REMARKS ON HIGHER RANK ACM BUNDLES ON HYPERSURFACES

G. V. RAVINDRA AND AMIT TRIPATHI

ABSTRACT. In terms of the number of generators, one of the simplest non-split rank 3 arithmetically Cohen-Macaulay bundles on a smooth hypersurface in \mathbb{P}^5 is 6-generated. We prove that a general hypersurface in \mathbb{P}^5 of degree $d \geq 3$ does not support such a bundle. We also prove that a smooth positive dimensional hypersurface in projective space of even degree does not support an Ulrich bundle of odd rank and determinant of the form $\mathcal{O}_X(c)$ for some integer c. This verifies some cases of conjectures we discuss here.

RÉSUMÉ. En termes de nombre de générateurs, le fibré de rang 3 arithmétiquement Cohen-Macaulay, non décomposé, le plus simple sur une hypersurface de \mathbb{P}^5, est engendré en rang 6. Nous montrons qu’une hypersurface générale dans \mathbb{P}^5, de degré $d \geq 3$, n’admet pas un tel fibré. Nous montrons également qu’une hypersurface lisse de dimension positive dans un espace projectif, de degré pair, n’admet pas de faisceau d’Ulrich de rang impair et déterminant égal à $\mathcal{O}_X(c)$, $c \in \mathbb{Z}$. Ceci permet de vérifier quelques cas de conjectures, que nous discutons ici.

1. INTRODUCTION

We work over a characteristic zero, algebraically closed field which we denote by K. Let X be a smooth hypersurface in \mathbb{P}^{n+1}. A vector bundle E on X is said to be arithmetically Cohen-Macaulay if it has no non-zero intermediate cohomology, i.e.,

$$H^i(X, E) := \bigoplus_{m \in \mathbb{Z}} H^i(X, E(m)) = 0 \text{ for } 0 < i < n.$$

On projective space, by a result of Horrocks (see [6]), any ACM bundle is a sum of line bundles. It is easy to construct non-split ACM bundles on smooth hypersurfaces (see, for instance, Proposition 3, [11]). However, these are typically of large rank, and so this raises the question of the existence of low rank non-split ACM bundles on smooth hypersurfaces. In [3], it has been conjectured that an ACM bundle of rank r on an n-dimensional smooth hypersurface is split if $r < 2^e$, where $e := \left\lfloor \frac{n-1}{2} \right\rfloor$. Here, for any real number q, $\lfloor q \rfloor$ is the largest integer $\leq q$.

The motivation for the above conjecture comes from the classification of ACM bundles on quadric hypersurfaces (see [7]). In view of this result, the weakest conjecture one may pose is that if there are no non-split ACM bundles of rank $r \leq 2^m$ for some m on a smooth hypersurface, then there are none of rank $r < 2^{m+1}$. Thus, taking into account the splitting results in [9, 10, 12], it seems likely that for a general hypersurface of dimension n and sufficiently high degree, an ACM bundle of rank r on an n-dimensional smooth hypersurface is split if $r < 2^s$, where $s := \left\lfloor \frac{n+1}{2} \right\rfloor$. This was alluded to in [12] and made precise in [13]. A more optimistic conjecture can be found in [5]. This note presents some evidence in this direction.

The first higher rank instance of the above statements, namely that of rank 2 ACM bundles on hypersurfaces in \mathbb{P}^4 is well understood (see, for instance, [1, 2, 8, 9, 10, 12]). The most general splitting results known so far are:

Date: October 26, 2018.
• In [8, 9], it is shown that there are no non-split ACM rank 2 bundles on any smooth hypersurface in \mathbb{P}^6.

• In [9, 12], it is shown that there are no non-split rank 2 ACM bundles on a general hypersurface of degree $d \geq 3$ in \mathbb{P}^5. Results for low degree hypersurfaces obtained in [4] were used to complete the proof in [12].

• In [10, 12], it is shown that there are no non-split rank 2 ACM bundles on a general hypersurface of degree $d \geq 6$ in \mathbb{P}^3.

• In [17], it is shown that there are no rank 3 non-split ACM bundles on any smooth hypersurface in \mathbb{P}^6.

• Partial results for rank 4 ACM bundles have been obtained in [16].

