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Abstract. We prove a mild strengthening of a theorem of C̆esnavic̆ius which
gives a criterion for a vector bundle on a smooth complete intersection of
dimension at least 3 to split into a sum of line bundles. We also prove an
analogous statement for bundles on a general complete intersection surface.

1. Introduction

1.1. Recently, K. C̆esnavic̆ius (see [2]) has proved a conjecture of Dao ([4], 7.2.2)
generalizing the Grothendieck-Lefschetz theorem to arbitrary rank vector bundles.
As an application, the following result is proved.

Theorem 1 ([2], Theorem 1.2). Let X be a global complete intersection of dimen-
sion at least 3. A vector bundle E on X splits into a sum of line bundles of the
form ⊕iOX(ai) if and only if it satisfies the conditions

H1(X,EndE(ν)) = 0 = H2(X,EndE(ν)) ∀ ν ∈ Z.

For odd-dimensional hypersurfaces, Dao proves a stronger result:

Theorem 2 ([4], 8.3.4). A vector bundle E on an odd dimensional hypersurface of
dimension at least 3 splits into a sum of line bundles of the form ⊕iOX(ai) if and
only if

H1(X,EndE(ν)) = 0 ∀ ν ∈ Z.

The approach of both Dao and C̆esnavic̆ius is purely algebraic and both these
results follow as a consequence of a statement in commutative algebra concerning
the depth of modules on the punctured spectrum of a local ring.

The purpose of this short note is twofold: firstly, to situate the above theorems
in a purely geometric context (both in terms of the results and techniques) and
secondly, to recast the proof in [2] in the language of geometry (as opposed to
commutative algebra) to obtain a strengthening of Theorem 1 – see Theorems 4 and
5. This helps us avoid invoking a theorem of Huneke-Wiegand [7] in commutative
algebra as done in [2]; instead we invoke a result of Kempf [8] (and its strengthening
due to Mohan Kumar [9]). Doing so enables us to stay firmly in the realm of
Grothendieck’s Lefschetz theory. We also note that the strengthening that we

Received by the editors October 3, 2019, and, in revised form, October 12, 2019, and January
31, 2021.

2020 Mathematics Subject Classification. Primary 14J70; Secondary 13D02.
Key words and phrases. Vector bundles, hypersurfaces, complete intersections, Grothendieck-

Lefschetz theory.

c©2021 American Mathematical Society

5025

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/15519


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5026 G. V. RAVINDRA AND AMIT TRIPATHI

obtain is at the cost of a stronger hypothesis – while the result in [2] is valid
for arbitrary complete intersections, the results here are stated only for smooth
complete intersections.

An analogue of Theorem 1 with a similarly weakened hypothesis is shown to be
true when X is a general surface in P3 of degree d ≥ 4 – see Theorem 7. The anal-
ogous Noether-Lefschetz theorem for a general complete intersection surface with
KX ≥ 0 is more along the theorem in [2] (see Theorem 8 for a precise statement).

We have strived to keep the article self-contained by providing as many details
as possible (even for some standard proofs) at the risk of annoying the expert in
the hope that it may provide an easy entry-point for the beginner.

1.2. On the geometric side, this story begins with the following result of Kempf.

Theorem 3 ([8]). A vector bundle E on Pn for n ≥ 2 splits into a sum of line
bundles if and only if

(1) H1(Pn,EndE(ν)) = 0 for all ν < 0, and
(2) E extends to a vector bundle on Pn+1.

In [9], it is shown (among other things) that (1) ⇒ (2) in the theorem above. A
further generalisation of this result to principal bundles appears in [1]. The proofs
in all these theorems use Grothendieck’s Lefschetz theory (see [3]) in an essential
way.

A natural question then is to ask if there is a version of this theorem for hyper-
surfaces (and more generally complete intersections) in projective space. Framed
in this context, Theorem 2 of Dao then suggests a possible version of this theorem.
Furthermore, an approach along the lines of Grothendieck’s proof of the Lefschetz
theorem for Picard groups suggests that the proof of a splitting theorem for bundles
on hypersurfaces should consist of the following two steps:

• firstly, to show that under suitable hypotheses, the bundle E on X extends
as a bundle to an open set U ⊂ Pn and hence a reflexive sheaf F on all of
Pn, and

• secondly, show that the hypotheses imply that the sheaf F splits into a sum
of line bundles on Pn.

