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Abstract. Battle-Lemarié’s wavelet has a nice generalization in a
bivariate setting. This generalization is called bivariate box spline
wavelets. The magnitude of the filters associated with the bivariate
box spline wavelets is shown to converge to an ideal high-pass filter
when the degree of the bivariate box spline functions increases to `.
The passing and stopping bands of the ideal filter are dependent on
the structure of the box spline function. Several possible ideal filters
are shown. While these filters work for rectangularly sampled im-
ages, hexagonal box spline wavelets and filters are constructed to
process hexagonally sampled images. The magnitude of the hex-
agonal filters converges to an ideal filter. Both convergences are
shown to be exponentially fast. Finally, the computation and ap-
proximation of these filters are discussed. © 1997 SPIE and IS&T.
[S1017-9909(97)00604-1]

1 Introduction

In recent papers,1–3 the asymptotic properties of the filter
associated with Daubechies’ and Battle-Lemare´’s wavelets
have been studied. It was shown that the magnitude of
filters associated with Daubechies’ wavelet and Bat
Lemarié’s wavelet converges to an ideal filter. The Battl
Lemariéwavelet has a nice generalization in the bivaria
setting, called the bivariate box spline wavelets~cf.
Riemenschneider and Shen4!. It is interesting to see the
asymptotic properties of the filter associated with these
variate wavelets. Since a bivariate box spline wavelet is
a tensor product of Battle-Lemarie´’s wavelets, the study o
the asymptotic properties of bivariate box spline wavele
not a simple generalization of the study carried out in A
droubi and Unser.2

To be more precise about what we study in this pap
we have to introduce some necessary notation and de
tions. Lete15(1,0) ande25(0,1) be the standard unit vec
tors in the Euclidean spaceR2. A box spline over a three
direction mesh can be defined as follows. Let
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B~x,yue1 ,e2!5 H1,
0,

~x,y!P@0,1#2

otherwise ,

and inductively, assume thatB(x,yuXm) is defined with di-
rection setXm5$x1 ,...,xm%, wherexi is one of three vec-
tors e1 , e2 , ande11e2 , i 51,...,m. For Xmø$xm11%,

B~x,yuXmøxm11!5E
0

1

B@~x,y!1txm11uXm# dt,

wherexm11 is e1 or e2 or e11e2 .
For convenience, we consider the following box spli

function in this paper:

Note that the Fourier transform ofBl ,m,n is

B̂l ,m,n~v1 ,v2!5F12exp ~2 j v1!

j v1
G lF12exp ~2 j v2!

j v2
Gm

3H 12exp @2 j ~v11v2!#

j ~v11v2! J n

. ~1!

This expression resembles the Fourier transform of
well-knownB-spline function.~For this and the other prop
erties of box spline functions, see, e.g., Refs. 5 and 6.
computation with box spline functions, see Refs. 7 and!

Furthermore, let Ml ,m,n(x,y)5Bl ,m,n@(x,y)1cl ,m,n#,
with

cl ,m,n5@~ l 1n!/2,~m1n!/2#,

whereMl ,m,n stands for the centered box spline functio
The Fourier transform ofMl ,m,n is

M̂ l ,m,n~v1 ,v2!5@sinc ~v1/2!# l@sinc ~v2/2!#m

3@sinc ~v11v2!/2!] n,

;
d
,
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He and Lai
where sinc is the sinc function, defined by sinc (x)
5sin (x)/x.

It is known thatBn(x,y) generates a multiresolution ap
proximation of L2(R2) ~cf. Riemenschneider and Shen4!.
The Fourier transform of the scaling functionc (0,0) is

ĉ~0,0!
~ l ,m,n!~v1 ,v2!

5
B̂l ,m,n~v1 ,v2!

$(~k1 ,k2!Pz2uM̂ l ,m,n@~v1 ,v2!12p~k1 ,k2!#u2%1/2. ~2!

Define a transfer functionH (0,0)
( l ,m,n) , i.e., the Fourier trans

form of a digital filter by

H ~0,0!
~ l ,m,n!~v1 ,v2!5

ĉ~0,0!
~ l ,m,n!~2v1,2v2!

ĉ~0,0!
~ l ,m,n!~v1 ,v2!

. ~3!

Then the waveletsck
( l ,m,n) , with k5$(1,0),(0,1),(1,1)% as-

sociated with the scaling functionc (0,0)
( l ,m,n) are given in

terms of their Fourier transform by

ĉk
~ l ,m,n!~v1 ,v2!5Hk

~ l ,m,n!~v1/2, v2/2!f̂~0,0!
~ l ,m,n!~v1/2,v2/2!.

~4!

Here,Hk
( l ,m,n) is defined as follows:

Hk
~ l ,m,n!~v1 ,v2!

5exp @ j v•h~k!#

3H H ~0,0!
~ l ,m,n!@~v1 ,v2!1pk#

H ~0,0!
~ l ,m,n!@~v1 ,v2!1pk#

if cl ,m,n is an integer
if cl ,m,n is not an integer ,

whereh is a mapping fromG25$(0,0),(1,0),(0,1),(1,1)%
to itself defined by

h@~0,0!#5~0,0!,h@~1,0!#5~1,1!,h@~0,1!#

5~0,1!,h@~1,1!#5~1,0!,

~see, Riemenschneider and Shen4 for details!.
Writing

H ~0,0!
~ l ,m,n!~v1 ,v2!5 (

~k1 ,k2!Pz2
hk1 ,k2

~ l ,m,n!

3exp @2 j ~k1v11k2v2!#,

we are interested in the properties and computations w
digital filter $hk1 ,k2

( l ,m,n) ,(k1 ,k2)PZ2%. That is, we need to

determine the passing and stopping bands of the dig
filters for various choices of (l ,m,n). We show that the
magnitude of the digital filters associated withH (0,0)

(n l ,nm,nn)

converges to an ideal low-pass filter asn→1`. Since

(
kPG2

uHk
~n l ,nm,nn!~v1 ,v2!u251
454 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
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~cf. Riemenschneider and Shen4!, we can conclude that the
digital filters associated withHk

(n l ,nm,nn) , kPG2\$(0,0)%
converge to ideal high-pass filters asn→1`.