For a smooth hypersurface $X \subset \mathbb{P}^{n+1}$ of degree d, an ACM bundle E of rank r on X comes with a minimal resolution

$$0 \rightarrow F_1 \xrightarrow{\phi_1} F_0 \rightarrow E \rightarrow 0,$$

where F_0 and F_1 are sums of line bundles on \mathbb{P}^{n+1}, and Φ is a matrix whose every non-zero entry is a homogeneous polynomial of positive degree. It follows that $\det \Phi = f^r$, where f is the defining polynomial of X.

We say that E is s-generated if the matrix Φ is an $s \times s$ matrix or equivalently, $\text{rank}(F_0) = \text{rank}(F_1) = s$. When E is indecomposable, we necessarily have $\text{rank}(F_0) > \text{rank}(E)$ (since $\text{rank}(F_0) = \text{rank}(E)$ implies that $E = F_0 \otimes O_X$ and hence E is split). E is maximally generated when all the non-zero entries of Φ are linear forms. In this case, it follows from $\det \Phi = f^r$, that $s = rd$. Thus, we see that s satisfies the inequality $r + 1 \leq s \leq rd$. When $s = rd$, the matrix Φ defines a rank r ACM bundle E':

$$0 \rightarrow O_{\mathbb{P}^{n+1}}(-1)^{rd} \xrightarrow{\Phi} O_{\mathbb{P}^{n+1}}^{rd} \rightarrow E' \rightarrow 0.$$ Such an ACM bundle is an example of an Ulrich bundle.

On restricting the minimal resolution (1) to X, we get short exact sequences

$$0 \rightarrow G \rightarrow F_i \rightarrow E \rightarrow 0,$$

$$0 \rightarrow E(-d) \rightarrow F_i \rightarrow G \rightarrow 0.$$ Here $F_i := F_i \otimes O_X$ for $i = 1, 2$. It follows that the syzygy bundle G is also ACM, and thus ACM bundles always occur in pairs.

The first result of this note is the following, which proves the base case (with regard to the number of generators) of the conjecture stated above for ACM bundles of rank 3.

Theorem 1. Let $X \subset \mathbb{P}^5$ be a general hypersurface of degree $d \geq 3$. With notation as above, assume that E is rank 3 and that $\wedge^3 G$ is ACM. Then E splits into a sum of line bundles.

If G is a line bundle, then $G = O_X(a)$ for some $a \in \mathbb{Z}$, by the Lefschetz theorem. In this case, the sequence $0 \rightarrow G \rightarrow F_0 \rightarrow E \rightarrow 0$ splits (such a sequence corresponds to a class in $\text{Ext}^1_X(E, O_X(a)) \cong H^1(X, E^\vee(a)) = 0$). Since there are no non-split rank 2 bundles on a general hypersurface $X \subset \mathbb{P}^5$ of degree at least 3 ([9, 12]), it follows that the minimal number of generators for a rank 3 ACM bundle E on such an X is 6, i.e., the minimal rank of G is 3. When the rank of G is 3, then $\wedge^3 G$ is a line bundle, and hence ACM. Furthermore, G has rank 4 when E is 7-generated in which case we also have $\wedge^3 G \cong G^\vee(c')$ where $c' := c_1(G)$. Thus Theorem 1 has the following

Corollary 1. There are no indecomposable rank 3 ACM bundles on a general hypersurface in \mathbb{P}^5 of degree $d \geq 3$ with fewer than 8 generators.
Our next result is about Ulrich bundles, which are at the other extreme, with regard to the number of generators:

Theorem 2. A smooth positive dimensional hypersurface of even degree does not support an Ulrich bundle of odd rank and determinant equal to $\mathcal{O}_X(c)$ for some $c \in \mathbb{Z}$.

Corollary 2. An even degree hypersurface of dimension at least 3, or a very general hypersurface of even degree in \mathbb{P}^3 do not support an Ulrich bundle of odd rank.

