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Abstract. We show that for a smooth hypersurface X ⊂ P
n of degree at

least 2, there exist arithmetically Cohen-Macaulay (ACM) codimension
two subvarieties Y ⊂ X which are not an intersection X ∩ S for a
codimension two subvariety S ⊂ P

n. We also show there exist Y ⊂ X

as above for which the normal bundle sequence for the inclusion Y ⊂

X ⊂ P
n does not split.

1 Introduction

In this note, we revisit some questions of Griffiths and Harris from 1985 [GH]:

Questions (Griffiths and Harris) Let X ⊂ P
4 be a general hypersurface of

degree d ≥ 6 and C ⊂ X be a curve.

1. Is the degree of C a multiple of d?
2. Is C = X ∩ S for some surface S ⊂ P

4?
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The motivation for these questions comes from trying to extend the Noether-
Lefschetz theorem for surfaces to threefolds. Recall that the Noether-Lefschetz
theorem states that if X is a very general surface of degree d ≥ 4 in P

3, then
Pic(X) = Z, and hence every curve C on X is the complete intersection of X and
another surface S.

C. Voisin very soon [Vo] proved that the second question had a negative answer
by constructing counter-examples on any smooth hypersurface of degree at least 2.
She also considered a third question:

Question With the same terminology and when C is smooth:

3. Does the exact sequence of normal bundles associated to the inclusions
C ⊂ X ⊂ P

4:

0 → NC/X → NC/P4 → OC(d) → 0

split?

Her counter-examples provided a negative answer to this question as well. The
first question, the Degree Conjecture of Griffiths-Harris, is still open. Strong evi-
dence for this conjecture was provided by some elementary but ingenious examples
of Kollár ([BCC],Trento examples). In particular he shows that if gcd(d, 6) = 1 and
d ≥ 4 and X is a very general hypersurface of degree d2 in P

4, then every curve on
X has degree a multiple of d. In the same vein, van Geemen shows that if d > 1
is an odd number and X is a very general hypersurface of degree 54d, then every
curve on X has degree a multiple of 3d.

The main result of this note is the existence of a large class of counterexam-
ples which subsumes Voisin’s counterexamples and places them in the context of
arithmetically Cohen-Macaulay (ACM) vector bundles on X . It is well known that
ACM bundles which are not sums of line bundles can be found on any hypersurface
of degree at least 2 [BGS], and for such a bundle, say of rank r, on X , ACM sub-
varieties of codimension two can be created on X by considering the dependency
locus of r − 1 general sections. These subvarieties fail to satisfy Questions 2 and 3.
We will be working on hypersurfaces in P

n for any n ≥ 4 and our constructions of
ACM subvarieties may not give smooth ones. Hence in Question 3, we will consider
the splitting of the conormal sheaf sequence instead.

2 Main results

Let X ⊂ P
n be a smooth hypersurface of degree d ≥ 2 and let Y ⊂ X be a

codimension 2 subscheme. Recall that Y is said to be an arithmetically Cohen-
Macaulay (ACM) subscheme of X if Hi(X, IY/X(ν)) = 0 for 0 < i ≤ dimY and for

any ν ∈ Z. Similarly, a vector bundle E on X is said to be ACM if Hi(X, E(ν)) = 0
for i 6= 0, dimX and for any ν ∈ Z.

Let F be a coherent sheaf on X and let si ∈ H0(F(mi)) for 1 ≤ i ≤ k, be
generators for the ⊕ν∈Z H0(OX(ν))−graded module ⊕ν∈Z H0(F(ν)). These sections
give a surjection ⊕k

i=1
OX(−mi) ։ F which induces a surjection of global section

⊕k
i=1

H0(OX(ν − mi)) ։ H0(F(ν)) for any ν ∈ Z.
Applying this to the ideal sheaf IY/X of an ACM subscheme of codimension 2

in X , we obtain the short exact sequence

0 → G → ⊕k
i=1

OX(−mi) → IY/X → 0,
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where G is some ACM sheaf on X of rank k−1. Since Y is ACM as a subscheme of
X , it is also ACM as a subscheme of P

n. In particular, Y is locally Cohen-Macaulay.
Hence G is a vector bundle by the Auslander-Buchsbaum Theorem (see [Mat] page
155). We will loosely say that G is associated to Y .