Carrying out these two steps yields us the following result

Theorem 4. Let X ⊂ Pn be a smooth hypersurface of dimension at least 3. A
vector bundle E splits into a sum of line bundles if and only if

H1(X,EndE(ν)) = 0 = H2(X,EndE(ν)) ∀ ν < 0.

Remark 1. Recall that when X is a smooth complete intersection of dimension
at least 3, Pic(X) is generated by OX(1) by the Grothendieck-Lefschetz theorem.
Hence the conclusion of the theorem above is the same as Theorem 1.

Remark 2. The (idea of the) proof here and Dao’s result ([4], 7.2.2) suggest that the
vanishing for H1 in positive twists in op. cit. can perhaps replace the H2 vanishing
above; i.e., that the conditon that H1(X,EndE(ν)) = 0 for ν ≥ 0 implies that
the bundle E on X extends to an open set U ⊂ Pn. Note that when dimX = 3,
this is precisely the case as H1 is dual to H2. When X = Pn−1, such an extension
is automatic since one can take the pull-back of E along the projection map π :
Pn\p → Pn−1 for any point p ∈ Pn\Pn−1. In fact, in [9], Mohan Kumar proves that
E extends as a bundle to Pn by considering pull-backs along two distinct points
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p, q ∈ Pn \ Pn−1, and shows that the vanishing of H1(Pn−1,EndE(ν)) for all ν < 0
implies, once again by Grothendieck’s Lefschetz theory, that both these extensions
are isomorphic in some open set V ⊂ Pn \ {p, q} containing Pn−1, and hence can
be patched to give an extension bundle on Pn.

Using Theorem 4 as the base case, we prove the following mild strengthening of
Theorem 1:

Theorem 5. Let X ⊂ Pn be a smooth complete intersection of dimension at least
3 and multi-degree (d1, · · · , dr) with 1 < d1 ≤ · · · ≤ dr. A vector bundle E on X
splits into a sum of line bundles if and only if

(a) H1(X,EndE(ν)) = 0 ∀ ν < 0.
(b) H2(X,EndE(ν)) = 0 ∀ ν ∈ Z.

It has been noted elsewhere by the authors that Lefschetz theorems seemingly al-
ways occur in pairs – a Grothendieck-Lefschetz theorem for smooth hypersurfaces in
high dimensions, and a Noether-Lefschetz theorem for generic hypersurfaces (usu-
ally of sufficiently high degree) in lower dimensions. With this in view, we now
proceed to the next result, namely a criterion for a bundle on a surface in P3 to
split into a sum of line bundles.

Let E be a bundle on a generic hypersurface of degree d in a smooth projec-
tive 3-fold Y with ample polarisation OY (1). Let η ∈ H2(X,EndE(−d)) be the
obstruction class whose vanishing is necessary and sufficient for E to extend to a
bundle on X1 – the first order thickening of X in Y (see [10] for details). Theorem
4 obviously fails when Y = P3 because the hypothesis on H2, which is the top
cohomology of the self-dual bundle EndE and hence dual to its zeroth cohomology,
can never hold by Serre’s theorem. However, the fact that E lives on a generic
hypersurface implies that under the Kodaira-Spencer map

H2(X,EndE(−d)) → Hom
(
H0(X,OX(d)),H2(X,EndE)

)
, η 
→ (g 
→ g.η)

the class η maps to 0, i.e., for any g ∈ H0(X,OX(d)), g.η = 0 in H2(X,EndE).
Using these ideas, in op. cit., we proved the following extension theorem.

Theorem 6 ([10], Theorem 2). Let Y be a smooth 3-fold and X ⊂ Y be a general,
ample hyperplane section of Y . Let E be a bundle on X such that the “multiplica-
tion” map

H0(X,EndE ⊗KX(a))⊗H0(X,OX(b)) → H0(X,EndE ⊗KX(a+ b))

is surjective ∀ a, b ≥ 0. Then there exists a Zariski open set U ⊂ Y containing X

and a bundle Ẽ on U such that Ẽ ⊗ OU
∼= E.