Outline of the proofs. Theorem 2 follows from a Riemann-Roch computation, whereas for Theorem 1, we extend the method in [11] which we describe now. Let $X \subset \mathbb{P}^d$ be a smooth degree d hypersurface with defining polynomial f, and E be an ACM bundle on X. Let X_k denote the k-th order thickening of X given by the vanishing of f^{k+1}. It is a standard fact that the obstruction for E to lift to the first order thickening X_1 is an element $\eta_E \in H^2(X, \mathcal{E}ndE(-d))$. To see this, we first note that if E lifts to a bundle \mathcal{E} on X_1, then such an \mathcal{E} sits in an \mathcal{O}_{X_1}-sequence

$$0 \to E(-d) \to \mathcal{E} \to E \to 0,$$

and hence defines an element of the group $\text{Ext}^1_{X_1}(E, E(-d))$. A standard Leray spectral sequence argument (see [14], Proposition 2) yields a 4-term sequence

$$0 \to H^1(X, \mathcal{E}ndE(-d)) \to \text{Ext}^1_{X_1}(E, E(-d)) \to H^0(X, \mathcal{E}ndE) \to H^2(X, \mathcal{E}ndE(-d)).$$

Let η_E denote the image of 1 under the last map. It is then clear that $\eta_E = 0$ if and only if the element 1 lifts to an element in $\text{Ext}^1_{X_1}(E, E(-d))$. This in turn, as explained in op. cit., is equivalent to the existence of a bundle \mathcal{E} on X_1 as above.

To prove that an ACM bundle E splits, it is enough to show that $\eta_E = 0$. To do so, our first step is to show that there is a map (see (5), §2)

$$H^0(X, \text{det}(E)) \to H^2(X, \mathcal{E}ndE).$$

Next, we identify the image of this map as the submodule generated by η_E. Finally, we show that this submodule, denoted by M, is preserved under Serre duality for $H^2(X, \mathcal{E}ndE)$, and hence is also self-dual. The fact that E is supported on a general hypersurface implies that $g \cdot \eta_E = 0 \ \forall g \in H^0(X, \mathcal{O}_X(d))$ (see Proposition 1) and so $M = \oplus_{-d \leq k < 0} M_k$. The proof is finished by observing that Serre duality gives an isomorphism $M_{-d} \cong M_{2d-6}$ and so $\eta_E = 0$ when $d \geq 3$.

Acknowledgements. The first author was supported by a grant from the University of Missouri Research Board.

2. Preliminaries

We refer the interested reader to [14] for more details. Let $n \geq 4$, and $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree d, with I its ideal sheaf, and f its defining polynomial. Let E be a rank r ACM bundle on X. Since $\dim X \geq 4$, we have $\text{Pic}(X) \cong \mathbb{Z}$, and using this isomorphism, we let $c := c_1(E) \in \mathbb{Z}$ so that $\wedge^r E \cong \mathcal{O}_X(c)$. Let

$$0 \to F_1 \xrightarrow{\phi} F_0 \to E \to 0$$

be a minimal resolution of E on \mathbb{P}^{n+1} as in §1. Restricting to X, we get a 4-term exact sequence

$$0 \to E(-d) \to F_1 \xrightarrow{\varphi} F_0 \to E \to 0.$$
Let $G := \text{Image}(\overline{\Theta})$. Breaking this up into short exact sequences, we get

\begin{equation}
0 \to G \to F_0 \to E \to 0 \quad \text{and},
\end{equation}

\begin{equation}
0 \to E(-d) \to F_1 \to G \to 0.
\end{equation}

Tensoring (3) and (4) with E^\vee, we get cohomology long exact sequences:

\begin{align*}
H^0_*(X, \mathcal{E}ndE) & \xrightarrow{\partial_1} H^1_*(X, E^\vee \otimes G) \xrightarrow{\partial_2} H^2_*(X, \mathcal{E}ndE(-d)), \\
H^1_*(X, E^\vee \otimes F_1) & \to H^1_*(X, E^\vee \otimes G) \xrightarrow{\partial_2} H^2_*(X, \mathcal{E}ndE(-d)) \to H^2_*(X, E^\vee \otimes F_1).
\end{align*}

Since F_0 and F_1 are sums of line bundles, and $n \geq 4$, it follows that ∂_1 is a surjection, and ∂_2 is an isomorphism. Composing the coboundary maps, we get

\begin{equation}
H^0_*(X, \mathcal{E}ndE) \xrightarrow{\partial_1} H^1_*(X, E^\vee \otimes G) \xrightarrow{\partial_2} H^2_*(X, \mathcal{E}ndE(-d)) \xrightarrow{\partial_3} H^3_*(X, \mathcal{E}ndE(-d))^\vee.
\end{equation}

Here $\zeta_E \in \text{Ext}^1_\mathcal{E}(E, G) = H^1(X, E^\vee \otimes G)$ is the class of the short exact sequence (3), and η_E is the (obstruction) class which vanishes if and only if E extends to a vector bundle on X_1 (see §3.3 in [14] for details).