Conversely, the following Bertini type theorem which goes back to arguments
of Kleiman in [Kl] (see also [Ban]) shows that given an ACM bundle G on X , we
can use G to construct ACM subvarieties Y of codimension 2 in X :

Proposition 2.1 (Kleiman). Given a bundle G of rank k− 1 on X, a general
map G → ⊕k

i=1
OX(mi) for sufficiently large mi will determine the ideal sheaf (up

to twist) of a subvariety Y of codimension 2 in X with a resolution of sheaves:

0 → G → ⊕k
i=1

OX(mi) → IY/X(m) → 0.

Since the conclusion of Question 2 implies that of Question 3, we will look at
just Question 3, in the conormal sheaf version.

Let X be a hypersurface of degree d in P
n defined by the equation f = 0.

Let X2 be the thickening of X defined by f2 = 0 in P
n. Given a subvariety Y of

codimension 2 in X , let IY/P (resp. IY/X) denote the ideal sheaf of Y ⊂ P
n (resp.

Y ⊂ X). The conormal sheaf sequence is

0 → OY (−d) → IY/P/I2

Y/P
→ IY/X/I2

Y/X → 0. (2.1)

Lemma 2.2 For the inclusion Y ⊂ X ⊂ P
n, if the sequence of conormal

sheaves (2.1) splits, then there exists a subscheme Y2 ⊂ X2 containing Y such that

IY2/X2
(−d)

f
→ IY2/X2

→ IY/X → 0

is exact. Furthermore, fIY2/X2
(−d) = IY/X(−d).

Proof Suppose sequence (2.1) splits: then we have a surjection

IY/P ։ IY/P/I2

Y/P
։ OY (−d)

where the first map is the natural quotient map and the second is the splitting map
for the sequence. The kernel of this composition defines a scheme Y2 in P

n. Since
this kernel IY2/P contains I2

Y/P
and hence f2, it is clear that Y ⊂ Y2 ⊂ X2.

The splitting of (2.1) also means that f ∈ IY/P(d) maps to 1 ∈ OY . We get the
commutative diagram:

0
↑

0 → IY2/P → IY/P → OY (−d) → 0
↑ f2 ↑ f ↑

0 → OP(−2d)
f
→ OP(−d) → OX(−d) → 0

↑ ↑
0 0

This induces

0 → IY/X(−d) → IY2/X2
→ IY/X → 0.

In particular, note that IY/X(−d) is the image of the multiplication map f :
IY2/X2

(−d) → IY2/X2
.



4 N. Mohan Kumar, A. P. Rao, and G. V. Ravindra

Now assume that Y is an ACM subvariety on X of codimension 2. The ideal
sheaf of Y in X has a resolution

0 → G → ⊕k
i=1OX(−mi) → IY/X → 0,

for some ACM bundle G on X associated to Y .

Lemma 2.3 Suppose the conditions of the previous lemma hold, and in ad-
dition Y is an ACM subvariety. Then there is an extension of the ACM bundle
G (associated to Y ) on X to a bundle G on X2. ie. there is a vector bundle G
on X2 such that the multiplication map f : G(−d) → G induces the exact sequence
0 → G(−d) → G → G → 0.

