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We give a simple formula for the duals of the filters associated with bivariate box
spline functions. We show how to construct bivariate non-separable compactly
supported biorthogonal wavelets associated with box spline functions which have
arbitrarily high regularities. © 1999 Academic Press

1. INTRODUCTION

Let B, ,,, be the bivariate box spline function whose Fourier transform is

B B (1 _ eiw1>l<1 _ eiw2> m<1 _ ei(m1+¢uz))n
mal @1, @) = o iw, i(w,+ wy) /)

(For properties of box spline functions, see [3, 2]. For computation of these bivariate b
spline functions, see [4, 13].) It is known th&t ., , generates a multi-resolution approx-
imation of L,(R?) (cf. [14]). We are interested in constructing a compactly supporte
function BI mn generating a multi-resolution approximation bf,(R?) which is a
biorthogonal dual td, ,, , in the following sense,

Jf Bimn(X =,y — k)él,m,n(x —jy—k)dxdy= 0;. Ok (1.1)
R2
for all integersj, k € Z, wheres; , is the standard Kronecker notation defineddy =
0ifj # kandg;, = 1if j = kandZ is the collection of all integers.

In the univariate setting, for B-spline functid, biorthogonal dual function8,, were
constructed in [7]. Also, compactly supported biorthogonal wavelets associate® yvith
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54 HE AND LAl

were constructed there. Since bivariate box splines are a natural generalization of B-sp
functions, several attempts have been made to construct these types of biorthog
wavelets associated with the box spline funct®n, .. See, e.g., [6, 15, 8, 16]. So far
compactly supported biorthogonal wavelets associated with the box dpjing have
been constructed [8]. The construction of these wavelets associated with dinerdlas
remained a challenge since then.

We are furthermore interested in constructing compactly supported biorthogonal wa
letsys, j = 1,2, 3 andej, j =1, 2, 3 and two families of FIR filtersNl;, j = 0, 1,
2,3}and {J;,] = 0, 1, 2, 3} with

~ . . ~ w w

o 09 = M@, @B, (%) =123 @)
and

) . . 2 w w

lp]‘((ull w2) = ‘]j(el(w1/2)! eI(MZ/Z))BI,m,n(il! {) ’ J = 1! 21 3| (13)

such that the dilations and translates of ths and J/j’s form two dual Riesz bases for
L,(R?) (cf. [7] for the univariate setting) and the two families form an exact reconstruc
tion of synthesis/analysis filter bank for image/data processing (see [21, 8]).

In this paper, we shall give an explicit formula 1%|r,m,n for any given positive integers
I, m, andn in Section 2 and a matrix extension scheme to consivijt andJ;’s which
lead to compactly supported biorthogonal wavelets with arbitrarily high regularities
Section 3. Finally, we shall give examples of these wavelets in Section 4. The regularit
of these biorthogonal wavelets are studied in Section 2. The estimate of the regularitie
based on an excellent theory developed in [10]. The proof of the fact that ¢hissand
;'s generate two dual Riesz bases may be based on a straightforward generalizatio
the arguments for the univariate setting in [7] or based on the multivariate theory in [
We sincerely thank the pioneer researchers for their theories which lay a solid foundat
for biorthogonal wavelets. We thus concentrate ourselves on the construction of conc
examples while omitting the details of the generalization here. Our contribution in th
paper is just the explicit formula together with the matrix extension scheme.

2. CONSTRUCTION OF COMPACTLY SUPPORTED
BIORTHOGONAL DUAL FUNCTIONS

2.1. Construction of a Biorthogonal Mask and Dual B,m'n

Denotez, = €“* andz, = €'“= Let

14+ z\"/1+ z,\™ 1+ z,2,\"
MO(ZZL’ 22):( 2 1)( 2 2) < 212>
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be a mask associated with the box spline funcpg, ,. We look for a masky(z,, z,)
in the form

1+ zl> F"<l + 22> r~"“(1 + 7,2,

oz, 2) = ( 2 2 2 ) H(zy, z,) D(z12,) (2.1)

with i > |, A > m, and odd integef > n such that

Mo(Z1, 2)do( 21, o) + Mo( =21, 25)Io(— 24, Z) + Mo(Z1, —22)Io( 21, —25)

+ Mo(=2z1, —2))3o(—21, —25) = 1. (2.2)

Let us first recall a well-known fact that there exists a polynomRjgly) of degree<
N such that

(1= y)"P(y) + y"Py(1 —y) = 1. (2.3)

An explicit formula for Py(y) was given in [9] which leads to the construction of the
well-known compactly supported orthonormal wavelets. That is,

P =3 (ML )y 4

We shall give another derivation of this polynomRy, which ultimately leads to the
formulation forH andD above. We have

THeorReM2.1. Leth> nand = 2m + 1. Let J(z, 2,) be defined ir{2.1) with H and
D defined by

n—-1 ~ n—-1-k k
B 2n— 1 1+211+zz> (1—211—22>
iz =3 () (35" ;50 @)
and
) : w,+ w
D(glerted) = e"<“’1*“’2)NPﬁ+,;1<sin2( : 3 2)) . (2.6)

Then § is a dual of M, satisfying(2.2).
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Proof. We first note that

