ARITHMETICALLY COHEN-MACAULAY BUNDLES ON THREE DIMENSIONAL HYPERSURFACES N. MOHAN KUMAR, A. P. RAO, AND G. V. RAVINDRA ABSTRACT. We prove that any rank two arithmetically Cohen-Macaulay vector bundle on a general hypersurface of degree at least six in \mathbb{P}^4 must be split. #### 1. Introduction An arithmetically Cohen-Macaulay (ACM for short) vector bundle on a hypersurface $X \subset \mathbb{P}^n$ is a bundle E for which $\mathrm{H}^i(X, E(k)) = 0$ for 0 < i < n-1 and for all integers k. ACM bundles of large rank, which are not split as a sum of line bundles, exist on any hypersurface X of degree > 1 (see [2]), and it is also conjectured by Buchweitz-Greuel-Schreyer (op. cit.) that low rank ACM bundles on smooth hypersurfaces should be split. For example, it is well known [7] that there are no non-split ACM bundles of rank two on a smooth hypersurface in \mathbb{P}^6 . In [6], it was proved that on a general hypersurface of degree ≥ 3 in \mathbb{P}^5 , there are no non-split ACM bundles of rank two. In the current paper, we extend this result to general hypersurfaces of degree d > 6 in \mathbb{P}^4 : **Main Theorem.** Fix $d \geq 6$. There is a non-empty Zariski open set of hypersurfaces of degree d in \mathbb{P}^4 , none of which support an indecomposable ACM rank two bundle. The special case when d=6 was proved by Chiantini and Madonna [3]. The result we prove is optimal and we refer the reader to [6] for more details. Our result can also be translated into a statement about curves on X: on a general hypersurface X in \mathbb{P}^4 of degree $d \geq 6$, any arithmetically Gorenstein curve on X is a complete intersection of X with two other hypersurfaces in \mathbb{P}^4 . Yet another translation of the result is that the defining equation of such a hypersurface cannot be expressed as the Pfaffian of a skew-symmetric matrix in a non-trivial way. In the current paper, we will need some of the results from [6]. We will also use the relation between rank two ACM bundles on hypersurfaces and Pfaffians that was observed by Beauville in [1] and which was not needed in [6]. As usual, let $H^i_*(X, E)$ denote the graded module $\bigoplus_{k \in \mathbb{Z}} H^i(X, E(k))$. The following theorem summarizes and paraphrases some of the results from [6] that are important for the proof of the Main Theorem above. **Theorem 1** ([6] Thm 1.1(3), Cor 2.3). Let E be an indecomposable rank two ACM bundle on a smooth hypersurface X of degree d in \mathbb{P}^4 . Then $\mathrm{H}^2_*(X,\mathcal{E}nd(E))$ is a non-zero cyclic module of finite length, with the generator living in degree -d. If $d \geq 5$ and X is general, then $\mathrm{H}^2(X,\mathcal{E}nd(E)) = 0$. ## 2. ACM BUNDLES AND PFAFFIANS We work over an algebraically closed field of characteristic zero. Let $X \subset \mathbb{P}^n$ be a hypersurface of degree d. Let E be an ACM vector bundle of rank two on X. By Horrocks' criterion [5], this is equivalent to saying that E has a resolution, $$(1) 0 \to F_1 \xrightarrow{\Phi} F_0 \xrightarrow{\sigma} E \to 0,$$ where the F_i 's are direct sums of line bundles on \mathbb{P}^n . We will assume that this resolution is minimal, with $F_0 = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^n}(-a_i)$ where $a_1 \leq a_2 \leq \cdots \leq a_n$. Using [1], we may write F_1 as $F_0^{\vee}(e-d)$, where e is the first Chern class of E, and we may assume that Φ is a skew-symmetric $n \times n$ matrix with n even. The (i,j)-th entry ϕ_{ij} of Φ has degree $d-e-a_i-a_j$. The condition of minimality implies that there are no non-zero scalar entries in Φ and thus every degree zero entry must be zero. We quote some facts about Pfaffians and refer the reader to [9] for more details. Let $\Phi = (\phi_{ij})$ be an $n \times n$ even-sized skew symmetric matrix and let $\mathrm{Pf}(\Phi)$ denote its $\mathit{Pfaffian}$. Then $\mathrm{Pf}(\Phi)^2 = \det \Phi$. Let $\Phi(i,j)$ be the matrix obtained from Φ by removing the i-th and j-th rows and columns. Let Ψ be the skew-symmetric matrix of the same size with entries $\psi_{ij} = (-1)^{i+j}\mathrm{Pf}(\Phi(i,j))$ for $0 \le i < j \le n$. We shall refer to $\mathrm{Pf}(\Phi(i,j))$ as the (i,j)-Pfaffian of Φ . The product $\Phi\Psi = \mathrm{Pf}(\Phi)\mathrm{I}_n$ where I_n is the identity matrix. Example 1. Let n=4 above. Then $$Pf(\Phi) = \phi_{12}\phi_{34} - \phi_{13}\phi_{24} + \phi_{14}\phi_{23}.$$ The following lemma shows the relation between skew-symmetric matrices, ACM rank 2 bundles and the equation defining the hypersurface. **Lemma 1.** Let E be a rank 2 ACM bundle on a smooth hypersurface $X \subset \mathbb{P}^4$ of degree d and let $\Phi : F_1 \to F_0$ be the minimal skew-symmetric matrix associated to E. Then $X = X_{\Phi}$, the zero locus of $Pf(\Phi)$. Conversely, let $\Phi : F_1 \to F_0$ be a minimal skew-symmetric matrix such that the hypersurface X_{Φ} defined by $Pf(\Phi)$ is smooth of degree d. Then E_{Φ} , the cokernel of Φ , is a rank 2 ACM bundle on X_{Φ} . Proof. Let $f \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ be the polynomial defining X. Since E is supported along X, det $\Phi = f^n$ for some n upto a non-zero constant where Φ is as in resolution (1). Locally E is a sum of two line bundles and so the matrix Φ is locally the diagonal matrix $(f, f, 1, \dots, 1, 1)$. Since the determinant of this diagonal matrix is f^2 , we get $f = \operatorname{Pf}(\Phi)$ (upto a non-zero constant). To see the converse: let Φ be any skew-symmetric matrix and Ψ be defined as above. Let $f = \operatorname{Pf}(\Phi)$ be the Pfaffian. Since $\Phi\Psi = fI_n$, this implies that the composite $F_0(-d) \xrightarrow{f} F_0 \to E_{\Phi}$ is zero. Thus E_{Φ} is annihilated by f and so is supported on the hypersurface X_{Φ} defined by f. Since X_{Φ} is smooth, by the Auslander-Buchsbaum formula, E_{Φ} is a vector bundle on X_{Φ} . Therefore locally Φ is a diagonal matrix of the form $(f, \dots, f, 1, \dots, 1)$ where the number of f's in the diagonal is equal to the rank of E. Since $\det(\Phi) = f^2$, we conclude that rank of E_{Φ} is 2. Let $V \subset \text{Hom}(F_1, F_0)$ be the subspace consisting of all minimal skew-symmetric homomorphisms, where F_i 's are as above. The following is an easy consequence of the above lemma. **Lemma 2.** Let $\Phi_0 \in V$ be an element such that E_{Φ_0} is a rank 2 ACM bundle on a smooth hypersurface X_{Φ_0} . Then there exists a Zariski open neighbourhood U of Φ_0 such that for any $\Phi \in U$, X_{Φ} is a smooth hypersurface and E_{Φ} is a rank two ACM bundle supported on X_{Φ} . ### 3. Special cases The proof of the Main Theorem will require the study of some special cases, which are listed below. **Lemma 3.