Equivalently, one may start with the dual bundle E^\vee, and the sequences

\begin{equation}
0 \to G^\vee(-d) \to F_1^\vee(-d) \to E^\vee \to 0,
\end{equation}

and

\begin{equation}
0 \to E^\vee \to F_0^\vee \to G^\vee \to 0
\end{equation}

to get

\begin{equation}
H^0_*(X, \mathcal{E}ndE) \xrightarrow{\partial_1'} H^1_*(X, \mathcal{E}ndE(-d)) \xrightarrow{\partial_2'} \text{Ext}^1_\mathcal{E}(E, G^\vee) \equiv H^2_*(X, \mathcal{E}ndE(-d)).
\end{equation}

Now assume that $\text{rank}(E) = 3$; then we have an isomorphism $\wedge^2 E \cong E^\vee \otimes \wedge^3 E$. Tensoring (3) with $\wedge^2 E$, we have a sequence,

\begin{equation}
0 \to \wedge^2 E \otimes G \to \wedge^2 E \otimes F_0 \to \wedge^2 E \otimes E \to 0,
\end{equation}

which via the inclusion $\mathcal{O}_X \to \mathcal{E}ndE$, yields a pull-back diagram as follows:

\begin{equation}
\begin{array}{ccc}
0 & \to & \wedge^2 E \otimes G \\
\| & & \downarrow \\
0 & \to & \wedge^2 E \otimes F_0 \\
\end{array}
\end{equation}

\begin{equation}
\begin{array}{ccc}
\| & & \downarrow \\
\| & & \downarrow \\
0 & \to & \wedge^2 E \otimes G \\
\| & & \downarrow \\
0 & \to & \wedge^2 E \otimes E \\
\end{array}
\end{equation}

On tensoring this diagram with $(\wedge^3 E)^{-1}$, we see that, under the composite map

\begin{equation}
H^0(X, \mathcal{O}_X) \to H^0(X, \mathcal{E}ndE) \to H^1(X, E^\vee \otimes G),
\end{equation}

the generator $1 \in H^0(X, \mathcal{O}_X)$ is mapped to the element $\zeta_E \in H^1(X, E^\vee \otimes G)$. Hence the Yoneda class of the top row exact sequence is the element

\begin{equation}
\zeta_E \in \text{Ext}^1_\mathcal{E}(\wedge^3 E, G \otimes \wedge^2 E) \cong H^1(X, E^\vee \otimes G).
\end{equation}

We recall a standard result which we use quite extensively.

Lemma 1. For any short exact sequence of bundles $0 \to A \to B \to C \to 0$ on a variety, we get, on taking exterior powers, sequences $0 \to A \to \wedge^k B \to \wedge^k C \to 0$, where A is a filtered vector bundle with filtration

\begin{equation}
\mathcal{A} = \mathcal{F}^0 \supset \mathcal{F}^1 \supset \cdots \supset \mathcal{F}^k = \{0\},
\end{equation}

and associated graded pieces $\mathcal{G}_{\mathcal{A}} = \wedge^i A \otimes \wedge^{k-i-1} C$ for $0 \leq j < k$.

The surjection $\mathcal{F}_0 \rightarrow E$ yields a commutative square
\[
\begin{array}{ccc}
\wedge^3 \mathcal{F}_0 & \rightarrow & \wedge^3 E \\
\downarrow & & \downarrow \\
\wedge^2 \mathcal{F}_0 \otimes \mathcal{F}_0 & \rightarrow & \wedge^2 E \otimes E
\end{array}
\]
where the bottom row factors via $\wedge^2 E \otimes \mathcal{F}_0$, and so we obtain a commutative diagram:
\[
\begin{array}{cccc}
0 & \rightarrow & \mathcal{F}_3 & \rightarrow & \mathcal{F}_3 \rightarrow \mathcal{F}_0 & \rightarrow & \mathcal{F}_0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & \wedge^2 E \otimes G & \rightarrow & \wedge^2 E \otimes \mathcal{F}_0 & \rightarrow & \wedge^2 E \otimes E & \rightarrow & 0.
\end{array}
\]