2N-1 ON — 1
1=Q-y+y™i= 3 ( K )(1 — Y)Y

k=0

N-1 N-1
2N—-1 2N—-1
— E‘B ( K )(1 — )Nk % <2N e |>(1 — y)ly2i]

@y 2 (P Ha- ey E (P -y

We have thus obtained another formulation Ry in (2.4):

N—-1

Puy) = 3 (N Y-y @)

k=0

By the unigueness of the solution for Eq. (2.3) with d&g( = N — 1, we can conclude
that the two formulas (2.4) and (2.7) are equivalent. We need to use this fact later. We tl
note that

1~|—2122_1+211~|—z2 1-z1-12
2 2 2 T2 2

By letting H(z,, z,) be defined in (2.5), we have, similar to the new derivatiogfy)
above,

(1+2122>2ﬁl_(1+211+22 1_211_22)251

2 > 2 T2 2
_F‘g(zﬁ_1)<1+211+22>2ﬁ‘1‘k<1—211—22>"
o k 2 2 2 2
k=0
F‘_l< 2n—1 )<1+zll+22>'<1—211—22)25‘1"
+ D 4n
2\2i-1-1){"2 2 2 2
1+2,1+2)\" 1-21-2)\"
= ( 2 2 ) H(le ZZ) + ( 2 2 ) H(_Zl! _ZZ)

and similarly,

( 1 - 2122> -1
2

(1—211+z2 1+211—22)25‘l
> 2 T2 2

1-2z1+2z)\" 1+z1—2)\"
2 2 H(_Zlu ZZ) + ( 2 2 H(Zlv _ZZ)'
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With the definition ofJ, in (2.1), (2.2) may be simplified as

Mo( 21, 2)Jo( 21, Z5) + Mo(—21, —2)Io(— 21, —2))

+ Mo(=21, 25)do( =21, 20) + Mo(Z1, —2,)Io( 21, —2)

1+2z,1+2)\" 1-21-12)\"
= 3 5 H(z, z,) + T ) H(=z, —2)

1+ zz,\™ 1-2z1+2z)\"
X ( > D(zz,) + [( ) H(—z, z)

2 2 2

1+2z1—2)\" 1-227)\"
+ 2 2 H(er _22) X 2 D(_leZ)

1+ 22, 2n+m-1 1- 27 2n+m-1
=< 5 > D(z,z,) +< 5 > D(—-zz,).

Letm = 2m + 1 andN = fi + M. Recallz, = €'“* andz, = €'“2 Then the last equation
may be simplified further:

+ w

(CogL

N
5 2) ei(w1+w2) ND(ei(w1+wz)) + <S|n2 @1 + @2

2

N
) ( _ 1) Nei(w1+w2) ND ( _ ei(w1+w2)) .

Lety = sir’((w; + w,)/2) and recognize thad >+ “2ND(g'(»1+@2)) = P (y). We can
see that the above equation is just the left-hand side of (2.3). Therefore, we h:
established the results of Theorem 2ml.

We remark here that the filtely(z,, z,) is a linear phase filter. It is known that
Bimn(@1, @2) = [ Mo(€“/?), 72) € L(R?). (2.8)
k=1
We now construct the dual functior&mn associated with box splinB, ,,, , by letting

0

Bimalw1, @) = [ Jo(€/?, &), (2.9)

k=1

We shall study the regularity of the dual functio|~E§m,n in the next subsection.

2.2. Fourier Based Techniques for the Smoothness of the Qyal B

To makeB, ., € L,(R?), we splitJ, into J, and J, as follows and estimate their
infinite products:
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_— 1+ z2,\™"
Jo( Z4, 22):< 5 ) D(z12,)

and

e (1+ )\ L+ )\
‘]0( Zl! ZZ) = ( 2 ) ( 2 ) H(le ZZ)'

We first considedy(z,, z,). For H(z,, z,), it is clear that

n—-1-k k

1-z1-12
2 2

‘H(Zl! ZZ)’ =

2 2

2n — l) ‘ w; (O3 Ak K
K COS? COS?

. W | W
SIN—+-SIN -

2?1—1’1+211+z2
)
< Jsin’

- (rd e )]

where Py is the polynomial defined in (2.7) which is equivalent to (2.4). Similarly, we
have

[H(e?, €27)| = (P;(sirfw,) Pi(sinfw,))Y?

., W1 ., W1 ., W2 ., W2 .
=(Pﬁ<4smz7<l—S|r127>>Pﬁ<4smz7<l—smz7))) .

By applying the results developed in [10], i.e., in Lemmas 7.1.1-7.1.8, we have

0

|H jo(ei(mlz)k, ei(wzlz)k)| = C((l + |w1|)(1 + |w2|))—F1+ma>(l,m)+(1/2)logzPﬁ(3/4)
k=1

= C((l + |(1)1|)(1 + |w2|))7ﬁ+max(l,m)+(log3/2I092)~1

— C((l + |w1|)(1 + |w2|))—(1—(v/2))ﬁ+ma>(l,m),

wherev = log 3/log 2< 2 and 1— (1/2) > 0. Here, we have used the fae(3/4) = 3".
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Next we consideby(z,, z,). We note thatD(z,2,)| = Py (sir?(w,; + w,/2)) and ap-
ply the results in [10] again, i.e., Lemmas 7.1.1-7.1.8 to get

0

|H jo(ei(mllzk), ei(wzlzk))| = C(l + |wl + w2|)—ﬁw+n+logzPN(3l4)
k=1

<= C(l + |w1 + w2|)—2ﬁ1+n+(log3/logzlrh+ﬁ)71

— C(l + |(()1 + w2|)(1/*2)ﬁ1+vﬁ+n*l.