Proof Since Y is ACM, H1(IY/X(−d + ν)) = 0, ∀ν, hence in the sequence
stated in the previous lemma, the right hand map is surjective on the level of
sections. Therefore, the map ⊕k

i=1
OX(−mi) → IY/X can be lifted to a map

⊕k
i=1

OX2
(−mi) → IY2/X2

. Since a global section of IY2/X2
(ν) maps to zero in

IY/X only if it is a multiple of f , by Nakayama’s lemma, this lift is surjective at the
level of global sections in different twists, and hence on the level of sheaves. Hence
there is a commuting diagram of exact sequences:

0 0 0
↑ ↑ ↑

IY2/X2
(−d) → IY2/X2

→ IY/X → 0
↑ ↑ ↑

⊕k
i=1

OX2
(−mi − d) → ⊕k

i=1
OX2

(−mi) → ⊕k
i=1

OX(−mi) → 0
↑ ↑ ↑

G(−d) → G → G → 0
↑ ↑ ↑
0 0 0

where the sheaf G is defined as the kernel of the lift, and the map from the left
column to the middle column is multiplication by f . It is easy to verify that the
lowest row induces an exact sequence

0 → G(−d) → G → G → 0.

By Nakayama’s lemma, G is a vector bundle on X2.

Proposition 2.4 Let E be an ACM bundle on X. If E extends to a bundle E
on X2, then E is a sum of line bundles.

Proof There is an exact sequence 0 → E(−d) → E → E → 0, where the left
hand map is induced by multiplication by f on E . Let F0 = ⊕OPn(ai) ։ E be
a surjection induced by the minimal generators of E. Since E is ACM, this lifts
to a map F0 ։ E . This lift is surjective on global sections by Nakayama’s lemma
(since the sections of E which are sent to 0 in E are multiples of f). Thus we have
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a diagram
0
↓

0 E(−d)
↓ ↓

0 → F1 → F0 → E → 0
↓ || ↓

0 → G1 → F0 → E → 0
↓ ↓

E(−d) 0
↓
0

G1 and F1 are sums of line bundles on P
n by Horrocks’ Theorem. Furthermore,

G1
∼= F0(−d). Thus 0 → F0(−d)

Φ
−→ F0 → E → 0 is a minimal resolution for E on

P
n. As a consquence of this, one checks that detΦ = f rank E . On the other hand,

the degree of detΦ = d rankF0 and so we have rankF0 = rankE. Restricting,
this resolution to X , we get a surjection F0 ⊗OX ։ E. The ranks of both vector
bundles being the same, this implies that this is an isomorphism.

Corollary 2.5 Let Y ⊂ X be a codimension 2 ACM subvariety. If the conor-
mal sheaf sequence (2.1) splits, then

• the ACM bundle G associated to Y is a sum of line bundles,
• there is a codimension 2 subvariety S in P

n such that Y = X ∩ S.

Proof The first statement follows from Lemma 2.3 and Proposition 2.4. For
the second statement, since the bundle G associated to Y is a sum of line bun-
dles ⊕k−1

i=1
OX(−li) on X , the map G → ⊕k

i=1
OX(−mi) can be lifted to a map

⊕k−1

i=1
OP(−li) → ⊕k

i=1
OP(−mi). The determinantal variety S of codimension 2 in

P
n determined by this map has the property that Y = X ∩ S.

In conclusion, we obtain the following collection of counterexamples:

Corollary 2.6 If G is an ACM bundle on X which is not a sum of line bundles,
and if Y is a subvariety of codimension 2 in X constructed from G as in Proposition
2.1, then Y does not satisfy the conclusion of either Question 2 or Question 3.

Buchweitz-Greuel-Schreyer have shown [BGS] that any hypersurface of degree
at least 2 supports (usually many) non-split ACM bundles. We will give another
construction in the next section.

3 Remarks

3.1 The infinitesimal Question 3 was treated by studying the extension of the
bundle to the thickened hypersurface X2. This method goes back to Ellingsrud,
Gruson, Peskine and Strømme [EGPS]. If we are not interested in the infinitesimal
Question 3, but just in the more geometric Question 2, a geometric argument gives
an even easier proof of the existence of codimension 2 ACM subvarieties Y ⊂ X
which are not of the form Y = X ∩ Z for some codimension 2 subvariety Z ⊂ P

n.

Proposition 3.1 Let E be an ACM bundle on a hypersurface X in P
n which

extends to a sheaf E on P
n; i.e. there is an exact sequence

0 → E(−d)
f
→ E → E → 0. (3.1)
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Then E is a sum of line bundles.