The vertical maps in (8) factor via the top row in (7) by the universal property of pull-backs and so we get the following commutative diagram:
\[
\begin{array}{cccc}
0 & \rightarrow & \mathcal{K}_3 & \rightarrow & \mathcal{F}_3 \rightarrow \mathcal{F}_0 & \rightarrow & \mathcal{F}_0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & \wedge^2 E \otimes G & \rightarrow & \mathcal{F}_3 \rightarrow \mathcal{F}_3 & \rightarrow & \mathcal{F}_0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & \wedge^3 G & \rightarrow & \mathcal{K}_3 & \rightarrow & \mathcal{K}_3.
\end{array}
\]

Here \mathcal{K}_3 comes equipped with a filtration $F^2 = \wedge^3 G \subset F^1 = \mathcal{K}_3, F^0 = \mathcal{K}_3, F^0$ as described in Lemma 1 applied to the exact sequence (3). In particular, we have $F^1/F^2 = \wedge^2 G \otimes E$, and so an exact sequence
\[
0 \rightarrow \wedge^3 G \rightarrow \mathcal{K}_3, \rightarrow E \otimes \wedge^2 G \rightarrow 0.
\]

Let κ denote the Yoneda class of the middle row. Then diagram (9) yields a map
\[
\text{Ext}^1(\wedge^3 E, \mathcal{K}_3) \rightarrow \text{Ext}^1(\wedge^3 E, \wedge^2 E \otimes G),
\]
under which κ is mapped to ζ_E. This map may be identified with the map of cohomology groups in the left vertical sequence
\[
H^1(X, \mathcal{K}_3(−c)) \rightarrow H^1(X, \wedge^2 E \otimes G(−c)).
\]

Furthermore, doing the same with the dual bundle E^\vee, we get a commutative diagram analogous to (9):
\[
\begin{array}{cccc}
0 & \rightarrow & \mathcal{K}_3^\vee & \rightarrow & \mathcal{K}_3^\vee \rightarrow \mathcal{K}_3 \rightarrow \mathcal{K}_3 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & \wedge^2 E^\vee(2d) \otimes G^\vee & \rightarrow & \mathcal{P}_3^\vee & \rightarrow & \mathcal{P}_3 & \rightarrow \mathcal{P}_3 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
\]

and an exact sequence
\[
0 \rightarrow \wedge^3 G^\vee \rightarrow \mathcal{K}_3^\vee \rightarrow E^\vee(d) \otimes \wedge^2 G^\vee \rightarrow 0.
\]
3. Proof of Theorem 1

The following result explains what it means for E to be a vector bundle on a general hypersurface.

Proposition 1. Let $X \subset \mathbb{P}^{n+1}$ be a general hypersurface. For any $g \in H^0(X, O_X(d))$, the image of η_E under the multiplication map

$$\times g : H^2(X, \mathcal{E}ndE(-d)) \to H^2(X, \mathcal{E}ndE),$$

is zero.

Proof. See §3 in [9], or [14], Proposition 2 (i), and Proof of Theorem 2 for details. □

Tensoring (4) with $\wedge^2 E$, we get

$$0 \to \wedge^2 E \otimes E(-d) \to \wedge^2 E \otimes F_1 \to \wedge^2 E \otimes G \to 0.$$

Using the surjection $\mathcal{K}_3 \to \wedge^2 E \otimes G$, and the isomorphism $\wedge^2 E \cong E \vee (c)$, we get a pull-back diagram

$$
\begin{array}{ccc}
0 & \to & \mathcal{E}ndE(-d) \\
\downarrow & & \downarrow \\
\mathcal{K}_3,1(-c) & = & \mathcal{K}_3,1(-c) \\
\downarrow & & \downarrow \\
0 & \to & \mathcal{K}_3(-c) \\
\end{array}
\begin{array}{ccc}
0 & \to & \mathcal{E}ndE(-d) \\
\downarrow & & \downarrow \\
\mathcal{E}ndE(-d) \otimes F_1 & \to & \mathcal{E}ndE(-d) \otimes G \\
\downarrow & \downarrow & \downarrow \\
0 & & 0
\end{array}
$$

(13)

Here \mathcal{K}_3 is defined by the diagram.