Next, we note that those filters work only for rectang
larly sampled digital images. For hexagonally samp
digital signals/images, we must construct hexagonal wa
lets and therefore obtain hexagonal digital filters for p
cessing these 2-D digital signals/images.9 Note that hex-
agonal sampling is the optimal sampling strategy
signals that are bandlimited over a circular region in t
frequency domain~cf. Mersereau9! and is similar to what
the human eyes are believed to do~cf. Watson and
Ahumada10!. See also Cohen and Schlenker11 for another
advantage that hexagonal filters possess in analyzing
image orientation. Thus, it is important for practical pu
poses to construct such hexagonal filters. It turns out
the construction can be adapted from that of box spl
waveletsck

( l ,m,n)’s and transfer functionsHk
( l ,m,n) . Also,

the asymptotic properties of the hexagonal filters are si
lar to those of the filters associated withHk

( l ,m,n) . We deal
with these hexagonal wavelets and filters in Sec. 3.

Finally, we discuss how to compute these filters nume
cally. We propose a matrix method to compute them.
though these filters are not finite impulse response~FIR!
filters, they are of exponential decay, i.e.,

uhk1 ,k2

~ l ,m,n!u<C exp @2a~ uk1u1uk2u!#,~k1 ,k2!PZ2,

for some positive constantsC anda. Thus, we can truncate
the filter to be a reasonable FIR filter$hk1 ,k2

( l ,m,n) , uk1u<N,

uk2u<N% for some positive integerN. Furthermore, the FIR
filter can be approximated using the singular value deco
position ~SVD! method. That is, we can use the first fe
singular values and their singular vectors to approxim
$hk1 ,k2

( l ,m,n) , uk1u<N, uk2u<N%. Then the processing of an

2-D signals/images with these singular values and vec
results a performance similar to that achieved when us
tensor product of two 1-D digital filters. These are d
cussed in Sec. 4.

2 Asymptotic Properties of the Filters
Associated with Box Spline Wavelets

We begin with the following lemmas. Let

al ,m,n~v1 ,v2!5~v1!2l~v2!2m~v11v2!2n,

and

V l ,m,n :5$~v1 ,v2!:al ,m,n~v1 ,v2!

,al ,m,n~v112pk1 , v212pk2!,

~k1 ,k2!PZ2\~0,0!%.

Lemma 1. The setV l ,m,n has a measure 4p2 and its
integer translatesV l ,m,n12p(k1 ,k2), (k1 ,k2)PZ2 form an
essential disjoint partition ofR2, i.e., ~1! V̄ l ,m,nù@V l ,m,n

12p(k1 ,k2)#5B, (k1 ,k2)PZ2\(0,0) and ~2! the set
R2\ø (k1 ,k2)Pz2@V l ,m,n12p(k1 ,k2)# has a measure zero.
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Digital filters associated with bivariate box spline wavelets
See de Boor and Ho¨llig12 for a proof. Next we have

Lemma 2. Function uH (0,0)
( l ,m,n)(v1 ,v2)u2 is a periodic

function with periodV̄l ,m,n .

Proof. It is easy to see thatuH (0,0)
( l ,m,n)(v1 ,v2)u2 is a peri-

odic function with period@0,2p#2. Now by using Lemma
1, we know thatV̄l ,m,n can serve as a period foruH (0,0)

( l ,m,n)

(v1 ,v2)u2. This completes the proof.
Note thatV ln,mn,nn5V l ,m,n for any n.0. Let

V l ,m,n
ideal :5$~v1 ,v2!:2~v1 ,v2!PV l ,m,n%.

We are now in a position to prove one of the main theore
in this paper.

Theorem 1. The magnitude of the digital filters whos
Fourier transforms areH (0,0)

( ln,mn,nn) converges to an idea
low-pass filter asn→`. That is,

uH ~0,0!
~ ln,mn,nn!~v1 ,v2!u→H 1,

0,
~v1 ,v2!PV l ,m,n

ideal

~v1 ,v2!PV l ,m,n\V̄l ,m,n
ideal .

Proof. From the definition of the scaling functio
c̄ (0,0)

( l ,m,n) , we can simplifyuĉ (0,0)
( l ,m,n)u2 to get

uĉ~0,0!
~ l ,m,n!~v1 ,v2!u2

5
1

5
11 (

~k1 ,k2!Þ~0,0!

~k1 ,k2!Pz2

F v1

v112pk1
G 2l

F v2

v212pk1
G 2mF v11v2

v11v212p~k11k2!
G 2n6

5:
1

11l l ,m,n~v1 ,v2!
.

Thus, we have

uH ~0,0!
~ l ,m,n!~v1 ,v2!u25

uc~0,0!
~ l ,m,n!~2v1,2v2!u2

uc~0,0!
~ l ,m,n!~v1 ,v2!u2

5
11l l ,m,n~v1 ,v2!

11l l ,m,n~2v1,2v2!
.

By Lemma 2, we consider only (v1 ,v2)PV l ,m,n . For
(v1 ,v2)PV l ,m,n

ideal , we have bothl ln,mn,nn(v1 ,v2)→0 and
l ln,mn,nn(2v1,2v2)→0 asn→`. Thus,

uH ~0,0!
~ ln,mn,nn!~v1 ,v2!u25

11l ln,mn,nn~v1 ,v2!

11l ln,mn,nn~2v1,2v2!
→1.
For any (v1 ,v2)PV l ,m,n\V̄( l ,m,n)
ideal , we have

l ln,mn,nn(v1 ,v2)→0. However, we have
l ln,mn,nn(2v1,2v2)→1` as n→`. Indeed, since
(2v1,2v2)¹V l ,m,n , there exists at least one integ
(k1 ,k2)Þ(0,0) such that

F 2v1

~2v112pk1!G
2lF 2v2

~2v212pk2!G
2m

3H ~2v112v2!

