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2
Abstract. Battle-Lemarié’s wavelet has a nice generalization in a B(x y|el e,)= : é’ ()t(fily) E.[O’l]
’ ! otherwise,

bivariate setting. This generalization is called bivariate box spline
wavelets. The magnitude of the filters associated with the bivariate

box spline wavelets is shown to converge to an ideal high-pass filter and inductively, assume thBI(x,lem) is defined with di-

when the degree of the bivariate box spline functions increases to . i - h f f th
The passing and stopping bands of the ideal filter are dependent on rection se m_{xl 1rer 'Xm}' Wherex; 1s one o ree vec-

the structure of the box spline function. Several possible ideal filters torse,, e,, ande;+e,, i=1,..m. For X, ,U{Xn+1}
are shown. While these filters work for rectangularly sampled im-

ages, hexagonal box spline wavelets and filters are constructed to 1

process hexagonally sampled images. The magnitude of the hex- B(x,y| XmUXms1)= f B[(X,Y)+ tX 1| Xm] dt,
agonal filters converges to an ideal filter. Both convergences are 0

shown to be exponentially fast. Finally, the computation and ap-
proximation of these filters are discussed. © 1997 SPIE and IS&T.

[51017-9909(97)00604-1] wherex,,; 1 iSe; or e; ore;+e,.

For convenience, we consider the following box spline
function in this paper:

Bl,m,n(x’y)
1 Introduction
3 i ) i =B(x,yle|.....ej.es,....e5,61Fe5,...,e T €5).
In recent papers;® the asymptotic properties of the filters —_— — —
associated with Daubechies’ and Battle-Lensmeavelets ! m "

have been studied. It was shown that the magnitude of the ) ,

filters associated with Daubechies’ wavelet and Battle- NOte that the Fourier transform & m,q is

Lemarigs wavelet converges to an ideal filter. The Battle-

Lemariewavelet has a nice generalization in the bivariate B, - (w1, 0,)=

setting, called the bivariate box spline wavelefsf. I,m,nt 1,502

Riemenschneider and SHenlt is interesting to see the . n

asymptotic properties of the filter associated with these bi- % [ 1-exp[—j(wy+ wz)]] )

variate wavelets. Since a bivariate box spline wavelet is not j(w1+ wy) '

a tensor product of Battle-Lemaisewavelets, the study of

the asymptotic properties of bivariate box spline wavelet is This expression resembles the Fourier transform of the

not a simple generalization of the study carried out in Al- well-known B-spline function(For this and the other prop-

droubi and Unsef. erties of box spline functions, see, e.g., Refs. 5 and 6. For
To be more precise about what we study in this paper,computation with box spline functions, see Refs. 7 and 8.

we have to introduce some necessary notation and defini- Furthermore, let M mn(%,Y) =Bi mal (X,Y) + ¢ mnl,

tions. Lete; =(1,0) ande,=(0,1) be the standard unit vec- with

tors in the Euclidean spad®?. A box spline over a three-

direction mesh can be defined as follows. Let C.mn=L+n)/2(m+n)/2],

| m

l1-exp(—jwy)

jop

1—exp(—jwy)

jows

whereM, ., , stands for the centered box spline function.
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where sinc is the sinc function, defined by sing (
=sin (X)/X.

It is known thatB,(x,y) generates a multiresolution ap-
proximation of L?(R?) (cf. Riemenschneider and SHen
The Fourier transform of the scaling functigny o) is

I,m,
’ﬂEo,rg) n)(wl,wz)

_ éI,m,n(“’la(")z)
{2k, c2IM| mnl(@1,07) +27(Ky ko) ]| 212

)

Define a transfer functiof (i7"

form of a digital filter by

, i.e., the Fourier trans-

P (201,20,)

~ i .
lﬂgo,r:); n)(wlin)

©)

I,m, _
HEO,@) ”)(wl,wz) =

Then the waveletg{ ™" , with k={(1,0),(0,1),(1,1) as-

sociated with the scaling functiog{s%™ are given in

terms of their Fourier transform by

P (w1,00)=HE ™ (01/2, 0212) 57" (01/2,04/2).
(4)

Here,H{'™" is defined as follows:
HE™ (01, 0,)

=exp[jo-7(k)]

HiB,%}”)[(wl.wszk] if ¢ mn iS an integer
Hf{)’f{,‘)’”>[(w1,w2)+wk] if ¢ mn IS Not an integer,

where 7 is a mapping froml",={(0,0),(1,0),(0,1),(1,1)
to itself defined by

70(0,0]=(0,0,7[(1,0]=(1,1,7[(0,D)]
=(0,9,7[(1,D]=(1,0,

(see, Riemenschneider and Shéor details.

Writing
[,m, _ I,m,
HEO’rg) n)(wl,wz) — 2 h(klr,];:)
(Kq ko) € 22

xexp[—j(kiw,+Kowy)],

(cf. Riemenschneider and SHenwe can conclude that the
digital filters associated wittH{"'""™"™ ke I',\{(0,0)}
converge to ideal high-pass filters as» + «.

