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Examples of Bivariate Nonseparable Compactly Supported
Orthonormal Continuous Wavelets

Wenjie He and Ming-Jun Lai

Abstract—We give many examples of bivariate nonseparable compactly
supported orthonormal wavelets whose scaling functions are supported
over [0, 3] × [0, 3]. The Hölder continuity properties of these wavelets are
studied.

Index Terms—Compact support, continuous, nonseparable, or-
thonormal, wavelet.

I. INTRODUCTION

Univariate wavelets have found successful applications in signal pro-
cessing since wavelet expansions are more appropriate than conven-
tional Fourier series to represent the abrupt changes in nonstationary
signals. To apply wavelet methods to digital image processing, we have
to construct vibariate wavelets. The most commonly used method is
the tensor product of univariate wavelets. This construction leads to
a separable wavelet which has a disadvantage of giving a particular
importance to the horizontal and vertical directions. Much effort (cf.,
e.g., [1]–[3]) has been spent on constructing nonseparable bivariate
wavelets. In this paper, we construct vibariate nonseparable compactly
supported orthonormal wavelets based on the commonly used uniform
dilation matrix 2

0

0

2
: Let

mo(!) := m0(!1; !2) =
0�j�p;0�k�q

cj;k exp(i(j!1 + k!2))

be a trigonometric polynomial. We will constructm0 which satisfies
the following requirements: 1�: m0(0; 0) = 1; 2�: �3

j=0 jm0(! +
�j)j

2 = 1 with �0 = (0; 0); �1 = (�; 0) �2 = (0; �); and�3 =
(�; �): Let �̂(!) = �1k=1 m0(!=2

k) be generated bym0: Then 1� im-
plies the convergence of this infinite product and hence�̂ is a well-de-
fined continuous function. 2� implies�̂ 2 L2(R

2): Thus,� 2 L2(R
2)

by Plancheral’s Theorem. For a fixed ordering which maps bi-inte-
gers (0, 0)≤ (j; k) ≤ (p; q) into positive integersf1; 2; � � � ; Ng with
N = (p+ 1)(q+ 1); letA be a matrix of sizeN �N with entries

Ak ;k ;` ;` = 4
j ;j

cj ;j c(j ;j )+(k ;k )�2(` ;` )
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for (0, 0) ≤ (k1; k2; (`1; `2) ≤ (p; q): In order to makef�(x �
k1; y � k2); (k1; k2) 2 Z2g to be an orthonormal set, we need to
have the bivariate generalizationof the Lawton condition 3� (cf. [4]).
One is a nondegenerate eigenvalue ofA: We then further study the
coefficients ofm0 such that 4�: � 2 C
(R2) with 
 � 0: After
these preparations, we shall constructm� ; � = 1; 2; 3; such that
5�: 3

j=0 m�(! + �j)m�(! + �j) = ��;� ; �; � = 0; 1; 2; 3: To
makem0 to be a low-pass filter, we require thatm0 have a factor
(1 + ei!) (1 + ei! ): That is, 6�: m0(�;!2) = 0 = m0(!1; �) for
all (!1; !2) 2 [��; �]: Forp = q = 3; we are able to give a complete
solution set of allm0 satisfying 1�, 2�, and 6�. We identify many
families of solutions which further satisfy 3� and 4�. For example,
a tensor product of Daubechies’ scaling function2� is included. It
is known that2�(x1)2�(x2) 2 C�(R2) with � � 0:5 [5]. We can
expect other solutions to have certain Hölder’s exponents. We study
the regularity of those filters. Finally, we constructm� to satisfy 5�

for any givenm0 satisfying 1� and 2�. In Section III, we present some
numerical experiments using our nonseparable wavelets.

II. CONSTRUCTION OFSCALING FUNCTIONS AND WAVELETS

Rewritem0(!1; !2) asm(x; y) = �0�j�p;0�k�q cj;kx
jyk with

x = ei! andy = ei! : Also write m(x; y) in its polyphase form:
m(x; y) = f0(x

2; y2) + sf1(x
2; y2) + yf2(x

2; y2) + xyf3(x
2; y2):

It is well-known that a polynomialm satisfying 2� is equivalent to

jf0j2 + jf1j2 + jf2j2 + jf3j2 = 1
4
: (1)

From now on, we only considerp = q = 3: Thus, we writef�(x; y) =
a� +v�x+c�y+d�xy; ν = 0, 1, 2, 3. We now present one of the main
results in this paper.

