:g—i—mcosa:ag—i—cQ and
a + ¢ —l—i— 1 sina = a3z + a @)
1 1=3 2 =as 3.
Similarly, we have
a,o—i-bo:é \/_mq/i_al—l—bl and
a2+b2—% \/_5111J_a3+b3. (8)
In other words, we have
1 1
bi=-—+ ——=cosf —a;,i =0,1,
b 1+ 1 sinf8 —a;, i =2,3
i = = S O — it = 4,9,
8 4\/5 ’
1
;= — cosa = a;,1 = 0,2,
8 4\/_
1
c; = — sinov —a;, i =1,3,
8 4\/— ? ?
dy = — 4\/_ (cos a + cos 3) + ag,
dy = — sina+cosf) +a
1 4\/2( ) 1,
dy = — cosa + sin 3) + as,
2 4\/5( ) 2
1
ds = — —=(sin« + sin 3) + as. 9
3 4\/5( B) +as 9)

We now find the relations among the’s. By (5), specifically,0 =
oi_y a,d,, we have

<“° 8v2
(-
<

(1 + sin (

2 2
(cos « + cos J)) <a1 — (sin o + cos ;3))

1
2

((Ob «a+ sin 3

)

2

(blll o + sin J))
s
4

D) o
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By (5), specifically,X?_; b,c, = 0 and¥?_, a,d, = 0, we have

1 .
ap — —=(cosa+cos 3) + a1 — —=(sina + cos 3
W Plta 8\/5( 7
+a 1 (cos a + sin )
2 — 4 S ”
8v?2 :
1
+ az — sin v + sin 3
T 5 )
= % (1—|—sin (a—i— %) sin (jﬂ—l— g)) (11)
Let
a 1 1 (cos a + cos 3)
= —_ S v S 5
0 0 o3 2),
1
a, =a; — sin o + cos 3),
1 1 8/\/5( 3)
a2 =a 1 (cos a + sin 3)
2 =a2 — g Al
82 ’
1
a3 = a3 — (sin o + sin 3).

%

Equations (10) and (11) become

(G0 — 25)" + (i — )7 + (Ge — )7+ (@ — 15)" = (§)
It follows that

1 L + L (cosa+cos[3)+1c0 fcos€

ag = — (v ‘ = cos 5 €,

T 16 sf 7T ’

a; = 116 8\/_(q1nn +cosf) + écos«‘)sin g,

1 L + L (cosa+sin5)+1<in(7’co 7

a3 = — + ——(cosa+s —_ 08 1],

=16 8\/5 TS !

a3 :% 8\/_(91nn+97n’i’)—|— ésin«‘)sinn. (12)

By (11) and (12)¢, 3,6, &, n must satisfy

1 NP . .
+ =(cos B cos € + cos B sin € + sin b cos i + sin 0 sin )

8

:i+isin(a+%)sin(ﬂ+ %)

After simplified, the above equation is (4). The above derivations show
that any solutionn(x, y) satisfying £, 2°, and 6 must be in the form
(2) and (3) witha, 3, 7, €, n satisfying (4).

On the other hand, any solution in the form (2) and (3) with
w, 3,7, &, n satisfying (4) will satisfy (10) and (11) Equations (10)
and (11) are equivalent ®3_, a,d, = 0 andZ3_, b,c, = 0. By
the expressions in (3), we have (7)—(9). These equations imply that

3
Z((I’U_bl/—i—cv_dl/)?__
v=0

3

Z (¢, = b, —c, +d,)° =1
v=0
1
Z(al,—l—b + e, +d, )“ =1,
v=0
The above three equations are equivalent to the first two equations in
(5) and (6). [ |

Let us present several families of filters(z, y) and use 3to check
their orthonormality. We will use the following theorem to check
their regularity. Recalb is the scaling function generated by filters
m(e™, ). To check ife € C7(R?), we study the finiteness of
Jr2 o()]|(1 + |w|”) dw. Writing

polwi,wz) = Z aj,k€

0<; k<2

i(jwitkws)
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we define an operatdP acting on a trigonometric polynomial space T . T T g