Sincev = log 3/log 2< 2, for any fixedfi, we can choosé, i.e.,m large enough such
that

(v—2)m+vi+n—1=0,

and hence,

|n jo(ei(wllzk), ei(wz/Zk))| =C
k=1

for a positive constanC. Therefore, we can choogelarge enough that mak(m) —
(1 — (v/2))i < —1/2 and therm large enough thaty — 2)M + vl + n — 1 =0
such that

|H Jo(ei("’llzk), ei(wzlzk))| = C((l + |wl|)(1 + |w2|))7(17(y/2))ﬁ+ma>(l,m) ¢ LZ(RZ)_
k=1

By choosingii even larger, especially, for any > 0, i > (max(, m) + 1 + «a)/(1 —
v/ 2), we can make

(L + o) (1 + [0d)I[T (e, e“/2)] € LIR?),

k=1

Finally, by a straightforward generalization of Lemma 6.2.2 in [10] in the bivariate settin
we can show thaé,mn is a compactly supported function. Summarizing the discussior
above, we have obtained the following

THeorem 2.2. Let hiand Mmbe large enough. Theﬁ,,ﬁ,n is a well-defined compactly
supported L function. Furthermore, for ang > 0, B,,m,n € C*(R?) if A and Msufficiently
large, e.g.,

2(max(l, m) + 2 + «) . nlog(3)/log(2) + n— 1
2 —log(3)/log(2) m= 2 — log(3)/log(2)
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2.3. Biorthogonality and Riesz Basis Property

We next show thaf3|,m’n defined in (2.9) is a biorthogonal dual B ,, ,, in the sense
of (1.1). We have

Theorem 2.3. Let T and fbe sufficiently large. Then B , generates a multi-
resolution approximation of XR?). Also, B, ,is a biorthogonal dual of B, .

We shall use the results, more precisely, Theorem 3.3 developed in [5] to pro
Theorem 2.3 although there is a more general result available in the more current litera
(cf. [20]). By Lemma 3.2 in [5] which is a generalization of the univariate result in [7],

we first see tha%,mn is continuous anélmn(o, O)ma,n(o, 0 = 1 and then we need to
show the following

Lemma 2.4. For any sufficiently large integers and im

z |él,m,n((wlv (1)2) + 277' )él,m,n((wlr wz) + 277' )|2 = CZ > 0. (210)

lez2
Proof. Recall from (2.1) that

|M0(eim1, eimg)\]o(eiwl, eiw2)|

14 o1+ g1 4 gleteym _
— ’ 2 2 2 |H(elw1, elwz)| |D(elw1+wz)|
‘cos—‘ ‘ cos ot o2 o1 glez) |
> ,

since|D(e'“**2)| = 1 for any (,, w,) € RZ
Note that the sum on the left of the inequality (2.10) is a periodic function. We onl
need to show (2.10) foref;, w,) € [—m, 7% It is easy to see thalé,,m,n(wl,wzﬂ
=| I§|mn(—w1, —w,)|. Thus, we only need to consider the inequality (2.10) fof, (,)
€ [—m, m X [0, =].
Note also that

[H(e™, €)=

% <2ﬁ i 1) ( —sin 2t sm%> k( cos ot cos&) m
Kk 2 2 2 2 ’

k=0

For (0, ,) € [—, 0] X [0, 7], we have|H(e'“*, €'“?)| = |cos(w,/2)cosw,/2)|" ",
and hence,

% o n—-1

[T [, e = [ i
A—1 2 2n-2
= (%)
™

w3
COSW COSW
k=1 k=1

B ‘ sin(w4/ 2) sin(w4/ 2)
N w1/2 w2/2
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by an elementary inequality sk = (2/m) x for x € [0, w/2]. Therefore, for ¢, w,)
€ [—m, 0] X [0, 7], we have

| BI,m.n(wly wz) Bl,m,n(wla wz) |

%

H

w, + w,|™

n w, n
COSW

COSW

COS~ 7 2k+1 H | H (ei(w1/2k), ei(wz/ 2k)) |
k=1

= (e ) ) (G =2 e

Therefore, the inequality (2.10) holds fap,( w,) € [—r, 0] X [0, =].

For (w,, w,) € [0, 7] X [0, ], we first note thafH(1, 1)| = 1 andH(e'“:, €“2) is
continuous. There exists&> 0 such that for g, w,) € [0, 8]% [H(¢'“*, €2)| = 2. On
the other hand, we have

[H(e“, €) — 1| = C(lwy| + |wg])
or

|H(ei“’l, eimz)| =>1- C(|0)l| + |w2|).