Next, we note that those filters work only for rectangu-
larly sampled digital images. For hexagonally sampled
digital signals/images, we must construct hexagonal wave-
lets and therefore obtain hexagonal digital filters for pro-
cessing these 2-D digital signals/imadeNote that hex-
agonal sampling is the optimal sampling strategy for
signals that are bandlimited over a circular region in the
frequency domair(cf. Mersereat) and is similar to what
the human eyes are believed to dof. Watson and
Ahumada?). See also Cohen and SchlenKeior another
advantage that hexagonal filters possess in analyzing the
image orientation. Thus, it is important for practical pur-
poses to construct such hexagonal filters. It turns out that
the construction can be adapted from that of box spline
wavelets "™"’s and transfer function#i{"™" . Also,
the asymptotic properties of the hexagonal filters are simi-
lar to those of the filters associated wiH ™" . We deal
with these hexagonal wavelets and filters in Sec. 3.

Finally, we discuss how to compute these filters numeri-
cally. We propose a matrix method to compute them. Al-
though these filters are not finite impulse respo(EiR)
filters, they are of exponential decay, i.e.,

IR <C exp[— a(lky| +[ka|) ], (kg ko) € 22,

for some positive constan@ and«. Thus, we can truncate
the filter to be a reasonable FIR filtgn{"v" , [ky|<N,

|k,| <N} for some positive integeM. Furthermore, the FIR
filter can be approximated using the singular value decom-
position (SVD) method. That is, we can use the first few
singular values and their singular vectors to approximate
(%™, [ke|<N, [kz|<N}. Then the processing of any
2-D signals/images with these singular values and vectors
results a performance similar to that achieved when using
tensor product of two 1-D digital filters. These are dis-
cussed in Sec. 4.

2 Asymptotic Properties of the Filters
Associated with Box Spline Wavelets

We begin with the following lemmas. Let
al,m,n(wlywz):(wl)ZI(wz)zm(w1+w2)2n,
and

QI,m,n . :{(wl vw2):al,m,n(w1 ,03)

we are interested in the properties and computations with

digital filter {h{"%" ,(k;,kp) € Z%}. That is, we need to

determine the passing and stopping bands of the digital

filters for various choices ofl(m,n). We show that the
magnitude of the digital filters associated wlﬂig!é)Vm’V”)

converges to an ideal low-pass filter &s» +«. Since

2 [H™ Y (wg,00)?=1

kels
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< mn(w1+27Ky, w+27Kj,),
(ky,kp) € Z2\(0,0)}.

Lemma 1. The setQ, ,, has a measure# and its
integer translateQ ., ,+2m(ky k), (Kq,Kp) € Z2form an
essential disjoint partition oR?, i.e., (1) Q; nnN[Q mn
+2m(ky ko)1=, (Kq,k;) €Z?(0,0) and (2) the set
Rz\U(kl,kz)ezz[Ql,m,n+ 2m(kq,k5)] has a measure zero.
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See de Boor and Hiiy*? for a proof. Next we have

Lemma 2.  Function |HE'O'8)"

function with period(; .

(w1, w5)|? is a periodic

Proof. ltis easy to see thdtHEz'o’S "(w;,w,)|? is a peri-
Now by using Lemma

odic function with period 0,27]°.
1, we know that), ., , can serve as a period foH {57"
(w1, w5)|%. This completes the proof.
Note that(),, m, n,= Q| mn for any v>0. Let
Qideal

I,m,n

={(01,07):2(w1,03) € Yy mn}-

For any (w1,0)eQn n\Q'(‘?erﬁ' m, We have
Nomyn(@1,02)—0. However, we have
Mymvn(201,205) =+ as v—o. Indeed, since

(2w1,2w,) € Q) ., there exists at least one integer
(k1,kz) #(0,0) such that

2(!)1 2l
(2(1)1+ 27Tk1)

2(1)2 2m
(2(,02"’ 27Tk2)

2n
>1.

(2w1+ 2(1)2)
2011 20yt 27 (kg 1K)

We are now in a position to prove one of the main theoremsit follows that

in this paper.

Theorem 1.
Fourier transforms ared (g™
low-pass filter ay—. That is,

converges to an ideal

1, (01,0 eQ®

(wl,wZ)l_) 0, (wlwa)Elen\Q:dr?laL

lv,my,
[Higg

Proof. ~ From the definition of the scaling function
¢E'O'S)”) we can simplify| ¢(o 0)”)| to get
~
|<//§o,@ (wl,w2)|2
1
- r W, 21 3\
1+ e—
(ki kp)#(0,0) | @1+ 27Ky
) (Kyq kp) e 22 }
wo 2m wl-i-wz 2n
w2+277k1 w1+w2+277(k1+k2) )
1

o 1+ N mn(@1,02)

Thus, we have

|2_ | ‘p(o 0 n)(2w1,2w2)|
|¢E|o,r3) n)(w17w2)|
_ 1+ N mn(w1,@2)
1+ )\I,m,n(zwlazwz) '

|H(I,m,n)

(0,0 (01,07)

By Lemma 2, we consider onlyaf(;,w;) € Q. For
(w1,02) € Q%2 we have both\, m, n,(w1,0,)—0 and

Noy.myn(201,20,) —0 asv—w. Thus,

|H(Iy,my,ny) 1+)\|V,mv,nv(w1’w2)
1+ )\l v,mv,nv(2w1!2w2)

0.0 —1.