@2v112v212p~k11k2!#J
2n

.1.

It follows that

uH ~0,0!
~ ln,mn,nn!~v1 ,v2!u2→0.

Therefore, we have established the results of this theor
Certainly, the convergence ofuH (0,0)

( ln,mn,nn)(v1 ,v2)u is
not uniform since the limit function is a discontinuou
function. However, for each fixed (v1 ,v2)
PV l ,m,n\]V l ,m,n

ideal , it converges toxV
l ,m,n
ideal (v1 ,v2) exponen-

tially, where ]V l ,m,n
ideal denotes the boundary ofV l ,m,n

ideal and
xV

l ,m,n
ideal is the characteristic function ofV l ,m,n

ideal . For ex-

ample, for any (v1 ,v2)PV l ,m,n\V̄l ,m,n
ideal , there exists

(k1 ,k2) such that al ,m,n(2v1,2v2).al ,m,n(2v1

12pk1 , 2v212pk2), or

Uv11pk1

v1
U lUv21pk2

v2
UmUv11v21pk11pk2

v11v2
Un

,1.

Note that we have

uuH ~0,0!
~ ln,mn,nn!~v1 ,v1!u20u

5@ uH ~0,0!
~ ln,mn,nn!~v1 ,v1!u2#1/2

,
@11l ln,mn,nn~v1 ,v2!#1/2

S 2v1

2v112pk1
D lnS 2v2

2v212pk2
D mnF 2v112v2

2v112v212p~k11k2!
Gnn

5@11l ln,mn,nn~v1,v2!#1/2

3US v11pk1

v1
D lS v21pk2

v2
D mS v11v21pk11pk2

v11v2
D nUn

.

It follows from l ln,mn,nn(v1 ,v2)→0 that uH (0,0)
( ln,mn,nn)

(v1 ,v1)u converges to zero pointwise exponentially fa
Similarly, for any (v1 ,v2)PV l ,m,n

ideal , we have

uuH ~0,0!
~ ln,mn,nn!~v1 ,v1!u21u

<uuH ~0,0!
~ ln,mn,nn!~v1 ,v1!u221u

<l ln,mn,nn~2v1,2v2!1l ln,mn,nn~v1 ,v2!.

Since (v1 ,v2)PV l ,m,n and (2v1,2v2)PV l ,m,n , there ex-
ists an integerN such that
Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 455
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Fig. 1 Passing and stopping bands of some ideal low-pass filters for (1,1,1), (1,1,9), and (1,9,1).
-

th

e

(
uk1u1uk2u>2N

S v1

v112pk1
D 2lnS v2

v212pk2
D 2mn

3F v11v2

v11v212p~k11k2!G
2nn

<CF S v1

2pN2uv1u D
2ln

1S v2

2pN2uv2u D
2mnG ,

and

(
uk1u1uk2u>2N

S v1

v11pk1
D 2lnS v2

v21pk2
D 2mn

3F v11v2

v11v21p~k11k2!G
2nn

<CF S v1

pN2uv1u D
2ln

1S v2

pN2uv2u D
2mnG ,

for some positive constantC. Thus, we have
456 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
l ln,mn,nn~v1 ,v2!

<S (
uk1u1uk2u,2N

~k1 ,k2!Þ0

1 (
uk1u1uk2u>2N D S v1

v112pk1
D 2ln

3S v2

v212pk2
D 2mnF v11v2

v11v212p~k11k2!G
2nn

<pN2F max
uk1u1uk2u<N
~k1 ,k2!Þ~0,0!

al ,m,n~v1 ,v2!

al ,m,n~v112pk1 ,v212pk2!G n

1CF S v1

2pN2uv1u D
2ln

1S v2

2pN2uv2u D
2mnG .

We have a similar estimate forl ln,mn,nn(2v1,2v2). Thus,
uH (0,0)

( ln,mn,nn)(v1 ,v1)u converges to 1 pointwise exponen
tially fast. Therefore, we can conclude the following.

Theorem 2. The magnitude of the filters associated wi
H (0,0)

( ln,mn,nn) converges to the ideal low-pass filterxV i
l ,m,n

pointwise exponentially fast.
In Figs. 1 and 2, we showV l ,m,n

ideal for some choices of
( l ,m,n) over @2p,p#3@2p,p#. The passing bands ar
Fig. 2 Passing and stopping bands of some ideal low-pass filters for (9,1,9), (9,1,1), and (9,9,1).



Digital filters associated with bivariate box spline wavelets
Fig. 3 Support of hexagonal box spline functions B1,1,1
# , B2,2,2

# , and B1,2,3
# .
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of hexagonal shape with curve boundaries. For (l ,m,n)
5(1,1,1), the hexagonal shape of the passing bands
piecewise linear boundaries.

3 Hexagonal Box Spline Wavelets and Filters

In this section, we construct hexagonal box spline wave
and derive the filters that can be applied for hexagon
sampled signals/images. We start with hexagonal
splines, i.e., the box splines over a hexagonal grid$Ak:k
PZ2% with

A5F)//2 0

1/2 1G
as in Simoncell and Adelson.13

For a direction setXn5$x(1),...,x(n)%, wherex( i ) is one
of Ae(1), Ae(2), A@e(1)2e(2)#, i 51,...,n, we define a hex-
agonal box splineB#(x,yuXn) inductively as follows. Re-
arranging, if necessary, such that

area~@x~1!,x~2!# !

5area$t1x~1!1t2x~2!,0,t1<1,0,t2<1%.0,

we let

B#~x,yux~1!,x~2!!

5 H 1/area$@x~1!,x~2!#%,
0,

if ~x,y!P@x~1!,x~2!#,
otherwise ,

and form53,4,...,n, define

B#~x,yux~1!,...,x~m!!5E
0

1

B#@~x,y!