Theorem 2.1.:Let

m(x; y) =
(1 + x)(1 + y)

16
(a00 + a10x+ a01y + a11xy

+ a20x
2 + a21x

2
y + a12xy

2 + a22x
2
y
2 + a02y

2)

(2)

with

a00 =1 +
p
2(cos�+ cos�) + 2 cos � cos �

a10 =
p
2(sin�� cos�)� 2 cos � cos � + 2cos � sin �

a01 =
p
2(sin� � cos �)� 2 cos � cos � + 2 sin � cos �

a11 =2(cos � cos � + sin � sin � � cos � sin � � sin � cos �)

a20 =1 +
p
2(cos� � sin�)� 2 cos � sin �

a02 =1 +
p
2(cos�� sin�)� 2 sin � cos �

a21 =
p
2(sin� � cos �)� 2 sin � sin � + 2cos � sin �

a12 =
p
2(sin�� cos�)� 2 sin � sin � + 2 sin � cos �

a22 =1�
p
2(sin�+ sin�) + 2 sin � sin �: (3)

Then,m(x; y) satisfies 2� if �; �; �; �; � satisfy the following:

cos � cos � + cos � sin � + sin � cos �

+ sin � sin � = 2 sin �+
�

4
sin � +

�

4
: (4)

Proof: It is straightforward to verify thatf0; f1; f2 andf3 satisfy
(1) if and only if

3

�=0

(a�b� + c�d�) = 0;

3

�=0

(a�c� + b�d�) = 0;

3

�=0

a�d� =0;

3

�=0

b�c� = 0 (5)
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and

3

�=0

(a2� + b
2
� + c

2
� + d

2
�) =

1
4 : (6)

It follows from (5) and (6) that

3

�=0

(a� � b�)
2 + (c� � d�)

2 = 1
4

and

3

�=0

(a� � b�)(c� � d�) = 0:

Then we have
3

�=�

(a� � b� + c� � d�)
2 = 1

4 :

By 1� and 6�, it follows that

3

�=0

(2(a� + c�)� 1
4
)2 = 1

4
:

Now 6� implies thata0 + c0 = a2 + c2 anda1 + c1 = a3 + c3: It
follows that

a0 + c0 =
1

8
+

1

4
p
2
cos� = a2 + c2 and

a1 + c1 =
1

8
+

1

4
p
2
sin� = a3 + a3: (7)

Similarly, we have

a0 + b0 =
1

8
+

1

4
p
2
cos� = a1 + b1 and

a2 + b2 =
1

8
+

1

4
p
2
sin� = a3 + b3: (8)

In other words, we have

bi =
1

8
+

1

4
p
2
cos� � ai; i = 0; 1;

bi =
1

8
+

1

4
p
2
sin� � ai; i = 2; 3;

ci =
1

8
+

1

4
p
2
cos� = ai; i = 0; 2;

ci =
1

8
+

1

4
p
2
sin�� ai; i = 1; 3;

d0 = � 1

4
p
2
(cos�+ cos�) + a0;

d1 = � 1

4
p
2
(sin�+ cos�) + a1;

d2 = � 1

4
p
2
(cos�+ sin�) + a2;

d3 = � 1

4
p
2
(sin�+ sin�) + a3: (9)

We now find the relations among thea� ’s. By (5), specifically,0 =
�3�=0 a�d� ; we have

a0 � 1

8
p
2
(cos�+ cos �)

2

+ a1 � 1

7
p
2
(sin�+ cos�)

2

+ a2 � 1

8
p
2
(cos�+ sin�)

2

+ a3 � 1

8
p
2
(sin�+ sin�)

2

=
1

32
1 + sin �+

�

4
sin � +

�

4
: (10)

By (5), specifically,�3
�=0 b�c� = 0 and�2

�=0 a�d� = 0; we have

a0 � 1

8
p
2
(cos�+ cos �) + a1 � 1

8
p
2
(sin�+ cos �)