** Consider the following three types of curves in \mathbb{P}^4 : • a curve C which is the complete intersection of three general hypersurfaces, two of which are of degree ≤ 2 . - a curve D which is the locus of vanishing of the principal 4×4 sub-Pfaffians of a general 5×5 skew-symmetric matrix χ of linear forms. - a curve C_r , $r \geq 0$, which is the locus of vanishing of the 2×2 minors of a general 4×2 matrix Δ with one row consisting of forms of degree 1 + r, and the remaining three rows consisting of linear forms. The general hypersurface X in \mathbb{P}^4 of degree ≥ 6 cannot contain any curve of the the first two types. The general hypersurface X of degree $d \geq \max\{6, r+4\}$ cannot contain any curve of the third type. *Proof.* The curve C is smooth if the hypersurfaces are general. If χ is general, the curve D is smooth (see [10], page 432 for example). If Δ is general, the curve C_r is smooth (see *op. cit.* page 425). The proof of the lemma is a straightforward dimension count. By counting the dimension of the set of all pairs (Y, X) where Y is a smooth curve of the described type and X is a hypersurface of degree d containing Y, it suffices to show that this dimension is less than the dimension of the set of all hypersurfaces X of degree d in \mathbb{P}^4 . This can be done by showing that if S denotes the (irreducible) subset of the Hilbert scheme of curves in \mathbb{P}^4 parameterizing all such smooth curves Y, then the dimension of S is at most $h^0(\mathcal{O}_Y(d)) - 1$. This argument was carried out in [8] where Y is any complete intersection curve in \mathbb{P}^4 . The case where Y equals the first type of curve C in the list above is Case 2 of [8]. Hence we will only consider the types of curves D and C_r here. If Y is of type D in the list, the sheaf \mathcal{I}_D has the following free resolution ([10], page 427): $$0 \to \mathcal{O}_{\mathbb{P}^n}(-5) \to \mathcal{O}_{\mathbb{P}^n}(-3)^{\oplus 5} \xrightarrow{\chi} \mathcal{O}_{\mathbb{P}^n}(-2)^{\oplus 5} \to \mathcal{I}_D \to 0.$$ Computing Hilbert polynomials, we see that D is a smooth elliptic quintic in \mathbb{P}^4 , and it easily computed that that $h^0(\mathcal{N}_D) = 25$. Since $h^0(\mathcal{O}_D(d)) = 5d$, for $d \geq 6$, we get dim $\mathcal{S} \leq h^0(\mathcal{N}_D) \leq h^0(\mathcal{O}_D(d)) - 1$. If Y is of type C_r in the list, we may analyze the dimension of the parameter space of all such C_r 's as follows. Let S be the cubic scroll in \mathbb{P}^4 given by the vanishing of the two by two minors of the linear 3×2 submatrix θ of the 4×2 matrix Δ . The ideal sheaf of the determinantal surface S has resolution: $$0 \to \mathcal{O}_{\mathbb{P}^n}(-3)^2 \xrightarrow{\theta} \mathcal{O}_{\mathbb{P}^n}(-2)^3 \to \mathcal{I}_S \to 0.$$ From this one computes the dimension of the set of such cubic scrolls to be 18, since the 30 dimensional space of all 3×2 linear matrices is acted on by automorphisms of $\mathcal{O}_{\mathbb{P}^n}(-3)^2$ and $\mathcal{O}_{\mathbb{P}^n}(-2)^3$, with scalars giving the stabilizer of the action. Furthermore, by dualizing the resolution, we get a resolution for ω_S : $$0 \to \mathcal{O}_{\mathbb{P}^n}(-5) \to \mathcal{O}_{\mathbb{P}^n}(-3)^{\oplus 3} \xrightarrow{\theta^{\vee}} \mathcal{O}_{\mathbb{P}^n}(-2)^{\oplus 2} \to \omega_S \to 0.