There exists an integdg, such thatC(|w1/2"°| + |wo/2%)) = 2 By another elementary
inequality, 1— x = e for 0 = x = -, we have for ¢, wz) € [0, 8] x [0, 9],

P ko P
H |H(ei(w1/2k), ei(wz/Zk))| — 1_[ |H(ei(w1/2k), ei(wz/Zk))| l__[ |H(ei(w1/2k), ei(wzlzk))|
k=1 k=1 k=ko+1
1\ 2 || + |,
= (5) M (1-c5=)

k=1

(e

1\% |wy| + |, 1\
—[Z) a2c ) a1
<2> e ko 2<2> e >0.

Here, we have assumed thiak n/4. Therefore,

. N 2n+m ko
|Bl,m,n(wla wZ)BI,m,n(wlr w2)| = <;> (5) e't> 0,

for (wy, ) € [0, 8] X [0, 3.
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For (w,, w,) € [0, ] X [8, 7], we consider a term

Bima((@1, @) + (0, —27))B, (w1, ) + (0, —27)).

Note that 0= w,/2 = 7/2,6 — 272 = w, — 27/2 = —7/2, andd/2 — 7 = (v, + o,
— 2m)/2 = 0. We have

‘ sin(w,/2)

ol ﬁz<2>ﬁ, ‘sin((wz—Zﬂ-)/Z)

w2 —

f (sin(8/2)>ﬁ
=
T \m—8/2

w

and

Morarome ) = (25

Also, we have

| H (ei(w1/21), ei(w2721-r/21'))|

i 2n—-1 Cwp . w,— 2m\X [oN w, — 2\ 1k
= E k —SIin F Sin T COSF COS?
k=0
o W, — 27 h-t

= ‘ COSF COST
forj = 1. Thus, for (,, w,) € [0, 7] X [8, 7], we have
|él,m,n((’)l- Wy — Zw)él,m,n(wls Wy — 27T)|
(2)ﬁ< sin(8/2)>'"‘+ﬁ‘
> —
w) \m— 8/2

(2>2ﬁl< Siﬂ(ﬁ/Z))zmﬁ]l
= | — - -
T\ o — 6/2 >0,

sin(w,/ 2) sin((w, — 2m)/2)| "t
w,/2 (wp, — 2m)/2

and similarly for the caseu(;, w,) € [, @] X [0, w]. Therefore, we conclude the proof
of Lemma 2.4.m

The same arguments in the proof above can also show that

1By (w1, @) + 2771)[2= C.. (2.11)

lez2
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57 {yo(k)}

T, e

1 k
s o] lb {n(k)} ] [S L el
s(k 3k
_ Ly ) FARCC)
bl k
1w Jb {y2()} TS Ta(w)

9pP029(] PUT ‘UOISSIUISURI], ‘OPOOUT] SSO[SS0]

5] {ws(k)}

s (w}h— 1

] TS Jolw)—

FIG. 1. A four band analysis/synthesis filter bank.

It follows from Theorem 2.2 that

> Bimn((w1, @) + 2711 )P = C, (2.11)

lez2

Thus, letting

VO = par{él,m,n(x - ji y - k)1 (Ji k) E Zz}v

the inequalities (2.11) and (2.12) imply thzf’n,{m’n(x —j,y—K), (j, k) € Z%} is aRiesz
basis forV,. LettingV, := { f(x/2¥, y/2¥): Vf(x, y) € V,} for k € Z, we can show that
U, V, is dense irL,(R?) andN, V, = {0}. We leave the detail to the interested reader.
Thus, we conclude tha%,_mn generates a multi-resolution approximation lof(R?).
These complete the proof of Theorem 2mB.

3. CONSTRUCTION OF COMPACTLY SUPPORTED
BIORTHOGONAL WAVELETS

Let us start with the image/data analysis and synthesis filter bank in Fig. 1. In Fig.

20 . .
S = [ 0 2 ] denotes a sampling matrix andif, M, M,, M3} and {Jg, J;, Jo, J3}
are two families of filters. In order to hav&in Fig. 1 reconstructed exactly, these two
families of filters must satisfy

L] Mo( 24, 2,) Mi(z;, 2)) My(zy, Z)) Ms(zy, 2)) EI
Mo(—2z, 2,) Mi(—zy, 2,) My(—24, 2,) Mj(—2y, 2,) 1
1 Mo(z1, —2) Mi(z;, —2) My(2z3, —2,) Mi(zy, —2) [
CMo(—2y, —2) My(—2z, —2)) M=z, —2,) Mj(—2z, —2z) [
L1z, 2z & T O
Xl:]l(zllzz) %:%0% 31
¥z 2) 3 0 ™ (3.1)
Wiz, 20 1 [0 1



64 HE AND LAl

(cf., e.qg., [22, 21, 8]). For convenience, let us denoteAf,, M,, M,, My) the
coefficient matrix in (3.1).

If we have these two families of filters, we may define biorthogonal wavelets as in (1.
and (1.3). In order to have compactly supported wavelets we Meed, j = 1, 2, 3 to
be polynomials in g,, z,). Thus, the invertible matriA(My, M;, M,, M3) must have a
monomial determinant, i.eG2,75.