0<j k<2
c]'kel(]”lJr wa), ¢k €ER

—1<j,k<1

E:

by

(P1)() = Z r(Gan). viek

()
]o 2 (X3

(13)

Theorem 2.2: Let fy = 1 and) be the spectral radius of the operatol
P so that

/ (P" fo)(w) dw < C(A+6)" (14)
[~ 7]

for a sufficiently smalb. If X\ < 2, thenpgenerated byn (e'“1, ¢"2)

is continuous. Furthes; € C7(R?) for v < |,(1/2)log,(2/\). See

[6] for a proof. We have the following families of nonseparable filters
Example 2.1: We first look for separable filters. If we sgt= 7 in

(4), the (4) becomeRos 6 4 sin ) (cos & +sin€) = (cos o + sin o)

(cos 3 + sin 3). If we further choos# = 3, thené = « andm(z, y)

in (2) may be simplified inton(z,y) = M(z, 3) M(y, «) with

Mz, o) = 1 :l(l +V2cosa
+V2(sina — cos ) 4+ (1 — V/2sina)z®).  (15)
For
a=0= S—TF
/ TE
, 171 3 3 3
M(e™, 5m/12) = 5 { +4\/: + “’+4‘/:e“’
N 3—4¢§C,;2w N 1—4¢§Cisw}

is the filter associated with Daubechies’ scaling functior5]. Hence,
for 8 = g and¢ = 1 = «, (4) is satisfied andn(x, y) given in (2) is
a separable filter.

It is easy to write down the Lawton matrixd associated
with M(e™,«) (see [6]). For anya € [0,2n] except for
a = -—n/4, the eigenvalue 1 ofd4 is not degenerate. Hence, : : : :
mo(wi,wa) = M(e™, a)M(e'*2,3) generates an orthonormal  ggli NN ey =ik
scaling function@ in Lo(R?) if o # —(x/4) andB # —(x/4). ‘ : _
In [7], Colella and Heil gave a detail study of the continuity of the ggk..\. ...\,
orthonormal scaling functions supported on [0, 3] in the univarial 08 09
setting. We may use the method discussed here to study the continuity ()
usingM(z. o) from (15). We Iea_ve the detail t-o [6]- ; ig. 1. Contour of spectrum based on (a)¢,n) € [x/10,97/10] x

Example 2.2: Let us look for linear phase filters. That is, we neen{fﬁ?& 197736] and (b)(%,g) IR ! /
to haVea‘oo = a292,a02 = A20,d12 = d10, d01 = dA21. SOIVIng these
four equations together with (4), we obtain eight filters satisfyifg 1
2°, and 6 with a fixed lengthy = ¢ = 3 up to a shift. We refer to [6] There are infinite possiblg ands for which we can find/ anda sat-
for details. Using 3to check these eight filters, we find that the firstisfying the two equations in (16), including, n) € [x/10,97/10] x

fourfilters generate an orthonormal scaling function while the last fogk /3. 197 /36]. Next let us give two examples which have rational co-
filters do not. Allpgenerated by these eight filters are onlLi(R?),  efficients:
none are continuous.

Example 2.3: Let us consider the filtem (=, y) symmetric with re- m(z,y) = (1+2)d+y) (11 + 62 — 22° + 6y
SpeCt to the linee = Y. Thenas = a21,02 = d20,d01 = a10. 100 R R ) 5 o
These implya = 3 andsin § cosn = cos f sin {. Thus by (4), these + 132y — 42y — 2y” — day” +27y"),
o, .6, €. must satisfy m(ay) = LWL 0h 190, — 5202

) 3463 x T
cosfcos€ + 2cosfsin€ + sinf sinp + 120y + 4162y — 12822y — 5242

= 2¢in® ((}z + %) and sin # cosn = cos # sin §. (16) — 128xy> + 2727y%).
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Theorem 2.2 implies all scaling functions within the contour line
A = 2 as shown in Fig. 1(a) are continuous.