$$ A section of $\omega_S(r+3)$ gives a lift $\mathcal{O}_{\mathbb{P}^n}(-r-3) \stackrel{\alpha}{\to} \mathcal{O}_{\mathbb{P}^n}(-2)^{\oplus 2}$, and we obtain a 4×2 matrix $\begin{pmatrix} \theta \\ \alpha^{\vee} \end{pmatrix}$ of the required type. Hence C_r is a curve on S in the linear series $|K_S + (r+3)H|$, where H is the hyperplane section on S. Intersection theory on S gives $K_S.K_S = 8$, $K_S.H = -5$ and H.H = 3. Using this, we may compute the dimension of the linear system of C_r on S, and we get the dimension of the set S of all such C_r in \mathbb{P}^4 to be 21 if r = 0 and $(3/2)r^2 + (13/2)r + 24$ otherwise. The ideal sheaf of C_r has a free resolution given by the Eagon-Northcott complex [4] $$0 \to \mathcal{O}_{\mathbb{P}^n}(-r-4)^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^n}(-3)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^n}(-r-3)^{\oplus 6}$$ $$\to \mathcal{O}_{\mathbb{P}^n}(-2)^{\oplus 3} \oplus \mathcal{O}_{\mathbb{P}^n}(-r-2)^{\oplus 3} \to \mathcal{I}_{C_r} \to 0.$$ Let $d \ge max\{6, r+4\}$ be chosen as in the statement of the lemma. Then d = r+s+4 where $s \ge 0$ ($s \ge 2$ when r=0; $s \ge 1$ when r=1). Using the above resolution, a calculation gives $$h^0(\mathcal{O}_{C_r}(d)) = \frac{3}{2}r^2 + \frac{29}{2}r + 3rs + 4s + 17.$$ The required inequality dim $S < h^0(\mathcal{O}_{C_r}(d))$ is now evident. \square #### 4. Proof of Main Theorem In this section, E will be an indecomposable ACM bundle of rank two and first Chern class e on a smooth hypersurface X of degree d in \mathbb{P}^4 . The minimal resolution (1) gives $\sigma: F_0 \to E \to 0$, and we may describe σ as $[s_1, s_2, \cdots, s_n]$ where s_1, s_2, \cdots, s_n is a set of minimal generators of the graded module $H^0_*(E)$ of global sections of E, with degrees $a_1 \leq a_2 \leq \cdots \leq a_n$. **Lemma 4.** If E is an indecomposable rank 2 ACM bundle with first Chern class e on a general hypersurface $X \subset \mathbb{P}^4$ of degree $d \geq 6$, then there is a relation in degree 3-e among the minimal generators of S^2E . *Proof.* Consider the short exact sequence $$0 \to \mathcal{O}_X \to \mathcal{E}nd(E) \to (S^2E)(-e) \to 0.$$ $S^2E(-e)$ has the same intermediate cohomology as $\mathcal{E}nd(E)$ since the sequence splits in characteristic zero. Choose a minimal resolution of S^2E : $$0 \to B \to C \to S^2E \to 0$$. where C is a direct sum of line bundles on X and B is a bundle on X with $H^1_*(X, B) = 0$. We first show that $B^{\vee}(e+d-5)$ is not regular. For this, consider the dual sequence $0 \to (S^2E)^{\vee} \to C^{\vee} \to B^{\vee} \to 0$. By Serre duality and Theorem 1 $$H^1(X, (S^2E)^{\vee}(d+e-5)) = 0.$$ Therefore $$H^0(X, C^{\vee}(d+e-5)) \to H^0(X, B^{\vee}(d+e-5))$$ is onto. If $B^{\vee}(d+e-5)$ were regular, the same would be true for $$H^0(X, C^{\vee}(d+e-5+k)) \to H^0(X, B^{\vee}(d+e-5+k)) \quad \forall \ k \ge 0.$$ However, this is false for k=d since by Serre duality and Theorem 1, $\mathrm{H}^1(X,(S^2E)^\vee(2d+e-5))\neq 0$. Thus $B^\vee(e+d-5)$ is not regular. Now $$H^{1}(X, B^{\vee}(e+d-6)) \cong H^{2}(X, B(1-e)) \cong H^{1}(X, S^{2}E(1-e))$$ $\cong H^{1}(X, \mathcal{E}nd(E)(1)).