To this end, we rewritéV;, j = 0, 1, 2, 3 in its polyphase form (cf. [23])

Mi(zy, 20) = fo(Z, Z) + 2.f(Z, D) + 2T 25, ) + 2,2, Ta( Z, ZD).
Similarly we have

Mj(_zla z,) = ij( Z, 2 — Zlfjl( Z, ) + szjz( Z, 2) — 212 fj3( Z 2
Mj(Zl, —2) = fjo( Z, %) +z fjl( Z, z) — szjz( Z, z) - lezfjs( Z 2

Mj(_zla —2) = fjo( Z, %) -z fjl( Z, 7)) - szjz( Z, ) + lezfjs( Z, 7).

We can easily check

1 1 1 10000 o0 0 oCdCH, f, fpo faold

AMo, Mo Mo, M) = -1 1 —1% z 0 0 % 1ot fslg
0 1y 21 3) — 1 —1 —1IZI 0 22 0 I:I 2 f12 f22 f32|:|
O —1 -1 10000 0 0 zz[difh; fiz oz faald

wheref;, 1= fjk(zi, 73)’s. Thus we have the following well-known fact (cf. [10, p. 318]).

Lemva 3.1. Given M, the existence of the matrix(M,, M;, M,, M3) such that its
determinant is a monomial 22" is equivalent to the existence Bfdo=j k=3 Whose
determinant is a monomial.

It is clear from the expression &y(z,, z,) associated with box splinB, ., , that
Mo(Z1, Zo), Mo(—21, Z5), Mo(2Z1, —2,), Mo(—2,, —2,) have no common zeros @2,
where C denotes the usual complex space. It follows that fo., fos foz have no
common zeros.

We further claim that foM(z,, z,), the first three polyphase terrig( 23, 73), fo1(Z2,
23), fo.(Z2, Z3) have no common zero irC)2. Indeed, let us supposéy, 23) € (C)? is
a common zero ofyg, foq, oo Then we have

Mo(il, 22) = 2122 fos(ii, 2%)
Mo(=2y, 2)) = —212, fos(zi 23)
Mo(ilv _22) = _2122 fos(ii 2%)

MO(_zl! _22) = 2122 fos(ii 25) (3.2)
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That is,
(1_F2?I(1+_z>m<l+_Z2ﬂn" (1-—2ﬁ'<1+»z>m<1—-zzﬂ”
2 2 2 -\ 2 2 2
B 1+-z)(1-—2ﬂm(1—-zzﬂ”__(1—-2)(1-—2ﬂm<1+-22ﬁ”
__< 2 2 2 “\ 2 2 2 - (83

It is easy to see that none of the above four terms is zero. Thus it follows that

A+2)'A+2)"=(1-2)A—-2Z)"
and
1-2)'A1+2)"=(1+2)A—2)™
It follows that
(1- (2 A+ 2™ =(1- (291 - 2™
and
(1+ )1 - ()™= (1-2)*(1 - ()"
Thatis,|1 + Z,| = |1 — 2| and|1 + Z| = |1 — Z|. Therefore, it followsz, = ai and

Z2, = biwithi = vV —1 anda, b being real numbers. Puttirig = ai andz, = bi back
into the four terms (3.3), we have

(1 Zai)'(lgbi)"‘(l —2ab)”: _(1 ;ai)'(l;bi)m<l +2ab)”

or

<1+av(1—a3”_ (1—av(1+a%”
2 2 -\ 2 2 )
By taking the absolute value of both sides, we get
|1 —abl = |1+ ab|.
Thus, it followsab = 0. Thenz, = 0 orz, = 0 or both. Ifz;, = 0, we will get a
contradictionz, = —1 after puttingz, = 0 into (3.3), and similarly foz, = 0 or both

2, = 0 andz, = 0. Therefore, we have verified the claim. Let us formulate the claim a
follows.



66 HE AND LAl
Lemma 3.2. Write

1+z\"/1+2\"/1+ z;z,\™
MO(Zla ZZ):( 2 1)( 2 2)( 212)

= folZ, 2) + 2T Z, ZD) + 2§02, ZD) + 242, F0e( 25, 2D)

in the polyphase form. Thegf fy,, fo, have no common zeros (€)>.

Lemma 3.3. Suppose thatf,j =0, . . ., 3are polynomials in(z;, z,). Suppose that,
fo1, foo have no common zeros (€)% Then there existf, j =0, 1,2, 3and k=1, 2,
3 such that the matrixf, oy j=3 is of determinantt1.