As a consequence of this, we have the following version of Theorem 4 for surfaces
in P3:

Theorem 7. Let X ⊂ P3 be a general surface of degree d ≥ 4. A vector bundle
E on X splits into a sum of line bundles of the form ⊕iOX(ai) if it satisfies the
following

(a) H1(X,EndE(ν)) = 0 ∀ ν < 0.
(b) the multiplication map

H0(X,EndE(a))⊗H0(X,OX(b)) → H0(X,EndE(a+ b))

is surjective ∀ a, b ≥ 0.
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Similar techniques also yield the following (slightly weaker) Noether-Lefschetz
theorem for bundles on a general complete intersection surface.

Theorem 8. Let X ⊂ Pr+2 be a general complete intersection surface of multi-
degree (d1, · · · , dr) such that

∑
i di ≥ r + 3. A vector bundle E on X splits into a

sum of line bundles of the form ⊕OX(ai) if and only if

(i) H1(X,EndE(ν)) = 0 ∀ ν ∈ Z.
(ii) the multiplication map

H0(X,EndE(a))⊗H0(X,OX(b)) → H0(X,EndE(a+ b))

is surjective ∀ a, b ∈ Z such that H0(X,EndE(a)) 
= 0 and b ≥ 0.

Remark 3. Note that OX is a direct summand of EndE for any vector bundle E.
For condition (b) in Theorem 7 (respectively (ii) in Theorem 8) to hold, we will
require it to hold for the structure sheaf OX as well. This is how the condition on
the (multi-) degree comes into play.

2. Preliminary results

In this section we prove some results which will be used in the proofs of the
theorems stated above.

Lemma 1. Let Y be any ringed space. Let F and G be sheaves of modules on Y
such that Hp(Y,Extq(F,G)) = 0 for all p ≥ 1, q ≥ 1. Then for i ≥ 2 there exists a
long exact sequence

· · · → H0(Y,Exti−1(F,G)) → Hi(Y,Hom(F,G))(1)

→ Exti(F,G) → H0(Y,Exti(F,G)) → · · ·

Proof. There exists a local-to-global Ext spectral sequence:

Ep,q
2 = Hp(Y,Extq(F,G)) ⇒ Extp+q(F,G).

This means that there is a filtration on Exti(F,G):

0 ⊆ F i ⊆ F i−1 ⊆ · · · ⊆ F 1 ⊂ F 0 = Exti(F,G)

with Ep,i−p
∞ = F p/F p+1.

Since this is a first quadrant sequence and by assumption, Ep,q
2 = 0 for p >

0, q > 0, we get

F 0/F 1 = E0,i
∞

∼= Ker(E0,i
i+1 → Ei+1,0

i+1 ) ∼= Ker(E0,i
2 → Ei+1,0

2 ),

F 1 = F 2 = · · · = F i, and F i ∼= Ei,0
∞

∼=
Ei,0

2

Im(E0,i−1
2 → Ei,0

2 )
.

Putting all this together will yield the claimed sequence. �

Recall that the singular locus of any coherent sheaf F, denoted by Sing(F), is
the locus of points where F is not locally free.

Lemma 2. Let Y be a smooth projective variety of dimension n ≥ 3 and ample
polarisation OY (1). Let F be a reflexive sheaf on Y such that the singular locus of
F is a finite set of points. Then we have for i = 0, 1,

Hi(Y, F (ν)) = 0 ∀ ν � 0.
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Proof. For i = 0, the statement follows since F is a torsion-free sheaf. Recall that
Serre duality gives an isomorphism

Hi(Y, F (ν))∨ ∼= Extn−i(F (ν), ωY ).

Since dimSing(F) = 0, we see that Hp(Y,ExtqY (F (ν), ωY )) = 0 for all p ≥ 1, q ≥ 1.
Therefore by Lemma 1 we have the following sequence for i ≥ 2:

· · · → Hi(Y,Hom(F (ν), ωY )) → Exti(F (ν), ωY ) → H0(Y,Exti(F (ν), ωY )) → · · · .
(2)

Since F is reflexive, depth(Fx) ≥ 2 (Proposition 1.3 of [5]), and so by the

Auslander-Buchsbaum formula, we have Ext iY (F, ωY )) = 0 for i > n − 2. Thus,
letting i = n− 1 in equation (2) yields a surjection

Hn−1(Y,Hom(F (ν), ωY )) � Extn−1(F (ν), ωY ).