2tx~m!ux~1!,...,x~m21!# dt.

These box splines are of compact support. Let
s

s

For convenience, letBl ,m,n
# (x,y):5B#(x,yuAYl ,m,n). Then

the support of someBl ,m,n
# is shown as in Fig. 3.

To understand these box spline functions better, we
quote the following basic result from de Booret al.,5 which
contains many more properties of these spline function

Lemma 3. For any continuous functionf ,

E
R2

B#~x,yuXn! f ~x,y! dx dy

5E
@0,1#n

f F(
i 51

n

t ix
~ i !Gdt1 ...dtn .

These hexagonal box splinesBl ,m,n
# are very much simi-

lar to box splines Bl ,m,n . By letting f (x,y)
5exp@2j(xv11yv2)# in Lemma 3, we have, lettingv
5(v1 ,v2)T,

B̂l ,m,n
# ~v1 ,v2!

5H 12exp @2 je~1!ATv#

je~1!ATv J l H 12exp @2 je~2!ATv#

je~1!ATv J m

3S 12exp $2 j @e~1!2e~2!#ATv%

j @e~1!2e~2!#ATv D n

.

Furthermore, lettingu5(u1 ,u2)T5R21ATv,

with R5F1 1

0 1G ,
we have, by Eq.~1!,

B̂l ,m,n
# ~A2TRu!5B̂n,m,l~u1 ,u2!. ~5!

Up to certain matrix transform, i.e.,A andR, Bl ,m,n
# is the

same asBn,m,l . All the construction of box splines wave
lets based onBl ,m,n can be easily adapted to the case
hexagonal box splinesBl ,m,n

# . For a complete exposition o
the role of transformsA andR, we give a detail description
of the construction of these hexagonal wavelets. Let
Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 457
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S l ,m,n :5H (
kPz2

ckBl ,m,n
# @~x,y!2Ak#,$ck%Pl 2~Z2!J

be the space of the hexagonal grid translates of a hexag
box splineBl ,m,n

# . Here, l 2(Z2) denotes the space of a
square summable sequences$ck%, i.e., (kPz2ucku2,`.
Then for any given hexagonally sampled digital sign
image $ f (Ak),kPZ2% with a finite energy, there exists
unique spline interpolantsf :5sf ,l ,m,nPSl ,m,n such that

sf~Ak!5 f ~Ak!,kPZ2. ~6!

Multiplying Eq. ~6! by exp (2jvAk) and summing overk,
we get

(
kPz2

ck exp ~2 j vAk! (
kPz2

Bl ,m,n
# ~Ak! exp ~2 j vAk!

5 (
kPz2

f ~Ak! exp ~2 j vAk!.

Then the existence and uniqueness of such spline inte
lant is guaranteed by the following lemma.

Lemma 4. For each integer (l ,m,n),

(
kPz2

Bl ,m,n
# ~Ak! exp ~2 j vAk!Þ0,;vPR2.

Proof. By Poisson’s summation formula~cf. Ref. 14, p.
194!, we have

(
kPz2

Bl ,m,n
# ~Ak! exp ~2 j vAk!

5
1

det~A! (
kPz2

B̂l ,m,n
# ~v22pA2Tk!

5
1

det~A! (
kPz2

B̂l ,m,n
# ~A2TR~u22pR21k!!

5
1

det~A! (
kPz2

B̂n,m,l~u22pk!Þ0

by Theorem 2 in de Booret al.15 Here, we have used Eq
~3! and the fact thatR21 is an integer matrix that is non
singular. This completes the proof.

In fact, we can further show that if an image is ba
limited in V l ,m,n

# to be defined later in this section
sf ,ln,mn,nn converges tof in L2 norm asn→`. We omit
these details here. For similar results based onBl ,m,n in-
stead ofBl ,m,n

# , refer to de Booret al.16

With this Lemma 4, we are able to prove the followin

Lemma 5. There exist two constantsC1 and C2 such
that
458 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
al

-

C1 (
kPz2

ucku2<E
R2U (

kPz2
ckBl ,m,n

# @~x,y!2Ak#U2

dx dy

<C2 (
kPz2

ucku2,

for any sequence$ck ,kPZ2%Pl 2(Z2).

Proof. We use Plancherel’s theorem~cf. Ref. 14, p. 186!
to get

~2p!2E
R2U (

kPz2
ckBl ,m,n

# @~x,y!2Ak#U2

dx dy

5E
R2U (

kPz2
ck exp ~2 j vAk!B#̂

l ,m,n~v!U2

dv

5E
A2T@0,2p#2U (

kPz2
ck exp ~2 j vAk!U2U (

kPz2
uB̂l ,m,n

# ~v

22pA2Tk!u2 dv

5E
A2T@0,2p#2U (

kPz2
ck exp ~2 j vAk!U2U

3 (
kPz2

uB#̂
2l ,2m,2n~v12pA2Tk!udv.

By Lemma 4, we have

C15 min
vP@0,2p#2

(
kPz2

B#̂
2l ,2m,2n~v12pA2Tk!.0.

Letting Ml ,m,n
# denote the centered hexagonal box spline

the centered box splineMl ,m,n in Sec. 1, we have,

C25 max
vPA2T@0,2p#2

(
kPz2

uB̂2l ,2m,2n
# ~v12pA2Tk!u

5 max
vPA2T@0,2p#2

(
kPz2

M̂2l ,2m,2n
# ~v12pA2Tk!

5 max
vPA2T@0,2p#2

(
kPz2

M2l ,2m,2n
# ~Ak! exp ~2 j vAk!

< (
kPz2

M2l ,2m,2n
# ~Ak!51,

using Possion’s summation formula, as in the proof
Lemma 4. This completes the proof.

With the preceding preparation, we are now able to
fine a multiresolution approximation ofL2(R2) and con-
struct hexagonal box spline wavelets. Let

Vk :5$ f ~2kx!: f ~x!PS l ,m,n%,kPZ.