Proof. By the well-known Hilbert Nullstellensatz (cf. [11]), there exist polynomials
Po: P1, P» such thatpgfoe + pifor T P2foo = 1. Then it is easy to check that

[ S 1 0 0 1
= S
|:|f02 O 0 1 |:|
Clfos —Po(l — fo)) —Pa(1 —fod) —paAl —fom) [
EI 1 0 0 0 S |:|f00 1 00 EI
5 o 1 0 0, Hia 01 05
=0 0 1 0 Hfw 0 0 1
CI=po(l — fod)  —pu(l—fod —pAl—Fpy 13 11 0 O 0L

which is obviously of determinant 1. This completes the proom

By Lemma 3.2, forM,, we can findV;, M,, M, such thatA(M,, M;, M,, M) has
a determinant which is monomi@lZ,z5 for somej andk and a constan€ # 0. By the
definition of determinant of matrices,

CZ7Z5 = del( A(Mo, My, My, My)) = Mo(2,, Z)A(21, 2) + Mo(—2,, Z)A(~2,, 2,)
+ M(2y, _ZZ)AO(ZJ_: —2) + Mo(—2, _22)A0(_Zli -z) (34)
which has only the terms whose exponentgzpfndz, are even, wherd,, denotes the

cofactor ofMy(z,, z,). That is,j = 2j’, andk = 2k’ and hence, def(My, M,, M.,
M,)) = CZ', z2<. Without loss of generality, we may simply assume

de(A(Mo, |\7|1, |\7|2, '\7'3)) =1

by absorbingCZZ3< in one ofM,, My, andM,. Let us invert the matrix A(Mo, M,
M,, M;))T. From the definition of the inverse matrix, we know there exigtsl,, J,, and
J; such that

(A(Mo, |\7|1, sz |\7|3)T)71 = A(jo, \_]11 jzy 33)
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or equivalently,
(A(jo’ ‘_]1, \_]2: 33))71 = (A(Mo, '\7'1, |\7|2, Ma))T-

Since the determinant is 1, we know that, by Cramer’s mlg,is equal to the cofactor
of J, in matrix A(Jo, J1, Jo, Ja). In particular, we have

% Ji(—21, 2) J—21, 2) Ji(—21, 2)

M(zi, 2) = det%_jl( Z, —2,) _jz( 7, =2, _js( 7, —2p)
CWi(—2z, —2) J(—2z7y, —2) J3(—27y, —2)

(3.5)

000

Note that expanding according to the first columnA¢d,, J,, J,, J3) and by using the
definition of the inverse matrix, we have

1 = def A(jo, Ji, 35 39) = jo( 2;, Z)Mo(z4, 2,) + jO(_Zlv 2,) Mo(—24, 2))

+ jO(Zla —2)Mo(zy, —2) + jO(_er —2)Mo(—2z, —2)).

Replacing the first column of matri&(J,, J;, Jo, J2) by a column[Jy(zy, 2,), Jo(—2Z1, Z),

Jo(z1, —2,), Jo(— 21, —2,)]", we get a new matrid(Jy, J;, J,, J3) whose determinant is

def( A(jo, jlr 32, je)) = jo( 21, ) Mo( 24, 2,) + ‘_]O(_Zlv ) Mo(—2z,, 2,

+ 3z, —Z)My(z1, —2) + Io(~21, —Z)Mo(—271, —25) = 1
by (2.2). We compute the inverse A{J,, J;, Jo, J3) and write
Ay, 31, Iz, I3 = A(do, My, My, My)".

By the definition of the inverse matrices, it is now easy to recognizeghat M, since
(3.5). That is, we have

A(‘_]Or jl! ‘_]2! ‘_]3) A(M01 Ml! MZ! MS)T = Iy
wherel denotes the identity matrix of X 4 or
A(MO! Mll MZ! MS) A(‘_Joy jll ‘_]2! ‘_]3)T = I

which implies (3.1). Therefore, we have obtained the following

THeOREM 3.4. Let My(zy, 2) = (1 + z)/2)((1 + 2)/2)™(1 + zz,)/2)" and } be
given in Theoren2.1 Then there exist M M,, M, and J, J,, J; such that the exact
reconstruction conditior§3.1) holds.
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By extending the arguments in [7] to the two dimensional setting or using a result in [
or [19], we can conclude the following. The details of the proof or verifications ar
omitted here.

THeORemM3.5. Letys,j =1, 2, 3andﬂzj,j =1, 2, 3be defined if{1.2)and (1.3) using
the M's and J's constructed above. Let

Yinun(% Y) = 279927 % — 13, 27fy — 1)
Biretn(% Y) = 279,27 % — 1, 27y — 1)

for (I, 1,) € Z% k€ Z,and j= 1, 2, 3 Then theds; i g,1,’s and J;j,k,(,v,z)’s constitute two
dual Riesz bases of,[R?).

4. EXAMPLES AND REMARKS

Let us explain the detail for constructing compactly supported biorthogonal box spli
wavelets. For a box spline functids, ,, ., we have

1+2z\'/1+2\™1+ z2z)\"
MO(Zl|ZZ):< 2 1)( 2 2)( 212>'

We first computeM,, M,, M, such thatA(My, M;, M,, M) has a determinar® 22 z2
for a constanC and somg andk. To this end, we expredd, in its polyphase form,

Mo(z1, 20) = fo(Z, 2) + 2 (2, 2D) + 2 fAZ, Z) + 2.2, F4(Z, Z5)
and we find polynomial®,, p;, p, such that
pofo+ pify+ pofa=1

by Grtbner’s basis method (cf. [1, pp. 53-56]). Suxf p;, p, are not unique. They are
dependent on the ordering of monomial basis of bivariate polynomials. For example,
have, for the case associated with the box spline fundipn ,,

