ON THE PICARD BUNDLE

INDRANIL BISWAS AND G. V. RAVINDRA

Abstract. Fix a holomorphic line bundle \(\xi \) over a compact connected Riemann surface \(X \) of genus \(g \), with \(g \geq 2 \), and also fix an integer \(r \) such that \(\text{deg}(\xi) > r(2g-1) \). Let \(\mathcal{M}_\xi(r) \) denote the moduli space of stable vector bundles over \(X \) of rank \(r \) and determinant \(\xi \). The Fourier–Mukai transform, with respect to a Poincaré line bundle on \(X \times J(X) \), of any \(F \in \mathcal{M}_\xi(r) \) is a stable vector bundle on \(J(X) \). This gives an embedding of \(\mathcal{M}_\xi(r) \) in a moduli space associated to \(J(X) \). If \(g = 2 \), then \(\mathcal{M}_\xi(r) \) becomes a Lagrangian subvariety.

Résumé

Sur le fibré de Picard. Soient \(\xi \) un fibré en droites holomorphe sur une surface de Riemann compacte connexe \(X \) de genre \(g \geq 2 \), et \(r \) un entier tel que \(\text{deg}(\xi) > r(2g-1) \). Notons \(\mathcal{M}_\xi(r) \) l’espace de modules des fibrés vectoriels stables sur \(X \), de rang \(r \) et de déterminant \(\xi \). Ayant choisi un fibré de Poincaré sur \(X \times J(X) \), la transformée de Fourier–Mukai associée fait correspondre à un fibré \(F \in \mathcal{M}_\xi(r) \) un fibré vectoriel stable sur \(J(X) \). Ceci fournit un plongement de \(\mathcal{M}_\xi(r) \) dans un espace de modules associé à \(J(X) \). Lorsque \(g = 2 \), \(\mathcal{M}_\xi(r) \) s’identifie ainsi à une sous-variété lagrangienne de cet espace de modules.

1. Introduction

Let \((X,x_0) \) be a one–pointed compact connected Riemann surface of genus \(g \), with \(g \geq 2 \). Let \(\mathcal{L} \) be the Poincaré line bundle on \(X \times J(X) \) constructed using \(x_0 \), where \(J(X) \) is the Jacobian of \(X \). Fix an integer \(r \geq 2 \) and a holomorphic line bundle \(\xi \) over \(X \) with \(\text{deg}(\xi) > r(2g-1) \). Let \(\mathcal{M}_\xi(r) \) denote the moduli space of stable vector bundles over \(X \) of rank \(r \) and determinant \(\xi \).

In Lemma 2.1 we show that for any \(F \in \mathcal{M}_\xi(r) \),

\[\mathcal{V}_F := \phi_{J*}(\mathcal{L} \otimes \phi_X^* F) \]

is a stable vector bundle with respect to the canonical polarization on \(J(X) \), where \(\phi_J \) (respectively, \(\phi_X \)) is the projection of \(X \times J(X) \) to \(J(X) \) (respectively, \(X \)).

Rational characteristic classes of \(\mathcal{V}_F \), as well as the line bundle \(\bigwedge^{\text{top}} \mathcal{V}_F \), are independent of \(F \). Let \(\mathcal{M}(J(X)) \) be the moduli space of stable vector bundles \(W \) over \(J(X) \) with \(\text{rank}(W) = \text{rank}(\mathcal{V}_F), c_i(W) = c_i(\mathcal{V}_F) \) and \(\bigwedge^{\text{top}} W = \bigwedge^{\text{top}} \mathcal{V}_F \). The map \(\mathcal{M}_\xi(r) \longrightarrow \mathcal{M}(J(X)) \) defined by \(F \longmapsto \mathcal{V}_F \) is an embedding (see Corollary 2.3).

We next assume that \(g = 2 \), and if degree(\(\xi \)) is even, then also assume that \(r \geq 3 \). Let \(\mathcal{M}^0(J(X)) \subset \mathcal{M}(J(X)) \) be the locus of all \(W \) for which the image of \(C_1(W)^2 - 2 \cdot C_2(W) \in \text{CH}^2(J(X)) \) in the Deligne–Beilinson cohomology vanishes.

Notation: The \(i \)–th Chern class with values in the Chow group will be denoted by \(C_i \).