+ a2 � 1

8
p
2
(cos�+ sin �)

+ a3 � 1

8
p
2
(sin�+ sin �)

=
1

4
1 + sin �+

�

4
sin � +

�

4
: (11)

Let

~a0 = a0 � 1

8
p
2
(cos�+ cos�);

~a1 = a1 � 1

8
p
2
(sin�+ cos�);

~a2 = a2 � 1

8
p
2
(cos�+ sin�);

~a3 = a3 � 1

8
p
2
(sin�+ sin�):

Equations (10) and (11) become

(~a0 � 1
16 )

2 + (~a1 � 1
16 )

2 + (~a2 � 1
16 )

2 + (~a3 � 1
16 )

2 = ( 18 )
2
:

It follows that

a0 =
1

16
+

1

8
p
2
(cos�+ cos�) +

1

8
cos � cos �;

a1 =
1

16
+

1

8
p
2
(sin�+ cos�) +

1

8
cos � sin �;

a2 =
1

16
+

1

8
p
2
(cos�+ sin�) +

1

8
sin � cos �;

a3 =
1

16
+

1

8
p
2
(sin�+ sin�) +

1

8
sin � sin �: (12)

By (11) and (12),�; �; �; �; � must satisfy

1

4
+

1

8
(cos � cos � + cos � sin � + sin � cos � + sin � sin �)

=
1

4
+

1

4
sin �+

�

4
sin � +

�

4
:

After simplified, the above equation is (4). The above derivations show
that any solutionm(x; y) satisfying 1�, 2�, and 6� must be in the form
(2) and (3) with�; �; 
; �; � satisfying (4).

On the other hand, any solutionm in the form (2) and (3) with
�; �; 
; �; � satisfying (4) will satisfy (10) and (11). Equations (10)
and (11) are equivalent to�3

�=0 a�d� = 0 and�3
�=0 b�c� = 0: By

the expressions in (3), we have (7)–(9). These equations imply that

3

�=0

(a� � b� + c� � d�)
2 = 1

4

3

�=0

(a� � b� � c� + d�)
2 = 1

4

3

�=0

(a� + b� + c� + d�)
2 =

1
4 :

The above three equations are equivalent to the first two equations in
(5) and (6).

Let us present several families of filtersm(x; y) and use 3� to check
their orthonormality. We will use the following theorem to check
their regularity. Recall� is the scaling function generated by filters
m(ei! ; ei! ): To check if� 2 C
(R2); we study the finiteness of
s
R

j�̂(!)j(1 + j!j
) d!: Writing

p0(!1; !2) =
0�j;k�2

aj;ke
i(j! +k! )
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we define an operatorP acting on a trigonometric polynomial space

E :=

0�j;k�2

�1�j;k�1

cjke
i(j! +k! ): cj;k 2 R

by

(Pf)(!) =

3

i=0

po
!

2
+ �i

2

f
!

2
+ �i ; 8f 2 E:

(13)

Theorem 2.2:Letf0 = 1 and� be the spectral radius of the operator
P so that

[��;�]

(Pnf0)(!) d! � C(�+ �)n (14)

for a sufficiently small�: If � < 2; thenφ generated bym(ei! ; ei! )
is continuous. Further,� 2 C
(R2) for 
 < j; (1=2) log2(2=�): See
[6] for a proof. We have the following families of nonseparable filters.

Example 2.1: We first look for separable filters. If we set� = � in
(4), the (4) becomes(cos �+ sin �) (cos �+sin �) = (cos�+ sin�)
(cos� + sin�): If we further choose� = �; then� = � andm(x; y)
in (2) may be simplified intom(x; y) = M(x; �)M(y; �) with

M(x; �) =
1 + x

4
(1 +

p
2 cos�

+
p
2(sin�� cos�)x+ (1�

p
2 sin�)x2): (15)

For

� =� =
5�

12
;

M(ei!; 5�=12) =
1

2

1 +
p
3

4
+

3 +
p
3

4
ei!

+
3�p

3

4
ei2! +

1�p
3

4
ei3!

is the filter associated with Daubechies’ scaling function2� [5]. Hence,
for � = � and� = � = �; (4) is satisfied andm(x; y) given in (2) is
a separable filter.