By Serre vanishing theorem, Hn−1(Y,Hom(F (ν), ωY )) = 0 for ν � 0. Therefore

H1(Y, F (ν))∨ ∼= Extn−1(F (ν), ωY ) = 0 for ν � 0. �

Corollary 1. Let Y be a smooth, projective variety of dimension n ≥ 3 with ample
polarisation OY (1) and let X ⊂ Y be a smooth degree d hypersurface. Let E be a
bundle on X such that H1(X,EndE(ν)) = 0 for all ν < 0. Further assume that E
extends to a reflexive sheaf F on Y which is a bundle away from at most a finite
set (in the complement of X). Then H1(Y,EndF (ν)) = 0 for ν < 0.

Proof. We have a short exact sequence

0 → EndF (ν − d) → EndF (ν) → EndE(ν) → 0.

Taking cohomology and using the hypothesis, we get a surjection

H1(Y,EndF (ν − d)) � H1(Y,EndF (ν)) ∀ ν < 0.

The statement now follows from Lemma 2. �

Lemma 3. Let X ⊂ Y be as above. For i 
= 0, assume that we have a reflexive
sheaf F such that

(a) the map Exti(F(ν), ωY ) → Exti(F(ν− d), ωY ) is an isomorphism ∀ ν < 0.

(b) Ext i(F, ωY ) is supported on a finite set in Y \X.

Then the map Exti(F(ν), ωY ) → H0(Y,Ext i(F(ν), ωY )) is an isomorphism ∀ ν < 0.
In addition, if the map in (a) is an injection ∀ ν ≥ 0, then so is the map above.

Proof. The local-to-global spectral sequence in Lemma 1 yields the following se-
quence:

Hi(Y,F∨ ⊗ ωY (−ν)) → Exti(F(ν), ωY )

→ H0(Y,Ext i(F(ν), ωY )) → Hi+1(Y,F∨ ⊗ ωY (−ν)).

For −ν � 0, the extreme terms vanish by Serre vanishing, and so we have an
isomorphism

Exti(F(ν), ωY ) ∼= H0(Y,Ext i(F(ν), ωY )) ∀ − ν � 0.
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On the other hand, the natural inclusion OY (−d) ↪→ OY yields a commutative
square:

(3)
Exti(F(ν), ωY ) → H0(Y,Ext i(F(ν), ωY ))

↓ ↓∼=
Exti(F(ν − d), ωY ) → H0(Y,Ext i(F(ν − d), ωY )).

The right vertical arrow is an isomorphism for all ν ∈ Z since the sheaf Ext i(F(ν), ωY )
is supported on a finite set in the complement of X. The result now follows since
the horizontal arrows are isomorphisms for ν � 0. �

Corollary 2. In the situation above, let Z ⊂ Y be a smooth hypersurface defined
by g ∈ H0(Y,OY (a)) for some a ≥ 0 such that Z ∩ Sing(F) = ∅. Then the natural
map

Exti(F(ν), ωY ) → Exti(F(ν − a), ωY )

is an isomorphism ∀ ν < 0. In addition, if the map in Lemma 3(a) is an injection
∀ ν ≥ 0, then so is the map above.

Proof. Since Z does not meet Sing(F), we see that multiplication by g induces an
isomorphism

g× : Ext i(F(ν), ωY ) → Ext i(F(ν − a), ωY ).

The statement is now immediate from the commutative square (3) with ‘d’ replaced
by ‘a’ and the vertical maps induced by g. �

3. Proofs of Theorems 4 and 5

In this section we prove the Grothendieck-Lefschetz theorem for vector bundles
on hypersurfaces and complete intersections stated in the introduction.

Proof of Theorem 4. Let Xk be the k-th order thickening of X given by the vanish-
ing of fk+1 where f is the defining polynomial of X. The obstruction for a bundle F
onXk−1 to lift to a bundle F

′ onXk is given by an element ηk ∈ H2(X,EndE(−kd))
(i.e., given F , there exists F ′ on Xk such that F ′|Xk−1

∼= F if and only if ηk = 0).