We show that the image of \(\mathcal{M}_\xi(r) \) lies in \(\mathcal{M}^0(J(X)) \), and \(\mathcal{M}_\xi(r) \) is a Lagrangian subvariety of the symplectic variety \(\mathcal{M}^0(J(X)) \).
2. Fourier–Mukai transform of a stable vector bundle

Let X be a compact connected Riemann surface of genus g, with $g \geq 2$. Fix once and for all a point $x_0 \in X$.

Let $J(X) := \text{Pic}^0(X)$ be the Jacobian of X. There is a canonical principal polarization on $J(X)$ given by the cup product of $H^1(X, \mathbb{Z})$. All stable vector bundles over $J(X)$ considered here will be with respect to this polarization.

Let L be a holomorphic line bundle over $X \times J(X)$ such that

- for each point $\xi \in J(X)$, the restriction of L to $X \times \{\xi\}$ is in the isomorphism class of holomorphic line bundles represented by ξ, and
- the restriction of L to $\{x_0\} \times J(X)$ is a holomorphically trivial line bundle over $J(X)$.

Such a line bundle L exists [1, p. 166–167]. Moreover, from the see–saw theorem (see [7, p. 54, Corollary 6]) it follows that L is unique up to a holomorphic isomorphism. We will call L the Poincaré line bundle for the pointed curve (X, x_0).

Fix an integer $r \geq 2$. Fix a holomorphic line bundle ξ over X with

\begin{equation}
\text{degree}(\xi) > r(2g - 1).
\end{equation}

Let $M_\xi(r)$ denote the moduli space of stable vector bundles E over X with rank $(E) = r$ and $\bigwedge^r E = \xi$.

Let ϕ_J (respectively, ϕ_X) denote the projection of $X \times J(X)$ to $J(X)$ (respectively, X).

Lemma 2.1. For each vector bundle $F \in M_\xi(r)$,

\[R^1\phi_{J*}(L \otimes \phi_X^* F) = 0, \]

where L is the Poincaré line bundle. The direct image

\[V_F := \phi_X^*(L \otimes \phi_X^* F) \]

is a stable vector bundle over $J(X)$ of rank $\delta := \text{degree}(\xi) - r(g - 1)$.

Proof. For a stable vector bundle W over X of rank r and degree $d > 2r(g - 1)$, we have $H^0(X, W^* \otimes K_X) = 0$ because a stable vector bundle of negative degree does not admit any nonzero sections. Hence by Serre duality we have $H^1(X, W) = 0$. Therefore, using (1) it follows that $R^1\phi_{J*}(L \otimes \phi_X^* F) = 0$.

Since $R^1\phi_{J*}(L \otimes \phi_X^* F) = 0$, we know that the direct image V_F in the statement of the lemma is a vector bundle of rank $\text{degree}(\xi) - r(g - 1)$.

The stability of V_F is derived from [2, p. 5, Theorem 1.2] as follows. Consider the embedding

\[f : X \longrightarrow J(X) \]

defined by $x \longmapsto O_X(x_0 - x)$. Therefore,

\begin{equation}
(\text{Id}_X \times f)^* L = O_{X \times X}((\{x_0\} \times X) - \Delta),
\end{equation}

where $\Delta \subset X \times X$ is the diagonal divisor.

Set E in [2, Theorem 1.2] to be $F \otimes O_X(x_0)$. Using (2) it follows that the vector bundle M_E in [2, Theorem 1.2] is identified with $f^* V_F$. From [2, Theorem 1.2] we know
that $f^*\mathcal{V}_F$ is stable. Now using the openness of the stability condition (see [4, p. 635, Theorem 2.8(B)]) it follows that there is a Zarisky open dense subset

$$U \subset J(X)$$

such that for each $z \in U$, the pullback $f^*\tau_z^*\mathcal{V}_F$ is a stable vector bundle, where $\tau_z \in \text{Aut}(J(X))$ is the translation defined by $y \mapsto y + z$.