Po = 4, p.= _4Z§, p. = 4.
For the case associated with the box spBie, ,, we have

Po = 24 + 1625,
p, = 10 — 47,

p,= —6 — 362
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For the case associated will3 , ,, we have

Po = 46 + 60z + 22727,

5 , 157
Pr=5— 65—

+ 27272,

13 157 61z 6777
PR2=7% "2 72 7 2

- 11727,

(In fact, we have implemented the Greer basis method in MATHEMATICA and we are
able to produc@y, p,, P, for any box spline functiom, ., ,. We have tested our programs
forall I, m, n = 4.) With thesep,, p;, p,, we first form

%1 1 1 1 %1 0 0 O %
o oo bt -1 1 -1 /0 2z 0 O

A(Mq, My, M,, Ms)_%]_ 1 -1 -1 023z O %
1 -1 -1 1 om0 0 0 zz [

T, 1 0 0 g

X %Ifl 0 ! ’ =

- 0 0 1 =

Cifs —po(l—fy) —pu(l—"Fy) —pAl—1Fy) [

Next we find the inverse oA(My, My, My, MJ)™:
A(joy ‘_]ll ‘_]2! ‘_]3) = (A(MO| '\7'1! |\7|21 '\7|3)T)_l'

For any desirable smoothnass= 0, we choosé andm as in Section 2 such th&;qm’n
€ C*(R?. For thefi and M, we havel, as defined in (2.1) together with (2.5) and

(2.6). Replacing the first column @i(J,, J;, J, J5)T by a vectoJy(zy, 2,), Jo(—z4, Z),

Jo(z1, —2o), Jo(— 21, —2,)]", we finally compute
A(MOI Ml! M2| M3) = (A(jOl ‘_]lv ‘_JZ! ‘_]S)T)_l'

Once we havéM;’s andJ;’s, we use (1.2) and (1.3) to obtain waveléiss and ¢;’s. Al
the computations above for smalim, n have been performed by MATHEMATICA. We
include our MATHEMATICA program in the Appendix.

In the following, we listft andm such thalf%,,m,n € C%(R?) for small values |, m, n).
For these small valued,(m, n), we may improve the estimate éfandm in Theorem
2.2 by using the results in [18]. Indeed, recall from Table 1 in [18], we have, fc
Daubechies’ scaling functiog, with “minimum phase,” the largest exponenfn) such
that
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J” (1 + |w))*| (o) |do < =

forn=3,...,9. That is,

n 3 4 5 6 7 8 9

a(n)  1.0831 1.6066 1.9424 2.1637 2.4348 2.7358 3.043:
For example, foB, ; ;, we choosél = 3 and writeJy(z,, z,) = (21, 2)3o(Z4, 20)

with

2 - (14 z7,\™
2 > H(Zla ZZ)! ‘]O(Zlv 22) = < 2 ) D(Zlv ZZ)'

_ 1+2z\%1+ 2z
‘]O(le ZZ) :( 2 >(

Then we have

n |jo(eiw1/2k, eiw2/2k)|dw1dw2
R? k=1

| o) sl 2]

:scj (1 + o) (L + o)) sl dorde,

1 + eia)1/2k> 2( 1 + eiw2/2k)2

() (7

2 k=1

scf u+wmwwmmwmf<1+mmmwwam<w

To makell;_, [J,(e'y/ 2%, €2/ 25| = C, we use Theorem 2.2 to choode= 25 >
2(3v/2 — v) + 1 with v = log 3/log 2. Thereforel:%l,l,1 ¢ CP. Similarly, we can find
otherfi andfm to makeBl,l,l € C' or C? and so on. We summarize our computation as
follows:

BI,m,n BI,m,n BI,m,n éI,m,n
c° ct c?
1,1, 1) A=3 =25 A=6M=47 A=9 =71
2,2, 1) A =6 M= 47 A=9m=71
2,2, 2) A=6M=53 =9 Mm=75
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Remark 1. It is easy to see that the size of the two low-pass filtdgsand J, are
quite different. To balance these two filters, we may faddointo two square roots
and factorH into H; and H, with |H;] = |H,|. The details will be discussed
later on the construction of two filtedd, and J, which have the same size.

Remark 2. Itis also easy to see that the construction of biorthogonal wavelets in tf
bivariate setting may be generalized to higher dimensional setting. For details, the ree
is referred to our forthcoming paper.

Remark 3. In the above construction, we require that theghave the same exponent
f for the terms (1+ z;) and (1+ z,) in (2.1). Itis interesting to find the explicit formula
for Jg in the form of

<1 + zl)i'<l + zz)ﬁ‘m(l + 2,2,

n—n
‘]0( Zlv ZZ) = 2 2 2 ) L(Zlv 22)

for any integerd andmwith T — | > 0 andf — m > 0. In fact, we are able to construct
this polynomialL by using MATHEMATICA. However, a general explicit formulation
for L is still under investigation.

APPENDIX

The following is a program in MATHEMATICA which produces the mad¥{s, M.,
M andJ,, Ji, J,, Js for the given mask associated with box spline functiy, ; or
B, , ,0r B, ,,and for a given smoothness.