It is easy to write down the Lawton matrixA associated
with M(ei!; �) (see [6]). For any� 2 [0; 2�] except for
� = ��=4; the eigenvalue 1 ofA is not degenerate. Hence,
m0(!1; !2) = M(ei! ; �)M(ei! ; �) generates an orthonormal
scaling functionφ in L2(R

2) if � 6= �(�=4) and� 6= �(�=4):
In [7], Colella and Heil gave a detail study of the continuity of the
orthonormal scaling functions supported on [0, 3] in the univariate
setting. We may use the method discussed here to study the continuity
usingM(x; �) from (15). We leave the detail to [6].

Example 2.2: Let us look for linear phase filters. That is, we need
to havea00 = a22; a02 = a20; a12 = a10; a01 = a21: Solving these
four equations together with (4), we obtain eight filters satisfying 1�,
2�, and 6� with a fixed lengthp = q = 3 up to a shift. We refer to [6]
for details. Using 3� to check these eight filters, we find that the first
four filters generate an orthonormal scaling function while the last four
filters do not. Allφ generated by these eight filters are only inL2(R

2);
none are continuous.

Example 2.3: Let us consider the filterm(x; y) symmetric with re-
spect to the linex = y: Thena12 = a21; a02 = a20; a01 = a10:
These imply� = � andsin � cos � = cos � sin �: Thus by (4), these
�; �; �; �; � must satisfy

cos � cos � + 2cos � sin � + sin � sin �

= 2 sin2 �+
�

4
and sin � cos � = cos � sin �: (16)

(a)

(b)

Fig. 1. Contour of spectrum� based on (a)(�; �) 2 [�=10; 9�=10] �
[�=3; 19�=36] and (b)(�; �) 2 [�=4; 7�=12] :

There are infinite possible� and� for which we can find� and� sat-
isfying the two equations in (16), including(�; �) 2 [�=10; 9�=10]�
[�=3; 19�=36]: Next let us give two examples which have rational co-
efficients:

m(x; y) =
(1 + x)(1 + y)

100
(11 + 6x� 2x2 + 6y

+ 13xy � 4x2y � 2y2 � 4xy2 + x2y2);

m(x; y) =
(1 + x)(1 + y)

3468
(544 + 120x� 52x2

+ 120y + 416xy � 128x2y � 52y2

� 128xy2 + 27x2y2):
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(a)

(b)

Fig. 2. Decomposition by a nonseparable filter.

Using 3�, all the filters above generate an orthonormal scaling
functions. We now check the regularity of the scaling functionsφ. Let
f0(!1; !2) = 1: Then

Pf0(2!1; 2!2) =

4

�=0

q0;�f�(2!1;2!2)

with

f1(!1; !2) = ei! + e�i! ;

f3(!1; !2) = ei(! +! ) + e�i(! +! );

f2(!1; !2) = ei! + e�i! ;

f4(!1; !2) = ei(! �! ) + e�i(! �! ):

Then

Pf�(2!1;2!2) =

4

�=0

q�;�f�(2!1; 2!2):

Under the basisff0; f1; f2; f3; f4g; the matrix for the P is
[q�;� ]0��;��4: We plot the largest eigenvalue as a function of
(�; �) 2 [�=10; 9�=10] � [�=3; 19�=36] on the left graph of Fig. 1.

Theorem 2.2 implies all scaling functions within the contour line
� = 2 as shown in Fig. 1(a) are continuous.

(a)

(b)

Fig. 3. (a) Text image and (b) reconstructed image after 10 : 1 compression.

Example 2.4: Let (�; �) 2 [�=4; 7�=12]� [�=4; 7�=12] be fixed.
Let

� = 3�=4� arcsin sin(� + �=4) sin(� + �=4)):

Set� = � and� = �: Then (4) is satisfied. Any�; � give a filter
m(x; y) by (2). Using 3�, this family of filters generate orthonormal
scaling functions for(�; �) 2 [�=4; 7�=12]2: Similar to Example 2.3,
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TABLE I
PSNR IMAGE COMPRESSIONCOMPARISON

Theorem 2.2 implies all scaling functions within the contour line� = 2
shown in Fig. 1(b) have certain Hölder continuity.