(wl,w2)|2=

The magnitude of the digital filters whose

G ™ (wr.02) 0.

Therefore, we have established the results of this theorem.
Certainly, the convergence d¢H """ (wy,w,)| is
not uniform since the limit function is a discontinuous
function.  However, for each fixed «f,w))
e Q) mmdQ|%2, it converges toajdea (1, 0;) exponen-

tially, where 9Q %% denotes the boundary @ % and

Xoisea is the characteristic function of 1% . For ex-

ample, for any ©1,02) € Y\ | there exists

(kq,k5) such that &) mn(2w1,20)>a) (20,
+2mKq, 2w,+27ky), or

(l)l+ 7Tk1||

w1|

(1)2+ ’7Tk2‘ m

w 2 ‘

(l)l+ (1)2+ 7Tk1+ ’7Tk2‘n
w1+w2 ‘

Note that we have

HH(IDVO)mV m,) (o1 vwl)‘ _0|

lv,mv,
:[|H§0’jo?1y ny)(‘”lx‘”l)'

[1+)\Iu,mv,nv(“)l er)]llz

2]1/2

<
nv

2w, mv 2w+ 2w,
2w,+ 27k, 2w+ 2w,+ 27(ky+ky)

=[1+)\Iu,mv,nv(wlvw2)]ll2

20)1 lv
2w+ 27k,

w1+ 7K\ [ 01 T\ M w1+ @yt K+ K\ "

X

wq [o73 w1+ W,

It follows from M\, m,n.(w1,w)—0 that |H(|va ,nv)
(w1,w1)| converges to zero pointwise exponennally fast.

Similarly, for any (@;,w,) € Q{%, we have

[H{G g™ ™ (w1, 1) 1]

= | | H(IV,mV,nV)

(0,0 (w1,w1)|2_1|

g)\Iv,mv,nv(zwle(‘)Z) + )\Iv,mv,nv(wl!wZ)'

Since @;1,w5) € Q) mn and (2w;,2w;) € Q) ., there ex-
ists an integeN such that
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o

'

Fig. 1 Passing and stopping bands of some ideal low-pass filters for (1,1,1), (1,1,9), and (1,9,1).

2
w1 )2IV w2 ) m )\Iv,mv,nv(wlle)
‘kl|+%|22N w1+277k1 w2+277k2
2lv
w3
[ Bt B |l
X lkql+Tka|<2N  |kq|+]ka[=2N W1 2TKy
w1+w2+27r(k1+k2) (Kq ,kp)#0
—c ( Wy >2|V+( wy )va} y w5 2my| w1+ Wy 2ny
2’7TN_|(1)1| 27TN_|(1)2| ' (J)2+2Tl'k2 w1+w2+277(k1+k2)
< N2 max &) mn(w1,07) v
and |k1‘+‘k2|$N a|’m’n(w1+277k1,w2+ 27Tk2)
(kq,kp)#(0,0
W, 2lv w5 2my w, 2lv w5 2my
+C + .
kg +Tigl=2N | g+ Ky wy+ 7Ky 27N —|w,| 27N~ |wy]
w1+ o, 2nv

We have a similar estimate fov,, m, n,(20w7,2w,). Thus,
IH{Ge™ ™ (w1,01)| converges to 1 pointwise exponen-
tially fast. Therefore, we can conclude the following.

X (1)l+ (1)2+ 7T(k1+ kz)
wq 2y w5 2my Theorem 2. The magnitude of the filters associated with
<C N—[w]] + N— [y : H{ys"" converges to the ideal low-pass filtgt,
pointwise exponentially fast.
In Figs. 1 and 2, we show2|*¢ for some choices of
for some positive constat@. Thus, we have (I,m,n) over[—a,7w]X[—,m]. The passing bands are

Fig. 2 Passing and stopping bands of some ideal low-pass filters for (9,1,9), (9,1,1), and (9,9,1).
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Fig. 3 Support of hexagonal box spline functions BY , ;, B3 ,,, and Bj , .

of hexagonal shape with curve boundaries. Flam(n)

For convenience, I@l#]m]n(x,y):=B#(x,y|AY|,m,n). Then

=(1,1,1), the hexagonal shape of the passing bands hage support of som&],, , is shown as in Fig. 3.

piecewise linear boundaries.

3 Hexagonal Box Spline Wavelets and Filters

In this section, we construct hexagonal box spline waveletsLemma 3.
and derive the filters that can be applied for hexagonally
sampled signals/images. We start with hexagonal box

splines, i.e., the box splines over a hexagonal gAd:k
e Z?} with

v3/i2 0
172 1

as in Simoncell and Adelsdi. .

For a direction seX,={x,... x™M} wherex(" is one
of AeW, Ae® AleM—-e)] i=1,..n, we define a hex-
agonal box spline8¥*(x,y|X,) inductively as follows. Re-
arranging, if necessary, such that
ared[x'V,x'?])