(* This MATHEMATICA program computes dual filters associated with box

spline functions with three direction sets (1,1,1), (2,2,1), (2,2,2). *)

n=1; m=1; (* For (1,1,1), choose-xl and m=1. For (2,2,1), choose=2, m=1.

For (2,2,2), choose=12 and m=2. Choose nt and mt large enough for a

smooth biorthogonal wavelets. Ifs1, mt=m+ even integer.

If m=2, mt=m+odd integer since mt must be an odd integer. *)

nt=n+2; mt=m+10; mh=mt—1,;

(* The mask associated with box spline is *)

Box[x_,y_]l:=(1+x) n (1+y) n (1+xy) m/(2 (2 n+m));

(* Compute the polyphases of the mask. *)

fO[x _,y_]: =(Box[x,y] + Box[—X,y] + Box[x,—y] + Box[—X,—VY])/4;

fi[x_,y_]:= (Box|x,y]—Box[—x,y]+Box[x,—y] —Box[—X,—y])/(4 X);

f2[x_,y_]:=(Box[x,y] + Box[—X,y] —Box[x,—y] —Box[—X,—y])/(4 y);

f3[x_,y_]: =(Box[x,y] —Box[—X,y] —Box[x,—y] +Box[—X,—y])/(4 X y);

(* Check if polyphases are right. *)

testl=Expand[Box[x,y}- (fO[x,y] +x f1[x,y] +Vy f2[x,y] +xy f3[x,y])];

(* Input the known polynomials p0, p1, p2. *)

fn==1&& m== 1,

{ PO[x _y_]:=4;

plix_y_]i=—4 X" 2;

P2[x_y_]:=4; },
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fln==2&& m==1,

{pPO[x _,y_]:=24+16%*y" 2;

pl[x_,y_]:=10—4*y 2:

p2[x_y_]:=—6—36%y 2;},

fn==2&& m==2,

PO[X_,y_]:=46 + 60*X 2 + 22*X" 2*y" 2;

Pl[x_,y_]:=5/2 — 65*x” 2 — 15*x 4/2+ 22*X 2%y~ 2;
p2[x_,y_]:=13/2 —15*x 2/2—61*y 2/2—67*x 2*y 2/2—11*x 2*y 4: ]I
Iffm > 2|n > 2, Print[“Error: m and n must be less than 3.”]; Abort [ ];]
(* Check if Hilbert Nullstellensatz applies correctly. *)
test2=Expand[pO[x,y] fO[X,yHp1[x,y] f1[x,y]+p2[x,y] f2[x,y]];
A1={{ fO[x,y].f1[x.y].f2[x,y],f3[x.y] },

{ 1,0,0,—p0[X,y] (1_f3[X,y])},

{0,1,0,_p1[X,y] (l_fs[xvy])}a

{0,0,1,—p2[X,y] (1_f3[X1 y])}}1

A2={{1, 0, 0, 0}, {0, x, O, 0}, {0, 0,vy, 0}, {0, O, 0, xy}};
A3={{1,1,1, 1}, {1, —-1,1,-1}, {1, 1, -1, -1}, {1, -1, -1, 1}}
AMT =A3 . A2 . Transpose[Al];

(* AMT is a desirable matrix extension from the mask. *)
AJT=Inverse[AMT];

(* Compute the dual mask. *)

Boxt[x_,y_]:=(1+x)" nt (1+y)" nt (1+x y)" mt/(2" (nt+nt+mt));
H[x_,y_]:= Sum[ Binomial[2 nt-1, K] ((1+Xx) (1+y))" (nt—1-Kk)
((1—x) (1-y)" Kk, { k,0,nt—=1})/4" (nt—1);

N1=nt+mh/2;

Dau[z_]:=Sum[ Binomial[N1-1+k,k]z" k, {k,0,N1—1}];
DD[z_]=z (—N1) Dau[1/2-z/4—1/(4 z)];

(* Check if box spline mask is dual to the mask we need. *)
See[x_,y_]=Boxt[x,y] H[x,y] DD[x V];
test3=Simplify[Expand[See[x,y} See[-x,y] + See[x;-y] +Seef-x,—V1II;
(* Now the dual mask JO is *)

nw=nt—n; mw=mt—m;

JOp_,y_l:=(1+ x) nw (1+y) nw (1+x y) mw/(2 (nw+nw+mw))
HIx,y] DD[x y];

(* Absorb the determinant of AJT into J3. *)

DET=Det[AJT]; jt3=AJT[[4]]; jt4 =DET (-1) jt3;
JT=Append[Drop[AJT, {4,4}], jt4];

(* Replace jt1 by JO and its variants. *)
aa:{JO[X,y],JO[—X,y],JO[X,—y],JO[—X,—y]};
JN=Prepend[Drop[JT {1, 1}],aa];

MN =Inverse[Transpose[IN]];

(* Check if the first row consists of box spline mask and its variants. *)
test4=Expand[MN[[1]]];

(* The four masks MO, M1, M2, M3 are given below. *)
MS=Factor[Expand[Transpose[MN][[1]]]];
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(* The four masks JO, J1, J2, J3 are given below. *)
JS=Factor[Expand[Transpose[IN][[1]]]];

(* Check if MN and JN are inverse each other. *)
tests=Expand[Transpose[MN] . JNJ;
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