If $\mathcal{W} \subset \mathcal{V}_F$ violates the stability condition of \mathcal{V}_F for the canonical polarization, then take a point $z_0 \in U$ (see (3)) such that $\tau_{z_0} \circ f$ intersects the Zarisky open dense subset of $J(X)$ over which \mathcal{W} is locally free. Now it is straightforward to check that $f^*\tau_{z_0}^*\mathcal{W} \subset f^*\tau_{z_0}^*\mathcal{V}_F$ contradicts the stability condition of $f^*\tau_{z_0}^*\mathcal{V}_F$. Therefore, we conclude that \mathcal{V}_F is stable. This completes the proof of the lemma. □

Fix a holomorphic line bundle L over $J(X)$ such that $c_1(L)$ coincides with the canonical polarization on $J(X)$. As in [7, p. 123], set

$$M := m^*L \otimes p_1^*L^* \otimes p_2^*L^*$$
onumber

on $J(X) \times J(X)$, where

$$p_i : J(X) \times J(X) \rightarrow J(X)$$

is the projection to the i–th factor, and m is the addition map on $J(X)$; the dual abelian variety $J(X)^\vee$ is identified with $J(X)$ using the Poincaré line bundle \mathcal{L}. Let

$$\varphi : X \rightarrow J(X)$$

be the morphism defined by $x \mapsto \mathcal{O}_X(x - x_0)$. Then

$$(\varphi \times \text{Id}_{J(X)})^*M = \mathcal{L}.$$

Proposition 2.2. Consider the vector bundle \mathcal{V}_F is Lemma 2.1. For all $i \neq g$,

$$R^ip_{1*}(M^* \otimes p_2^*\mathcal{V}_F) = 0,$$

and

$$R^qp_{1*}(M^* \otimes p_2^*\mathcal{V}_F) = \varphi_*F,$$

where M and φ are is defined in (4) and (6) respectively, and p_1 and p_2 are the projections in (5).

Proof. The proof of the proposition is identical to the proof of Theorem 2.2 in [5, p. 156]. We note that the key input is the result in [7, p. 127] which says that $R^ip_{1*}M = 0$ for $i \neq g$, and $R^qp_{1*}M = \mathbb{C}$ is supported at the point $e_0 = \mathcal{O}_X$ with stalk $H^q(J(X) \times J(X), M) \cong \mathbb{C}$. (see also [7, p. 129, Corollary 1]). □

Let $\xi := c_1(\mathcal{V}_F) \in H^2(J(X), \mathbb{Z})$. Note that since $\mathcal{M}_\xi(r)$ is connected, for all $i \geq 0$, the Chern class $c_i(\mathcal{V}_F) \in H^{2i}(J(X), \mathbb{Z})$ is independent of the choice of $F \in \mathcal{M}_\xi(r)$. We have a morphism

$$\alpha : \mathcal{M}_\xi(r) \rightarrow \text{Pic}^\xi(J(X))$$

defined by $E \mapsto \wedge^\delta \mathcal{V}_E$ (see Lemma 2.1). Since $\mathcal{M}_\xi(r)$ is a Zariski open subset of a unirational variety (the moduli space of semistable vector bundles over X of rank r and determinant ξ is unirational), the morphism α constructed above must be a constant one.
Let $\mathcal{M}(J(X))$ denote the moduli space of stable vector bundles \mathcal{W} over $J(X)$ with rank(\mathcal{W}) = $\delta := \text{degree}(\xi) - r(g - 1)$, $\bigwedge^\top \mathcal{W} = \text{image}(\alpha)$, and $c_i(\mathcal{W}) = c_i(\mathcal{V}_F)$ for all $i \geq 2$.

Corollary 2.3. We have a morphism

\[\beta : \mathcal{M}_\xi(r) \longrightarrow \mathcal{M}(J(X)) \]

defined by $F \longmapsto \mathcal{V}_F$. This morphism β is an embedding.

Proof. The map β is well defined by Lemma 2.1. That β is an embedding follows immediately from Proposition 2.2, because we have a morphism

\[\gamma : \beta(\mathcal{M}_\xi(r)) \longrightarrow \mathcal{M}_\xi(r) \]

defined by $W \longmapsto \varphi^* R^g p_{1*}(M^* \otimes p^*_2 W)$ such that $\gamma \circ \beta$ is the identity map of $\mathcal{M}_\xi(r)$. \(\square \)

3. The case of $g = 2$

Henceforth, we will assume that $g = 2$. If degree(ξ) is even, then we will also assume that $r > 2$.