Then we have the following theorem.
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Digital filters associated with bivariate box spline wavelets
Theorem 3. The subspacesVk , kPZ form a multireso-
lution approximation ofL2(R2). That is, they satisfy the
following conditions:

1. Vk,Vk11 , ;kPZ

2. ; f PVk11 , f (x/2)PVk and ;kPVk , f (2x)
PVk11 , kPŻ

3. ; f PVk , f (x222kAi)PVk , ; iPZ2

4. there exists ac0PV0 such that$c0(x2Ak), kPZ2%
forms an orthonormal basis forV0

5. øk52`
` Vk is dense inL2(R2) andùk52`

` Vk5$0%.

The proof of Theorem 3 is similar to that in Rieme
schneider and Shen.4 We omit the details. Note that cond
tion 4 is equivalent to Lemma 5.

We are now in a position to define the scaling functi
c0

# and waveletsc i
# , i 51,2,3 associated with the mult

resolution approximation$Vk%. Let

ĉ0
#~v!:5c #̂

0,~ l ,m,n!~v!

5
B#̂

l ,m,n~v!@ udet~A!u#1/2

@(kPz2uB#̂
l ,m,n~v12pA2Tk!u2#1/2

. ~7!

Then it is easy to check thatc0 , as defined, is inV0 and
satisfies the condition in the following lemma.

Lemma 6. Suppose thatfPL2(R2). Then $f@(x,y)
2Ak#,kPZ2% is an orthonormal set if and only if

(
kPZ2

uf̂~v12pA2Tk!u25udet~A!u, ;vPR2.

The proof of this lemma is similar to the argument in t
one-variable case. We again omit the details. Next we
fine the transfer functions

H0
#~v!5

ĉ0
#~2v!

c0
#~v!

, ~8!

and

Hi
#~v!5exp ~ j vTsi!H0

#~v1ti!, i 51,2,3, ~9!

with

s15F)/2
1/2 G , s25F01G , s35F2)/2

1/2 G ,
and

t15F2p/)
0 G , t25Fp/)

p G , t35F)p
p G .

Then the hexagonal box spline waveletsc i , i 51,2,3 can
be defined in term of Fourier transform as follows:

ĉ i~v!5Hi
#~v/2!ĉ0~v/2!, i 51,2,3. ~10!
-

To provec i , i 51,2,3 are orthonormal wavelets, we ne
to prove the following lemmas, which are of independe
interest.

Lemma 7. FunctionsHi
# , i 50,1,2,3 are a periodic func

tion. That is,

Hi
#~v12pA2Tk!5Hi

#~v!, ;kPZ2, i 50,1,2,3.

Proof. Note that the denominator ofĉ0
# and the numera-

tor of B̂l ,m,n
# are a periodic function. Observing that th

denominator ofB̂l ,m,n
# in the expression ofĉ0

#(2v) is can-
celed by that inĉ0

#(v) up to a factor of 2. We conclude tha
H0

# is a such periodic function. Furthermore, sinces1

5Ae(1), s25Ae(2), s35A@e(1)2e(2)#, we know thatHi
# ,

i 51,2,3, are periodic functions:

Lemma 8. For vPR2,

(
kPG2

uHi
#~v1pA2Tk!u251, i 50,1,2,3.

Proof. By Lemma 6, we have

udet~A!u5 (
kPz2

uĉ0
#~v12pA2Tk!u2

5 (
kPz2

uH0
#~v/21pA2Tk!ĉ0

#~v/21pA2Tk!u2

5 (
kPz2

(
iPG2

uH0
#~v/21pA2Ti!u2uĉ0

#~v/2

1pA2Ti12pA2Tk!u2

5 (
iPG2

uH0
#~v/21pA2Ti!u2udet~A!u.

It follows that (kPG2
uHi

#(v1pA2Tk)u251, i 51,2,3.

Lemma 9. For m, nPG2 with mÞn,

(
kPG2

Hm
# ~v1pA2Tk!Hn

#~v1pA2Tk!50.

Proof. We can use Lemma 7 and the definition ofHm
# ,

mPG2 to directly verify these identities. We omit thes
details.

We are now ready to show another main result in t
paper.

Theorem 4. The functionsc i
# , i 51,2,3, as defined are

wavelets. That is, the following collection of the dilation
and translates ofc i

#’s

W :5$2kc i@~2kx2Aj !#,jPZ2,kPZ,i 51,2,3% ~11!

form an orthonormal basis ofL2(R2).
Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 459
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Fig. 4 Four-band analysis/synthesis filter bank.
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Proof. The proof of this theorem is the same as in R
emenschneider and Shen.4 We omit the details.

Next we apply the hexagonal filters associated withHi
# ,

i 50,1,2,3 to subband coding design. Consider a 2-D fo
band analysis synthesis filter bank~Fig. 4! as follows:

By choosing subsampling matrix

K5F2 0

0 2G
and filters

Fi~v!5Gi~v!:exp ~ j vT
•si!H0

#~v1ti!, i 50,1,2,3.

We can use Lemmas 6 and 9 to show that the Fou
transformS̃ of the output image$s̃(k)% is

S̃~v!5(
i 50

3

Gi~v!Yi~Kv!

5(
i 50

3

Gi~v!(
k50

3

Fi~v1tk!S~v1tk!

5 (
k50

3

S~v1tk!(
i 50

3

Gi~v!Fi~v1tk!

5S~v!(
k50

3

uH#
0~v1tk!u25S~v!,

which is the Fourier transform of the input image$s(k),k
PZ2%, whereYi(v) is the Fourier transform of digital filte
$yi(k)%, which is equal to

Yi~v!5 (
k50

3

Fi~K2Tv1tk!S~K2Tv1tk!,
460 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
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with

t05pA2TF00G , t15pA2TF10G ,
t25pA2TF11G , t35pA2TF01G
~cf. Simoncelli and Adelson13!. Therefore, we have ob
tained the following.