=aredt,x'V+1,x? 0<t;<1,0<t,<1}>0,
we let

B#(X,y|x(l),x(2))

[ Vared[xV x@T}, if (x,y)e[xV,x?],
10, otherwise,

and form=3,4,...n, define

1
B#(x,ylx(”,...,xm)):f B T(x,y)
0
—txM|x®), .. x(M= D] dt.
These box splines are of compact support. Let

Y,,m,,,={e“),...,e(”,em,...,6(2),6(1)—e(z),...,e(”—e(z)}.

1 m n

To understand these box spline functions better, we can
quote the following basic result from de Boarral.® which
contains many more properties of these spline functions.

For any continuous functiof,

fRzB#(x,yIXn)f(x,y) dx dy

o.g"

These hexagonal box splinE%fmyn are very much simi-
lar to box splines By ,. By letting f(x,y)
=exp[—j(Xw;+Yyw,)] in Lemma 3, we have, lettingo
:(wlva)T1

n
>, tix)
1

dty... .

Bﬁm,n(")lawz)

1-exp[—jeVATw]|'(1—exp[—jePATw]|™
- €A, [eDAT,
1-exp{—j[eV—e@]ATu}\"
8 i[eT—e@ATw

Furthermore, lettingd=(6,,6,) =R AT,

11

ith R=
Wi 0 1

we have, by Eq(2),
B n(A"TRO)=By m(61,6,). 5

Up to certain matrix transform, i.eA andR, Bﬁm]n is the
same a8, . All the construction of box splines wave-
lets based orB, ,,, can be easily adapted to the case of
hexagonal box splineBﬁmyn. For a complete exposition of
the role of transform# andR, we give a detail description
of the construction of these hexagonal wavelets. Let

Journal of Electronic Imaging / October 1997 / Vol. 6(4) / 457
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2
Amni={ 2 Bl (6y)—AK]{ed e A(Z%) C1 2 |e’< f 2 Bl mal (xy)—AK]| dx dy
kez kez? kez
be the space of the hexagonal grid translates of a hexagonal =<C, Z lcil?,
box splineB} , ,. Here,/%(Z?) denotes the space of all ke

square summable sequencfs), i.e., 2y 2cyl?<e. ,
Then for any given hexagonally sampled digital signal/ for any sequencgc, kez? e %(z?).

image {f(Ak),k € Z?} with a finite energy, there exists a Proof. We use Plancherel’'s theordf. Ref. 14, p. 185

unique spline interpolarg; : =s; | n€ S, Such that to get
si(Ak)=f(Ak), ke Z2. (6) , . 2
(@2m?| | 2 cBlmal (xy)—AK]| dx dy
Multiplying Eq. (6) by exp (—jwAk) and summing ovek, kez 2
we get
’ -3 ccexn(-jwakE oo
R? kez?
E Cy exp(—JwAk)E BY (AK) exp(—jwAk) 2
ke ke L =J > cexp(—jwAk)| | X |B,mn(w
T0.271%| 22 ke
= 2 f(AK) exp(—jwAk). —27A"TK)|? dw
kez?
2
Then the existence and uniqueness of such spline interpo- = fA_T[O2 2 kE Ci €xp (—jwAk)
e eZ?

lant is guaranteed by the following lemma.

Lemma 4. For each integerl(m,n), X 2 |B A man(@+27A” Tk)|dw.
kez?

2 Bl mn(AK) exp (—jwAk)#0Yw e R?. By Lemma 4, we have

kez?

Proof. By Poisson’s summation formulaf. Ref. 14, p. Ci= min E é}z|,2m’2n(w+2wA*Tk)>O

194), we have wel0,27]2 ke??

_ Letting MI m.n denote the centered hexagonal box spline as
2 B .n(AK) exp (—jwAk) the centered box splinkl, ., in Sec. 1, we have,
kez?

C,=  max X [Bj smam(@+27A k)|

de(A kgz B| m, n(w 2wA” Tk) wEAiT[O,ZqT]Z ke
. . = max > Mim(e+27ATK)
de(A kgz B ,m, n(A R(0—27R™7k)) weA~T[0,2712 kez?
= max X M5 n(AK) exp(—jwAk)
de(A) k§Z Bn m, |(0 27Tk) #0 weA” T[O 277]2 ke

by Theorem 2 in de Booet al'® Here, we have used Eq. \kz M%) 2man(AK) =1,
(3) and the fact thaR™ ! is an integer matrix that is non- <7

singular. This completes the proof. _ _ using Possion’s summation formula, as in the proof of
In fact, we can further show that if an image is band | smyma 4. This completes the proof.

limited in Qﬁm,n to be defined later in this section,

Sf.1v.mp,ny CONVErges taf in L, norm asy—o. We omit With the preceding preparation, we are now able to de-
these details here. For similar results basedBpp,, in-  fine @ multiresolution approximation df*(R*) and con-
stead ofB, mn» Tefer to de Booet allé struct hexagonal box spline wavelets. Let

With this Lemma 4, we are able to prove the following. )
Vi ={f(2%):f(x) €.7] mn} ke Z.

Lemma 5. There exist two constan§; and C, such
that Then we have the following theorem.