Proof At each point p on X , over the local ring OP,p the sheaf E is free, of the
same rank as E. Hence E is locally free except at finitely many points. Let H be a
general hyperplane not passing through these points. Let X ′ = X ∩ H, and E ′, E′

be the restrictions of E , E to H, X ′.
It is enough to show that E′ is a sum of line bundles on X ′. This is because

any isomorphism ⊕OX′(ai) → E′ can be lifted to an isomorphism ⊕OX(ai) → E,
as H1(E(ν)) = 0, ∀ ν ∈ Z. The bundle E′ on X ′ is ACM and from the sequence

0 → E ′(−d) → E ′ → E′ → 0,

it is easy to check that Hi(E ′(ν)) = 0, ∀ ν ∈ Z, for 2 ≤ i ≤ n − 2. Since E ′ is a
vector bundle on H, we can dualize the sequence to get

0 → E ′∨(−d) → E ′∨ → E′∨ → 0.

E′∨ is still an ACM bundle, hence Hi(E ′∨(ν)) = 0, ∀ ν ∈ Z, and 2 ≤ i ≤ n − 2.
By Serre duality, we conclude that E ′ is an ACM bundle on H, and by Horrocks’

theorem, E ′ is a sum of line bundles. Hence, its restriction E′ is also a sum of line
bundles on X ′.

Proposition 3.2 Let Y be an ACM subvariety of codimension 2 in the hyper-
surface X such that the associated ACM bundle G is not a sum of line bundles.
Then there is no pure subvariety Z of codimension 2 in P

n such that Z ∩ X = Y .

Proof Suppose there is such a Z. Then there is an exact sequence 0 →
IZ/P(−d) → IZ/P → IY/X → 0, where the inclusion is multiplication by f , the

polynomial defining X . Since Z has no embedded points, H1(IZ/P(ν)) = 0 for

ν << 0. Combining this with H1(IY/X(ν)) = 0, ∀ ν ∈ Z, and using the long exact

sequence of cohomology, we get H1(IZ/P(ν)) = 0, ∀ ν ∈ Z.
Now suppose Y has the resolution 0 → G → ⊕OX(−mi) → IY/X → 0. From

the vanishing just proved, the right hand map can be lifted to a map ⊕OP(−mi) →
IZ/P, which is easily checked to be surjective (at the level of global sections). It
follows that if G is the kernel of this lift, G is an extension of G to P

n. By the
previous proposition, G is a sum of line bundles. This is a contradiction.

3.2 Voisin’s original example was as follows. Let P1 and P2 be two planes
meeting at a point p in P

4. The union Σ is a surface which is not locally Cohen-
Macaulay at p. Let X be a smooth hypersurface of degree d > 1 which passes
through p. X ∩ Σ is a curve Z in X with an embedded point at p. The reduced
subscheme Y has the form Y = C1 ∪C2, where C1 and C2 are plane curves. Voisin
argues that Y itself does not have the form X ∩ S for any surface S in P

4.
We can treat this example from the point of view of ACM bundles. IZ/X has

a resolution on X which is just the restriction of the resolution of the ideal of the
union P1 ∪ P2 in P

4, viz.

0 → OX(−4) → 4OX(−3) → 4OX(−2) → IZ/X → 0.

From the sequence 0 → IZ/X → IY/X → kp → 0, it is easy to see that Y is ACM,
with a resolution

0 → G → 4OX(−2) ⊕OX(−d) → IY/X → 0.

G is an ACM bundle. If it were a sum of line bundles, comparing the two resolutions,
we find that h0(G(2)) = 0 and h0(G(3)) = 4, hence G = 4OX(−3). But then
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G → 4OX(−2)⊕OX(−d) cannot be an inclusion. Thus G is an ACM bundle which
is not a sum of line bundles.

Voisin’s subsequent smooth examples were obtained by placing Y on a smooth
surface T contained in X and choosing divisors Y ′ in the linear series |Y + mH |
on T . When m is large, Y ′ can be chosen smooth. In fact, such curves Y ′ are
doubly linked to the original curve Y in X , hence they have a similar resolution
G′ → L → ID′/X → 0, where L is a sum of line bundles and where G′ equals G up
to a twist and a sum of line bundles.