Theorem 5. The filters whose Fourier transform areHi
# ,

i 50,1,2,3, respectively, form a subband filter bank w
exact reconstruction.

Note that although the filters associated withHi
#’s are

not FIR filters, they are of exponential decay. That is, wr
ing

Hi
#~v!5 (

kPz2
hk

@ i # exp ~2 j vAk!,

we know that

uhk
@ i #u<C exp @2a~ uk1u1uk2u!#, kPZ2,

for some positive constantsC anda ~cf. Corollary I!. In the
next section, we propose a computational method for th
filters $hk

@ i # ,kPZ2%.
Finally, we consider the asymptotic behavior of the

filters. Recall thatc0
#5c0,(l ,m,n)

# and

H0,~ l ,m,n!
# ~v!5

ĉ0,~ l ,m,n!~2v!

ĉ0,~ l ,m,n!~v!
.
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Digital filters associated with bivariate box spline wavelets
For simplicity, let us considerH0(n,n,n)
# , which is the most

important and interesting case since they converge to
ideal low-pass filter with a hexagonal passing band. Le

V111
# :5$v:R21ATvPV111

deal%.

SinceV111
0 is a hexagon with vertices

H S p

3
,

p

3 D ,S 2
p

3
,

2p

3 D ,S 2
2p

3
,

p

3 D ,S 2
p

3
,2

p

3 D ,

S p

3
,2

2p

3 D ,S 2p

3
,2

p

3 D ,

so isV111
# with vertices

H S p

)
,

p

3 D ,S 0,
2p

3 D ,S 2
p

)
,

p

3 D ,S 2
p

)
,2

p

3 D ,

S 0,2
2p

3 D ,S p

)
,2

p

3 D .

We have the following.

Theorem 6. The filters whose Fourier transform a
H0,n

# , n51,2,..., converge to an ideal low-pass filter
n→`. That is,

uH0,~n,n,n!
# ~v!u→H 1,

0,

if vPV111
#

vP2V111
# \V111

# .

Proof. We note that

uH#
0,~n,n,n!~A2TRu!u25uH ~0,0!

~n,n,n!~u!u2.

By Theorem 1, we conclude the result of this theorem.

4 Computation and Approximation of Box
Spline Filters

We first recall from Sec. 1 that

H ~0,0!
~ l ,m,n!~v1 ,v2!

5F11exp ~2 j v1!

2 G lF11exp ~2 j v2!

2 Gm

3H 11exp @2 j ~v11v2!#

2 J n

3
$(~k1 ,k2!Pz2uM̂ l ,m,n@~2v1,2v2!12p~k1 ,k2!#u2%1/2

$(~k1 ,k2!Pz2uM̂ l ,m,n@~v1 ,v2!12p~k1 ,k2!#u2%1/2 .

By Poisson’s summation formula as in Sec. 3, we have
n (
~k1 ,k2!Pz2

uM̂ l ,m,n@~v1 ,v2!12p~k1 ,k2!#u2

5 (
~k1 ,k2!Pz2

M2l ,2m,2n~k1 ,k2! exp @2 j ~v1k11v2k2!#.

That is, we are interested in computing coefficien
(ak)kPz2 and$bk%kPz2 in the following expansions

F (
kPz2

M2l ,2m,2n~k! exp ~2 j k•v!G1/2

5 (
kPz2

ak exp ~2 j k•v!, ~12!

and

1

@(kPz2M2l ,2m,2n~k! exp ~2 j 2k•v!#1/2

5 (
kPz2

bk exp ~2 j k•v!. ~13!

Let

P2l ,2m,2n~v1 ,v2!:5 (
kPz2

M2l ,2m,2n~k! exp ~2 j k•v!.

Note thatP2l ,2m,2n is a trigonometric polynomial. To com
pute the filter associated withH (0,0)

( l ,m,n) , we only need to
compute the Fourier coefficients of (P2l ,2m,2n)1/2 and
1/(P2l ,2m,2n)1/2.

We now describe a matrix method to do these compu
tions. First of all, we consider bivariately banded a
Toeplitz matricesC5(ci,j) i,jPZ2. That is,C is said to be
bivariate banded if there exists a positive integerb such
that ci,j50 wheneveru i2 j u.b, where u iu5u i 1u1u i 2u de-
notes the length ofi5( i 1 ,i 2). Now C is said to be a bivari-
ate Toeplitz matrix ifci1k,j1k5ci,j for all i,j ,kPZ2. De-
note byF(C)(v) the symbol of a bivariate Toeplitz matri
C5(ci,j) i,jPz2, i.e.,

F~C!~v!5 (
kPz2

ck,~0,0! exp ~2 j v•k!.

Thus, P2l ,2m,2n(v) is the symbol of the Toeplitz
matrix M2l ,2m,2n5@M2l ,2m,2n( j2 i)# i,jPz2. Similarly,
@(kPz2M2l ,2m,2n(k) exp (2jkv)#1/2 can be viewed as the
symbol of another~unknown! Toeplitz matrix C2l ,2m,2n .
Then it is easy to see that

C2
2l ,2m,2n5M2l ,2m,2n .

Also, it is easy to see that the symbol of the bi-infini
matrix C21

2l ,2m,2n is the trigonometric function
1/@(kPz2M2l ,2m,2n(k) exp (2jk•v)#1/2. Thus, to compute
Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 461
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ak’s andbk’s in Eqs.~12! and~13!, it is equivalent to solve
the correspondent matrices problems, i.e., matrix factor
tion and inversion.

Apparently we can not solve those infinite matrix facto
izations and inversions. Our numerical method is to fi
their approximations. LetL be a one–one map from
Z2°Z. For example, one of such maps ofL can be defined
as follows: writing i5( i 1 ,i 2)PZ2 and n5u i 1u1u i 2u, we
define

L~ i!5L~ i 1 ,i 2!