The hypothesis that H2(X,EndE(−ν)) = 0 for all ν > 0 implies that the bundle
E extends to every thickening Xk of X, and consequently by Grothendieck’s Lef-

schetz conditions (see [3]), there exists a formal bundle Ê on the formal completion

X̂. By Grothendieck’s algebraization theorem (see op. cit.), there exists an open
set U ⊂ Pn containing X and a bundle FU on U such that FU ⊗OX

∼= E. Let F be
the reflexive sheaf obtained by extending FU as a coherent sheaf on X followed by
replacing it with its double dual. Since F is a bundle along X, and X is ample, this
means that there is a finite set S ⊂ Pn \X such that F is a bundle when restricted
to the complement Pn \ S. By Corollary 1,

(4) H1(Y,EndF (ν)) = 0, ν < 0.

The hypothesis on E applied to the cohomology sequence associated to the exact
sequence

(5) 0 → EndF (−d) → EndF → EndE → 0,

yields an isomorphism

(6) H2(Y,EndF (ν − d)) ∼= H2(Y,EndF (ν)) ∀ ν < 0.
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Let Pn−1 ⊂ Pn be a general hyperplane section so that Pn−1 ∩ S = ∅. Let � = 0
be its defining equation for some linear polynomial �. The restriction F ′ := F|Pn−1

is a bundle on Pn−1. By Corollary 2, we have isomorphisms

� : H2(X,EndF (ν − 1))
∼=−→ H2(X,EndF (ν)) ∀ ν < 0.

Once again, taking cohomology of the exact sequence

(7) 0 → EndF (−1) → EndF → EndF ′ → 0,

it follows from (4) and (6) that

H1(Pn−1,EndF ′(ν)) = 0 ∀ ν < 0.

By (Mohan Kumar’s refinement of) Kempf’s criterion (see [9]), F ′ splits into a sum
of line bundles. We claim that this implies that F splits into a sum of line bundles
(in particular, F is a bundle). Consequently, E splits into a sum of line bundles.

The fact that the splitting of F ′ implies the splitting of F is a standard argument
(see [6]). We give a quick proof for the sake of completeness.

Let ϕ : F ′ → ⊕iOPn−1(ai) denote the isomorphism. We consider the following
diagram:

0 → F (−1) → F → F ′ → 0
↓ ϕ

0 → ⊕iOPn(ai − 1) → ⊕iOPn(ai) → ⊕iOPn−1(ai) → 0.

We want to claim that the isomorphism ϕ lifts to an isomorphism

Φ : F → ⊕iOPn(ai)

so that the diagram above commutes. Notice that the isomorphism ϕ is an element
of

Hom(F ′,⊕iOPn−1(ai)) ∼= H0(Pn−1,⊕iF
′∨(ai)).

In order to guarantee that ϕ lifts to a morphism Φ, it is enough to show that,
in the cohomology sequence

H0(Pn,⊕iF
∨(ai)) → H0(Pn−1,⊕iF

′∨(ai)) → H1(Pn,⊕iF
∨(ai − 1))

the last term vanishes. In fact, much more is true. Since F ′ splits, this implies that
F ′ has no intermediate cohomology (i.e., Hi(Pn−1, F ′(ν)) = 0 for all ν ∈ Z, and
0 < i < n− 1), and so a similar argument as before using the exact sequence

0 → F∨(−1) → F∨ → F ′∨ → 0

yields that F∨ and similarly F have no intermediate cohomology. Thus we see that
the isomorphism ϕ lifts to a morphism Φ. All that remains is to show that Φ is an
isomorphism, or equivalently that detΦ has no zeroes.