These ¥, will be the nonseparable compactly supported orthonorme

These constructions are given in Section 2. In Section 3, we prese:
using our nonseparable wavelets which show thad the high frequency
reveal more features than by separable wavelels.

2. CONSTRUCTION OF SCALING FUNCTIONS .
Rewrile moluwy,uy) as

m(a, ) = Z cuady*

o<icpBhey
with = e and y = "2, Also wrile 1z, ) in Hs polyphase form

e, p) = fola® ¥?) + A5 y?) + pfaleh®) 4
The requirement 2° is equivalent to
{2, y)l? + [m{—2, 0} + tmle, =) + p{—2. —9)* =
We have the following elementary lemimna.

Lemma 2.3. A polynomial m satisfies (2) if and only if its poly
gatisfy

. 1
Uol? + 1P + 1A+ 1ol = 5.
From.now on, we only constder p = g = 3. Thus, we write

@)

These &, will be the nonseparable compacily supported orthunormy

Thiese constructions are given in Section 2. In Section 3, we prese:
using our nonseparable wavelets which show that the high frequency t
reveal more features ihan by separable wavelets.

() 2. CONSTRUCTION OF SCALING FUNCTIONS .,

) . ) Rewrite mo(uy, wy) as
Fig. 2. Decomposition by a nonseparable filter. srerile mofus. ) a8 <k
mlz,y) = Z oy

QP OLk Sy

. . . with = e and y = £, Alse wrile mix,») I ils palyphase focm
Using 3, all the filters above generate an orthonormal scalin Y emiey) oy

functions. We now check the regularity of the scaling functipniset i, p) = fole? w?) & wfile® 3} + pfalat 4
d y ¢} 0.
folwi,w2) = 1. Then The reguirement 2° s eguivalent to
4 b,y )12 4 [l —2, 0} + im{e, —w3F + [m{ -z, =) =
Pfo(2w1,2w2) = Z qo.vfo(2w1, 2w2) We have the following clementary lemnma,
v=0
. Lemma 2.1. A polynomial w satisfics (2] if and enfy if its poly
with watisly
) ) . . 1
Filwi,we) = et 4 e, Vol +AF + AP+ AP = i
fa(wi,ws) = etlwitwz) + C*i(d1+w2)* From: now on, we only consider p= ¢ = 3. Thus, we write
f2(wi,wa2) =’ +67m2-/ (b)
Falwi,we) = e'w1mwe) 4 pmilwr—we) Fig. 3. (a) Textimage and (b) reconstructed image after 10 : 1 compression.
Then ) . - 1 7o 16 -
Example 2.4: Let (6,¢) € [n/4,7n/12] x [x/4, 7w /12] be fixed.
4 Let
Pfo(2wi,2w2) = > o fu(2w1,2ws).
=0 o = 371/4 — arcsin \/sin(f + 7/4) sin(€ + 7/4)).

Under the basis{fo, fi. f2, f3, f4+}, the matrix for the P is Setn = £ and3 = «. Then (4) is satisfied. Any, ¢ give a filter
[¢p.vJo<u,v<a. We plot the largest eigenvalue as a function ofn(x,y) by (2). Using 3, this family of filters generate orthonormal
(&.m) € [x/10,97/10] x [x/3,197/36] on the left graph of Fig. 1. scaling functions fot#,n) € [x/4, 77 /12]*. Similar to Example 2.3,
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TABLE |
PSNR MAGE COMPRESSIONCOMPARISON

Compression Ratio 10:1

Compression Ratio 15:1

Images Text Lenna | Finger || Images Text -| Lenna | Finger

Tensor Haar | 24.2022 | 35.3078 | 31.5978 || Tensor Haar | 20.3240 | 32.8821 | 30.1455
Tensor D4 25.2776 | 36.5947 | 32.5100 || Tensor D4 21.3618 | 35.1661 | 31.0029
Tensor D6 24.8288 | 36.9106 | 32.8931 || Tensor D6 20.9433 | 35.5861 | 31.0523
Tensor 9/7 24.7949 | 38.1000 | 33.0980 || Tensor 9/7 20.9693 | 35.8116 | 32.0364
Non-separable | 26.5489 | 36.4201 | 32.560 || Non-separable | 21.9141 | 34.9405 | 30.6138

Theorem 2.2 implies all scaling functions within the contour fine 2
shown in Fig. 1(b) have certain Holder continuity.