55
n~n21!1 i 211
n~n21!12n2 i 211,
2n~n21!22n2 i 221,
2n~n21!1 i 221,
0

if i 1>0,i 2>0 but nÞ0
if i 1,0,i 2.0
if i 1>0,i 2,0
if i 1,0,i 2<0
if i 150,i 250

.

This mapL can be best illustrated by Fig. 5, where we
L(0,0)50.

Then the bivariate bi-infinite matrixM2l ,2m,2n can be or-
ganized as a usual bi-infinite matrix

M2l ,2m,2n5~bi j ! i , j Pz ,

with bi j 5M2l ,2m,2n@L21( i )2L21( j )# for i , j PZ.
Let MN5(bi j )2N< i , j <N be a finite section ofM2l ,2m,2n .

Note thatMN is symmetric and positive definite. Thus w
can findP̂N such that

P̂N
2 5MN ,

by, e.g., SVD. Also, we can find the inverseP̂N
21 of P̂N .

We claim that P̂N converges toĈ2l ,2m,2n and P̂N
21 to

C2l ,2m,2n
21 . That is, to approximate a bi-infinite matrix, w

may use its finite sections.
To describe the convergence, we start with the follow

definition.

Fig. 5 Illustration of map L(i, j).
462 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
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Definition 1. A matrix A5(ai j ) i , j Pz is said to be of bi-
variately exponential decay off its diagonal if

uai j u<Kr uL21~ i !2L21~ j !u,

for some constantK and r P(0,1).

Theorem 7. Let P be the square root of a positive matr
A. Suppose thatA is bivariately banded andiA2I i2<r
,1, where I is the identity operator froml 2(Z2) to
l 2(Z2). Then bothP andP21 are of bivariately exponen
tial decay off its diagonal.

Proof. It is easy to see that

P5AA5@ I 1~A2I !#1/2

5(
i 50

`

~21! i
~2i 23!!!

~2i !!!
~A2I ! i ,

and

P215~A!21/25@ I 1~A2I !#21/2

5(
i 50

`

~21! i
~2i 21!!!

~2i !!!
~A2I ! i .

It is also easy to understand that ifA2I has bivariate band-
width b, then (A2I )k is also bivariately banded with band
width kb. Write P5(Pi j ) i , j ,Pz and similarly for (A2I )k.
We have, for @ uL21( i )u2uL21( j )u#/b.n.@ uL21( i )u
2u L21( j )u]/b 2 1,

uPi j u5UF (
k5n11

`

~21!k
~2k23!!!

~2k!!!
~A2I !kG

i j
U

< (
k5n11

`
~2k23!!!

~2k!!!
iA2I i2

<K1r n<Kr uL21~ i !u2uL21~ j !u/b,

for some constantK. Therefore,P is of exponential decay
Similarly, we can show thatP21 is of exponential decay.

Corollary 1. The digital filter$hk1 ,k2

( l ,m,n) ,(k1 ,k2)PZ2% as-

sociated with the transfer functionH (0,0)
( l ,m,n) is of exponential

decay. That is,

uhk1 ,k2

~ l ,m,n!u<C exp ~2a@ uk1u1uk2u!#,

for some positive constantsa andC.

Proof. Note thatH (0,0)
( l ,m,n)(v) is the symbol of a bivariate

bi-infinite matrixH( l ,m,n) , which is a product of three suc
matricesP, U(P21), and J, where U(P21) denotes the
resulting bi-infinite matrix after upsampling ofP21 by 2
andJ denotes the bi-infinite matrix whose symbol is
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Digital filters associated with bivariate box spline wavelets
F11exp ~2 j v1!

2 G lF11exp ~2 j v2!

2 Gm

3H 11exp @2 j ~v11v2!#

2 J n

.

Also, it is easy to see thatU(P21) is of exponential decay
In fact, J is a bivariately banded matrix and hence, of e
ponential decay. Since the family of bi-infinite matrices
exponential decay forms an algebra~cf. Ref. 17, p. 463!,
we conclude thatH( l ,m,n) is of exponential decay and so
the digital filter$hk1 ,k2

( l ,m,n)%.

Theorem 8. Suppose thatA is a bivariately banded ma
trix satisfying the condition in Theorem 7. LetP be the
square root ofA andP21 be the inverse ofP. Let AN , PN

PN
21 be a finite section ofA, P, andP21, respectively. Let

P̂N be a square root matrix such thatP̂N
2 5AN and dN

5(0,...,0,1,0,...,0)T be a vector of 2N11 with zero entries
except for the middle entry, which is 1. Then

iPNdN2P̂NdNi2<KhAN,

and

iPN
21dN2P̂N

21dNi2<KhAN,

for somehP(0,1) and a positive constantK independent
of N.

Proof. By the expression ofP in the proof of Theorem 7,
we have

i~PN2P̂N!dNi2<(
i 50

`
~2i 23!!!

~2i !!!
i$@~A2I ! i #N

2~AN2I N! i%dNi2 .

We claim that

i$@~A2I ! i #N2~AN2I N! i%dNi2<KlN,

for someK.0 and 0,l<1. Let us use induction. Fori
50 and i 51, it is clear that this estimate is true. Assum
that this estimate is true fork. Consider

@~A2I !k11#N2~AN2I N!k11

5@~A2I !~A2I !k#N2~A2I !N~AN2I N!k

5@~A2I !~A2I !k#N2~A2I !N@~A2I !k#N

1~A2I !N@~A2I !k#N2~A2I !N~AN2I N!k.

Note that

i$~A2I !N@~A2I !k#N2~A2I !N~AN2I N!%dNi2

<iA2I i2i$@~A2I !k#N2~A2I !N~AN2I N!%dNi2 .
We can use the induction hypothesis to take care of
part. Next we write

A2I 5F a1 BN
t a2

BN AN2I N CN

a3 CN
t a4

G
and

~A2I !k5F b1 aN,k b2

aN,k
t @~A2I !k#N dN,k

t

b3 dN,k b4

G .