458 / Journal of Electronic Imaging / October 1997 / Vol. 6(4)
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Theorem 3. The subspaceg,, ke Z form a multireso-
lution approximation ofL?(R?). That is, they satisfy the
following conditions:

1. ViCVy41, VkeZ

2. VfeVi,q, f(X2)eV, and VkeV,, f(2x)
eViit, keZ

3. VeV, f(x—27*Ai)eV,, VieZ?

there exists &g e V, such that{y(x—Ak), ke Z?}
forms an orthonormal basis f&/,

5. Up__..Vy is dense inL?(R?) andN__,.V,={0}.

The proof of Theorem 3 is similar to that in Riemen-
schneider and Shérnwe omit the details. Note that condi-
tion 4 is equivalent to Lemma 5.

We are now in a position to define the scaling function
5 and wavelets)!, i=1,2,3 associated with the multi-
resolution approximatiofV,}. Let

P @)= Progmm(©)

_ B ma(w)[|detA)[]Y2
[Ekezzl B#I,m,n((ﬂ)"' 277A7Tk)|2]1/2.

(7)

Then it is easy to check thdt,, as defined, is iV, and
satisfies the condition in the following lemma.

Lemma 6. Suppose thaip e L?(R?). Then {¢[(X,y)
—Ak],k e Z?} is an orthonormal set if and only if

> |p(w+27A TK)|2=|detA)|, VweR2.

kez?2

The proof of this lemma is similar to the argument in the

one-variable case. We again omit the details. Next we de-

fine the transfer functions

'//0(20))

Ho(w)= gty ®
and
HY(w)=exp(jo's)Hj(w+1t), =123, (9
with

(V312 0 —v3/2
Sl:»l/z}' Sfu’ 33:[ 1/2 }
and
e I L L)

Then the hexagonal box spline wavelets, i=1,2,3 can
be defined in term of Fourier transform as follows:
i=1,2,3.

() =H¥(w12) Po( w]2), (10)

To provey;, i=1,2,3 are orthonormal wavelets, we need
to prove the following lemmas, which are of independent
interest.
Lemma 7. FunctionsH, i
tion. That is,

=0,1,2,3 are a periodic func-

H¥(w+27A k) =H¥(w), VkeZ? i=0,1,2,3.
Proof. Note that the denominator a}f# and the numera-
tor of é| mn are a periodic function. Observing that the
denominator oB| m.n iN the expression oﬂ/O(Zw) is can-
celed by that |n//0(w) up to a factor of 2. We conclude that
H’é is a such periodic function. Furthermore, sinsg
=Ae, s,=Ae®, s;=AleM—e®], we know thatH?,
i=1,2,3, are periodic functions:

Lemma 8. ForweR?

> HAw+7A TK)|?=1, i=0,1,23.
T

kel

Proof. By Lemma 6, we have

|detA>|—E | i(w+27A"TK)|?

ke z?

= Z |HE(w/2+ wA~TK) P w/2+ wA~TK)|2

kEZ

=> 2 |HE(w/2+ A~ || g w2
kEZ2IE 2
+ A Ti+27A " Tk)|?

= > |Hi( w2+ 7ATi)|? detA)|.

iel’y
It follows that =y . |H} (0 +7A~TK)[*=1,i=1,2,3.

Lemma 9. Forpu, vel, with u#v,

> HY(w+7A TKHY w0+ 7ATk)=0.
kel

Proof. We can use Lemma 7 and the definitionl-dﬁ,
unel', to directly verify these identities. We omit these
details.

We are now ready to show another main result in this

paper.
Theorem 4. The functionsy?, i=1,2,3, as defined are

wavelets. That is, the following collection of the dilations
and translates of;’s

=254 (2*%—A})],je 2% ke Z,i=1,2,3 (12)
form an orthonormal basis af?(R?).
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{yo(k)} K
Fo(w) KT = [ \l o(w
=
{yl(k)} 3 (
Fi(wy— k1 i 1‘1 (W
{s09) 2 509}
{v2(k)} .
Y2 2 <
Fz(w) ]"T é — Al —’Gz(u, ——]
2
o
W) | [%
s(w)— K & | el

Fig. 4 Four-band analysis/synthesis filter bank.

Proof.  The proof of this theorem is the same as in Ri- with
emenschneider and Sh&ie omit the details.

Next we apply the hexagonal filters associated \th 0 1
i=0,1,2,3 to subband coding design. Consider a 2-D four-t,= wAT{O}, t,=mAT ol
band analysis synthesis filter ba(fkg. 4) as follows:

By choosing subsampling matrix L 0

2 O t2: 7TA_T 1 y t3: 7TA_T 1

K=

[0 2 : .

(cf. Simoncelli and Adelsdr). Therefore, we have ob-

and filters tained the following.
F.(0)=Gi(@):exp(jo’- SHI(w+), i=0,1,2,3. Theorem 5.  The filters whose Fourier transform até ,

i=0,1,2,3, respectively, form a subband filter bank with

We can use Lemmas 6 and 9 to show that the Fourier®@ct reconstruction. ' . :
transformu§ of the output imagd3(k)} is W ur Note that although the filters associated wiii's are

not FIR filters, they are of exponential decay. That is, writ-

3 ing
S(w)=2, Gi(w)Yi(Kw)
3 3 HY(0)= 2 hiJ exp(—jwAk),
=3 G(0) 3 Filo+t)S@+t) ke

we know that

3 3
=2, S(0+1) 2, Gi(w)Fi(w+t) . )
K=o =0 [hiY[=<C exp[ - a(lki| +[ka)], keZ?