Since det(Φ)|Pn−1 = detϕ 
= 0, this is saying that detΦ 
= 0 along the (ample)

hyperplane Pn−1, and so must be non-zero in an open set V ⊂ Pn containing this
Pn−1. Hence Φ is nowhere vanishing. �

Proof of Theorem 5. The proof is by induction on the codimension r of X. We will
use as our base case the case when X ⊂ Pn is a smooth hypersurface and so we
are done by Theorem 4. Let Y be a smooth complete intersection of multi-degree
(d1, · · · , dr−1) containing X as a hypersurface of degree d := dr. The vanishing of
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H2 for ν < 0 implies that E extends as a reflexive sheaf F on Y which, by the H1

vanishing in the hypothesis and Corollary 1, satisfies

H1(Y,EndF (ν)) = 0, for ν < 0.(8)

The hypotheses applied to the cohomology sequence of

0 → EndF (ν − d) → EndF (ν) → EndE(ν) → 0

also yields

H2(Y,EndF (ν − d)) ∼= H2(Y,EndF (ν)) ∀ ν < 0,(9)

H2(Y,EndF (ν − d)) � H2(Y,EndF (ν)) ∀ ν ≥ 0,(10)

H3(Y,EndF (ν − d)) ↪→ H3(Y,EndF (ν)) ∀ ν ∈ Z.(11)

The injections in the last statement together with Serre vanishing imply that

(12) H3(Y,EndF (ν)) = 0 ∀ ν ∈ Z.

Now let Pn−1 be a general hyperplane with defining polynomial �, and X ′ :=
X ∩ Pn−1. Then F ′ := F|X′ is a bundle on X ′. The idea now is to argue as before
using the exact sequence

0 → EndF (ν − 1)
�×−−→ EndF (ν) → EndF ′(ν) → 0,

and to prove that the hypothesis of the Theorem holds for the bundle F ′ on X ′.
By Corollary 2 and Serre duality, we have that the map

(13) �× : H2(Y,EndF (ν − 1)) → H2(Y,EndF (ν))

is an isomorphism for ν < 0 and a surjection for ν ≥ 0.
The desired vanishings for the bundle F ′ follow from (8), (13) and (12). By

induction, F ′ splits, and as before, this implies that F and hence E also split into
a sum of line bundles. �

4. Proofs of Theorems 7 and 8

In this section we prove the Noether-Lefschetz type theorems for vector bundles
on surfaces in P3 and surfaces which are complete intersections.

Proof of Theorem 7. Condition (b) implies, by Theorem 6, that E extends as a
reflexive sheaf to P3. As in the previous proof, hypothesis (a) yields surjections

H1(P3,EndF (ν − d)) � H1(P3,EndF (ν)) for ν < 0,

which by Corollary 1 yields

(14) H1(P3,EndF (ν)) = 0 for ν < 0.

Furthermore, from hypothesis (a) and Serre duality we have vanishings H1(X,
EndE(ν)) = 0 for ν < 0 or ν > d− 4. Hence we have injections

• H2(P3,EndF (ν − d)) ↪→ H2(P3,EndF (ν)), ν < 0 and
• H2(P3,EndF (ν)) ↪→ H2(P3,EndF (ν + d)), ν > −4.

Applying Serre vanishing to the second statement yields H2(P3,EndF (ν)) = 0 for
ν > −4. Using this vanishing in the first statement, we conclude that

(15) H2(P3,EndF (ν)) = 0 for ν ∈ Z.
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Using the vanishings in (14) and (15) and arguing as in the proof above yields
that the restriction of F to a general hyperplane P2 satisfies Kempf’s criterion and
hence splits into a sum of line bundles. Thus we are done. �

Proof of Theorem 8. To prove the statement, we proceed as in the proof of the pre-
vious theorem. The first goal is to show that E extends to a reflexive sheaf F on Y ,
a smooth complete intersection 3-fold containing X. Condition (ii) above ensures
that such an extension exists. Next, condition (i) ensures that H1(Y,EndF (ν)) =
0 = H2(Y,EndF (ν)) for all ν ∈ Z. Hence the restriction of F to a general hyper-
surface X ′ ⊂ Y defined by a linear polynomial � – denoted by F ′ – satisfies the
condition that H1(X ′,EndF ′(ν)) = 0 for all ν ∈ Z. To apply induction, it is now
enough to show that condition (ii) holds for F ′. To see this, we first prove that the
multiplication map

(16) H0(Y,EndF (a))⊗H0(Y,OY (b)) → H0(Y,EndF (a+ b))

is surjective for a, b such that H0(Y,EndF (a)) 
= 0 and b ≥ 0. To do this, we note
that since H1(Y,EndF (ν)) = 0 for all ν ∈ Z, we have an exact sequence

0 → H0(Y,EndF (ν − d)) → H0(Y,EndF (ν)) → H0(X,EndE(ν)) → 0 ∀ ν ∈ Z.