Then we have

@~A2I !~A2I !k#N2~A2I !N@~A2I !k#N

5BNaN,k1CNdN,k .

Let us look closely at each component of the vec
(BN

t aN)dN . That is, we look at the following terms, fori
52N,...,0,...,N,

~BNaN,k! i ,05 (
l 5N11

`

bi ,l al ,0 ,

with BN5(bi j ) andaN,k5(ai j ). Recall thatA2I is band-
width g. If kg<N, we know thatal ,050 for all l .N. We
have (BN

t aN)dN50. Similarly, we have (CNdN,kdN)50.
For k.N/g, we simply have

i$@~A2I !~A2I !k#N2~A2I !N@~A2I !k#N%dNi2

<2i~A2I !ki2<r k<r N/g5~r g!N.

Therefore, the claim is true for allk. Hence, we have

i~PN2P̂N!dNi2<(
i 50

`
~2i 23!!!

~2i !!!
KlN,KlN.

In the same fashion, we can show

i~PN
212P̂N

21!dNi2<KlN.

We omit the details. This completes the proof.
To apply the preceding theorem, we therefore only ne

to verify that M2l ,2m,2n is a positive matrix and satisfie
iM2l ,2m,2n2I i2,1. Indeed, lettingF(x) denote the Fourier
transform of infinite vectorx5$xiiPZ2%, i.e.,

F~x!5 (
iPz2

xi exp ~2 j i•v!,

we have, by Parseval’s equality,
Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 463
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Fig. 6 Magnitude of low-pass filters H6
(1,1,1) and log10 (uH6

(1,1,1)u2).
ap-
ally
oxi-
xTM2l ,2m,2nx5
1

~2p!2 E
@2p,p#2

F~x!F~M2l ,2m,2n!

(v)F~x! dv

> min
vP@2p,p#2

F~M2l ,2m,2n!~v!

3
1

~2p!2 E
@2p,p#2

uF~x!~v!u2 dv

5 min
vP@2p,p#2

F~M2l ,2m,2n!~v!ixi2
2.

Sincec5minvP@2p,p#2F(M2l ,2m,2n)(v).0 by Theorem 4 in
de Boor et al.,15 we haveM2l ,2m,2n>cI. Using a similar
method, we can show thatiM2l ,2m,2n2I i2,1. Indeed,
,

464 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
i~M2l ,2m,2n2I !xi2
25

1

~2p!2 E
@2p,p#2

uF~M2l ,2m,2n2I !

(v)u2uF~x!~v!u2 dv

5
1

~2p!2 E
@2p,p#2

u12F~M2l ,2m,2n!

(v)u2uF~x!~v!u2 dv

< max
vP@2p,p#2

u12F~M2l ,2m,2n!~v!u2ixi2
2

<~12c!2ixi2
2.

Thus,M2l ,2m,2n satisfies all the conditions of Theorem 8.
Therefore, our numerical method provides a good

proximation that converges the exact solution exponenti
fast. In general, we are able to find a reasonable appr
mate HN

( l ,m,n) :5$hk
l ,m,n%

uk2u<N

uk1u<N with N<30. See Figs. 6, 7

and 8 foruH6
(1,1,1)u, uH11

(2,2,2)u, anduH14
(3,3,3)u.
Fig. 7 Magnitude of low-pass filters H11
(2,2,2) and log10 (uH11

(2,2,2)u2).



Digital filters associated with bivariate box spline wavelets
Fig. 8 Magnitude of low-pass filters H14
(3,3,3) and log10 (uH14

(3,3,3)u2).
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For application purposes, the size of such filter matri
may still be too large. We now discuss how to approxim
the filter matrixHN

( l ,m,n) by using SVD method. Note tha
HN

( l ,m,n) is a real matrix. Let

HN
~ l ,m,n!5UTSV

be the singular value decomposition ofHN
( l ,m,n) . Here,U

5(u1 ...u2N11) andV5(v1 ...v2N11) are two orthonormal
matrices andS5diag(s1,...,s2N11) is diagonal matrix with
singular valuess i ’s on its diagonal. Let

HN,l
~ l ,m,n!5(

i 51

l

s iuivi
T .

Then

iHN
~ l ,m,n!2HN,l

~ l ,m,n!i25 min
rank~G!5l

iHN
~ l ,m,n!2Gi25s l 11 .

~Cf. e.g., Golub and Van Loan,18 p. 73.! Thus, we can
determine l from s i ’s such that the approximation i
within the given tolerance. Table 1 shows the first few s
gular values ofH( l ,m,n) for ( l ,m,n)5(1,1,1), (2,2,2), and
~3,3,3!.

Furthermore, when processing any 2-D digital sign
imageS with this filter HN,l

( l ,m,n) , we immediately notice tha

Table 1 Some singular values of Ȟ(l,m,n).

s Values s1 s2 s3 s4 s5 s6

H6
(1,1,1) 0.471 0.161 0.032 0.024 0.004 0.004

H11
(2,2,2) 0.466 0.158 0.068 0.043 0.022 0.016

H14
(3,3,3) 0.461 0.161 0.080 0.052 0.032 0.024

s Values s7 s8 s9 s10 s11 s12

H6
(1,1,1) 0.003 0.002 0.001 0.000 0.000 0.000

H11
(2,2,2) 0.007 0.006 0.006 0.003 0.002 0.002

H14
(3,3,3) 0.014 0.012 0.007 0.006 0.004 0.003
HN,l
~ l ,m,n!!S5S (

i 51

l

s iuivi
TD !S5(

i 51

l

s iui!~vi
T!S!,

where! denotes the 2-D convolution operator. Becauseui

andvi are 1-D vectors, each term in the preceding summ
tion is just a tensor-product filtering. Thus, the process
time using such a filterHN,l

( l ,m,n) is proportional tol times
that of a tensor-product filter. Therefore, these filters m
be useful in practice.
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