3
=S(w) Z [H o(w+t)[?=S(w), for some positive constan® and« (cf. Corollary |). In the
k=0 next section, we propose a computational method for these
filters {h}!! ke Z?}.
Finally, we consider the asymptotic behavior of these
filters. Recall thaty§=yf ; .y and

which is the Fourier transform of the input imags(k),k
eZ?%, whereY,(w) is the Fourier transform of digital filter
{yi(k)}, which is equal to

; ;bO(I mn)(zw)
Yilw)= 2 Fi(K To+t)SK To+t), HE | (@) = M2

o mm(®) .
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For simplicity, let us considelrlg(,y,,,), which is the most

important and interesting case since they converge to an

ideal low-pass filter with a hexagonal passing band. Let
Qf ={o:RATwe QI

SinceQ?,, is a hexagon with vertices

T T T 277) 2 77')( T T
33l 33533
T 27 (277 T
37333

so isQ,, with vertices

(77 W)<02w)< 7777)( T 77)
v3 3\ T3] vi' 3/ vi' 3]/

o553

We have the following.

Theorem 6. The filters whose Fourier transform are
Hg,y, v=1,2,..., converge to an ideal low-pass filter as
v—oo, That is,

1, if 0eQf,

|H# VVV(w)|_)[ :
0.(v,».%) 0, we20f)\O%,

Proof. We note that

IH 00 (AT TRO)2=[H (G5 (0)2.

By Theorem 1, we conclude the result of this theorem.

4 Computation and Approximation of Box
Spline Filters

We first recall from Sec. 1 that

I,m,
Higo™ (@1, 0,)

[1+exp(—jw))][1+exp(—jwy)|™
B 2 2
1+exp[—j(w1+w2)]]“
% 2

{2k, ey 2l My mnl (201, 200) + 277(ky ko) ]| 22
{E(kl,kz)ezz| M ol (@1, 02)+2m(Ky ko) ][22

By Poisson’s summation formula as in Sec. 3, we have

>

(kl'kZ) ez

My mnl (@1, @2) +27(Ky kp)]|?

>

(kq kp) € 2

My aman(K1,K2) €Xpl—j(wiki+ woky)].

That is, we are interested in computing coefficients
(@) kez2 and{ By}« 2 in the following expansions

12
{ 2 Maianan(k) exp(—jk-)

kez

= acexp(—jk o), (12)
2
kez
and
1
[Zke2Mao oman(K) exp(—j2k- w)]*?
= Brexp(—jk-w). (13
2
kez
Let

P2 oman( @01, w0): = 22 M) omn(K) exp(—jk- ).

kez

Note thatP, o 2 iS @ trigonometric polynomial. To com-
pute the filter associated witH (g™, we only need to
compute the Fourier coefficients ofP§ om2n)*2 and

1/( PZI ,2m,2n) 1/2-

We now describe a matrix method to do these computa-
tions. First of all, we consider bivariately banded and
Toeplitz matricesC=(c;;);j.z2. That is,C is said to be
bivariate banded if there exists a positive integesuch
that ¢;;=0 whenever|i—j|>b, whereli|=[ij|+]i,| de-
notes the length af=(i,i,). Now C is said to be a bivari-
ate Toeplitz matrix ifc; ;= c¢;; for all i,j,keZ? De-
note byF(C)(w) the symbol of a bivariate Toeplitz matrix
C=(Cipije i€,

F(C)(w)= 22 Ck,(0,0 EXP(—jw-K).

kez

Thus, Py oma(w) is the symbol of the Toeplitz
matrix Mz oman=[Maoman(i —1)]ije2.  Similarly,
[Ske2Mo) oman(K) exp (—jkw)]Y2 can be viewed as the
symbol of another(unknown Toeplitz matrix Cy om on -
Then it is easy to see that

2 _
C 21,2m,2n— I\/|2I,2m,2n .

Also, it is easy to see that the symbol of the bi-infinite
matrix C‘12|‘2m'2n is the trigonometric function
[ E ke 2M o oman(K) €xp (—jk- @)]¥2 Thus, to compute
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271 17 25 35
28 (18 110 |16 124 |34
29 119 111 15 9 15 123 |33
30 {20 {12 {6 2 4 8 14 122
—13|-7 -3 [=1 |0 1 3 7 13
—22|-14|-8 |—-4 |[-2 |—-6 |—12]-20|-30
—33(—-23{-15|-9 =5 |—-11[-19}-29
—34(—=241-16 |—10|-18 |28
—35 =25 | =17 |-27
Fig. 5 lllustration of map L(/,)).

a’'s andBy’s in Egs.(12) and(13), it is equivalent to solve

Definition 1. A matrix A=(a); j . is said to be of bi-
variately exponential decay off its diagonal if

|aij|sKr‘L’l<i>—L’l<i>|,

for some constanK andr e (0,1).