$ By Serre duality, $$\mathrm{H}^1(X,\mathcal{E}nd(E)(1)) \cong \mathrm{H}^2(X,\mathcal{E}nd(E)(d-6))$$ which by Theorem 1 equals zero for $d \ge 6$ (this is the main place where we use the hypothesis that $d \ge 6$). Furthermore, $H^2(X, B^{\vee}(e+d-7)) = 0$ since $H^1_*(X, B) = 0$. Since $B^{\vee}(e+d-5)$ is not regular, we must have $H^3(X, B^{\vee}(e+d-8)) \ne 0$. In conclusion, $H^0(X, B(3-e)) \neq 0$. In other words, there is a relation in degree 3-e among the minimal generators of S^2E . **Lemma 5.** Let E be as above. Then $1 \le a_1 + a_2 + e \le a_1 + a_3 + e \le 2$. *Proof.* The resolution (1) for E gives an exact sequence of vector bundles on $X: 0 \to G \to \overline{F}_0 \stackrel{\sigma}{\to} E \to 0$, where $\overline{F}_0 = F_0 \otimes \mathcal{O}_X$ and G is the kernel. This yields a long exact sequence, $$0 \to \wedge^2 G \to \overline{F}_0 \otimes G \to S^2 \overline{F}_0 \to S^2 E \to 0.$$ From the arguments after Lemma 2.1 of [6] (using formula (5)), it follows that $H^2_*(\wedge^2 G) = 0$. Hence the map $S^2 \overline{F}_0 \to S^2 E$ is surjective on global sections. The image of this map picks out the sections $s_i s_j$ of degree $a_i + a_j$ in $S^2 E$. Observe that the lowest degree minimal sections s_1, s_2 of E induce an inclusion of sheaves $\mathcal{O}_X(-a_1) \oplus \mathcal{O}_X(-a_2) \stackrel{[s_1, s_2]}{\hookrightarrow} E$ whose cokernel is supported on a surface in the linear system $|\mathcal{O}_X(a_1 + a_2 + e)|$ on X (a nonempty surface when E is indecomposable). Hence $1 \leq a_1 + a_2 + e$. There is an induced inclusion $$S^2[\mathcal{O}_X(-a_1) \oplus \mathcal{O}_X(-a_2)] \hookrightarrow S^2E.$$ Therefore the three sections of S^2E given by s_1^2, s_1s_2, s_2^2 cannot have any relations amongst them. Since these are also three sections of S^2E of the lowest degrees, they can be taken as part of a minimal system of generators for S^2E . It follows that the relation in degree 3-e among the minimal generators of S^2E obtained in the previous lemma must include minimal generators other than s_1^2, s_1s_2, s_2^2 . Since the other minimal generators have degree at least $a_1 + a_3$, and since we are considering a relation amongst minimal generators, we get the inequality $a_1 + a_3 \leq 2 - e$. **Lemma 6.** For any choice of $1 \le i < j \le n$, the (i, j)-Pfaffian of Φ , is non-zero. Consequently, its degree (which is $a_i + a_j + e$) is at least (n-2)/2. *Proof.* On X, E has an infinite resolution $$\cdots \to \overline{F}_0^{\vee}(e-2d) \xrightarrow{\overline{\Phi}} \overline{F}_0(-d) \xrightarrow{\overline{\Psi}} \overline{F}_0^{\vee}(e-d) \xrightarrow{\overline{\Phi}} \overline{F}_0 \to E \to 0.$$ We also have Let $\overline{\Theta} = \sigma^{\vee} \alpha \sigma$. Since $\sigma = (s_1, \dots, s_n)$, we may express the (i, j)-th entry of $\overline{\Theta}$ as $\theta_{ij} = s_i^{\vee} s_j$ (suppressing the canonical isomorphism α). $\Phi^{\vee} = -\Phi$ and $\alpha \sigma : \overline{F}_0(-d) \to E^{\vee}(e-d)$ is surjective on global sections. Hence we have a commuting diagram $$\overline{F}_{0}^{\vee}(e-2d) \stackrel{\overline{\Phi}}{\to} \overline{F}_{0}(-d) \stackrel{\overline{\Psi}}{\to} \overline{F}_{0}^{\vee}(e-d) \stackrel{\overline{\Phi}}{\to} \overline{F}_{0} \to E \to 0$$ $$\downarrow \stackrel{B}{\cong} \qquad \downarrow \stackrel{-I}{\cong} \qquad || \qquad ||$$ $$\overline{F}_{0}^{\vee}(e-2d) \stackrel{\overline{\Phi}}{\to} \overline{F}_{0}(-d) \stackrel{\overline{\Theta}}{\to} \overline{F}_{0}^{\vee}(e-d) \stackrel{-\overline{\Phi}}{\to} \overline{F}_{0} \to E \to 0$$ It is easy to see that B is an isomorphism. As a result, every column of B has a non-zero scalar entry. Now suppose that $\overline{\psi}_{ij} = 0$ for some i, j so that $\sum_k s_i^{\vee} s_k b_{kj} = 0$. Let Y_i be the curve given by the vanishing of the minimal section s_i with the exact sequence $$0 \to \mathcal{O}_X(-a_i) \xrightarrow{s_i} E \xrightarrow{s_i^{\vee}} I_{Y_i/X}(a_i + e) \to 0.$$ Hence $s_i^{\vee} s_i = 0$ and $s_i^{\vee} s_k$ for $k \neq i$ give minimal generators for $I_{Y_i/X}$. It follows that no b_{kj} can be a non-zero scalar for $k \neq i$. Hence b_{ij} has to be a non-zero scalar and the only one in the j-th column. However, $\overline{\psi}_{jj} = 0$. So by the same argument, b_{jj} is the only non-zero scalar. To avoid contradiction, $\overline{\psi}_{ij}$ and hence $\psi_{ij} \neq 0$ for $i \neq j$. We now complete the proof of the Main Theorem. As in the previous lemmas, assume that X is general of degree $d \geq 6$, with E an indecomposable rank two ACM bundle on X. We will show that the inequalities of Lemma 5 lead us to the special cases of Lemma 3, giving a contradiction. Let $$\mu = a_1 + a_2 + e$$. By Lemma 5, $1 \le \mu \le 2$. Case $\mu = 1$. In this case, in order for the (1,2)-Pfaffian of Φ to be linear, by Lemma 6, n must equal 4. In the 4×4 matrix Φ , the (1,2)-Pfaffian is the entry ϕ_{34} which we are claiming is linear. Likewise the (1,3)-Pfaffian is the entry ϕ_{24} which by Lemma 5 has degree $a_1+a_3+e \leq 2$. By Lemma 2, we may assume that $\phi_{14}, \phi_{24}, \phi_{34}$ define a smooth complete intersection curve and X contains this curve by example 1. By Lemma 3, X cannot be general. Case $\mu = 2$. In this case $a_2 = a_3$. By Lemma 6, n must be 4 or 6. The case n = 4 is ruled out again by the arguments of the above paragraph since Φ has two entries of degree 2 in its last column. We will therefore assume that n = 6. The matrix $$\Phi = \begin{pmatrix} 0 & \phi_{12} & \phi_{13} & \phi_{14} & \phi_{15} & \phi_{16} \\ * & 0 & \phi_{23} & \phi_{24} & \phi_{25} & \phi_{26} \\ * & * & 0 & \phi_{34} & \phi_{35} & \phi_{36} \\ * & * & * & 0 & \phi_{45} & \phi_{46} \\ * & * & * & * & * & 0 \end{pmatrix}$$ is skew-symmetric and by our choice of ordering of the a_i 's, the degrees of the upper triangular entries are non-increasing as we move to the right or down. As remarked before, the degree of ϕ_{ij} is $d-e-a_i-a_j$. The (1, 2)-Pfaffian (which is a non-zero quadric when $\mu=2$) is given by the expression (see example 1) (2) $$Pf(\Phi(1,2)) = \phi_{34}\phi_{56} - \phi_{35}\phi_{46} + \phi_{36}\phi_{45}.$$ We shall consider the following two sub-cases, one where ϕ_{56} has positive degree (and hence can be chosen non-zero by Lemma 2) and the other where it has non-positive degree (and hence is forced to be zero): $$d - e - a_5 - a_6 > 0.