Lemma 3.1. Take any $F \in \mathcal{M}_\xi(r)$. Then the image of $C_1(\mathcal{V}_F)^2 - 2 \cdot C_2(\mathcal{V}_F) \in \text{CH}^2(J(X))$ in the Deligne–Beilinson cohomology $H^4_B(J(X), \mathbb{Z}(2))$ (see [3, p. 85, Corollary 7.7]) is independent of F. More precisely, it vanishes.

Proof. Since $H^4_B(J(X), \mathbb{Z}(2))$ is an extension of a discrete group by a complex torus [3, p. 86, (7.9)], and $\mathcal{M}_\xi(r)$ is connected and unirational, there is no nonconstant morphism from $\mathcal{M}_\xi(r)$ to $H^4_B(J(X), \mathbb{Z}(2))$. In particular, the image of $C_1(\mathcal{V}_F)^2 - 2 \cdot C_2(\mathcal{V}_F)$ in $H^4_B(J(X), \mathbb{Z}(2))$ is independent of the choice of $F \in \mathcal{M}_\xi(r)$.

From [8, § 4] (reproduced in [5, p. 164, Theorem 4.3(2)]) we know that $C_1(\mathcal{V}_F) = r \cdot \lambda_x^* \Theta$, where $\Theta \in \text{Pic}^1(X)$ is the theta divisor, and $\lambda_x : \text{Pic}^0(X) \longrightarrow \text{Pic}^0(X)$ is defined by $\zeta \longmapsto \zeta \otimes \mathcal{O}_X(x_0)$. Similarly, $C_2(\mathcal{V}_F) = r^2 \cdot e_0$, where $e_0 = \mathcal{O}_X$ is the identity element. On the other hand, the image of $\Theta^2 - 2e_0$ in $H^4_B(J(X), \mathbb{Z}(2))$ vanishes (see the proof of Theorem 1.3 in [1, p. 212]). \(\square \)

Consider the moduli space $\mathcal{M}(J(X))$ in (7). Let

\[\mathcal{M}^0(J(X)) \subset \mathcal{M}(J(X)) \]

be the subvariety defined by the locus of all E such that image of

\[C_1(E)^2 - 2 \cdot C_2(E) \in \text{CH}^2(J(X)) \]

in $H^4_B(J(X), \mathbb{Z}(2))$ vanishes. From Lemma 3.1 we know that the image of the map β in Corollary 2.3 lies in $\mathcal{M}^0(J(X))$.

Since $J(X)$ is an abelian surface, the moduli space $\mathcal{M}^0(J(X))$ in (8) is smooth, and it has a canonical symplectic structure [6, p. 102, Corollary 0.2].

Theorem 3.2. The image of the embedding β in Corollary 2.3 is a Lagrangian subvariety of the symplectic variety $\mathcal{M}^0(J(X))$.

Proof. We note that $\mathcal{M}_\xi(r)$ is the smooth locus of the moduli space of semistable vector bundles over X of rank r and determinant ξ. In particular, $\mathcal{M}_\xi(r)$ is the smooth locus of a normal unirational variety. Therefore, $\mathcal{M}_\xi(r)$ does not admit any nonzero algebraic two–forms. Consequently, the pull back to $\mathcal{M}_\xi(r)$ of the symplectic form on $\mathcal{M}^0(J(X))$ vanishes identically. Therefore, to prove the theorem it suffices to show that

$$\dim \mathcal{M}^0(J(X)) = 2 \cdot \dim \mathcal{M}_\xi(r) = 2(r^2 - 1).$$

Let $\theta \in H^2(J(X), \mathbb{Z})$ denote the canonical polarization. In the proof of Lemma 3.1 we noted that $c_1(V_F) = r \cdot \theta$, and $ch_2(V_F) = c_1(V_F)^2/2 - c_2(V_F) = 0$. Hence $ch_2(\text{End}(V_F))(J(X)) = -r^2$. Therefore, using Hirzebruch–Riemann–Roch,

$$\dim H^1(J(X), \text{End}(V_F)) = r^2 + 2.$$

Since $\dim \mathcal{M}^0(J(X)) = \dim \mathcal{M}(J(X)) - 2 = \dim H^1(J(X), \text{End}(V_F)) - 4$, we now conclude that (9) holds. This completes the proof of the theorem. \square

References

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Mathematics Department, Indian Institute of Science, Bangalore 560 012, India

E-mail address: ravindra@math.iisc.ernet.in