Theorem 7.  LetP be the square root of a positive matrix
A. Suppose thaf is bivariately banded anfiA—I|,<
<1, wherel is the identity operator fromr3(Z?) to
/?(Z?). Then bothP andP~? are of bivariately exponen-
tial decay off its diagonal.

Proof. It is easy to see that

P=VA=[I+(A-1)]*?

2i—3)N

G (A=

:Z ) [—— (

and

the correspondent matrices problems, i.e., matrix factoriza-P =(A) =1+ (A-1)]12

tion and inversion.
Apparently we can not solve those infinite matrix factor-

izations and inversions. Our numerical method is to find

their approximations. Lel. be a one—one map from
Z2%-7Z. For example, one of such mapslotan be defined
as follows: writingi=(i;,i,) €Z? and n=[i|+|i,|, we
define

L(i)=L(i1.i2)
n(n—1)+i,+1 if 1;=0,ji,=0 butn#0
n(n—1)+2n—i,+1, if |1<0J2>0
={ —n(n—=1)—2n—i,—1, if i;=0,,<0
—n(n—1)+i,—1, if 1,<0,i,<0
0 if i;=0/,=0

This mapL can be best illustrated by Fig. 5, where we let
L(0,0)=0.

Then the bivariate bi-infinite matrikly oy, ,, can be or-
ganized as a usual bi-infinite matrix

My om,2n=(0ij)i ez

with bij =My oman[L " *(i)—L"*(j)] fori,jeZ.

Let My=(bjj) —n<i,j<n be a finite section oMy oy, on -
Note thatMy is symmetric and positive definite. Thus we
can findPy such that

P2=My,

by, e.g., SVD. AIso we can find the mverEe\, of PN
We claim that PN converges toC2| omzn and PNl to

C2I omzn- That is, to approximate a bi-infinite matrix, we
may use its finite sections.

-1
(2.)”

:Z 1)I

(A=1)'.

It is also easy to understand tha®Nf-1 has bivariate band-
width b, then (A—1)¥ is also bivariately banded with band-
width kb. Write P=(P;;); ; ., and similarly for A-1)k
We have, for [|L~ 1(|)|—|L YD/o>n>|L~ ()|
—| LY 0)b - 1,

2k—3)

. (
|F’ij|:L_;+ (= 1)kw(A—|)k}

ij
o0

>

k=n+1

(2k—3)N

(2K A=

1l2

<K, r"=Krlt HOI=ILHDIb)
for some constar. ThereforeP is of exponential decay.
Similarly, we can show tha® ! is of exponential decay.

Corollary 1. The digital fiter{h{'k™ , (ky ,k,) € 2%} as-

sociated with the transfer functid(; 5"

decay. That is,

is of exponential

% <C exp (—al[ky|+kel)]

for some positive constants andC.

Proof. Note thatHE{)'rg)'”)(w) is the symbol of a bivariate
bi-infinite matrixH m ny, which is a product of three such
matricesP, U(P~ 1), and J, whereU(P~1) denotes the

To describe the convergence, we start with the following resulting bi-infinite matrix after upsampling ¢! by 2

definition.
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1+exp(—jowy) | [1+exp(—jwy)|™
2 2

1+exp[—j(w1+wz)]}”
X 2 .

Also, it is easy to see thal(P 1) is of exponential decay.
In fact, J is a bivariately banded matrix and hence, of ex-
ponential decay. Since the family of bi-infinite matrices of
exponential decay forms an algeli. Ref. 17, p. 463
we conclude thaH , ) is of exponential decay and so is

the digital fiter{h{! ”)}

Theorem 8. Suppose thah is a bivariately banded ma-
trix satisfying the condition in Theorem 7. L& be the
square root oA andP~ ! be the inverse oP. Let Ay, Py
PNl be a finite section oA, P, andP 1 respectlvely Let
Py be a square root matrix such thﬁﬁ Ay and dy
=(0,...,0,1,0,...,0Y be a vector of R+ 1 with zero entries
except for the middle entry, which is 1. Then

||PN5N_PN5N||2$K77\N:
and
IPN" O — PN Loull,<K 7N,

for somene (0,1) and a positive constait independent
of N.

Proof.
we have

By the expression d? in the proof of Theorem 7,

]

(PN — PN>5N||2$§0

(2i-3)!!
T

)"}l

I{[(A—1
—(Ay—Iy
We claim that
HI(A=1)"Ty= (Ay—=1) "} Snlla<KAN,
for someK>0 and O<A<1. Let us use induction. Far
=0 andi=1, it is clear that this estimate is true. Assume
that this estimate is true fde. Consider
[(A=D = (Ay— "t
=[(A=D(A=D = (A=Dn(Ay— )"
=[(A=D(A=D = (A=D[(A= DKy
+(A=DNA=D = (A= DAy

Note that
N)}5NH2

<[A=1HI(A=D = (A=Dn(A= 1)}l

HA=DN(A=1) TN— (A= n(Ay—I

We can use the induction hypothesis to take care of this
part. Next we write

@ B}\l (7]
A-1=| By An—In Cy
a3 C}\j a,
and
B an k B>
(A—D*=|ay, [(A=D Iy dyy
B3 dn k B
Then we have
[(A=D (A=) = (A=[(A=1D¥ ]y