Finally, we construct wavelets associated with the scaginiiVe
begin with polyphase componenfs, f1, f2, fs of m(x,y). Write
[fo,fhfg,fg]T = a+ zb + yc + zyd with a = (a1, a ,az,ag)T
and etc. LetL = [a, b, ¢, d] be a 4 x 4 matrix. Then lettin be the

Householder transform such th&tL is a lower triangular matrix, we

have R
fo fo 1
fi fi x
A ol =HL)
fs fs xy
x 0 0 O 1
_|x x 0 0
T lx x x 0 y
X X X X zy

Note that by (1)
[fol? + 1A+ [ + 1 Fs° = [fol® + AP + 12" + £ = L.

If |fo| = 1. thenfi = f = f> = 0 and we are done. Otherwise, let

v:[foafhf?afg]T_%[17070~0]T and
2 *
Hv)=1, - g Y
be a Householder matrix such that

H(v)[fo fife ]53]'1'2[1/2 0 0 ()]T.

For convenience, lelf (v) be either an identity matrix of size 4 x 4 if

|fo| = ‘5 or the Householder matri (v) above. Then we have
[fo. f1. f2. f3] = [5.0,0,0]H (v)H.
By choosingM (x,y) = $H(v)H, we haveM (z,y)M*(x,y) =

1114 with [fo, f1, f2, fs] in the first row of M («, y). We should note

that all entries ofM (x,y) are polynomials ofc andy sincev™v is

a constant andd is a constant matrix. We now define polynomials

my,v = 0,1,2,3 with mo(w) = m(e™1, ¢2) as follows:

[mi(w + m;)]o<i,j<s

1 1 1 1
1 -1 1 =1
= M(e* 1, e*¥2) 1 1 -1 -1
1 1 -1 -1
1 -1 -1 1
1 0 0 0
0 e“t 0 0
0 0 ez 0 (17
0 0 0 elwrtws

Theorem 2.3:Let @ be the scaling function generated by
given in Theorem 2.1 and satisfying®.3Let m, be trigono-
metric polynomials constructed in (17) above.

Define the

waveletsy, by ¢, (w) = m,(w/2)é(w/2),vr = 1,2,3. Then
{2F, (2% — 1,25 — £s): (01,6e) € Z2k € Z,v = 1,2,3) is
an orthonormal basis foE»(R?). The proof is standard using the
multiresolution analysis of.» (R?) (cf. [5]). We omit the detail.

IIl. NUMERICAL EXPERIMENTS

We have experimented with the decomposition and reconstruction
procedures using our nonseparable wavelets. In Fig. 2, we show the
decompositions of Lenna and a fingerprint. We can see that the subim-
ages in the high-frequency bands in Fig. 2 reveal more features than
does by a separable filter.

We have also implemented an image compression scheme using
the nonseparable wavelets in Example 2.4 and compared with the
tensor product Haar, Daubechies wavelets D4 and D6, and the
well-known biorthogonal wavelets with lengths nine and seven which
are the wavelets for FBI fingerprint compression standard. The image
compression scheme consists of multilevel wavelet decomposition,
embedded zero-tree encoding and decoding [8], multilevel wavelet
reconstruction, peak signal to noise ratio (PSNR) error analysis. We
chose three images: a text image shown on the left of Fig. 3 besides
the standard Lenna image and a finger-print image of size 512 x 512
in Fig. 2. Table | lists PSNR for these images at various compressions.
We can see that our nonseparable wavelets do a significantly better job
for the text image for compression ratios ten and 15.

It would be interesting to construct compactly supported scaling
functions and wavelets with larger support. See [9] for a complete
solution of the linear phase filters of size 6 x 6 satisfyifig2t, and 6.
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