Finally, we construct wavelets associated with the scalingφ. We
begin with polyphase componentsf0; f1; f2; f3 of m(x; y): Write
[f0; f1; f2; f3]

T = a + xb + yc + xyd with a = (a1; a1; a2; a3)
T

and etc. LetL = [a;b; c;d] be a 4 × 4 matrix. Then lettingH be the
Householder transform such thatHL is a lower triangular matrix, we
have

~f0
~f1
~f2
~f3

=H

f0
f1
f2
f3

= HL

1

x

y

xy

=

� 0 0 0

� � 0 0

� � � 0

� � � �

1

x

y

xy

:

Note that by (1)

j ~f0j
2 + j ~f1j

2 + j ~f2j
2 + j ~f3j

2 = jf0j
2 + jf1j

2 + jf2j
2 + jf3j

2 = 1

4
:

If j ~f0j = 1

2
; then ~f1 = ~f2 = ~f2 = 0 and we are done. Otherwise, let

v = [ ~f0; ~f1; ~f2; ~f3]
T � 1

2
[1; 0; 0; 0]T and

H(v) = I4 �
2

v�v
vv�

be a Householder matrix such that

H(v)[ ~f0 ~f1 ~f2 ~f3]
T = [1=2 0 0 0]T :

For convenience, letH(v) be either an identity matrix of size 4 × 4 if
j ~f0j =

1

2
or the Householder matrixH(v) above. Then we have

[f0; f1; f2; f3] = [ 1
2
; 0; 0; 0]H(v)H:

By choosingM(x; y) = 1

2
H(v)H; we haveM(x; y)M�(x; y) =

1

4
I4 with [f0; f1; f2; f3] in the first row ofM(x; y): We should note

that all entries ofM(x; y) are polynomials ofx andy sincev�v is
a constant andH is a constant matrix. We now define polynomials
m� ; � = 0; 1; 2; 3 with m0(!) = m(ei! ; ei! ) as follows:

[mi(!+ �j)]0�i;j�3

=M(e2i! ; e2i! )

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 1 �1 �1

1 �1 �1 1

�

1 0 0 0

0 ei! 0 0

0 0 ei! 0

0 0 0 ei! +!

: (17)

Theorem 2.3:Let φ be the scaling function generated bym
given in Theorem 2.1 and satisfying 3�. Let m� be trigono-
metric polynomials constructed in (17) above. Define the

wavelets � by  ̂�(!) = m�(!=2)�̂(!=2); � = 1; 2; 3: Then
f2k �(2

kx � `1; 2
k � `2): (`1; `2) 2 Z

2; k 2 Z; � = 1; 2; 3g is
an orthonormal basis forL2(R2): The proof is standard using the
multiresolution analysis ofL2(R2) (cf. [5]). We omit the detail.

III. N UMERICAL EXPERIMENTS

We have experimented with the decomposition and reconstruction
procedures using our nonseparable wavelets. In Fig. 2, we show the
decompositions of Lenna and a fingerprint. We can see that the subim-
ages in the high-frequency bands in Fig. 2 reveal more features than
does by a separable filter.

We have also implemented an image compression scheme using
the nonseparable wavelets in Example 2.4 and compared with the
tensor product Haar, Daubechies wavelets D4 and D6, and the
well-known biorthogonal wavelets with lengths nine and seven which
are the wavelets for FBI fingerprint compression standard. The image
compression scheme consists of multilevel wavelet decomposition,
embedded zero-tree encoding and decoding [8], multilevel wavelet
reconstruction, peak signal to noise ratio (PSNR) error analysis. We
chose three images: a text image shown on the left of Fig. 3 besides
the standard Lenna image and a finger-print image of size 512 × 512
in Fig. 2. Table I lists PSNR for these images at various compressions.
We can see that our nonseparable wavelets do a significantly better job
for the text image for compression ratios ten and 15.

It would be interesting to construct compactly supported scaling
functions and wavelets with larger support. See [9] for a complete
solution of the linear phase filters of size 6 × 6 satisfying 1�, 2�, and 6�.
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