Furthermore, if ν0 is such that H0(X,EndE(ν)) = 0 for ν < ν0, then H0(Y,EndF (ν))
= 0 for ν < ν0 as well. If not, we will have an isomorphism H0(Y,EndF (ν − a)) ∼=
H0(Y,EndF (ν)) for ν < ν0 and for all a ≥ 0. Since EndF is torsion free, this group
vanishes for ν � 0, and so we arrive at a contradiction.

Suppose that s ∈ H0(Y,EndF (a + b)); then we can write s = fks′ for some
k ≥ 0 and s′ ∈ H0(Y,EndF (a + b − kd)) such that f � s′, so that s′ 
→ s̄′ 
= 0 in
H0(X,EndE(a+ b− kd)). In the commutative diagram
(17)
H0(Y,EndF (ν0)⊗H0(Y,OY (a+ b− kd− ν0)) → H0(Y,EndF (a+ b− kd))

↓ ↓
H0(X,EndE(ν0))⊗H0(X,OX(a+ b− kd− ν0)) → H0(X,EndE(a+ b− kd))

the bottom horizontal map is a surjection (by our hypothesis) and so the element s̄′

above lifts to an element
∑

j s̄j⊗gj ∈ H0(X,EndE(ν0))⊗H0(X,OX(a+b−kd−ν0)).

This element in turn is the image of an element
∑

j sj ⊗ gj ∈ H0(Y,EndF (ν0)) ⊗
H0(Y,OY (a + b − kd − ν0)) as the map on global sections is surjective. We claim
that

∑
j gj .sj = s′ ∈ H0(Y,EndF (a+ b − kd)). If not, on one hand, the difference∑

j gj .sj − s′ is divisible by f but, on the other hand, f � sj for any j and hence it

does not divide
∑

j gj .sj , and this is a contradiction. Hence
∑
j

sj ⊗ fkgj ∈ H0(Y,EndF (ν0))⊗H0(Y,OY (a+ b− ν0)).

Finally, associativity of tensor products gives us a commutative diagram

H0(Y,EndF (ν0))⊗
(
H0(Y,OY (a−ν0))⊗H0(Y,OY (b))

)
→H0(Y,EndF (a))⊗ H0(Y,OY (b))

↓ 1⊗ μ ↓
H0(Y,EndF (ν0))⊗ H0(Y,OY (a+ b− ν0)) → H0(Y,EndF (a+ b)).

Since H0(Y,EndE(a)) 
= 0, this means that a ≥ ν0, which means that a−ν0 ≥ 0.
Hence H0(Y,OY (a−ν0)) 
= 0, and so all the cohomology groups are clearly non-zero
in the above diagram.
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The image of the element
∑

j sj ⊗ fkgj under the bottom horizontal arrow co-
incides with the element obtained by first lifting it via the left vertical surjection
(the multiplication map μ is a surjection) and then taking its image under the
top horizontal arrow followed by the right vertical arrow. This proves the desired
surjectivity in (16).

It can now be checked that if F ′ is the restriction of F to a general hyperplane
X ′ := Y ∩ Pn+r−1, then F ′ is a bundle on X ′ which satisfies the hypothesis of the
theorem – condition (i) implies that Hi(Y,EndF (ν)) = 0 for i = 1, 2, and hence
H1(X ′,EndF ′(ν)) = 0 for ν ∈ Z, whereas condition (ii) for F ′ can be verified using
the commutative square:

(18)
H0(Y,EndF (a))⊗H0(Y,OY (b)) � H0(Y,EndF (a+ b))

↓ ↓
H0(X,EndF ′(a))⊗H0(X,OX(b)) → H0(X,EndF ′(a+ b)).

The surjectivity of the top horizontal and right vertical imply the surjectivity of
the bottom horizontal arrow. By induction on the multi-degree (or equivalently on
the codimension of the complete intersection) , we have that F ′ splits into a sum
of line bundles. As a consequence F and so E split. Thus we are done. �
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