In the middle column, we have an isomorphism of graded modules

$$H^2_*(-, \mathcal{K}_3,1(-c)) \cong H^2_*(-, \mathcal{K}_3).$$

Furthermore, we observe from (8) that

(i) we have a surjection $H^0_*(-, \mathcal{O}_X) \to H^1_*(-, \mathcal{K}_3)$, under which 1 is mapped to κ, and

(ii) $H^2_*(-, \mathcal{K}_3) = 0$.

Hence the cohomology sequence of the middle row yields a (right) exact sequence of graded modules

(14) \quad $H^1_*(-, \mathcal{K}_3(-c)) \to H^2_*(-, \mathcal{E}ndE(-d)) \to H^2_*(-, \mathcal{K}_3,1(-c)) \to 0$.

A similar analysis will also yield a (right) exact sequence

(15) \quad $H^1_*(-, \mathcal{K}_3'(c-3d)) \to H^2_*(-, \mathcal{E}ndE(-d)) \to H^2_*(-, \mathcal{K}_3',1(c-3d)) \to 0$.

Since the leftmost maps above factor via $H^1_*(-, \mathcal{E} \vee G)$ and $H^1_*(-, \mathcal{E} \otimes G \vee (-d))$ respectively, we have the following result:

Lemma 2. Let $X \subset \mathbb{P}^{n+1}$ be as above.

(i) Under the map $H^1_*(-, \mathcal{K}_3(-c)) \to H^2_*(-, \mathcal{E}ndE(-d))$, the generator κ is mapped to η_E.

(ii) Under the map $H^1_*(-, \mathcal{K}_3'(c-3d)) \to H^2_*(-, \mathcal{E}ndE(-d))$, the generator κ' is mapped to η_E.

Let M denote the submodule of $H^2_\ast(X, \mathcal{E}\text{nd}\mathcal{E}(-d))$ generated by η_E. We rewrite sequences (14) and (15) as

\begin{equation}
0 \to M \to H^2_\ast(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \to H^2_\ast(X, \mathcal{K}_{3,1}(-c)) \to 0, \text{ and}
\end{equation}

\begin{equation}
0 \to M \to H^2_\ast(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \to H^2_\ast(X, \mathcal{K}_{3,1}'(c - 3d)) \to 0.
\end{equation}

An immediate consequence of Proposition 1 is the following:

Corollary 3. The module M is supported in degrees k where $-d \leq k < 0$, i.e.,

$$M = \bigoplus_{-d \leq k < 0} M_k.$$

Now we are ready to prove our first result.

Proof of Theorem 1. We shall prove that the obstruction class η_E vanishes in $H^2(X, \mathcal{E}\text{nd}\mathcal{E}(-d))$. From (5), it then follows that $\zeta_E = 0$, which means that the sequence (3) splits. This implies that E splits.

We begin by noting that since $\wedge^3 G$ is ACM, we have from (10) and (12)

- $H^2_t(X, \mathcal{K}_{3,1}(-c)) \cong H^2_t(X, E \otimes \wedge^2 G(-c))$, and
- $H^2_t(X, \mathcal{K}_{3,1}'(c - 3d)) \cong H^2_t(X, E^\vee \otimes \wedge^2 G^\vee(c - 2d))$.

Using these isomorphisms, sequences (16) and (17) can be rewritten as

\begin{equation}
0 \to M \to H^2_t(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \to H^2_t(X, E \otimes \wedge^2 G(-c)) \to 0, \text{ and}
\end{equation}

\begin{equation}
0 \to M \to H^2_t(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \to H^2_t(X, E^\vee \otimes \wedge^2 G^\vee(c - 2d)) \to 0.
\end{equation}

Since the left and the middle terms in (18) and (19) are isomorphic to each other, we have

$$H^2_t(X, E \otimes \wedge^2 G(-c)) \cong H^2_t(X, E^\vee \otimes \wedge^2 G^\vee(c - 2d)).$$