$$ Since $\phi_{34} \cdot \phi_{56}$ is one term in the (1,2)-Pfaffian of Φ , and since degree ϕ_{34} is at least degree ϕ_{56} , they are both forced to be linear. Therefore ϕ_{34} , ϕ_{35} , ϕ_{36} have the same degree (=1) and so $a_4 = a_5 = a_6$. Likewise, $a_3 = a_4 = a_5$. Therefore $a_2 = a_3 = a_4 = a_5 = a_6$. Hence Φ has a principal 5×5 submatrix χ (obtained by deleting the first row and column in Φ) which is a skew symmetric matrix of linear terms, while its first row and first column have entries of degree $1 + r, r \geq 0$. By Lemma 2 we may assume that the ideal of the 4×4 Pfaffians of χ defines a smooth curve C. X is then a degree d = 3 + r hypersurface containing C. By Lemma 3, X cannot be general when $d \geq 6$. $$d - e - a_5 - a_6 \le 0.$$ In this case, the entry $\phi_{56} = 0$. Suppose ϕ_{46} is also zero. Then both ϕ_{36} and ϕ_{45} must be linear and non-zero since the (1, 2)-Pfaffian of Φ (see equation 2) is a non-zero quadric. Since $a_2 = a_3$, ϕ_{26} is also linear. Thus using Lemma 2, X contains the complete intersection curve given by the vanishing of ϕ_{16} and the two linear forms ϕ_{36} , ϕ_{26} . By Lemma 3, X cannot be general. So we may assume that $\phi_{46} \neq 0$. Since ϕ_{35} is also non-zero, both must be linear. Hence $a_3 + a_5 = a_4 + a_6$, and so $a_3 = a_4$ and $a_5 = a_6$. After twisting E by a line bundle, we may assume that $a_2 = a_3 = a_4 = 0 \le a_5 = a_6 = b$. The linearity of the entry ϕ_{46} gives d - e - b = 1. The condition $d - e - a_5 - a_6 \le 0$ yields $1 \le b$. Taking first Chern classes in resolution (1) gives $e = 2 - a_1$. Let $r = -a_1$, s = b - 1. Then $r, s \ge 0$, and d = r + s + 4. If we inspect the matrix Φ , the non-zero rows in columns 5 and 6 give a 4×2 matrix Δ with top row of degree 1 + r and the other entries all linear. By Lemma 2, we may assume that the 2×2 minors of this 4×2 matrix define a smooth curve C_r as described in Lemma 3. Since X contains this curve, X cannot be general when $d \ge 6$. ### REFERENCES - [1] Beauville, A., Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. - [2] Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O., Cohen-Macaulay modules on hypersurface singularities. II Invent. Math. 88 (1987), no. 1, 165–182. - [3] Chiantini, L., Madonna, C., A splitting criterion for rank 2 bundles on a general sextic threefold, Internat. J. Math. 15 (2004), no. 4, 341–359. - [4] Eagon, J., Northcott, D.G., *Ideals defined by matrices and a certain complex associated with them*, Proc. Royal Soc. A 269, (1962) 188–204. - [5] Horrocks, G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964) 689–713. - [6] Mohan Kumar, N., Rao, A.P., Ravindra, G.V., Arithmetically Cohen-Macaulay vector bundles on hypersurfaces, Commentarii Mathematici Helvetici (to appear). - [7] Kleppe, H., Deformation of schemes defined by vanishing of Pfaffians, J. Algebra 53 (1978), no. 1, 84–92. - [8] Mohan Kumar, N., Rao, A.P., Ravindra, G.V., Four-by-Four Pfaffians, Rend. Sem. Mat. Univ. Padova (to appear). - [9] Northcott, D. G., *Multilinear algebra*, Cambridge University Press, Cambridge, 1984. x+198 pp. - [10] Okonek, C., Notes on Varieties of Codimension 3 in \mathbb{P}^N , Manuscripta Math. 84 (1994), no. 3-4, 421–442. Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri, 63130 E-mail address: kumar@wustl.edu URL: http://www.math.wustl.edu/~ kumar Department of Mathematics, University of Missouri-St. Louis, St. Louis, Missouri 63121 E-mail address: raoa@umsl.edu DEPARTMENT OF MATHEMATICS, INDIAN INSITUTE OF SCIENCE, BANGALORE—560012. INDIA E-mail address: ravindra@math.iisc.ernet.in