The fact that G above is not a sum of line bundles is related (via the mapping
cone of the map of resolutions) to the fact that kp itself cannot have a finite reso-
lution by sums of line bundles on X . This follows from the following proposition
which provides another argument for the existence of ACM bundles on arbitrary
smooth hypersurfaces of degree ≥ 2.

Proposition 3.3 Let X be a smooth hypersurface in P
n of degree ≥ 2 with

homogeneous coordinated ring SX . Let L be a linear space (possibly a point or even
empty) inside X of codimension r, with homogeneous ideal I(L) in SX . A free
presentation of I(L) of length r − 2 will have a kernel whose sheafification is an
ACM bundle on X which is not a sum of line bundles.

Proof It should first be understood that the homogeneous ideal I(L) of the
empty linear space will be taken as the irrelevant ideal (X0, X1, . . . , Xn). Let the
free presentation of I(L) together with the kernel be

0 → M → Fr−2 → · · · → F0 → I(L) → 0,

where Fi are free graded SX modules. Its sheafification looks like

0 → M̃ → F̃r−2 → · · · → F̃0 → IL/X → 0.

Since L is locally Cohen-Macaulay, M̃ is a vector bundle on X , and since L is ACM,
so is M̃ . M equals ⊕ν∈ZH0(M̃(ν)). Hence, M̃ is a sum of line bundles only if M
is a free SX module.

If H is a general hyperplane in P
n which meets X and L transversally along XH

and LH respectively, the above sequences of modules and sheaves can be restricted
to give similar sequences in H. The restriction M̃H is an ACM bundle on XH.

Repeat this successively to find a maximal and general linear space P in P
n

which does not meet L. If X ′ = X ∩ P, the restriction of the sequence of SX

modules to X ′ gives a resolution

0 → M ′ → F ′

r−2 → · · · → F ′

0 → SX′ → k → 0.

Localize this sequence of graded SX′ modules at the irrelevant ideal I(L) ·SX′ ,
to look at its behaviour at the vertex of the affine cone over X ′. k is the residue field
of this local ring. Since X and hence X ′ has degree ≥ 2, the cone is not smooth at
the vertex. By Serre’s theorem ([Se], IV-C-3-Cor 2), k cannot have finite projective
dimension over this local ring. Hence M ′ is not a free module. Therefore neither is
M .

3.3 We make a few concluding remarks about Question 1, the Degree Con-
jecture of Griffiths and Harris. A vector bundle G on a smooth hypersurface X
in P

4 has a second Chern class c2(G) ∈ A2(X), the Chow group of codimension 2
cycles. If h ∈ A1(X) is the class of the hyperplane section of X , the degree of any
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element c ∈ A2(X) will be defined to be the degree of the zero cycle c · h ∈ A3(X).
(Note that by the Lefschetz theorem, all classes in A1(X) are multiples of h.)

With this notation, if E is any bundle on X and Y is a curve obtained from E
with the sequence (vide Proposition 2.1)

0 → E → ⊕k
i=1

OX(mi) → IY/X(m) → 0,

a calculation tells us that the degree d of X divides the degree of Y if and only if
d divides the degree of c2(E).

More generally: let Y be any curve in X and resolve IY/X to get

0 → E → ⊕l
i=1

OX(bi) → ⊕k
i=1

OX(ai) → IY/X → 0,

where E is an ACM bundle on X . Then a similar calculation tells us that the
degree d of X divides the degree of Y if and only if d divides the degree of c2(E).

Hence we may ask the following question which is equivalent to the Degree
Conjecture:

ACM Degree Conjecture If X is a general hypersurface in P
4 of degree

d ≥ 6, then for any indecomposable ACM vector bundle E on X , d divides the
degree of c2(E).

The examples created above in Proposition 3.3 satisfy this, when L has codi-
mension > 2 in X . In [MRR], this conjecture is settled for ACM bundles of rank 2
on X .
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