By Serre duality, we also have

$$H^2(X, E \otimes \wedge^2 G(-c)) \cong H^2(X, E^\vee \otimes \wedge^2 G^\vee(c + d - 6)),$$

and hence an isomorphism

\begin{equation}
H^2(X, E^\vee \otimes \wedge^2 G^\vee(c - 2d)) \cong H^2(X, E^\vee \otimes \wedge^2 G^\vee(c + d - 6)).
\end{equation}

Thus we have the following exact sequences (corresponding to the degree ‘$-d$’ and ‘$2d - 6$’ components in (19)):

\begin{equation}
0 \to M_{-d} \to H^2(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \to H^2(X, E^\vee \otimes \wedge^2 G^\vee(c - 2d)) \to 0.
\end{equation}

\begin{equation}
0 \to M_{2d-6} \to H^2(X, \mathcal{E}\text{nd}\mathcal{E}(2d - 6)) \to H^2(X, E^\vee \otimes \wedge^2 G^\vee(c + d - 6)) \to 0.
\end{equation}

Since $H^2(X, \mathcal{E}\text{nd}\mathcal{E}(-d)) \cong H^2(X, \mathcal{E}\text{nd}\mathcal{E}(2d - 6))$ by Serre duality, it follows from the above sequences and (20) that $M_{-d} \cong M_{2d-6}$. Since $M_k = 0$ for $k \geq 0$ by Corollary 3, it follows that $M_{-d} = 0$ if $2d - 6 \geq 0$, or equivalently if $d \geq 3$. This means that $\eta_E = 0$, and so this finishes the proof. \qed
4. Ulrich Bundles

As mentioned in the introduction, the proof of non-existence of Ulrich bundles of odd rank on smooth even degree hypersurfaces of dimension ≥ 1 follows from a Riemann-Roch computation. The following result gives an upper bound for the first Chern class for any ACM bundle.

Lemma 3. Let E be a rank r ACM bundle on a smooth, degree d hypersurface $X \subset \mathbb{P}^{n+1}$, $n \geq 1$, with first Chern class $\mathcal{O}_X(c)$. Assume that E is normalized; i.e., $H^0(X, E(-1)) = 0$, and $H^0(X, E) \neq 0$. Then $c \leq r(d-1)/2$.

Proof. Let E_H denotes the restriction of E to a smooth hyperplane section $H \subset X$, so that we have a sequence

$$0 \to E(-1) \to E \to E_H \to 0.$$

Then E_H is a normalized rank r ACM bundle on H. Since Pic$(X) \to$ Pic(H) is injective, we have $c_1(E_H) = \mathcal{O}_X(c)$. Thus, by induction, we may assume that E is a normalized vector bundle of rank r on a smooth, planar curve $C \subset \mathbb{P}^2$ of degree d. Since E is normalized, $\chi(E(-1)) \leq 0$. Applying the Riemann-Roch theorem to the bundle $E(-1)$ gives us

$$\chi(E(-1)) = \deg(E(-1)) + r(1-g) \leq 0,$$

where g is the genus of C. Since C is planar, we have $g = (d-1)(d-2)/2$. Using this and the fact that $\deg(E(-1)) = d(c - r)$, we get $c \leq r(d-1)/2$. □

Proof of Theorem 2. Since E is Ulrich, it has a resolution of the form

$$0 \to \mathcal{O}_{\mathbb{P}^{n+1}}(-1)^{r\bar{d}} \to \mathcal{O}_{\mathbb{P}^{n+1}}^{r\bar{d}} \to E \to 0.$$

Therefore $\chi(E(-1)) = 0$. It follows now that $c = r(d-1)/2$. Since $c \in \mathbb{Z}$, this is impossible if r is odd and d is even. □

Remark 1. The assumption on the degree of the hypersurface or the rank of the bundle in Theorem 2 cannot be weakened. A smooth plane cubic is an elliptic curve; its torsion points of odd order r, give rise to Ulrich bundles of rank r, (cf. [15]). Similarly, lines in quadric surfaces in \mathbb{P}^3 correspond to ACM line bundles not isomorphic to $\mathcal{O}_X(c)$ for any $c \in \mathbb{Z}$.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI – ST. LOUIS, ST. LOUIS, MO 63121, USA.
E-mail address: girivarur@umsl.edu

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD, KANDI, SANGAREDDY, HYDERABAD – 502285. TELANGANA, INDIA.
E-mail address: amittr@gmail.com