=Bnan kT CnOnk -

Let us look closely at each component of the vector
(B aN)ﬁN That is, we look at the following terms, for

50,..N,

(Bnawio= > bi,as o,
/=N+1

with By=(bj;) anday = (a;;). Recall thatA—1 is band-
width . If ky<N, we know that,, ,=0 for all />N. We
have Bjay)dy=0. Similarly, we have Cndy kon) =0.
For k>N/vy, we simply have

KEA=D (A=) TN= (A= DN[(A=D) N}l
<2|(A-D¥|,=rksrNr=(nN,

Therefore, the claim is true for al. Hence, we have

N

E K)\ N kAN,
i=0

[(Pn—Pn) Snll2
In the same fashion, we can show

(P =P Sulla<KA

We omit the details. This completes the proof.

To apply the preceding theorem, we therefore only need
to verify that My, 5o, is @ positive matrix and satisfies
Mgy oman—I[l2<1. Indeed, letting=(x) denote the Fourier
transform of infinite vectox={x;i e ZZ}, ie.,

x)—E X exp (—ji-w),

IEZ

we have, by Parseval's equality,
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Fig. 6 Magnitude of low-pass filters H+) and log,, (| HEY|?).

1 I
T -
X" Mz om 2nX (27)2 f[mw]zF(X)F(le,Zm,zn)

(0)F(X) do

= min  F(Myj om o) ()

wE[*']T,‘IT]z

N f
(277)2 [—71'77]2

F( M2I,2m,2n)(w)HX||§'

|F(X)()]? do

= min

wE[*ﬂ,‘lT]z

Sincec=min, [ 12F(M2| 2m2n) (@) >0 by Theorem 4 in
de Booret al,"> we haveMy o n=cl. Using a similar

method, we can show th@iMy o, o, —1,<1. Indeed,

(i “\
WW"»’*"‘:“\“““‘Q&;\;

4 4

1
||(M2I,2m,2n_|)x||§=(27)2 j[w 7T]2|F(|V|2|,2m,2n_|)

()|?F(X)()]? de

1
:W fﬁ ]zll_F(MZI,Zm,Zn)

(@)?[F(0)(0)]? dw

< max |1—F(My ama)(@)|3Ix]3

wE[—’JT,W]Z

<(1—c)?|x|3.

Thus, My, om oy Satisfies all the conditions of Theorem 8.
Therefore, our numerical method provides a good ap-
proximation that converges the exact solution exponentially
fast. In general, we are able to find a reasonable approxi-
mate Hﬂ'm'”):z{h[gm'”}:tlm with N<30. See Figs. 6, 7,
zé
and 8 for|HSM), |HZ22), and|[HS32).

-5 I'l""" \\\‘
//Wo “ “ .m “\\ N
Il“' ' ‘ ’ ‘ \\\\
Al I,
20 * II// /U ) ‘\\\‘ \\

v;,/'ro:ﬂ\‘\\‘o

-4 g

Fig. 7 Magnitude of low-pass filters H{%?? and log,, (| H{3??|?).
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Fig. 8 Magnitude of low-pass filters H{3*® and log,, (|H3®|?).

For application purposes, the size of such filter matrices

/ /
may still be too large. We now discuss how to approximate H(I MmNy S= ( E oiuV, )*S E o *(v *S),

the filter matrix H{'™" by using SVD method. Note that
H{™" is a real matrix. Let

HY™V=UTsV

be the singular value decomposition lgf™" . Here, U
=(Uq...Uyns1) @andV=(V;...Voyn41) are two orthonormal
matrices an@® =diag(oy,....0on41) IS diagonal matrix with
singular valuesr;’s on its diagonal. Let

Then

IHE™ =HEP = min [HY™Y =Gl =0, 1.
rank G)=/

(Cf. e.g., Golub and Van Loaff, p. 73) Thus, we can
determine/ from o;’s such that the approximation is
within the given tolerance. Table 1 shows the first few sin-
gular values oH!"™" for (I,m,n)=(1,1,1), (2,2,2), and
(3,3,3.

Furthermore, when processing any 2-D digital signal/
imageS with this filter H{ ™" , we immediately notice that

Table 1 Some singular values of H(:mn.,

s Values o1 oy o3 Ty 05 g

HELD 0471 0.161 0.032 0.024 0.004 0.004
HE22) 0.466 0.158 0.068 0.043 0.022 0.016
H(13“1,3,3) 0.461 0.161 0.080 0.052 0.032 0.024
s Values o7 og o9 010 011 012

HELD 0.003 0.002 0.001 0.000 0.000 0.000
H(121,2,2) 0.007 0.006 0.006 0.003 0.002 0.002
H(333) 0.014 0.012 0.007 0.006 0.004 0.003

14

wherex denotes the 2-D convolution operator. Because
andv; are 1-D vectors, each term in the preceding summa-
tion is just a tensor-product filtering. Thus, the processing
time using such a filteH{™" is proportional to/" times
that of a tensor-product fllter. Therefore, these filters may
be useful in practice.
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